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Abstract.  

Accurate long-term marine-derived biogenic sulfur aerosol concentrations at high spatial and temporal resolutions are critical 

for a wide range of studies including climatology, trend analysis, model evaluation, accurate investigation of their 

contribution to aerosol burden, or to elucidate their radiative impacts and to provide boundary conditions for regional 

models. By applying machine learning algorithms, we constructed the first, publicly available, daily gridded dataset of in-20 

situ produced biogenic methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4
=) concentrations covering the North 

Atlantic Ocean. The dataset is of high spatial resolution of 0.25° × 0.25°, spanning 25 years (1998–2022), far exceeding 

what observations alone could achieve both space- and time-wise. The machine learning models were generated by 

combining in-situ observations of sulfur aerosol data at Mace Head research station, west coast of Ireland, and from 

NAAMES cruises in the NW Atlantic, with the constructed sea-to-air dimethylsulfide flux (FDMS) and ECMWF-ERA5 25 

reanalysis datasets. To determine the optimal method for regression, we employed five machine learning model types: 

support vector machines, decision tree, regression ensemble, Gaussian process, and artificial neural networks. A comparison 

of the mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) revealed that the 

Gaussian process regression (GPR) was the most effective algorithm, outperforming the other models in simulating the 

biogenic MSA and nss-SO4
= concentrations. For predicting daily MSA (nss-SO4

=), GPR displayed the highest R2 value of 0.86 30 

(0.72) and the lowest MAE of 0.014 (0.10) µg m–3. The GPR partial dependence analysis suggests that the relationships 

between predictors and MSA and nss-SO4
= concentrations are complex rather than linear. Using the GPR algorithm, we 

produced a high-resolution daily dataset of In-situ Produced Biogenic MSA and nss-SO4
= sea-level concentrations over the 
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North Atlantic, which we named IPB-MSA&SO4. The obtained IPB-MSA&SO4 data allowed us to analyze the 

spatiotemporal patterns of MSA, nss-SO4
=, and the ratio between them (MSA:nss-SO4

=). A comparison with the existing 35 

CAMS-EAC4 reanalysis suggested that our high-resolution dataset reproduces with high accuracy the spatial and temporal 

patterns of the biogenic sulfur aerosol concentration and has high consistency with independent measurements in the Atlantic 

Ocean. The IPB-MSA&SO4 is publicly available at https://doi.org/10.17632/j8bzd5dvpx.1 (Mansour et al., 2023b). 

1 Introduction 

Marine-derived biogenic sulfur aerosol particles exert an important influence on the radiative properties of the atmosphere, 40 

both directly by scattering solar radiation and indirectly by modifying cloud properties (Langmann et al., 2008; Charlson et 

al., 1987). Dimethylsulfide (DMS), a volatile organic compound produced by marine microbes, is the main precursor of 

biogenic sulfur-containing aerosols in the marine boundary layer (MBL). After being ventilated into the atmosphere, DMS is 

oxidized to form two of the major secondary marine aerosol species, Methanesulfonic acid (MSA) and non-sea-salt sulfate 

(nss-SO4
=). Sulfur emitted by marine organisms constitutes 20% (Fiddes et al., 2018) to 40% (Simo, 2001) of the total sulfur 45 

burden of the atmosphere. The understanding of the role of MSA and nss-SO4
= concentrations in Earth’s climate is elusive 

(Mansour et al., 2020a; Hodshire et al., 2019). According to the CLAW hypothesis (Charlson et al., 1987), negative climate 

feedback is expected to occur if phytoplankton responds to elevated temperature or solar radiation levels by increasing their 

DMS production, thereby, exerting a cooling effect by increasing the planetary albedo. Indeed, studies confirmed that DMS 

emissions contribute significantly to stabilizing the Earth's atmosphere (Sanchez et al., 2018; Thomas et al., 2010; Kim et al., 50 

2018; Mahmood et al., 2019; Mansour et al., 2022; Mansour et al., 2020b), while a few others have claimed that the 

biological control over cloud condensation nuclei (CCN) goes even beyond the CLAW's climatic feedback role of DMS 

(Quinn and Bates, 2011; Woodhouse et al., 2010; O'dowd O'Dowd et al., 2004). As a result, biogenic sulfur aerosols play a 

central role in ocean-atmosphere interactions and regional climate change, and it is critical to parameterize and characterize 

biogenic MSA and nss-SO4
= across different sea areas and identify their sources to constrain the past, current and future 55 

climate impacts of both species (Hodshire et al., 2019; Gondwe et al., 2003). For instance, MSA observations from 

Greenlandic ice cores have been used to study the variability of subarctic Atlantic Ocean productivity from decadal to 

centennial time scales (Osman et al., 2019). 

The global aerosol-chemistry-climate general circulation models are used widely to assess the radiative forcing of DMS-

derived aerosols. A negative forcing caused by the DMS effect is predicted ranging between −1.7 and −2.3 W m−2 (Fiddes et 60 

al., 2018; Fung et al., 2022; Thomas et al., 2010; Mahajan et al., 2015). This range is comparable to the positive forcing 

impact of anthropogenic CO2 emissions (1.83±0.2 W m−2) (Etminan et al., 2016). Large uncertainties in DMS forcing 

estimates (up to ±10 W m−2) are partly because models overlook the high-frequency spatial, temporal, and seasonal 

variability in DMS fluxes (Mansour et al., 2023a; Royer et al., 2015; Mcnabb and Tortell, 2022), and consequent oxidation 
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products (Riccobono et al., 2014), which are not adequately constrained by the available sparse observations (Bock et al., 65 

2021). This level of uncertainty underlines the need for improved parameterizations of natural sulfur aerosol cycling and 

fluxes at regional scales (Hulswar et al., 2022; Gali et al., 2018; Mahajan et al., 2015), which is essential for determining 

their impact on climate. Recently, multilinear regression was utilized to simulate monthly MSA over the eastern China seas 

at a spatial resolution of 1° × 1° (Zhou et al., 2023), concluding that MSA spatial/seasonal patterns exhibit significant 

variability, which is primarily governed by surface phytoplankton biomass and the atmospheric boundary layer height. 70 

Focusing on the North Atlantic (NA) Ocean, sulfur-containing aerosols, MSA and nss-SO4
=, have been measured at Mace 

Head sampling station, a coastal area in the eastern NA Ocean, to quantify the contribution of phytoplankton emissions to 

aerosol mass concentrations in MBL (Rinaldi et al., 2010; Rinaldi et al., 2009; O'dowd O'Dowd et al., 2004), to assess the 

long-term seasonal patterns in the chemical composition of submicron aerosol in the different origin of marine air masses 

(Ovadnevaite et al., 2014), and to identify the oceanic regions acting as the main source of biogenic aerosols (Mansour et al., 75 

2020b). During NAAMES field campaigns, research cruises aimed at comprehending the relationships between ecosystems, 

aerosols, and clouds (Behrenfeld et al., 2019), Saliba et al. (2020) evaluated the origins and contributions of submicron 

organic and sulfate components to CCN concentrations in the MBL. They concluded that the DMS-derived secondary nss-

SO4
= enhanced hygroscopicity, particle size, and CCN concentrations by 5–66%, especially in the spring, highlighting the 

importance of phytoplankton produced DMS emissions for the CCN budget in the NA (Mansour et al., 2022; Mansour et al., 80 

2020b; Sanchez et al., 2018). However, it is currently challenging to effectively investigate climatology, long-term trends 

and climate forcing of biogenic sulfur compounds, as well as validate inherent model outputs, since there is a lack of high-

time resolution data on these compounds. 

