

1 **A global database of dissolved organic matter (DOM) concentration**
2 **measurements in coastal waters (CoastDOM v1)**

3 Christian Lønborg^{1*}, Cátia Carreira², Gwenaël Abril³, Susana Agustí⁴, Valentina Amaral⁵,
4 Agneta Andersson⁶, Javier Arístegui⁷, Punyasloke Bhadury⁸, Mariana B. Bif⁹, Alberto V.
5 Borges¹⁰, Steven Bouillon¹¹, Maria Li. Calleja^{4,12}, Luiz C. Cotovicz Jr^{13,49}, Stefano Cozzi¹⁴,
6 Maryló Doval¹⁵, Carlos M. Duarte⁴, Bradley Eyre¹⁶, Cédric G. Fichot¹⁷, E. Elena García-
7 Martín¹⁸, Alexandra Garzon-Garcia¹⁹, Michele Giani^{20,21}, Rafael Gonçalves-Araujo²²,
8 Renee Gruber²³, Dennis A. Hansell²⁴, Fuminori Hashihama²⁵, Ding He²⁶, Johnna M.
9 Holding²⁷, William R. Hunter²⁸, J. Severino P. Ibánhez²⁹, Valeria Ibello³⁰, Shan Jiang³¹,
10 Guebuem Kim³², Katja Klun³³, Piotr Kowalczuk³⁴, Atsushi Kubo³⁵, Choon Weng Lee³⁶,
11 Cláudia B. Lopes³⁷, Federica Maggioni³⁸, Paolo Magni³⁹, Celia Marrase⁴⁰, Patrick
12 Martin⁴¹, S. Leigh McCallister⁴², Roisin McCallum⁴³, Patricia M. Medeiros⁴⁴, Xosé Anxelu
13 G. Morán^{4,45}, Frank E. Muller-Karger⁴⁶, Allison Myers-Pigg⁴⁷, Marit Norli⁴⁸, Joanne M.
14 Oakes¹⁵, Helena Osterholz⁴⁹, Hyekyung Park³², Maria Lund Paulsen⁵⁰, Judith A.
15 Rosentreter^{16,51}, Jeff D. Ross⁵², Digna Rueda-Roa⁴⁶, Chiara Santinelli⁵³, Yuan Shen⁵⁴,
16 Eva Teira⁵⁵, Tinkara Tinta³³, Guenther Uher⁵⁶, Masahide Wakita⁵⁷, Nicholas Ward⁴⁷,
17 Kenta Watanabe⁵⁸, Yu Xin⁵⁹, Youhei Yamashita⁶⁰, Liyang Yang⁶¹, Jacob Yeo¹⁶, Huamao
18 Yuan⁶², Qiang Zheng^{54,63}, Xosé Antón Álvarez-Salgado²⁹

19 ¹Section for Marine Diversity and Experimental Ecology, Department of Ecoscience,
20 Aarhus University, 4000 Roskilde, Denmark.

21 ²Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark.

22 ³Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), CNRS,
23 Muséum National d'Histoire Naturelle, 61 rue Buffon, 75005, Paris, France.

24 ⁴King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of
25 Saudi Arabia.

26 ⁵Departamento Interdisciplinario de Sistemas Costero Marinos, Centro Universitario
27 Regional Este, Universidad de la República, Ruta 9 y 15, CP 27000, Rocha, Uruguay.
28 ⁶Umeå Marine Sciences Centre, Umeå University, Sweden.
29 ⁷Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de
30 Gran Canaria, Las Palmas, Spain.
31 ⁸Centre for Climate and Environmental Studies, Indian Institute of Science Education
32 and Research Kolkata, Mohanpur, Nadia, West Bengal, India.
33 ⁹Monterey Bay Aquarium Research Institute, Moss Landing, California, United States.
34 ¹⁰University of Liège, Chemical Oceanography Unit, Liège, Belgium.
35 ¹¹KU Leuven, Department of Earth and Environmental Sciences, Leuven, Belgium.
36 ¹²Marine Ecology and Systematics (MarES), Department of Biology, Universitat de les
37 Illes Balears, 07122 Palma de Mallorca, Spain.
38 ¹³Departamento de Geoquímica, Universidade Federal Fluminense, Outeiro São João
39 Batista s/n, 24020015 Niterói, RJ, Brazil.
40 ¹⁴Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine (CNR-ISMAR), Strada
41 Statale 14, km 163.5, 34149 Trieste, Italy.
42 ¹⁵Instituto Tecnolóxico para o Control do Medio Mariño de Galicia, 36611 Vilagarcía de
43 Arousa, Spain.
44 ¹⁶Centre for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern
45 Cross University, Lismore 2480, NSW, Australia.
46 ¹⁷Department of Earth and Environment, Boston University, Boston, MA, United States.
47 ¹⁸National Oceanography Centre, European Way, Southampton, SO14 3ZH, United
48 Kingdom.
49 ¹⁹Department of Environment and Science, PO Box 5078, Brisbane, Queensland 4001,
50 Australia.
51 ²⁰National Institute of Oceanography and Applied Geophysics (OGS), Trieste, Italy.

52 ²¹Istituto Centrale per la Ricerca scientifica e tecnologia Applicata al MAre, Chioggia,
53 Italy

54 ²²National Institute of Aquatic Resources, Technical University of Denmark, Kgs.
55 Lyngby, Denmark.

56 ²³Australian Institute of Marine Science, PMB 3, Townsville QLD 4810, Australia.
57 ²⁴Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric
58 Science, University of Miami, Miami, FL, United States.

59 ²⁵Tokyo University of Marine Science and Technology, Japan.

60 ²⁶Department of Ocean Science and Center for Ocean Research in Hong Kong and
61 Macau, The Hong Kong University of Science and Technology, Clear Water Bay, Hong
62 Kong, China.

63 ²⁷Department of Ecosystems and the Environment, Aarhus University, 8000 Aarhus, Denmark.

64 ²⁸Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute,
65 Belfast, Northern Ireland, United Kingdom.

66 ²⁹CSIC, Instituto de Investigación Mariñas, Eduardo Cabello 6, 36208 Vigo, Spain.

67 ³⁰Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin,
68 Turkey.

69 ³¹State Key Laboratory of Estuarine and Coastal Research, East China Normal
70 University, 200241, Shanghai, China.

71 ³²School of Earth and Environmental Sciences, Seoul National University, Seoul 08826,
72 Korea.

73 ³³Marine Biology Station, National Institute of Biology, Fornače 41, 6330 Piran,
74 Slovenia.

75 ³⁴Remote Sensing Laboratory, Institute of Oceanology, Polish Academy of Sciences,
76 Sopot, Poland.

77 ³⁵Department of Geosciences, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka,
78 422-8529, Japan.

79 ³⁶Laboratory of Microbial Ecology, Institute of Biological Sciences, Institute of Ocean
80 and Earth Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.

81 ³⁷CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro,
82 Campus de Santiago, 3810-193 Aveiro, Portugal.

83 ³⁸University of New Caledonia and Institute de recherche pour le development (IRD),
84 New Caledonia.

85 ³⁹Consiglio Nazionale delle Ricerche, Istituto per lo studio degli impatti Antropici e
86 Sostenibilità in ambiente marino (CNR-IAS), Loc. Sa Mardini, Torregrande, 09170,
87 Oristano, Italy.

88 ⁴⁰Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37
89 08003 Barcelona, Spain.

90 ⁴¹Asian School of the Environment, Nanyang Technological University, 639798,
91 Singapore.

92 ⁴²Virginia Commonwealth University, Department of Biology, Richmond, Virginia, United
93 States.

94 ⁴³Centre for Marine Ecosystems Research, School of Science, Edith Cowan University,
95 270 Joondalup Drive, Joondalup 6027 WA, Australia.

96 ⁴⁴Department of Marine Sciences, University of Georgia, Athens, Georgia, United
97 States.

98 ⁴⁵Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía, Gijón/Xixón,
99 Spain.

100 ⁴⁶College of Marine Science, University of South Florida, Saint Petersburg, Florida
101 33701, United States.

102 ⁴⁷Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory,
103 Sequim, Washington, United States.

104 ⁴⁸Norwegian Institute for Water Research, Oslo, Norway.

105 ⁴⁹Leibniz Institute for Baltic Sea Research Warnemünde, D-18119 Rostock-
106 Warnemünde, Germany.

107 ⁵⁰Marine microbiology, University of Bergen, Norway.

108 ⁵¹Yale School of the Environment, Yale University, New Haven, Connecticut, United
109 States.

110 ⁵²Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49,
111 Hobart, Tasmania 7001, Australia

112 ⁵³Biophysics Institute, CNR, Pisa, Italy.

113 ⁵⁴State Key Laboratory of Marine Environmental Science (MEL) & College of Ocean
114 and Earth Sciences, Xiamen University, China.

115 ⁵⁵Departamento de Ecología y Biología Animal, Universidad de Vigo, Centro de
116 Investigacion Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Spain.

117 ⁵⁶School of Natural and Environmental Science, Newcastle University, Newcastle upon
118 Tyne, United Kingdom.

119 ⁵⁷Mutsu Institute for Oceanography, Research Institute for Global Change, Japan
120 Agency for Marine-Earth Science and Technology, 690 Kitasekine, Sekine, Mutsu,
121 Aomori, Japan.

122 ⁵⁸Coastal and Estuarine Environment Research Group, Port and Airport Research
123 Institute, Yokosuka 239-0826, Japan.

124 ⁵⁹Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,
125 Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong,
126 China.

127 ⁶⁰Faculty of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810,
128 Japan.

129 ⁶¹College of Environment and Safety Engineering, Fuzhou University, China.

130 ⁶²Key Laboratory of Marine Ecology and Environmental Sciences, Institute of
131 Oceanology, Chinese Academy of Sciences, Qingdao, China.

132 ⁶³Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen
133 361102, China.

134

135 *Corresponding author:

136 E-mail: c.lonborg@ecos.au.dk or cロンborg@gmail.com

137

138 **ORCID nr.:**

139 Christian Lønborg: 0000-0001-8380-0238

140 Cátia Carreira: 0000-0002-1520-9320

141 Gwenaël Abril: 0000-0002-4914-086X

142 Susana Agustí: 0000-0003-0536-7293

143 Valentina Amaral: 0000-0002-1088-1484

144 Agneta Andersson: 0000-0001-7819-9038

145 Javier Arístegui: 0000-0002-7526-7741

146 Punyasloke Bhadury: 0000-0001-8714-7475

147 Mariana Bernardi Bif: 0000-0002-2148-4556

148 Alberto V. Borges: 0000-0002-5434-2247

149 Steven Bouillon: 0000-0001-7669-2929

150 Maria Li. Calleja: 0000-0002-5992-2013

151 Luiz C. Cotovicz Jr: 0000-0002-3914-8155

152 Stefano Cozzi: 0000-0003-0116-742X

153 Maryló Doval: 0000-0002-8565-8703

154 Carlos M. Duarte: 0000-0002-1213-1361

155 Bradley Eyre: 0000-0001-5502-0680

156 Cédric G. Fichot: 0000-0002-1099-5764

157 E. Elena García-Martín: 0000-0003-4807-3287

158 Alexandra Garzon-Garcia: 0000-0002-6804-8890

159 Michele Giani: 0000-0002-3306-7725

160 Rafael Gonçalves-Araujo: 0000-0001-8344-8326

161 Renee Gruber: 0000-0002-8788-6910

162 Dennis A. Hansell: 0000-0001-9275-3445

163 Fuminori Hashihama: 0000-0003-3835-7681

164 Ding He: 0000-0001-9620-6115

165 Johnna M. Holding: 0000-0002-7364-0055

166 William R. Hunter: 0000-0001-8801-7947

167 J. Severino P. Ibánhez: 0000-0001-6093-3054
168 Valeria Ibello: 0000-0002-1067-0425
169 Shan Jiang: 0000-0002-1121-6080
170 Guebuem Kim: 0000-0002-5119-0241
171 Katja Klun: 0000-0001-6111-1650
172 Piotr Kowalczuk: 0000-0001-6016-0610
173 Atsushi Kubo: 0000-0002-6457-5386
174 Choon Weng Lee: 0000-0001-9805-9980
175 Cláudia Lopes: 0000-0001-7378-8677
176 Federica Maggioni: 0000-0002-7109-4257
177 Paolo Magni: 0000-0001-5955-6829
178 Celia Marrase: 0000-0002-5097-4829
179 Patrick Martin: 0000-0001-8008-5558
180 S. Leigh McCallister: 0000-0002-9041
181 Roisin McCallum: 0000-0002-0358-2371
182 Patricia M. Medeiros: 0000-0001-6818-2603
183 Xosé Anxelu G. Morán: 0000-002-9823-5339
184 Frank Müller-Karger: 0000-0003-3159-5011
185 Allison Myers-Pigg: 0000-0002-6905-6841
186 Marit Norli: 0000-0001-7472-1562
187 Joanne M. Oakes: 0000-0002-9287-2652
188 Helena Osterholz: 0000-0002-2858-9799
189 Hyekyung Park: 0000-0002-4743-5883
190 Maria Lund Paulsen: 0000-0002-1474-7258
191 Jeff D. Ross: 0000-0002-8659-3833
192 Judith A. Rosentreter: 0000-0001-5787-5682
193 Digna Rueda-Roa: 000-0003-4621-009X
194 Chiara Santinelli: 0000-0002-8921-275X
195 Yuan Shen: 0000-0001-6618-4226
196 Eva Teira: 0000-0002-4333-0101
197 Tinkara Tinta: 0000-0001-6740-8973
198 Guenther Uher: 0000-0001-5105-4445
199 Masahide Wakita: 0000-0002-3333-0546
200 Nicholas Ward: 0000-0001-6174-5581
201 Kenta Watanabe: 0000-0002-0106-3623
202 Yu Xin: 0000-0002-5328-7717
203 Youhei Yamashita: 0000-0002-9415-8743
204 Liyang Yang: 0000-0001-8767-8698
205 Jacob Yeo: 0000-0003-2443-5378
206 Huamao Yuan: 0000-0003-2014-619X
207 Qiang Zheng: 0000-0002-6836-2310
208 Xosé Antón Álvarez-Salgado: 0000-0002-2387-9201