In this study, we present the first high-resolution and long-term daily gridded time series of freshly formed In-situ Produced 

Biogenic Methanesulfonic Acid and nss-Sulfate (IPB-MSA&SO4) concentrations over the NA ocean at 0.25° × 0.25° spatial 85 

resolution. The data covers 25 years from 1998 to 2022 with the possibility of future updating year by year. The dataset is a 

unique and novel product that in fact extends the space and time representativeness of atmospheric in-situ observations of 

marine aerosol chemical properties over the NA Ocean, by exploiting the potential of machine learning. The dataset 

represents the sea-level concentrations of MSA and nss-SO4
=, in each grid point of the domain, resulting from the interplay 

between precursor emissions and local atmospheric conditions. We created the IPB-MSA&SO4 dataset using in-situ MSA 90 

and nss-SO4
= data measured at Mace Head (MHD) site and from NAAMES cruises, the gridded dataset from the ECMWF-

ERA5 together with the reconstructed FDMS (Mansour et al., 2023a) as input data. To achieve this aim, we employed machine 

learning (ML) approaches: support vector machines (SVM), decision tree (DT), regression ensemble (RE), Gaussian process 

regression (GPR), and artificial neural networks (ANN). ML has been applied in a variety of scientific areas for model 

approximation, experiment design, and multivariate regression of oceanic and atmospheric complex systems, however, no 95 

prior applications to MSA and nss-SO4
=  prediction have been published, to our knowledge. During model training, we 
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evaluated the various possible kernel functions and hyperparameters in each ML type (details in Table 1), employing the 5-

fold cross-validation strategy to select the best-performing (optimal) function capable of properly predicting MSA and nss-

SO4
=. The partial dependence analysis is also used to assess the effect of different predictors on the modeled MSA and nss-

SO4
=. Furthermore, we investigate the annual and monthly spatial distributions of MSA, nss-SO4

= and the ratio between them 100 

(MSA:nss-SO4
=) to examine the evolution of MSA and nss-SO4

= in the different regions of the NA domain from 1998 to 

2022. The output data (IPB-MSA&SO4) from this study should be useful for filling the data gap, particularly for the NA, and 

be applicable to a variety of investigations, such as climatology, trend analysis, model evaluation, radiative impacts, and 

providing boundary conditions for regional models. 

2 Study domain and data sources 105 

2.1 Study area and measuring sites 

The study area extends from 20° to 66° N and from 72° W to the prime meridian (Fig. 1) covering the NA Ocean. The key 

climate-relevant features in the study domain are the Gulf Strem, its northern extension towards Europe known as the North 

Atlantic Current (NAC), and the cyclonic subpolar gyre (SPG) (Rhein et al., 2011). The Gulf Stream is a warm Atlantic 

Ocean flow that begins in the Gulf of Mexico and moves through the Straits of Florida before continuing up the eastern coast 110 

of the United States (Buckley and Marshall, 2016). These warm northward-flowing waters meet the cold southward-flowing 

waters of the Labrador Current and the western boundary current of the cyclonic subpolar gyre, ultimately turning east and 

heading toward Northwest Europe as the NAC. The NAC then splits into multiple branches that enter the subpolar gyre, one 

of which passes via the Iceland Basin and the other through the Rockall trough (Fratantoni, 2001). The NA SPG extends 

from 45° N to around 65° N and comprises the sills between Greenland, Iceland, the Faroe Islands, and Scotland. Such 115 

circulation phenomena are crucial for the modulation of the temperate climate of north-western Europe (Marzocchi et al., 

2015), and the dynamics of SPG determine the rate of deep and intermediate water formation (sinking dense and cold surface 

waters through air-sea heat exchanges in the wintertime) particularly in the Labrador Sea (Katsman et al., 2004). 

Accordingly, they contribute to the regional changes of primary production and the subsequent biogenic emissions in the 

study domain. 120 

The MHD global atmospheric watch (GAW) research station (53.33° N, 09.90° W) is located on Ireland's west coast (Fig. 

1), at about 80 meters from the coastline and 21 m above mean sea level. MHD is the only GAW station in the eastern 

Atlantic region and is the globally acknowledged clean background western European station, providing key baseline input 

for intercomparing with levels elsewhere in Europe (Grigas et al., 2017; O'dowd O'Dowd et al., 2014). 

Four shipboard field campaigns were carried out as part of the NAAMES research project (Behrenfeld et al., 2019). The 125 

tracks of cruises representing marine conditions during aerosol sampling (Saliba et al., 2020) are shown in Fig. 1. The 
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measurements cover the periods of November 2015, May–June 2016, September 2017, and March 2018. Behrenfeld et al. 

(2019) provide a thorough explanation of the NAAMES project's goals, objectives, and atmospheric and oceanic conditions. 

2.2 Observational data 

The long-term submicron sulfur aerosol species atmospheric concentrations (Methanesulfonic acid [MSA] and Sulfate 130 

[SO4
=]) from January 2009 to June 2018 measured at MHD were used. The measurements were performed by using the 

Aerodyne High Resolution- Time of Flight- Aerosol Mass Spectrometer (HR-ToF-AMS). The HR-ToF-AMS (Decarlo et al., 

2006) output has a time resolution of ~5-10 minutes and it was operated according to the recommendations by Jimenez et al. 

(2003), Allan et al. (2003) and Canagaratna et al. (2007). The MSA was derived from the concentration of mass fragment 

CH3SO2
+ (Ovadnevaite et al., 2014). Further information on the MSA measurement can be found in Mansour et al. (2020a). 135 

The black carbon (BC) concentrations were measured in-situ at MHD by a multi-angle absorption photometer (O'dowd 

O'Dowd et al., 2014) to identify the anthropogenically impacted air masses, as detailed in Section 3.1.1. 

High‐resolution in-situ shipborne measurements of non‐refractory submicron SO4
= concentrations were measured every 5 

min using HR-ToF-AMS during four open‐ocean research cruises (NAAMES) in the NW Atlantic [4 campaigns represent 

winter (November 2015), late spring (May–June 2016), autumn (September 2017), and early spring (March 2018)] (Saliba et 140 

al., 2020). We employ the SO4
= concentrations, whereas there are no high-resolution MSA datasets available from NAAMES 

campaigns, during periods that were largely marine aerosol sources which were defined as periods when particle number 

concentrations <1500 cm−3, BC <50 ng m−3, 2-days back trajectories originated from the North or tropical Atlantic, and 

radon concentrations <500 mBq m−3 according to Saliba et al. (2020). The measured SO4
=

 from AMS excludes refractory 

particles that likely contain the majority of sea‐salt sulfate which is therefore approximately equivalent to nss-SO4
= (Frossard 145 

et al., 2014). 

2.3 Air mass back-trajectories 

The Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric Administration (NOAA) developed the 

Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) model (Rolph et al., 2017; Stein et al., 2015), which is 

used to calculate the air mass back-trajectories (BTs). The archived Global Data Assimilation System (GDAS1) (1° × 1°) of 150 

the National Centers for Environmental Prediction (NCEP) was used as a driver of the trajectory calculation 

(ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1). We run the model at the MHD sampling station as a fixed source location 

and throughout the NAAMES cruises as a moving source location. The starting height is set to be 100 m above ground level 

and the backward time is 3 days with an interval of 1 h along each entire trajectory track. The schematic diagram of BTs 

calculation is shown in Fig. S1. The arrival frequency of BTs at MHD is 3h (eight tracks a day) covering the period from 01-155 

Jan-2009 to 30-Jun-2018 and of NAAMES is hourly (twenty-four tracks a day) covering the time of the four campaigns 

identified as marine periods (Saliba et al., 2020). 

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1
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2.4 Dimethylsulfide flux data 

The seawater DMS is the primary contributor to biogenic sulfur aerosol in the atmosphere. For this reason, we use the sea-to-

air DMS flux (FDMS) as a predictor of MSA and nss-SO4
= concentrations. Mansour et al. (2023a) used an ML predictive 160 

algorithm based on Gaussian process regression (GPR) to simulate the distribution of daily seawater DMS concentrations 

and related FDMS in the NA areas from 35° to 66° N and from 0° to 55° W at 0.25° × 0.25° spatial resolution. We extended 

the GPR model within the NA to encompass the NAAMES measurements, which are essential because they cover the 

western most section of the study area. Fig. S2 displays the main differences between the two domains. Simply, the GPR was 

trained once more, utilizing the same approach of Mansour et al. (2023a), with a higher number of data points and yielded an 165 

enhanced R2 value up to 0.77 on the independent test dataset. The daily sea-to-air FDMS was calculated using the gas transfer 

velocity (Goddijn-Murphy et al., 2012) and the DMS derived from GPR predictions. For more details about the data product, 

we refer the reader to Mansour et al. (2023a).  

2.5 Meteorological data 

The ECMWF-ERA5 reanalysis data (Hersbach et al., 2020) were downloaded to extract the meteorological parameters used 170 

as predictors of MSA and nss-SO4
= in the ML models. ERA5 provides estimates for the hourly state of the atmosphere, 

worldwide, with spatial resolution 0.25° × 0.25° at the surface and different pressure levels. From the global domain, we 

extracted multiple atmospheric components including air temperature at 2m above sea level (AT) and surface net short-wave 

radiation flux (SRF) as representative of thermal heating, and the relative humidity (RH) as representative of water vapor 

abundance in the atmosphere. To represent the dispersion of aerosol particles in the troposphere and the wet removal through 175 

the below-cloud scavenging process, the boundary layer height (BLH) and the precipitation rate (PR) were utilized, 

respectively. 