209 **Abstract**

210 ~~M~~the measurements of dissolved organic carbon (DOC), nitrogen (DON), and
211 phosphorus (DOP) concentrations are used to characterize the dissolved organic matter
212 (DOM) pool and are important components of biogeochemical cycling in the coastal
213 ocean. Here, we present the first edition of a global database (CoastDOM v1; available
214 at <https://doi.pangaea.de/10.1594/PANGAEA.964012>) compiling previously published
215 and unpublished measurements of DOC, DON, and DOP ~~collected~~ in coastal waters.
216 These data are complemented by hydrographic data such as temperature and salinity
217 and, to the extent possible, other biogeochemical variables (e.g., Chlorophyll-a, inorganic
218 nutrients) and the inorganic carbon system (e.g., dissolved inorganic carbon and total
219 alkalinity). Overall, CoastDOM v1 includes observations of concentrations from all
220 continents. ~~H~~owever, most data were collected in the Northern Hemisphere, with a clear
221 gap in coastal water DOM measurements from the Southern Hemisphere. The data
222 included were collected from 1978 to 2022 and consist of 62339 data points for DOC,
223 20360 for DON, and 13440 for DOP. The number of measurements decreases
224 progressively in the sequence DOC > DON > DOP, reflecting both differences in the
225 maturity of the analytical methods and the greater focus on carbon cycling by the aquatic
226 science community. The global database shows that the average DOC concentration in
227 coastal waters (average \pm (standard deviation: \pm) (SD): 182 \pm (314) $\mu\text{mol C L}^{-1}$; median:
228 103 $\mu\text{mol C L}^{-1}$), is 13-fold ~~great~~higher than the average coastal DON concentrations
229 (average \pm (SD): 13.6 \pm (30.4) $\mu\text{mol N L}^{-1}$; median: 8.0 $\mu\text{mol N L}^{-1}$), which ~~was~~is itself 39-
230 fold ~~high~~greater than the average coastal DOP concentrations (average \pm (SD): 0.34 \pm
231 1.11 $\mu\text{mol P L}^{-1}$; median: 0.18 $\mu\text{mol P L}^{-1}$). This dataset will be useful ~~to~~for identifying
232 global spatial and temporal patterns in DOM and ~~help~~to facilitate ~~the~~the reuse of DOC,
233 DON, and DOP data in studies aimed at better ~~characteris~~characterizing local
234 biogeochemical processes, closing ~~e~~ nutrient budgets, estimating ~~e~~ carbon, nitrogen, and

235 phosphorous pools, as well as establishing identifying-a baseline for modelling future
236 changes in coastal waters.

237

238 **Keywords:** Dissolved organic matter, Dissolved organic carbon, Dissolved organic
239 nitrogen, Dissolved organic phosphorus, Coastal waters, Global database.

240 **1. Introduction**

241 Coastal waters are the most biogeochemical dynamic areas of the ocean, exhibiting
242 the highest standing stocks, process rates and transport fluxes of carbon (C), nitrogen
243 (N), and phosphorus (P) per unit area (Bauer et al., 2013; Mackenzie et al., 2011). In
244 these areas, organic matter plays a critical role in numerous biogeochemical processes,
245 serving as both a C, N, and P reservoir and substrate (Carreira et al., 2021).

246 Organic material found in the marine environment is commonly distinguished by its
247 size; material retained on a filter with a pore size typically between 0.2 and 0.7 μm is
248 classified as particulate organic matter (POM), whereas organic matter that passes
249 through the filter is referred to as dissolved organic matter (DOM). This partitioning is
250 operational but has implications for biogeochemical cycling: POM can be suspended in
251 the water column or sink to the sediments controlled by its size, shape and density
252 (Laurenceau-Cornec et al., 2015), whereas DOM is a solute that mostly remains in the
253 water column. In most coastal waters, DOM concentrations are higher than POM, with
254 POM having a larger proportion of known biochemical classes (e.g., carbohydrates,
255 proteins) than the dissolved fraction, suggesting that generally, DOM is more reworked
256 and recalcitrant ~~In most coastal waters, the DOM concentrations are greater than POM,~~
257 ~~with the POM fraction being less degraded and more bioavailable~~ (Boudreau and
258 Ruddick, 1991; Lønborg et al., 2018; Benner and Amon, 2015).

259 The DOM pool consists mainly of C (DOC), N (DON), and P (DOP) but it also includes
260 other elements such as oxygen, sulphur and trace elements (Lønborg et al., 2020). In
261 coastal waters, DOM originates from multiple sources. Internal, or autochthonous,
262 sources include planktonic organisms (Lønborg et al., 2009; Carlson and Hansell, 2015),
263 benthic microalgae, macrophytes, and sediment porewater (Burdige and Komada, 2014;
264 Wada et al., 2008). On the other hand, DOM from external, or allochthonous, sources,
265 has mainly terrestrial origins, including wetlands, river and surface runoff, groundwater

266 discharges, and atmospheric deposition (Lavorivska et al., 2016; Raymond and Spencer,
267 2015; Taniguchi et al., 2019; Santos et al., 2021). The main sinks for DOM from the water
268 column in coastal waters are: 1) bubble coagulation and abiotic flocculation (Kerner et al.,
269 2003) or sorption to particles (Chin et al., 1998); 2) sunlight-mediated photodegradation
270 (Mopper et al., 2015); and 3) microbial degradation by mainly heterotrophic prokaryotes
271 (Lønborg and Álvarez-Salgado, 2012).

272 Given the importance of DOM as a source of nutrients and for coastal biogeochemical
273 cycling in general, numerous studies have measured the C, N and P content of the DOM
274 pool over the last few decades (e.g., García-Martín et al., 2021; Cauwet, 2002; Osterholz
275 et al., 2021). Most data, however, are often unavailable or stored in an inaccessible
276 manner, making it difficult to e.g., analyse global spatial and temporal patterns effectively.

277 A Global open ocean DOM data compilation for DOC, total dissolved nitrogen (TDN)
278 DON (Hansell et al., 2021) and DOP (Liang et al., 2022; Karl and Björkman, 2015) already
279 exists, and contains few coastal samples (< 200m) (Hansell et al., 2021), but there are
280 no compilation specifically focused on coastal waters. Hence, there is a clear need for a
281 comprehensive global and integrated database of DOC, DON and DOP measurements
282 for coastal waters. To address this need, we have prepared the first edition of a coastal
283 DOM database (named CoastDOM v1), by compiling both previously reported as well as
284 unpublished data. These data have been obtained from authors of the original studies or
285 extracted directly from the original studies. In order to allow the DOM measurements to
286 be interpreted across larger scales, and to better understand their relationship with local
287 environmental conditions, we have included concurrently collected ancillary data (such
288 as physical and/or chemical seawater properties) whenever available. The objective of
289 this database is multifaceted. Firstly, we aimed to compile all available coastal DOM data
290 into a single repository. Secondly, our intention was to make these data easily accessible
291 to the research community and thirdly, we sought to achieve long-term consistency of the

292 measurements, to enable data intercomparison, and establish a robust baseline for
293 assessing, for example, the impacts of climate change and land use changes.

294 **2. Methods**

295 **2.1. Data compilation**

296 The measurements included in CoastDOM v1 were obtained either directly from
297 authors of previously published studies, online databases, or scientific papers. An
298 extensive search of published reports, Ph.D. theses, and peer-reviewed literature was
299 performed to identify studies dealing with DOM in coastal waters. First, a formal search
300 was performed using Google Scholar in January 2022 using the search terms “dissolved
301 organic carbon”, “dissolved organic nitrogen”, and “dissolved organic phosphorus” in
302 connection with “marine” or “ocean”, which yielded a total of 897 articles (after filtering
303 the query by searching content in the title and abstract and excluding non-coastal
304 articles). When data could not be obtained directly from the corresponding authors,
305 relevant data were extracted. Further searches for relevant datasets were conducted
306 using the reference lists of the identified scientific papers as well as databases and
307 repositories to capture as many datasets as possible. Additionally, research groups that
308 were invited to participate in this effort were also encouraged to submit unpublished data
309 to CoastDOM v1.

310

311 **2.2. Dissolved organic matter analysis**

312 The DOC concentrations included in CoastDOM v1 were commonly measured using a
313 total organic carbon (TOC) high-temperature catalytic oxidation (HTCO) analyser (81%
314 of samples; (Sharp et al., 1993). Some were measured by a combined wet chemical
315 oxidation (WCO) step and/or UV digestion, after which the carbon dioxide generated was
316 quantified (19% of samples). Similarly, concentrations of total dissolved nitrogen (TDN;

317 ~~(Sipler and Bronk, 2015) were determined using either a nitric oxide chemiluminescence~~
318 detector connected in series with the HTCO analyser used for DOC analyses (31% of the
319 samples), or by employing a UV and/or chemical oxidation step (69%). In the latter
320 approach, both organic and inorganic N compounds were oxidised to nitrate, which was
321 subsequently quantified through a colorimetric method to determine the concentration of
322 inorganic N (Valderrama, 1981; Álvarez-Salgado et al., 2023; Halewood et al., 2022;
323 Foreman et al., 2019). Another method used for DON determination is oxidizing the
324 sample and measuring the resulting total nitrate by the nitric oxide chemiluminescence
325 method (Knapp et al., 2005). However, none of the concentration measurements included
326 in CoastDOM v1 applied this method. The reported DON concentrations were calculated
327 as the difference between TDN and dissolved inorganic nitrogen (DIN~~;~~ sum of ammonium
328 (NH_4^+) and nitrate/nitrite ($\text{NO}_3^- + \text{NO}_2^-$); DON = TDN - DIN) (Álvarez-Salgado et al., 2023).
329 Analyses of total dissolved phosphorus (TDP) were determined by UV (4%) or wet
330 chemical oxidation (66%), or a combination of these (30%), and subsequently were
331 analysed for inorganic phosphorus by a colorimetric method (Álvarez-Salgado et al.,
332 2023). Another method also previously used for TDP analysis is the ash/hydrolysis
333 method (Solorzano and Sharp, 1980), even though none of the data included in
334 CoastDOM v1 used this method. The DOP concentrations were calculated as the
335 difference between TDP and soluble reactive phosphorus (SRP: HPO_4^{2-}) (DOP = TDP -
336 SRP) (Álvarez-Salgado et al., 2023).
337

Formatted: Font: English (United States)

338 3. Description of the dataset

339 The data compiled in CoastDOM v1 were collected, analysed and processed by different
340 laboratories, however, all data included have undergone quality control measures, either
341 by using reference samples or internal quality assurance procedures. While many of the
342 included DOC and TDN data have been systematically compared against consensus

343 reference material (CRM) mainly provided by the University of Miami's CRM program
344 (Hansell, 2005), there is a limitation in CoastDOM v1 regarding the intercalibration across
345 different measurement systems used for both DOP and DON determination. While the
346 CRM could be used for DOC, DON and DOP measurements, this has not yet been
347 attempted for DOP and measurement uncertainties increase in the sequence DOC >
348 DON > DOP. Although some of the reported measurements have quantified the DOP
349 recovery based on commercially available DOP compounds such as Adenosine
350 triphosphate (ATP), it is not known if these were conducted systematically in all cases.

351 Therefore, we strongly recommend undertaking further intercalibrations~~s~~ across
352 laboratories for future measurements of TDP, as has been done for DOC and TDN
353 measurements (e.g., Sharp et al., 2002). Since additional quality control is not possible
354 in retrospect, we assessed the quality of CoastDOM v1 based on its internal consistency.

355 In CoastDOM v1, we defined "coastal water" as encompassing estuaries (salinity >
356 0.1) to the continental shelf break (water depth < 200 m). However, some locations, such
357 as deep fjords which are close to the coast cannot be classed as coastal due to
358 bathymetry (deeper than > 200 m). Therefore, we evaluated the inclusion of some
359 datasets on a case-by-case basis. For inclusion in the database, each DOM
360 measurement needed at a minimum to contain the following information (if reported in the
361 original publication or otherwise available):

- 363 - Country where samples were collected
- 364 - Latitude of measurement (in decimal units)
- 365 - Longitude of measurement (in decimal units)
- 366 - Year of sampling
- 367 - Month of sampling
- 368 - Sampling day (when available)

369 - Depth (m) at which the discrete samples were collected
370 - Temperature (°C) of the sample
371 - Salinity of the sample
372 - Dissolved organic carbon (DOC) concentration (µmol L⁻¹)
373 - Method used to measure DOC concentration
374 - DOC - QA flag: Quality flag for DOC measurement
375 - Dissolved organic nitrogen (DON) concentration (µmol L⁻¹)
376 - Total dissolved nitrogen (TDN) concentration (µmol L⁻¹)
377 - Method used to measure TDN concentration
378 - TDN - QA flag: Quality flag for TDN measurement
379 - Dissolved organic phosphorus (DOP) concentration (µmol L⁻¹)
380 - Total dissolved phosphorus (TDP) concentration (µmol L⁻¹)
381 - Method used to measure TDP concentration
382 - TDP - QA flag: Quality flag for TDP measurement
383 - Responsible person
384 - Originator institution
385 - Contact of data originator
386
387 It should be noted that in all entries, at least DOC, DON or DOP should have been
388 measured. In addition, we also included other relevant data, when available, in the
389 CoastDOM v1 dataset:
390
391 - Depth at the station where the sample was collected (Bottom depth, m).
392 - Total suspended solids (TSS) concentration (mg L⁻¹)
393 - Chlorophyll-a (Chl a) concentration (µg L⁻¹)
394 - Chl a - QA flag: Quality flag for chlorophyll-a measurement

395 - Sum of nitrate and nitrite ($\text{NO}_3^- + \text{NO}_2^-$) concentration ($\mu\text{mol L}^{-1}$)
396 - $\text{NO}_3^- + \text{NO}_2^-$ - QA flag: Quality flag for $\text{NO}_3^- + \text{NO}_2^-$ measurement
397 - Ammonium (NH_4^+) concentration ($\mu\text{mol L}^{-1}$)
398 - NH_4^+ - QA flag: Quality flag for NH_4^+ measurement
399 - Soluble reactive phosphorus (HPO_4^{2-}) concentration ($\mu\text{mol L}^{-1}$)
400 - HPO_4^{2-} - QA flag: Quality flag for HPO_4^{2-} measurement
401 - Particulate organic carbon (POC) concentration ($\mu\text{mol L}^{-1}$)
402 - Method used to measure POC concentration
403 - POC - QA flag: Quality flag for POC measurement
404 - Particulate nitrogen (PN) concentration ($\mu\text{mol L}^{-1}$)
405 - Method used to measure PN concentration
406 - PN - QA flag: Quality flag for PN measurement
407 - Particulate phosphorus (PP) concentration ($\mu\text{mol L}^{-1}$)
408 - Method used to measure PP concentration
409 - PP - QA flag: Quality flag for PP measurement
410 - Dissolved inorganic carbon (DIC) concentration ($\mu\text{mol kg}^{-1}$)
411 - DIC - QA flag: Quality flag for DIC measurement
412 - Total alkalinity (TA) concentration ($\mu\text{mol kg}^{-1}$)
413 - TA - QA flag: Quality flag for TA measurement
414
415 Quality control of large datasets is crucial to ensure their reliability and usefulness.
416 Thus, we have not included data that were deemed compromised, such as records that
417 had not gone through quality control by the data originators. We also accepted a certain
418 degree of measurement error since multiple groups have been involved in the collection,
419 analysis, and/or compilation of the information. Some of these errors were corrected (e.g.,
420 when a value was placed in a wrong column, or clearly inaccurate locations were