3 Methods 

3.1 Data preparation 

In this Section, we describe the preparation of predictors and responses that were used to train, cross-validate, and generate 180 

the ML models. 

3.1.1 Air mass selection 

In previous studies (Mansour et al., 2020b; O'dowd O'Dowd et al., 2015; Ovadnevaite et al., 2014), BC concentration was 

often considered as a useful tool to select clean marine air masses excluding inputs from continental emissions or ship trails. 

In this study, we still relied on BC measurements as a precious tool to identify and exclude anthropogenically impacted air 185 
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masses, but we also developed a more complete approach aimed at identifying air masses characterized by a high degree of 

contact with the ocean surface. This was necessary in order to select, from the in-situ observations, data points representing 

almost entirely oceanic sources to provide the best dataset for training the ML models. 

The retention ratio of the air mass over the ocean (𝑅𝑂) was calculated to determine whether an air mass (identified by BT 

track) arriving at the MHD sampling station or at the ship location, in the case of shipborne measurements, was primarily 190 

from the NA region or not. We used 3‐day BTs arriving 100 m above the MHD sampling station and NAAMES tracks. The 

BTs tracks at the MHD arrival point were calculated 8 times per day, whereas it was 24 times per day at NAAMES 

measuring points, considering only the measurements classified as marine periods (Saliba et al., 2020). The 𝑅𝑂 has been 

calculated for each track as: 

 𝑅𝑂 =
∑ 𝑒

−𝑡𝑖
72

𝑁𝑂𝑐𝑒𝑎𝑛
𝑖=1

∑ 𝑒
−𝑡𝑖
72

𝑁𝑇𝑜𝑡𝑎𝑙
𝑖=1

 (1) 195 

where 𝑁𝑇𝑜𝑡𝑎𝑙 is the total number of trajectory endpoints which is equal to 73 (arrival point + 72 backward hours). 𝑁𝑂𝑐𝑒𝑎𝑛  is 

the total number of trajectory endpoints passing over the ocean, while 𝑡𝑖 is the backward tracking time with the unit of an 

hour spanning the values from 0 to 72. Because air mass diffusion and particles deposition potentially occur during the air 

mass transport, a weighting factor 𝑒−𝑡𝑖 72⁄  related to tracking time has been introduced. The weighting factor takes the values 

from 1 (at the arrival point) up to 0.37 (farthest point), hence, the oceanic areas far from the arrival point, corresponding to 200 

longer backward tracking time, have a weaker influence than areas closer to the sampling point. As a result, a higher 𝑅𝑂 

value implies that oceanic emissions have a greater influence on the air mass and that the source region is more likely to be 

the ocean. Other studies have used similar methods to characterize air mass source regions. For example, Zhou et al. (2021) 

studied the contribution of non-marine MSA sources in the coastal East China Sea and the Gulf of Aqaba by characterizing 

the land air masses. Rinaldi et al. (2021) used a combination of low-travelling air mass BTs and satellite ground-type maps 205 

to investigate the effect of ground conditions (sea ice, snow, seawater, and land) on air samples at Ny-Ålesund station in the 

Arctic Ocean. 

Because oceanic air masses crossing the NA can pass above the BLH, its connection to local sea surface processes such as 

marine biogenic emission and subsequent atmospheric reactions may be significantly weaker. To address this issue, Eq. 2 

was used to calculate the retention ratio of an ocean air mass within the marine boundary layer (𝑅𝐵). 210 

 𝑅𝐵 =
∑ 𝑒

−𝑡𝑖
72

𝑁𝐵𝑒𝑙𝑜𝑤
𝑖=1

∑ 𝑒
−𝑡𝑖
72

𝑁𝑂𝑐𝑒𝑎𝑛
𝑖=1

 (2) 
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where 𝑁𝑂𝑐𝑒𝑎𝑛 is the total number of trajectory endpoints located over the ocean (i.e., marine endpoints) and 𝑁𝐵𝑒𝑙𝑜𝑤  is the 

number of marine endpoints which have an altitude below BLH. The higher the 𝑅𝐵 value, the more airflow over the ocean is 

confined to the MBL. The BLH datasets at each endpoint were extracted from the hourly ERA5 dataset. 

The total number of BTs tracks arriving at MHD during the period from Jan-2009 to Jun-2018 is 27,744 (3468 days × 8 215 

tracks per day). We counted the number of endpoints of all BTs in each 1° × 1° grid cell and normalized them to the 

maximum value to find the percentage of endpoints for all grid cells (Fig. S3). The larger density of BTs endpoints is 

concentrated over the NA oceanic region, indicating that the main source regions for air masses transported to MHD 

sampling stations are most likely oceanic. At MHD, we investigated how MSA (a marine biogenic tracer) responds to 

change in BC (a tracer of anthropogenic input) as seen in Fig. S4, by considering hourly data simultaneous to the arrival time 220 

of BTs (i.e., 8 times a day). We found that MSA tends to fluctuate minimally when BC is less than 15 ng m–3 (slope = 0.05), 

whereas MSA tends to rise slightly when BC exceeds 15 ng m–3 (slope = 0.28). Such cases with hourly BC concentrations 

<15 ng m−3 were classified as representative of marine conditions, that are likely not influenced by anthropogenic sources. 

To constrain the impact of marine biogenic emissions and meteorological parameters on MSA and nss-SO4
=, air masses were 

included in this analysis only if they were characterized by 𝑅𝑂 + 𝑅𝐵 ≥ 1.75, meaning that the air mass had a high degree 225 

of contact with the ocean surface within the last 3 days (Fig. S4). Indeed, considering the above condition, an air mass 

must have at least 𝑅𝑂 equal to 0.75 and in such case the track must be traveling 100% of the time below the BLH. By 

introducing the criterion of 𝑅𝑂 + 𝑅𝐵  ≥ 1.75, approximately 72% of the BTs tracks were considered. This reflects the 

significance of the MHD research station for studying NA biogenic emissions, and the frequency with which it is impacted 

by MBL air masses (Grigas et al., 2017; O'dowd O'Dowd et al., 2014). After considering the BC threshold (<15 ng m−3) and 230 

conservatively removing all the observations done when the BC data were unavailable (instrument downtime), 9211 (33% of 

the total) tracks were classified as representative of marine conditions (selected marine BTs frequency is presented in Fig. 

S5).  

Regarding the NAAMES measurements, the total number of calculated BTs tracks was 832 (Fig. S6) during background 

marine conditions, identified by Saliba et al. (2020). In this study, we kept 660 tracks (Fig. S7) of the above 832 as 235 

representative samples of marine conditions during NAAMES cruises by limiting the analysis to hourly samples with 𝑅𝑂 +

𝑅𝐵  ≥ 1.75. 

3.1.2 Predictors extraction along back trajectories 

In order to train the ML models, it was necessary to associate each observed MSA and nss-SO4
=

 data point with the 

corresponding potential predictors. The potential predictors (FDMS, AT, SRF, RH, BLH and PR) were extracted at each 240 

endpoint of the BTs associated with each of the selected clean marine observational data points (see Section 3.1.1), inside the 

oceanic region within 20−66 °N and 0−72 °W (Fig. S1). The extracted predictor values were then averaged along each 
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marine BT track, providing the most representative picture of the conditions (air mass history) that led to the formation of 

the observed sulfur aerosol concentrations. The few endpoints over land or crossing above the BLH were eliminated.  

The Pearson's correlation coefficients between the potential predictors and observational MSA and nss-SO4
=  data were 245 

compared, considering different BT lengths of 1, 2 and 3 days, to assess which BT length was more representative of the 

time scale of sulfur aerosol formation processes. As seen from Table 2, both MSA and nss-SO4
= correlate better with FDMS 

considering a 3-day BT length. Similarly, the majority of the other predictors, except for AT, tended to maximize their 

correlations considering 2 or 3 days of BT length. Ultimately, we considered for each predictor the BT length that 

maximized the correlation coefficient for the analyses in the present study. 250 

3.1.3 Responses at measuring sites 

Hourly nss-SO4
= at MHD and from NAAMES campaigns as well as MSA at MHD, measured concurrently with the selected 

marine BTs (Section 3.3.1), were used to build ML models. A total of 6162 (6920) data points for MSA (nss-SO4
=) were 

obtained. Further, we also applied 0.1 and 99.9 percentiles lower and upper thresholds filter to remove the extremely low and 

high values that could bias the ML models training and cross/validation. This helped to identify and remove outliers in each 255 

dataset, thereby reducing the number of data points to 6150 (6905) for MSA (nss-SO4
=) (∼0.2 % of data points were 

rejected). Details of the MSA and nss-SO4
= percentile thresholds, along with the amount of data before and after applying the 

filters are given in Table 3. The hourly data after cleanup is used for training/ cross-validation and testing of ML models. 