421 reallocated for consistency with the place of study), while others could not be rectified
422 (e.g., values showing clear signs of contamination) and were consequently excluded from
423 CoastDOM v1 (Fig. 1). It should also be noted that differences in analytical capabilities
424 between laboratories and individual measurement campaigns likely caused additional
425 uncertainty. Outliers, arising for example from contamination, were removed from the
426 dataset. The data were moreover screened for zero values (i.e., concentrations below the
427 detection limit or absence of data). In cases where concentrations were below the
428 detection limit, the zero values were replaced with half the value of the limit-of-detection.

429 Commonly reported detection limits are reach -4 $\mu\text{mol L}^{-1}$ for DOC, -0.3 $\mu\text{mol L}^{-1}$ for
430 DON and are ~0.03 $\mu\text{mol L}^{-1}$ for DOP.

431 To ensure the inclusion of only high-quality data, we only accepted entries with specific
432 World Ocean Circulation Experiment (WOCE) quality codes: “2- Acceptable
433 measurement” and “6- Mean of replicate measurements”. In our quality control
434 assessments, we carefully avoided overly strict criteria, known as “data grooming”, which
435 could potentially overlook genuine patterns and changes in the dataset that may be
436 significant over longer temporal and/or wider spatial scales. Coastal waters are known to
437 exhibit a wide range of environmental concentrations, influenced by factors such as
438 seasonality and local anthropogenic activities. Consequently, these data points may
439 encompass a wide concentration range. However, obtaining consistent long-term
440 datasets is important to enable data intercomparison, and establish a robust baseline.
441 Such long-term consistency can be achieved by using the CRM standards provided by
442 the Hansell laboratory for DOC and TDN. Another helpful approach is comparing the
443 DOM concentrations obtained by different laboratories in the same study area and time
444 of year.

445
446 **3.1 Summary of dissolved organic carbon (DOC) concentration observations**

447 Measurements of DOC concentrations were conducted between 1978 to 2022, with a
448 total of 62339 individual data points (Table 1). The DOC concentrations ranged from 17
449 to 30327 $\mu\text{mol C L}^{-1}$ (average \pm (Standard Deviation): $182 \pm (314)$ $\mu\text{mol C L}^{-1}$;
450 median: $103 \mu\text{mol C L}^{-1}$; Table 1). The majority (53%) of the concentrations fell within the
451 range of 60 to 120 $\mu\text{mol C L}^{-1}$ (Fig. 24). A large number of DOC concentration
452 observations (17%) ranged between 300 and 600 $\mu\text{mol C L}^{-1}$, which were predominantly
453 collected in eutrophic and river-influenced coastal waters of the Northern Hemisphere,
454 such as the Baltic Sea (Fig. 24). It was observed that 75% of the DOC concentrations
455 were higher than $77 \mu\text{mol C L}^{-1}$, while 25% of the measurements surpassed $228 \mu\text{mol C}$
456 L^{-1} (Table 1).

457 Coastal environments that experience minimal continental runoff, such as Palmer
458 Station in Antarctica, typically exhibit low DOC concentrations. On the other hand, coastal
459 waters heavily influenced by humic-rich terrigenous inputs, such as the Sarawak region
460 in Malaysia, tended to have high DOC concentrations. In addition, some extremely high
461 DOC concentrations were measured in the Derwent River in Australia which is impacted
462 by paper mill effluents. There has been a large increase in the number of DOC
463 concentration observations after 1992 (Fig. 32), and those measurements were from a
464 wide range of locations. However, these concentration observations were not evenly
465 distributed around the globe, with the Southern Hemisphere being relatively under-
466 sampled (10% of observations), especially in the African, South American and Antarctic
467 continents (Fig. 32, 43).

468

469 3.2. Summary of dissolved organic nitrogen (DON) concentration observations

470 The DON concentration measurements were collected between 1990 and 2021, with
471 a total of 20357 data points (Table 1). Concentrations of DON ranged from < 0.1 to 2095.3
472 $\mu\text{mol N L}^{-1}$ (average \pm (SD): $13.6 \pm (30.4)$ $\mu\text{mol N L}^{-1}$; median: $8.0 \mu\text{mol N L}^{-1}$; Table 1),

473 with the most common range (42%) for DON concentrations between 4 to 8 $\mu\text{mol N L}^{-1}$
474 (Fig. 42). Overall, 75% of DON concentrations were above 5.5 $\mu\text{mol N L}^{-1}$, while 25%
475 were above 15.8 $\mu\text{mol N L}^{-1}$ (Table 1).

476 The lowest DON concentrations were recorded in Young Sound, Greenland, which
477 receives direct run-off from the Greenland Ice Sheet, whereas the highest concentrations
478 were detected during a flood event in the Richmond River Estuary, Australia. Since 1995,
479 there has been a large increase in the number of DON measurements conducted in
480 coastal waters globally (Fig. 23); however, the majority of those measurements have been
481 in the Northern Hemisphere ([79% of observations](#)), mostly in Europe and the United
482 States (Figs. 23, 43).

483

484 3.3. Summary of dissolved organic phosphorus (DOP) [concentration](#) 485 [observations](#)

486 CoastDOM v1 includes a total of 13534 DOP measurements, collected between 1990
487 and 2021 (Table 1). Overall, DOP concentrations ranged from < 0.10 to 84.27 $\mu\text{mol P L}^{-1}$
488 (¹average \pm SD): 0.34 \pm 1.11 $\mu\text{mol P L}^{-1}$; median: 0.18 $\mu\text{mol P L}^{-1}$; Table 2). The
489 majority (74%) of DOP concentrations were below 0.30 $\mu\text{mol P L}^{-1}$ (Fig. 42). Analysis of
490 the DOP dataset revealed that 75% of the concentrations were above 0.11 $\mu\text{mol P L}^{-1}$,
491 while 25% were above 0.30 $\mu\text{mol P L}^{-1}$ (Table 1).

492 The lowest DOP concentrations were measured off the Kimberley Coast in Australia,
493 while the highest concentrations were found in the Vasse-Wonnerup Estuary in the South
494 west region of Australia. Similarly to DOC and DON, most of the DOP measurements
495 have been conducted from the 1990s onwards, with a predominant focus in the Northern
496 Hemisphere ([70% of observations](#)), particularly in Europe and the United States (Figs.
497 32, 43).