3.2 Machine learning models 

The methodological flowchart of the present study is shown in Fig. 2. The core of the framework is using the supervised ML 260 

regression techniques to build predictive models for estimating the atmospheric concentrations of biogenic MSA and nss-

SO4
=  (responses) from independent variables (predictors). Predictors include the sea-to-air FDMS and meteorological 

parameters that control the aerosol concentration in the MBL. We used multilinear regression to assess the contribution of 

each predictor to MSA and nss-SO4
=  variations. Initially, we ran the multilinear regression model using the total of the 

potential six predictors: FDMS, AT, SRF, RH, BLH and PR. Secondly, we applied the multilinear regression models by 265 

eliminating one predictor each time. Each independent variable's contribution to R2 is the reduction in total R2 when that 

variable is eliminated. The results (Table 4) showed that the six predictors used can explain up to 74% (53%) of MSA (nss-

SO4
=) variance. Such predictors tend to contribute differently to MSA and nss-SO4

= . SRF, FDMS and BLH are the most 

effective parameters for MSA (explaining up to 64 % of the variability), while SRF, AT and FDMS are the most influential on 

nss-SO4
= (explaining up to 44 % of the variability). RH has a minor contribution to the MSA and nss-SO4

= variance. To know 270 

if a predictor contributes significantly to the explained variance, we performed the analysis of variance (ANOVA) on the 

implemented multilinear regression model. The ANOVA revealed that all the tested predictors have statistically significant 
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(p < 0.05) contributions to MSA and nss-SO4
=. For these reasons, we applied the ML models using all of the potential six 

predictors.  

The datasets, containing the corresponding predictors and each one of the responses (MSA and nss-SO4
=) separately, were 275 

split randomly into two subsets, defined as the training/cross‐validation set and the test/evaluation set for each response. The 

training/cross‐validation sets include 80% of the total points (n = 4920 for MSA and n = 5524 for nss-SO4
=), while the 

test/evaluation sets comprise the remaining 20% (n = 1230 for MSA and n = 1381 for nss-SO4
=). To improve ML algorithms' 

accuracy and protect against overfitting, a k-fold cross‐validation strategy, with k = 5 was used, as this has been shown to 

provide maximal model prediction robustness and minimal bias (Rodriguez et al., 2010; Fushiki, 2011). The k-fold cross-280 

validation is a procedure used to estimate the skill of the model on new data and generally results in a less biased estimate of 

the model skill. The number k-fold refers to how many groups a given data sample is to be split into. In this study where k = 

5, the training/cross‐validation dataset randomly was further divided into 5 folds of roughly equal size. At each trial, one 

group is designated as a holdout or validation dataset, while the remaining four groups are designated as training data (Fig. 

2). The model is then fit on the training set (4 folds) and evaluated on the validation set (last fold), and the average 285 

evaluation measures (accuracy) on the validation subsets of the five iterations are reported. To better examine the model's 

repeatability on a new independent dataset, the generated models were evaluated on the test data that was not included in the 

model construction. 

Five types of ML models were trained/cross-validated and evaluated to identify the best-performing model in estimating 

sulfur aerosol concentrations (MSA and nss-SO4
=). The ML algorithms are SVM, DT, RE, GPR, and ANN. These are the 290 

most common types of algorithms, but still, there are subtypes where advanced options and optimizations in the model can 

increase the performance and resilience of the algorithms. In general, each supervised ML model performs differently and 

has various strengths and shortcomings. Finding the proper ML algorithm is largely based on trial and error; even 

experienced data scientists cannot anticipate if an algorithm will work without testing it. Thus, understanding the 

fundamentals of various ML algorithms and their applicability in diverse applications is critical (Sarker et al., 2019). As a 295 

result, initially, we assessed 20 algorithms belonging to the aforementioned five types and chose the most fitted from each 

type (Table 1), as detailed in the following Sections.  

3.2.1 Support vector machines (SVM) 

SVM is a powerful mathematical model based on the statistical learning theory (Vapnik, 2013) that can be used either for 

classification or regression analysis. In recent decades, SVM demonstrated high prediction accuracy in a wide range of 300 

regression problems in fields such as oceanography, meteorology, and atmospheric sciences (Lins et al., 2013; Sachindra et 

al., 2018; Shabani et al., 2020; Shrestha and Shukla, 2015; Fan et al., 2018). The SVM model estimates the regression using 

a series of kernel functions that are capable of implicitly converting the original, lower-dimensional input data to a higher-
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dimensional feature space. To achieve the best prediction accuracy for MSA and nss-SO4
=, we assessed the SVM different 

kernel functions such as linear, polynomial (quadratic and cubic) and Gaussian (Table 1). The Gaussian kernel was adopted 305 

by trying various kernel scales, setting them to 0.61 (fine), 2.4 (medium), and 9.8 (coarse). For more information on SVM, 

the reader is referred to https://www.mathworks.com/help/stats/fitrsvm.html. 

3.2.2 Decision tree (DT) 

The DT model is a non-parametric, non-linear model that generates a structure resembling a tree for classification and 

regression (Kotsiantis, 2013; Quinlan, 1986). It repeatedly divides the dataset into smaller subsets based on independent 310 

features from the input dataset. The split seeks to reduce variability within each group while increasing the variance between 

subsets. The final tree is made up of decision and leaf nodes. The decision node represents a condition on an attribute, and its 

branches indicate the conditions' outcomes. For additional information on DT, the reader is directed to 

https://www.mathworks.com/help/stats/fitrtree.html. The critical parameter in this technique is determining when to 

terminate the dividing process. In this study, we set up three different minimum leaf sizes (minimum samples to split) to 315 

control the number of data that should be in the sub-branch to continue the splitting process, namely 4 (fine tree), 12 

(medium tree), and 36 (coarse tree) as seen in Table 1. 

3.2.3 Regression ensemble (RE) 

The ensemble is a technique that employs a collection of DT models (referred to as weak learners or base models), each of 

which is produced by applying a learning process to a specific problem and then combining them to provide the final 320 

prediction (Mendes-Moreira et al., 2012). The performance and accuracy of ensembles are determined by the aggregation of 

weak learners (Hengl et al., 2018). The well-known types of aggregation are the bagging and boosting methods (Breiman, 

2001). In the bagging method (also known as bootstrap aggregating), the base models are generated using random sub-

samples drawn from the original dataset with the bootstrap sampling method, where some original examples appear several 

times while others do not appear at all. On the other hand, the main idea of the boosting method is that it is possible to 325 

convert a base model that performs slightly better into one that arbitrarily achieves high accuracy. This conversion is 

performed by combining the estimations of several predictors. For more information on RE, the reader is referred to 

https://www.mathworks.com/help/stats/fitrensemble.html.  

3.2.4 Gaussian process regression (GPR) 

GPR is a non-parametric technique for solving nonlinear regression problems (Williams and Rasmussen, 1996) which is 330 

based on Bayesian theory and statistical learning theory. The accuracy of GPR is dependent on the adopted kernel 

(covariance) functions (Verrelst et al., 2016). We assessed the different base kernel functions, namely exponential, Matern 

5/2, squared exponential, and rational quadratic (Asante-Okyere et al., 2018; Mansour et al., 2023a) to determine the optimal 

https://www.mathworks.com/help/stats/fitrsvm.html
https://www.mathworks.com/help/stats/fitrtree.html
https://www.mathworks.com/help/stats/fitrensemble.html
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covariance function that could produce reliable predictions of MSA and nss-SO4
=. For more information on GPR, the reader 

is referred to Mansour et al. (2023a) and https://www.mathworks.com/help/stats/fitrgp.html. 335 

3.2.5 Artificial neural networks (ANN) 

ANN is an information processing system, which can be used to understand the complex nonlinear relationship between the 

response and predictors (Kalogirou, 2001). It consists of interconnected groups of artificial neurons that work in the same 

way as biological neurons. The ANN structure comprises three distinctive groups called input (corresponds to the 

predictors), several hidden layers (fully connected), and output (corresponds to the predicted response values). The input 340 

introduces data to the ANN model, the hidden layer processes the data, and the results are produced in the output. Further 

details on ANN can be found at https://www.mathworks.com/help/stats/fitrnet.html. We trained various types of ANN as 

single-layer (number of fully connected layers = 1), bi-layered (number of fully connected layers = 2), and tri-layered 

(number of fully connected layers = 3) neural networks as detailed in Table 1. 

3.3 Evaluation measures 345 

In this study, we use different validation metrics to evaluate the ML models' performance. Each of the metrics is calculated 

using “residuals”. Residuals are the differences between the observed data points 𝑂𝑖  and the predicted values 𝑃𝑖 , where 𝑖 =

1,2, … 𝑛. 𝑛 refers to the number of observations. Better models in predicting the response have residuals close to zero. The 

average magnitude of the residuals is called mean absolute error (MAE). 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝑃𝑖|𝑛

𝑖=1    (3) 350 

Regression models tend to use the square of the residuals instead of the absolute. The square root of the average of the 

squared residuals is called root mean square errors (RMSE). A low RMSE is a confidence that your model has relatively few 

large errors. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖   (4) 

The metrics listed in Eqn. 3 and Eqn. 4 can only tell you how a model compares to observations and/or other models. Neither 355 

can say whether a model is a good fit for the data objectively. Comparing a model to a simple baseline model is a different 

approach. This is the motivation behind the use of the coefficient of determination (𝑅2) metric (Eqn. 5). 𝑅2 is the relative 

difference in the total error obtained by fitting a model, so a value between 0 and 1. If a model fits the data well, the model 

error is small and 𝑅2 will be close to 1 and vice versa. 

 𝑅2 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖

∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)2𝑛
𝑖

 (5) 360 

https://www.mathworks.com/help/stats/fitrgp.html
https://www.mathworks.com/help/stats/fitrnet.html
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Where 𝑂�̅�  is the average of observations. The predicted-observed linear slope is the last metric used to evaluate the 

performance of ML models. It determines the rate of change of the predicted variable concerning the observed variable and 

should be close to unity for skilled model predictions. 

4. Results and Discussion 

4.1 Evaluation of ML model performance 365 

As a first step, we assessed different possible hyperparameters optimization in each type of the five used ML models (SVM, 

DT, RE, GPR, and ANN) to determine which one has the best fit and lesser errors in sulfur aerosol (MSA and nss-SO4
=) 

predictability. We chose the best model with the least errors in each type for further evaluation and analysis based on the 

evaluation measures (RMSE, MAE, and R2). The evaluation measures are summarized in Table S1. The medium Gaussian 

SVM which utilizes a Gaussian kernel scale equal to the square root of the number of predictors (= 2.4), displayed better 370 

performance. The coarse DT, which sets the minimum sample size to split equal to 36, the ensemble bagged trees (EBT) of a 

bootstrap aggregated ensemble and the GPR, which employs the rational quadratic kernel, represent the minimum errors. 

Finally, a medium ANN of layer size 25 with one fully connected layer is selected. The five best-performing (optimal) 

models have been exported and saved so that they can be used to make new predictions on a new dataset. 

Fig. 3a-e and Fig.4a-e present the detailed comparison between observed and predicted MSA and nss-SO4
=, respectively, of 375 

the five developed ML optimal models. When compared to the multilinear regression (Table 4), it is clear that ML models, 

in general, can reconstruct the observations with a markedly higher R2 value, which means that the selected ML approaches 

capture much more of the observed MSA and nss-SO4
= variability. While the five applied optimal algorithms have quasi-

similar measures, the best model is GPR for predicting MSA and nss-SO4
=. For hourly MSA (nss-SO4

=), the GPR achieves the 

highest R2 value of 0.79 (0.64) and the least RMSE of 0.362 (0.282) for the cross-validated data (average measures of each 380 

validation fold). When extending to the test data, R2 and RMSE reach 0.81 (0.67) and 0.347 (0.272), respectively. The EBT 

comes second in terms of performance in predicting MSA (nss-SO4
=) with R2 = 0.80 (0.64) of the independent test data. The 

SVM and ANN achieve a reasonable accuracy with R2 = 0.79 (0.61) and 0.78 (0.60), respectively for MSA (nss-SO4
=) based 

on the test data. Lastly, based on the hourly test data, the DT shows the lowest, but still respectable, accuracy with R2 = 0.76 

for MSA and = 0.57 for nss-SO4
=. 385 

Importantly, the implemented ML models can reconstruct MSA and nss- SO4
=  daily time series characteristics with 

remarkable consistency between observed and predicted data, except for extremely high and low concentrations. This is 

mostly due to the low probability of such concentrations in the observed dataset, which inhibits ML models from 

reconstructing them. The quantitative comprehension of exceptional emission extremes is not addressed in this study; 

nonetheless, their occurrence and possible implications deserve to be investigated in future studies. It is worth noting that the 390 
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daily averages of MSA and nss-SO4
= have been calculated from the validation folds and the test set. The MAE of GPR is 

close to 0.014 (0.100) µg m–3 for MSA (nss-SO4
=). The MAE of EBT, SVM, ANN and DT are higher than those of both 

GPR. According to the R2, the ranking order is the same as for MAE, i.e., GPR outperforms EBT, SVM, ANN and DT in 

both MSA and nss-SO4
=, notwithstanding the differences in the R2 of the five models are small. An in-depth look at the MAE 

and R2 from MHD and NAAMES (Fig. 4; right panels) demonstrates that the ML models perform well in predicting nss-SO4
= 395 

across different datasets. All five models show relatively high values of R2 on the NAAMES dataset. EBT, SVM and ANN 

have R2 values that are similar and equal to 0.81, whilst GPR has the highest value of R2 reaching 0.87 and DT has the 

smallest at 0.72. In essence, the performance metrics indicate that GPR always has the highest accuracy and lowest errors, 

reflecting the robustness of GPR. Therefore, GPR was selected as the optimal regressor for further analysis throughout this 

study. 400 

Knowing that the GPR model could be biased due to the inhomogeneous distribution of in situ observations, we assessed the 

applicability of the GPR model in regions poorly covered by atmospheric observational data (as the central part of the 

domain) by running the model in a worst-case scenario deployment. In this exercise, we predicted the daily variations of nss-

SO4
= measurements in the westernmost portion of the study area by training the model only with observations from the 

eastern part of the domain (i.e., data collected at MHD). In this case, MHD data were used for training/cross-validation, 405 

while the four NAAMES campaigns were employed as independent test data. The evaluation on the test data (Fig. S8) 

reveals that GPR can explain 55% of the daily observed nss-SO4
= variance (MAE = 0.129 µg m–3), even in this worst-case 

scenario and on a limited test dataset (n = 57). This more than acceptable performance of the model supports the reliability of 

the IPB-MSA&SO4 dataset also in the central part of the NA, where measurements of MSA and nss-SO4
= are missing. In 

addition, Section 4.5 describes the validation of the GPR model for predicting observed MSA concentrations during the 410 

Polarstern campaigns, which were not included in either the model training/cross-validation or in the model test. 

4.2 Partial dependence analysis 

The bulk of ML models is called a "black box" since the internal computations inside multiple operational layers in a model 

are concealed and most systems have only observable inputs and outputs out of the box. The partial dependence analysis 

(Friedman, 2001) is used to assess how predictors influence an output by ML model and show whether the relationship 415 

between the response and any of the features is linear, monotonic or more complex. The method entails altering one feature 

and constraining the remaining features to unaltered average values to illustrate the marginal effect of the changed feature on 

the expected outcome. The partial dependence plots of MSA and nss-SO4
= as a function of the predictors in the highest-

performing GPR model are shown in Fig. 5, indicating that the interactions between predictors and response are complex in 

general. MSA and nss-SO4
= levels tend to rise as FDMS levels rise from 3 to 10 µmol m–2 d–1. MSA continues to rise with 420 

stronger FDMS emission rates (>10 µmol m–2 d–1), nevertheless, nss-SO4
= concentration appears independent of FDMS after this 

threshold. AT exhibits a positive relationship with MSA and nss-SO4
= concentration in the range of (5–10 °C) and above a 
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downward trend. RH, which has the least impact on MSA and nss-SO4
= (Table 4), has an unclear pattern on the MSA and 

nss-SO4
= marginal changes. MSA and nss-SO4

= present a negative dependence on PR as rain is expected to scavenge aerosol 

particles; nevertheless, at higher levels of PR, nss-SO4
=  concentrations tend to increase. This may be partly linked to 425 

enhanced cloudiness, associated to high PR, where the aqueous phase formation of nss-SO4
= in the MBL may be favored 