499 **3.4. Summary of dissolved organic matter (DOM) concentration observations**

500 In CoastDOM v1 the number of measurements decreases progressively in the
501 sequence DOC > DON > DOP (62339, 20357, and 13534, respectively), reflecting both
502 differences in the maturity of the analytical methods and the greater focus on carbon
503 cycling by the aquatic science community. In addition, the average DOC concentration in
504 coastal waters ($182 \pm 314 \mu\text{mol C L}^{-1}$), was 13-fold greathigher than the average coastal
505 DON concentrations $13.6 \pm 30.4 \mu\text{mol N L}^{-1}$, which was itself 39-fold highgreater than
506 the average coastal DOP concentrations ($0.34 \pm 1.11 \mu\text{mol P L}^{-1}$) (Table 1). Interestingly
507 the coefficient of variation (C.V.- dispersion of the data around the mean) increased from
508 DOC (173%) to DON (224%) and DOP (326%), which is related to the fact that the %
509 contribution of refractory organic material decreases in the same sequence (Table 1). It
510 should be noted that CoastDOM v1 only contains 7058 paired measurements of DOC,
511 DON, and DOP, and therefore only a subset of observations reported all three element
512 pools. The average C: N: P stoichiometry for these paired DOM measurements was 1171
513 (± 4248): 100 (± 580): 1 (Table 1), which was very N- and P- depleted compared to the
514 Redfield Ratio (Redfield et al., 1963). -However, the large variations in C:N, C:P and N:P
515 ratios reveals large variations in the composition of the DOM pool in coastal waters.

517 **3.5. Potential use of the dataset**

518 The use of the CoastDOM v1 dataset should be accompanied by the citation of this
519 paper and the inclusion of the correct doi-reference. CoastDOM v1 is available in full open
520 access on the PANGEA homepage after acceptance of the manuscript, where it will be
521 available as a *.csv file. The dataset includes a brief description of the metadata and
522 methods employed, with emphasis on measurement techniques and data units. We
523 chose the terminology most familiar to the ocean science community. It is important to
524 note that all data included in CoastDOM v1, as well as this manuscript, are considered

\$25 public domain; as such, a subset of this global dataset ~~is may~~ also ~~available be present~~
526 in previous data compilations (e.g., Hansell et al., 2021). The list of citations and links
527 referenced in CoastDOM v1 also provide users with information ~~as teon~~ how these data
528 ~~haves~~ been previously used in publications or databases.

529

530 **3.6. Recommendations and conclusions**

531 In CoastDOM v1, we have compiled available coastal DOM data in a single repository,
532 making it openly and freely available to the research community. This compilation has
533 established a consistent global dataset, serving as a valuable information source to
534 investigate a variety of environmental questions and to explore spatial and temporal
535 trends. We suggest a set of recommendations for the future expansion of this global
536 dataset. ~~Firstly~~, our analysis highlights a spatial bias, with a concentration of sampling
537 efforts and/or data availability predominantly concentrated in the Northern Hemisphere.
538 The data gap in coastal DOM measurements in the Southern Hemisphere needs to be
539 addressed to provide a more representative global understanding of the role of DOM in
540 coastal water biogeochemistry. Additionally, increased sampling efforts especially around
541 ~~in the Africa~~ and South American, and island nations ~~continents~~ are warranted due to
542 the vulnerability of many coastal areas to climate change and intensifying human
543 activities, which will undoubtedly impact DOM biogeochemistry. ~~Furthermore, it is also~~
544 ~~worth noting that~~ there are is comparatively few data from coastal waters affected by river
545 discharge into the tropics, e.g., the Amazon, and Indian and Indonesian rivers that
546 together dominate freshwater inputs to the coastal ocean. ~~Secondly~~, there is a need for
547 more comprehensive temporal and spatial datasets to capture the variability of DOM
548 concentrations levels in highly dynamic and productive coastal systems. Focused efforts
549 should be made to resolve these temporal and spatial changes. Third, only a fraction of
550 data entries report paired DOC, DON and DOP measurements, we encourage that these

\$51 be measured and reported together in order to better determine changes in stoichiometry
552 and composition. FourthThirdly, it is also important to collecting and reporting ancillary
553 data, such as temperature, salinity, nutrient measurements, and particulate components,
554 is important to provide context and better understand the underlying processes driving
555 the observed DOM concentrationslevels. Fifth, studies need to collect a minimum of
556 metadata and report it in standardized manner. Lastly, we strongly recommend that the
557 DOM research community conducts regular inter-calibration exercises to establish
558 standardised and interoperable methods and data, particularly for DON and DOP
559 measurements. This will ensure the comparability and reliability of data across different
560 studies and enhance our understanding of DON and DOP dynamics in coastal waters.

561 In light of ongoing global environmental changes, the mobilisation and open sharing of
562 existing data of for important biogeochemical variables, such as the DOM pool, are crucial
563 for establishing baselines and determining global trends and changes in coastal waters.
564 The aim is to publish an updated version of the database periodically to determine global
565 trends of DOM levels in coastal waters, and we therefore encourage researchers to
566 submit new data to the corresponding author. The CoastDOM v1 dataset was developed
567 according to the FAIR principles regarding Findability, Accessibility, Interoperability and
568 Reusability of data. Thus, CoastDOM v1 will serve as a reliable open-source information
569 resource, enabling in-depth analyses and providing quality-controlled input data for large
570 scale ecosystem models.

571

572 4. Data availability

573 The dataset is available for the review process at Figshare
574 <https://figshare.com/s/512289eb43c4f8e8eaef>. The dataset is available at furthermore
575 submitted to the PANGEA database
576 (<https://doi.pangaea.de/10.1594/PANGAEA.964012>; and is currently waiting to be

577 ~~assigned a Doi number~~ (Lønborg et al., 2023). The file ~~is will be~~ available as a *.csv
578 merged file and ~~is will be~~ available in full open access ~~in the PANGEA database after~~
579 ~~acceptance of the manuscript.~~

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
|

Commented [CL1]: update

581 Competing interests

582 The authors declare no competing interests.

583 Author Contribution

584 C.L., C.C., and X.A.A-S started the initiative and finalised the data compilation. All co-
585 authors contributed data. C.L. wrote the manuscript with input from all co-authors.

586 Acknowledgement

587 Qi Chen is acknowledged for his very skilful help with Figure 43.

588 Funding

589 During the drafting of the manuscript C.L. received funding from the Independent
590 Research Fund Denmark Grant No. 1127-00033B. The monitoring data obtained from
591 Bermuda received funding from the Bermuda Government Department of Environment
592 and Natural Resources. A subset of the data obtained from UK coastal estuaries received
593 funding from the Natural Environment Research Council (Grant NE/N018087/1). Data
594 retrieved from the Palmer LTER data were collected with support from the Office of Polar
595 Programs, US National Science Foundation. Data obtained from the Great Barrier Reef
596 Marine Monitoring Program for Inshore Water Quality, which is a partnership between the
597 Great Barrier Reef Marine Park Authority, the Australian Institute of Marine Science,
598 James Cook University, and the Cape York Water Partnership. The contribution by P.K.
599 was supported by DiSeDOM project contract no. UMO-2019/33/B/ST10/01232 funded by
600 the NCN - National Science Centre, Poland. N.W. and A.M.-P. participated in this

synthesis effort with funding provided by the U.S. Department of Energy funded
COMPASS-FME project; the provided data was collected with funding from the PREMIS
Initiative, conducted under the Laboratory Directed Research and Development Program
at Pacific Northwest National Laboratory. The data obtained from the Levantine Sea (Med
Sea) received funding from the Scientific and Technological Research Council of Türkiye
(TÜBİTAK, 1001 program, Grant 115Y629). The data obtained from Gulf of Trieste
(Slovenian waters) were financed by Research Program No. P1-0237 (Slovenian
Research and Innovation Agency). Data obtained from the northern Baltic Sea were
financed by the research program EcoChange (Swedish research council FORMAS). The
contribution by D.H. was supported by National Natural Science Foundation of China
(42222061), and funding support from the Center for Ocean Research in Hong Kong and
Macau (CORE). CORE is a joint research center for ocean research between Laoshan
Laboratory and HKUST. The contribution by Y.S. was supported by National Natural
Science Foundation of China (42106040), the Fundamental Research Funds for the
Central Universities of China (20720210076), and Fujian Provincial Central Guided Local
Science and Technology Development Special Project (Grant No. 2022L3078). The data
provided by LCCJr were supported by the Brazilian National Council of Research and
Development (CNPq-Pve No. 401.726/2012-6) and by the Carlos Chagas Foundation for
Research Support of the State of Rio de Janeiro (FAPERJ; No. E-26202.785/2016). Data
provided by SC were collected in the framework of Italian (PRISMA 1 and 2, ANOCSIA
and VECTOR) and European (OCEANCERTAIN) research projects. Data provided by
MG were collected within the Project "Mucilages in the Adriatic and Tyrrhenian Seas
(MAT)", coordinated by the Istituto Centrale per la Ricerca Scientifica e Tecnologica
Applicata al Mare and financially supported by the Italian Ministry of the Environment.
Data obtained from the Georgia coast (USA) were supported by the National Science
Foundation through grants OCE-1832178 (GCE-LTER Program) and OCE-1902131.

627 Observations in the southern Caribbean Sea including the Cariaco Basin were collected
628 as part of the CARIACO Ocean Time Series program (supported by the Consejo Nacional
629 de Ciencia y Tecnología of Venezuela, the Ley de Ciencia, Tecnología e Innovación de
630 Venezuela, the Estación de Investigaciones Marinas de Venezuela; the National Science
631 Foundation grants OCE-0752139, OCE-9216626, OCE-9729284, OCE-491 9401537,
632 OCE-9729697, OCE-9415790, OCE-9711318, OCE-0326268, OCE-0963028, OCE-
633 0326313, and OCE-0326268, NASA grants NAG5-6448, NAS5-97128, and
634 NNX14AP62A; the Inter-American Institute for Global Change Research grant IAI-
635 CRN3094), and the Marine Biodiversity Observation Network/MBON of the Group on
636 Earth Observations Biodiversity Observation Network). Data provided by D.J.R. and
637 B.D.E. was supported by ARC Linkage (LP0770222), with Norske-Skog Boyer and the
638 Derwent Estuary Program providing financial and in-kind assistance.

639

640 **References**

- 641 Álvarez-Salgado, X. A., Nieto-Cid, M., and Rossel, P. E.: Dissolved Organic Matter, in:
642 Marine Analytical Chemistry, edited by: Blasco, J., and Tovar-Sánchez, A., Springer
643 International Publishing, Cham, 39-102, 10.1007/978-3-031-14486-8_2, 2023.
644 Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier,
645 P. A.: The changing carbon cycle of the coastal ocean, *Nature*, 504, 61-70,
646 10.1038/nature12857, 2013.
647 Benner, R. and Amon, R. M.: The size-reactivity continuum of major bioelements in the
648 ocean, *Annual review of marine science*, 7, 185-205, 10.1146/annurev-marine-
649 010213-135126, 2015.
650 Boudreau, B. P. and Ruddick, B. R.: On a reactive continuum representation of organic
651 matter diagenesis, *American Journal of Science*, 291, 507-538, 1991.
652 Burdige, D. J. and Komada, T.: Sediment pore waters, in: *Biogeochemistry of marine*
653 *dissolved organic matter*, edited by: Hansen, D. A., and Carlson, C. A., Elsevier, 535-
654 577, 2014.
655 Carlson, C. A. and Hansell, D. A.: DOM Sources, Sinks, Reactivity, and Budgets, in:
656 *Biogeochemistry of Marine Dissolved Organic Matter*, edited by: Carlson, C. A., and
657 Hansell, D. A., Elsevier Science & Technology, 65-126, 10.1016/b978-0-12-405940-
658 5.00003-0, 2015.
659 Carreira, C., Talbot, S., and Lønborg, C.: Bacterial consumption of total and dissolved
660 organic carbon in the Great Barrier Reef, *Biogeochemistry*, 10.1007/s10533-021-
661 00802-x, 2021.
662 Cauwet, G.: DOM in coastal areas, in: *Biogeochemistry of Dissolved organic matter*,
663 edited by: Hansell, D., and Carlson, C. A., Academic Press, London, 579-609, 2002.