(Zhu et al., 2006; Von Glasow and Crutzen, 2004). This is also in agreement with the enhancement of nss-SO4
= concentration 

at high RH. Finally, BLH and SRF are the most straightforward influencing parameters on MSA and nss-SO4
= levels, with 

deep BLH resulting in a dilution of their concentrations and high SRF leading to high MSA and nss-SO4
= levels, as expected 

for DMS photo‐oxidation products. 430 

4.3 The IPB-MSA&SO4 dataset 

The GPR model was used to generate the long-term gridded fields of high-resolution (0.25° × 0.25°) MSA and nss-SO4
= 

concentrations. At each pixel, a daily time series of MSA and nss-SO4
= have been generated spanning from 1998 to 2022 

(9131 days). The total number of pixels in the entire NA domain is 43840, for a total of 400’303’040 data points. The daily 

time series of MSA and nss-SO4
= averaged over the entire NA domain are presented in Fig. S9. The dataset represents the 435 

sea-level concentrations of MSA and nss-SO4
=  associated with in-situ production in the MBL derived based on the six 

selected predictors, which in turn represent the sea-to-air flux of DMS (the precursor) and the meteorological conditions that 

can mostly affect, in one direction or in the other, the formation of the two products. For this reason, we consider the data to 

be representative of the concentration of sulfur aerosol species resulting, in each pixel, from the local biogenic emissions in 

combination with local atmospheric conditions. As such, we called the achieved data product the In-situ Produced Biogenic 440 

MSA and nss-SO4
= (IPB-MSA&SO4) dataset across the NA. It is important to note that atmospheric motion is not considered 

in our product and that the maps resulting from the data represent a static picture of potential sea-level concentrations of 

MSA and nss-SO4
=, in a certain pixel and at a certain time as a result only of the interplay between local DMS emissions, 

photochemistry and dilution/removal processes, and that provide accurate predictions of the actual sea level concentrations 

of MSA and nss-SO4
=  once averaged over 2-to-3-days transport tracts. Accordingly, the IPB-MSA&SO4 data presented 445 

hereafter are different from the output of a chemical transport model. Nevertheless, we believe that this unprecedented 

dataset may be useful for many research purposes, for instance, investigating long-term trends, or addressing the interannual 

or spatial variability in the production of biogenic sulfur aerosol species. Examples of the scientific information that can be 

extracted from the data and on how they can be compared to model output or in-situ observations are provided in the next 

Sections. 450 

4.4 Comparison with CAMS Reanalysis 

To further examine the effectiveness of our GPR model, we compared the observed MSA concentrations at MHD with the 

most recently released CAMS-EAC4 (Inness et al., 2019) reanalysis datasets. The EAC4 (ECMWF Atmospheric 
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Composition Reanalysis 4) is the fourth generation of the ECMWF global reanalysis dataset of atmospheric composition 

from the Copernicus Atmosphere Monitoring Service (CAMS). CAMS-EAC4 is a collection of atmospheric composition 455 

fields from 2003 to the present, including aerosols and chemical species for which MSA data is available. The spatial 

resolution of the CAMS datasets is about 0.75° × 0.75° and a 3h temporal resolution. Our datasets have a resolution of 0.25° 

× 0.25° and start from 1998. To compare the two products, we extracted MSA data from CAMS locally, at the grid cell in 

front of the MHD station, corresponding to maritime BT timings, and averaged them to daily resolution. Conservatively, the 

MSA concentration data simulated by GPR were taken from the validation and test sets, which were not included in the 460 

model training. Such MSA concentrations at MHD were projected by incorporating predictors along the BTs into 

consideration to account for the air motion (see Section 3.1.2 for details). 

Scatter plots and joint probability histograms of residual errors (Fig. 6) were constructed to compare the accuracy between 

GPR, CAMS and observations (referred to as OBS). It can be seen from the scatter plots (Fig. 6a and Fig. 6b) that the GPR-

simulated MSA best matches the observations, with a 0.84 fitted slope, 0.93 correlation coefficient and most of the data 465 

points comprised within the 95% confidence bounds. The joint probability histograms between observed MSA and the 

residuals (OBS – GPR) and (OBS – CAMS) are used to verify the variance of residual errors around zero. The GPR 

histograms (Fig. 6c and Fig. 6e) show that the residual errors are mostly centered around zero (dashed black line in the right) 

up to the value of 0.1 µg m–3 where the majority of data points lie, while CAMS are skewed toward negative residuals 

followed by positive residuals mainly at high MSA values (Fig. 6d and Fig. 6f). Quantitatively, the GPR has relative MAE 470 

equal to 4.3% in comparison to 6.3% for CAMS. In summary, GPR better captures the low concentrations of MSA, which 

CAMS tends to overestimate, while both CAMS and GPR show limitations in retrieving the extreme points of MSA 

concentrations. A quantitative statistical analysis (Fig. 6g) showed that no statistically significant (p<0.05) difference exists 

between the seasonal median MSA from OBS and GPR, while CAMS presents a significant (p<0.05) difference in all 

seasons except summer. Nevertheless, the two datasets (GPR and CAMS) properly retrieve the observed MSA seasonal 475 

cycle. 

4.5 Comparison with the Polarstern cruise results 

In this Section, we present a case study exemplifying how the IPB-MSA&SO4 datasets can be used. Because the data 

product represents the concentration of freshly formed sulfur aerosol species and the ML model does not account for 

atmospheric transport, users must interpret the datasets considering the air mass history. To better clarify the idea, we 480 

employed the independent MSA data measured during the Polarstern campaigns in the NA (Huang et al., 2017), which were 

not used in the training/validation or testing/evaluation of the ML models, and compared them with predicted MSA by GPR. 

In particular, the MSA by GPR was extracted along air mass BTs arriving at the hourly sites of the ship tracks and then 

averaged considering a 0-day (simultaneously), 1-day, 2-day and 3-day air mass history. The MSA measurements on 

Polarstern were performed in four scientific cruises including two spring seasons (April-May 2011 & April-May 2012) and 485 
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two autumn seasons (October-November 2011 & October-November 2012). The ship tracks of the cruises from which the 

data were taken in the present study are shown in Fig. 7. It can be seen that the best match between GPR-simulated MSA and 

observed MSA occurred when 2-day air masses were considered. At 2-day air mass history, the slope reached 0.78 and the 

correlation coefficient 0.81 (Fig. 7a-d). Again, as seen in Fig. 7f, GPR MSA is considerably more consistent with 

observations than CAMS, for which a significant difference with observations (p < 0.05) can be appreciated. 490 

 

4.6 Spatial distributions of MSA and nss-𝐒𝐎𝟒
=  

In order to elucidate the geographical distributions of biogenic sulfur aerosol production across the NA domain, the IPB-

MSA&SO4 datasets in the 25 years (1998–2022) were averaged to obtain the climatic annual and monthly distributions of 

MSA and nss-SO4
= as illustrated in Fig. 8 and Fig. 9. Across the NA domain, the annual average of MSA is 0.016 ± 0.007 µg 495 

m−3, whereas the annual average of nss-SO4
= is 0.250 ±0.077 µg m−3 (Table S2). The annual spatial distributions of MSA and 

nss-SO4
= exhibit a latitudinal gradient over the majority of the NA area that increases from north to south, except below 

nearly 35° N, where it increases from west to east. Notwithstanding, the latitudinal gradients are much more evident than 

longitudinal variations. For instance, MSA grows at a rate of 0.0016 (R2 = 0.93; p<0.05) µg m−3 per each 1° latitude towards 

the south and 0.00036 (R2 = 0.53; p<0.05) µg m−3 per each 1° longitude eastward (it reaches its peak between 20° and 10° 500 

W). Furthermore, for each 1° southward, nss-SO4
= increases by 0.0212 (R2 = 0.96; p<0.05) µg m−3, whereas there are no 

significant changes in nss-SO4
= with longitude (R2 = 0.01; p>0.05). The highest concentrations of both components (>90th 

percentile) are primarily found in the southeast of the domain (in front of the Moroccan coast and the Gibraltar strait). 

Minimum annual concentrations (<10th percentile) are found in northern areas of the domain, particularly in the Labrador 

Sea and near the shores of Greenland and Iceland. 505 

The annual average MSA to nss-SO4
= (MSA:nss-SO4

=) ratio is 0.053 ± 0.012 (Table S2), with a consistent latitudinal gradient 

increasing southward (rate of change = 0.0028 (R2 = 0.93; p<0.05) per each 1° latitude). The lower MSA: nss-SO4
= values are 

found in the northwest of the domain, while the higher values are apparent in front of the African coast, the ratio is 

practically constant across the same latitudinal band. It is worth evidencing that the region with extremely high MSA 

concentrations and high MSA:nss-SO4
=  (above the mean + three times the standard deviations) is linked to the Canary 510 

upwelling system on the northwest African coast. The Canary Current system is one of the world's most productive regions 

of the ocean, known as eastern boundary upwelling systems (EBUSs) (Chavez and Messié, 2009; Carr, 2001). This may 

indicate a link between EBUSs and the potential formation of biogenic aerosol concentrations in the atmosphere. Previous 

research has shown how EBUSs changed in response to climate change (Bograd et al., 2023; Sydeman et al., 2014; Bonino 

et al., 2019), including the trend toward increased upwelling intensity (Wang et al., 2015; García-Reyes et al., 2015); 515 
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however, little is known about the impact of EBUSs on marine biogenic emissions and the resultant aerosol fluxes. Future 

studies are needed to address these issues in order to better understand the role of EBUSs on the aerosol-climate systems. 

Looking at the monthly climatological maps (Fig. 9), it is revealed that MSA and nss-SO4
= display a gradual increase in their 

concentrations southward, clearly evident from October to March, resulting in a large difference between the northern and 

southern parts of the domain. On the contrary, during summer, the concentrations are more homogeneous over the domain 520 

(see latitudinal patterns in Fig. 9), still with a tendency to higher concentrations over the northeastern part. The seasonality of 

MSA and nss-SO4
=

 is evident: the increase for both compounds starts in April and peaks in June-July followed by a gradual 

decrease in September (Fig. S9 and Table S2). The lowest MSA (nss-SO4
=) concentration occurs in December at 0.006 ± 

0.005 (0.155 ± 0.079) µg m−3 and the highest occurs in June at 0.029 ± 0.013 (0.364 ± 0.075) µg m−3 (Table S2), consistent 

with the fact that winter and summer are typically the lowest and highest seasons for biological activity, respectively for the 525 

NA (Mansour et al., 2023a). The coefficient of variation (COV), defined as the ratio between the standard deviation and the 

mean value, expressed in percentage, at each grid point, is used to assess how much the MSA and nss-SO4
= vary around their 

mean value in each month; variability increases with higher COV. The maps (Fig. S10) confirm that the variability of sulfur 

aerosol species depends strongly on the season; MSA and nss-SO4
=  are mostly stable (little variations) during the winter, 

whereas most variations occur between April (late spring) and June (early summer) and preferentially over the eastern part of 530 

the NA than the western. 

The MSA:nss-SO4
= also exhibits a seasonal pattern, with the lowest (highest) values observed during the winter (summer), as 

presented in Fig. 9c. July has the highest spatial average of the ratio of 0.077 ± 0.022 while the lowest of 0.032 ± 0.012 

occurs in December (Table S2). Looking at the overall distributions, MSA:nss-SO4
=  demonstrates a general southward 

increase, with the exception of summer months. In summer (mainly July and August), MSA:nss-SO4
= above 50°N has an 535 

opposite trend with respect to the one below 50°N. In detail, from North to South, we report a sharp increase in MSA:nss-

SO4
=, maximized around 50°N, followed by an abrupt decrease toward the equator. The possible explanation for the decline 

in MSA:nss-SO4
= below 50°N is that the reduction in MSA:nss-SO4

= is related to an increase in AT caused by warmer air 

nearing the equator, in line with observations in the Pacific Ocean (Bates et al., 1992) and with the higher ratio observed in 

colder air masses (marine Polar and Arctic) with respect to warmer ones (marine Tropical) at MHD (Ovadnevaite et al., 540 

2014). As a final remark, we report that the summertime low MSA:nss-SO4
= below 50°N is linked to a decrease in FDMS in 

the same latitudinal zone (Mansour et al., 2023a). Owing to the low DMS emissions, the different DMS oxidation patterns 

may be in competition (Barone et al., 1995); since MSA is formed preferentially through the pathway of OH addition at low 

temperatures (Shen et al., 2022), the production of MSA may be decreased relative to that of nss-SO4
= in the warm southern 

part of the domain, during summer, leading to the observed decrease in the MSA:nss-SO4
= ratio. 545 
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5. Data availability 

The dataset includes daily MSA and nss-SO4
= concentrations at 0.25° × 0.25° spatial resolution over the North Atlantic 

Ocean from January 1998 to December 2022. The datasets are publicly available in NetCDF format as daily files on the 

Mendeley online repository at https://doi.org/10.17632/j8bzd5dvpx.1 (Mansour et al., 2023b). 

6. Conclusions 550 

Marine aerosol data can be obtained from in-situ coastal observatories or from shipborne measurements, however, punctual 

coast observations are limited under the point of view of the spatial representativity, while shipborne measurements suffer of 

limitations in terms of temporal coverage. Understanding the dynamics of marine-derived biogenic sulfur aerosols and their 

radiative effects, as well as carrying out relevant scientific studies, requires long-term, continuous and high-resolution (space 

and time-wise) datasets. To overcome the limitations of punctual measurements, we combined the in-situ observations of 555 

sulfur aerosol data at Mace Head and from NAAMES cruises, as dependent variables, and the sea-to-air DMS flux and 

ECMWF-ERA5 reanalysis meteorological datasets, as independent variables, to investigate the potential of machine learning 

techniques for the prediction of daily MSA and nss-SO4
=  sea-level concentrations over the North Atlantic Ocean. We 

evaluated five machine learning models (i.e., SVM, DT, RE, GPR, and ANN), considering various sets of hyperparameter 

optimizations. Our findings demonstrated that the GPR model outperforms other approaches in simulating the concentrations 560 

of biogenic sulfur aerosols, capturing up to 86% and 72% of the observed variance in daily MSA and nss-SO4
=, respectively. 

This makes the GPR an effective tool for obtaining trustworthy sea-level MSA and nss-SO4
= concentrations over the North 

Atlantic, which may also be successful in other oceanic regions or over the entire global ocean. The impact of the six 

independent predictors on the simulated MSA and nss-SO4
= is further evaluated using the GPR partial dependence analysis, 

which reveals that the relationships between them are multifaceted rather than linear or monotonically varying. 565 

By the GPR machine learning method, we constructed a novel 0.25°×0.25° resolution daily gridded dataset of in-situ 

produced biogenic MSA and nss-SO4
= concentrations (named IPB-MSA&SO4) covering the North Atlantic Ocean from 1998 

to 2022. The dataset represents the sea-level concentrations of MSA and nss-SO4
= associated with in-situ production in the 

MBL, i.e., the concentration of sulfur aerosol species resulting, in each pixel, from the local biogenic emissions in 

combination with local atmospheric conditions. Other inputs, such as terrestrial emissions or sinking of sulfur species 570 

produced in the free troposphere are not accounted for in the present dataset. 

Comparison of the GPR-derived MSA with existing CAMS-EAC4 reanalysis product reveals that our high-resolution dataset 

accurately reproduces the spatial and temporal patterns of the biogenic sulfur aerosol concentration and has high consistency 

with the independent observations of the Polarstern cruises measurements in the Atlantic. The obtained IPB-MSA&SO4 data 

were used to analyze the spatiotemporal variations of MSA, nss-SO4
=, and the ratio between them (MSA:nss-SO4

=). It was 575 

https://doi.org/10.17632/j8bzd5dvpx.1
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found that the monthly concentrations of MSA and nss-SO4
= across the NA are characterized by a significant southward 

increase in each month, with the exception of summertime when MSA and nss-SO4
= displayed more homogeneous spatial 

patterns with a tendency to higher concentrations over the northeastern part of the domain. The MSA:nss-SO4
= ratio exhibits 

a seasonal variation from winter (low) to summer (high) characterized by a sharp decline from the 50 °N parallel toward the 

equator mainly in July-August. In general, the atmospheric concentration of sulfur aerosol species tends to be more stable in 580 

winter, whereas wider variations are associated with late spring and early summertime and more with the eastern part of the 

domain than to the western one. 

More in-depth analyses can be conducted based on the presented biogenic sulfur aerosol concentration dataset, which could 

help further understanding of oceanic sulfur-aerosol-cloud interactions. For instance, we evidence that the Canary eastern 

upwelling system emerges from the dataset as a hotspot of high sea-level MSA concentration and high MSA:nss-SO4
= ratio; 585 

such a finding is worth further investigation and may shed light on the role of EBUSs in the production of biogenic marine 

aerosols and on its climate relevance. 
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 605 

Figure 1: The study region of the North Atlantic Ocean (72° – 0° W, 20° – 66° N) with bathymetry presented in meters. The 

gridded bathymetric dataset was extracted from the General Bathymetric Chart of the Oceans (https://www.gebco.net), the 

GEBCO_2023 Grid. The green-filled pentagram represents the Mace Head measuring station on the west coast of Ireland 

and the dark-red points are the sampling points that represent marine conditions in the NAAMES cruises track. The violet 

points represent the ship track during Polarstern campaigns. 610 

 

Figure 2: The methodology's workflow. Predictors and response variables data preparation, the overall framework of 

generation and development of the trained models, including a schematic diagram of 5-fold cross-validation, models export 

and validation details, as well as post-processing analysis. 

 615 

Figure 3: Comparison of predicted and observed MSA on the hourly (left panels) and daily (right panels) scales: (a) GPR, (b) 

EBT, (c) SVM, (d) ANN, and (e) DT. The validation and test data subsets are used to compute the model's performance. R2 

and RMSE are computed in a logarithmic space, whereas MAE is computed on a normal scale. 

  

Figure 4: Comparison of predicted and observed nss-SO4
= on the hourly (left panels) and daily (right panels) scales: (a) GPR, 620 

(b) EBT, (c) SVM, (d) ANN, and (e) DT. The validation and test data subsets are used to compute the model's performance. 

R2 and RMSE are computed in a logarithmic space, whereas MAE is computed on a normal scale. 

 

Figure 5: Partial dependence plots of MSA and nss-SO4
= as a function of the predictors revealed by the GPR model. 

 625 

Figure 6: Comparison between observed MSA at MHD measuring site and both MSA predicted by GPR (a) and MSA 

extracted from CAMS reanalysis (b). (c) and (d): joint probability histograms between observed MSA and residual errors 

(observed–predicted); the black dashed lines represent the change of MSA residual errors in each bin. MAE is the mean 

absolute error, and the relative MAE has been calculated as the MAE divided by the range of observed MSA. (e) and (f): 

frequency distributions of the residual errors. (g): Seasonal box charts from different datasets. Each box chart displays the 630 

https://www.gebco.net/
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median (line inside of each box), the 1st and 3rd quartiles (bottom and top edges of each box), the minimum and maximum 

values that are not outliers (whiskers), and any outliers represented by '+' (computed as values that are more than 1.5 of the 

interquartile range away from the top or bottom of the box). Box charts whose notches (the shaded region around each 

median) do not overlap have different medians at the 95% confidence level. 

 635 

Figure 7: (a) Scatter plots between observed MSA during the Polarstern campaigns (Huang et al., 2017) and predicted MSA 

by GPR, considering (a) 0-day, (b) 1-day, (c) 2-day and (d) 3-day air mass history. (f): Seasonal box charts from different 

datasets. The features displayed on each box chart are the same as those given in Fig. 6. 

 

Figure 8: The annual averages of (a) MSA, (b) nss-SO4
=, and (c) MSA:nss-SO4

= spatial distributions based on GPR at 0.25° × 640 

0.25° resolution during the 1998–2022 period. The latitudinal (longitudinal) gradients of each component are displayed in 

the left (bottom) panels whereas shaded areas represent ± standard deviations. The black crosses evidence the extremely high 

concentrations, more than three times standard deviations plus the annual mean climatology. 

 

Figure 9: Monthly spatial distributions of (a) MSA, (b) nss-SO4
=, and (c) MSA:nss-SO4

= based on GPR over 1998–2022 at 645 

0.25° × 0.25° resolution. (d) Monthly latitudinal distributions of each component while shaded areas represent ± standard 

deviations. 

 

Table 1: List of machine learning models used in the present study. 

 650 

Table 2: The Pearson's Coefficients between possible predictors at the selected marine air masses and the in-situ observed 

MSA and nss-SO4
= concentrations. The MSA, nss-SO4

= and FDMS values are used in the log scale. All values are statistically 

significant at p<0.05. Bolds evidence the maximum during different days of air mass history. 

 

Table 3: Details of the number of hourly (MSA and nss-SO4
= ) data points corresponding to selected marine BTs. The 655 

threshold used for filtering outlier values, and the number of data points after filtering are given. 
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Table 4: Multilinear regression of MSA and nss-SO4
= as a function of predictors. The MSA, nss-SO4

= and FDMS values are 

used in the log scale. Each independent variable's contribution to R2 is the decrease in total R2 when that variable is 

eliminated. Individual R2 contributions are normalized and added together to equal the overall R2. According to the analysis 660 

of variance (ANOVA) on the multilinear regression models, all predictors contribute statistically significantly (p<0.05) to 

the MSA and nss-SO4
= variance.  
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Model Type Preset 
Hyperparameters 

if any 

Support 
Vector 

Machines 

Linear  

Quadratic  

Cubic  

Fine Gaussian Kernel scale = 0.61 

Medium Gaussian Kernel scale = 2.4 

Coarse Gaussian Kernel scale = 9.8 

Decision 
Tree 

Fine Minimum leaf size = 4 

Medium Minimum leaf size = 12 

Coarse Minimum leaf size = 36 

Regression 
Ensemble 

Boosted 
Minimum leaf size = 8 

Number of learners = 30 

Bagged 
Minimum leaf size = 8 

Number of learners = 30 

Gaussian 
Process 

Regression 

Squared Exponential  

Matern 5/2  

Exponential  

Rational Quadratic  

Neural 
Networks 

Narrow 
Number of fully 

connected layers = 1 
First layer size = 10 

Medium  
Number of fully 

connected layers = 1 
First layer size = 25 

Wide 
Number of fully 

connected layers = 1 
1st layer size = 100 

Bi-layered  

Number of fully 
connected layers = 2 

1st layer size = 10 
2nd layer size = 10 

Tri-layered 

Number of fully 
connected layers = 3 

1st layer size = 10 
2nd layer size = 10 
3rd layer size = 10 

Table 1 



 

 

 

 

Predictors 
BT length 

(days) 

MSA nss-SO4
= 

MHD MHD NAAMES 

FDMS 

0 

1 

2 

3 

0.27 

0.64 

0.66 

0.69 

0.24 

0.53 

0.54 

0.55 

0.04* 

0.24 

0.38 

0.47 

AT 

0 

1 

2 

3 

0.65 

0.57 

0.53 

0.53 

0.61 

0.56 

0.53 

0.51 

0.17 

0.29 

0.35 

0.37 

RH 

0 

1 

2 

3 

0.15 

0.33 

0.39 

0.44 

0.15 

0.27 

0.31 

0.33 

0.27 

0.22 

0.24 

0.28 

PR 

0 

1 

2 

3 

-0.18 

-0.27 

-0.33 

-0.35 

-0.12 

-0.26 

-0.31 

-0.33 

-0.09 

-0.27 

-0.34 

-0.32 

BLH 

0 

1 

2 

3 

-0.41 

-0.53 

-0.58 

-0.60 

-0.32 

-0.45 

-0.49 

-0.49 

-0.32 

-0.34 

-0.36 

-0.35 

SRF 

0 

1 

2 

3 

0.32 

0.73 

0.77 

0.78 

0.23 

0.61 

0.65 

0.67 

0.14 

0.53 

0.62 

0.63 

Table 2 



 

 

 

 

Response 
No. of hourly data 

points 

Lower threshold 

according to 0.1 

percentile 

Upper threshold 

according to 99.9 

percentile 

No. of data 

lost due to 

filtering 

No. of hourly 

data points 

after cleanup 

MSA 
Source: MHD 

n = 6162 

0.0001 

µg m
–3

 

0.45 

µg m
–3

 
12 6150 

nss-SO4
= 

Source: MHD 

n = 6260 

0.006 

µg m
–3

 

2.116 

µg m
–3

 
12 

6905 
Source: NAAMES 

n = 660 

0.007 

µg m
–3

 

1.107 

µg m
–3

 
3 

Table 3 



 

 

 

 

 Total explained 

variance by R2 

Normalized Contribution to R2 (%) 

AT RH PR BLH SRF FDMS 

MSA 74.36% 6.86 0.47 2.82 8.66 42.77 12.97 

nss-SO4
= 53.39% 11.64 0.55 5.07 3.63 25.83 6.66 

Table 4 