- 665 Chin, W. C., Orellana, M. V., and Verdugo, P.: Spontaneous assembly of marine
666 dissolved organic matter into polymer gels, *Nature*, 391, 568-572, 1998.
- 667 Foreman, R. K., Björkman, K. M., Carlson, C. A., Opalk, K., and Karl, D. M.: Improved
668 ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic
669 nitrogen and phosphorus, *Limnology and Oceanography: Methods*, 17, 277-291,
670 <https://doi.org/10.1002/lom3.10312>, 2019.
- 671 García-Martín, E. E., Sanders, R., Evans, C. D., Kitidis, V., Lapworth, D. J., Rees, A. P.,
672 Spears, B. M., Tye, A., Williamson, J. L., Balfour, C., Best, M., Bowes, M., Breimann,
673 S., Brown, I. J., Burden, A., Callaghan, N., Felgate, S. L., Fishwick, J., Fraser, M.,
674 Gibb, S. W., Gilbert, P. J., Godsell, N., Gomez-Castillo, A. P., Hargreaves, G., Jones,
675 O., Kennedy, P., Lichtschlag, A., Martin, A., May, R., Mawji, E., Mounteney, I.,
676 Nightingale, P. D., Olszewska, J. P., Painter, S. C., Pearce, C. R., Pereira, M. G.,
677 Peel, K., Pickard, A., Stephens, J. A., Stinchcombe, M., Williams, P., Woodward, E.
678 M. S., Yarrow, D., and Mayor, D. J.: Contrasting Estuarine Processing of Dissolved
679 Organic Matter Derived From Natural and Human-Impacted Landscapes, *Global
680 Biogeochemical Cycles*, 35, e2021GB007023,
681 <https://doi.org/10.1029/2021GB007023>, 2021.
- 682 Halewood, E., Opalk, K., Custals, L., Carey, M., Hansell, D. A., and Carlson, C. A.:
683 Determination of dissolved organic carbon and total dissolved nitrogen in seawater
684 using High Temperature Combustion Analysis, *Frontiers in Marine Science*, 9,
685 10.3389/fmars.2022.1061646, 2022.
- 686 Hansell, D. A.: Dissolved Organic Carbon Reference Material Program, *Eos, Transactions American Geophysical Union*, 86, 318-318,
687 <https://doi.org/10.1029/2005EO350003>, 2005.
- 688 Hansell, D. A., Carlson, C. A., Amon, R. M. W., Álvarez-Salgado, X. A., Yamashita, Y.,
689 Romera-Castillo, C., and Bif, M. B.: Compilation of dissolved organic matter (DOM)
690 data obtained from global ocean observations from 1994 to 2021. Version 2. (NCEI
691 Accession 0227166) [dataset], doi.org/10.25921/s4f4-ye35, 2021.
- 692 Iavorivska, L., Boyer, E. W., and DeWalle, D. R.: Atmospheric deposition of organic
693 carbon via precipitation, *Atmospheric Environment*, 146, 153-163,
694 <https://doi.org/10.1016/j.atmosenv.2016.06.006>, 2016.
- 695 Karl, D. M. and Björkman, K. M.: Dynamics of Dissolved Organic Phosphorus, in:
696 Biogeochemistry of marine dissolved organic matter, edited by: Hansell, D. A., and
697 Carlson, C. A., 233-334, 10.1016/b978-0-12-405940-5.00005-4, 2015.
- 698 Kerner, M., Hohenberg, H., Ertl, S., Reckermann, M., and Spitz, A.: Self-organization
699 of dissolved organic matter to micelle-like microparticles in river water, *Nature*, 422,
700 150-154, 2003.
- 701 Knapp, A. N., Sigman, D. M., and Lipschultz, F.: N isotopic composition of dissolved
702 organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site, *Global
703 Biogeochemical Cycles*, 19, <https://doi.org/10.1029/2004GB002320>, 2005.
- 704 Laruelle, G. G., Dürr, H. H., Lauerwald, R., Hartmann, J., Slomp, C. P., Goossens, N.,
705 and Regnier, P. A. G.: Global multi-scale segmentation of continental and coastal
706 waters from the watersheds to the continental margins, *Hydrol. Earth Syst. Sci.*, 17,
707 2029-2051, 10.5194/hess-17-2029-2013, 2013.
- 708 Laurenceau-Cornec, E. C., Trull, T. W., Davies, D. M., De La Rocha, C. L., and Blain,
709 S.: Phytoplankton morphology controls on marine snow sinking velocity, *Marine
710 Ecology Progress Series*, 520, 35-56, 2015.
- 711 Liang, Z., McCabe, K., Fawcett, S. E., Forrer, H. J., Hashihama, F., Jeandel, C.,
712 Marconi, D., Planquette, H., Saito, M. A., Sohm, J. A., Thomas, R. K., Letscher, R. T.,
713 and Knapp, A. N.: A global ocean dissolved organic phosphorus concentration
714 database (DOPv2021), *Scientific Data*, 9, 772, 10.1038/s41597-022-01873-7, 2022.
- 715

- 716 Lønborg, C. and Álvarez-Salgado, X. A.: Recycling versus export of bioavailable
717 dissolved organic matter in the coastal ocean and efficiency of the continental shelf
718 pump, *Global biogeochemical cycles* 26, GB3018, 10.1029/2012GB004353, 2012.
- 719 Lønborg, C., Álvarez-Salgado, X. A., Davidson, K., and Miller, A. E. J.: Production of
720 bioavailable and refractory dissolved organic matter by coastal heterotrophic
721 microbial populations, *Estuarine, Coastal and Shelf science*, 82, 682–688,
722 10.1016/j.ecss.2009.02.026, 2009.
- 723 Lønborg, C., Álvarez-Salgado, X. A., Duggan, S., and Carreira, C.: Organic matter
724 bioavailability in tropical coastal waters: The Great Barrier Reef, *Limnology and*
725 *Oceanography*, 63, 1015–1035, 10.1002/lo.10717, 2018.
- 726 Lønborg, C., Carreira, C., Jickells, T., and Álvarez-Salgado, X. A.: Impacts of Global
727 Change on Ocean Dissolved Organic Carbon (DOC) Cycling, *Frontiers in Marine*
728 *Science*, 7, 466, 10.3389/fmars.2020.00466, 2020.
- 729 Lønborg, C., Carreira, C., Abril, G., Agustí, S., Amaral, V., Andersson, A., Aristegui, J.,
730 Bhadury, P., Bif, M. B., Borges, A. V., Bouillon, S., Calleja, M. L., Cotovici Jr, L. C.,
731 Cozzi, S., Doval, M. D., Duarte, C. M., Eyre, B. D., Fichot, C. G., García-Martín, E.,
732 Garzon-Garcia, A., Giani, M., Gonçalves-Araujo, R., Gruber, R., Hansell, D. A.,
733 Hashihama, F., He, D., Holding, J. M., Hunter, W. R., Ibánhez, J. S., Ibello, V., Jiang,
734 S., Kim, G., Klun, K., Kowalcuk, P., Kubo, A., Weng Lee, C., Lopes, C., Maggioni,
735 Magni, P., Marrase, C., Martin, P., McCallister, S. L., McCallum, R., Medeiros, P.,
736 Morán, X. A. G., Muller-Karger, F., Myers-Pigg, A., Norli, M., Oakes, J. M.,
737 Osterholz, H., Park, H., Paulsen, M. L., Rosentreter, J. A., Rueda-Roa, D., Santinelli,
738 C., Shen, Y., Teira, E., Tinta, T., Uher, G., Wakita, M., Ward, N., Watanabe, K., Xin,
739 Y., Yamashita, Y., Yang, L., Yeo, J., Yuan, H., Zheng, Q., and Álvarez-Salgado, X.
740 A.: A global database of dissolved organic matter (DOM) concentration
741 measurements in coastal waters (CoastDOM v1) [dataset], 2023.
- 742 Mackenzie, F. T., De Carlo, E. H., and Lerman, A.: 5.10 - Coupled C, N, P, and O
743 Biogeochemical Cycling at the Land–Ocean Interface, in: *Treatise on Estuarine and*
744 *Coastal Science*, edited by: Wolanski, E., and McLusky, D., Academic Press,
745 Waltham, 317–342, <https://doi.org/10.1016/B978-0-12-374711-2.00512-X>, 2011.
- 746 Mopper, K., Kieber, D. J., and Stubbins, A.: Marine Photochemistry of Organic Matter,
747 in: *Biogeochemistry of Marine Dissolved Organic Matter*, edited by: Carlson, C. A.,
748 and Hansell, D. A., 389–450, 10.1016/b978-0-12-405940-5.00008-x, 2015.
- 749 Osterholz, H., Burmeister, C., Busch, S., Dierken, M., Frazão, H. C., Hansen, R.,
750 Jeschek, J., Kremp, A., Kreuzer, L., and Sadkowiak, B.: Nearshore dissolved and
751 particulate organic matter dynamics in the southwestern Baltic Sea: environmental
752 drivers and time series analysis (2010–2020), *Frontiers in Marine Science*, 8,
753 795028, 2021.
- 754 Raymond, P. A. and Spencer, R. G. M.: Riverine DOM, in: *Biogeochemistry of Marine*
755 *Dissolved Organic Matter*, edited by: Hansell, D. A., and Carlson, C. A., Elsevier,
756 Amsterdam, 509–533, 10.1016/b978-0-12-405940-5.00011-x, 2015.
- 757 Redfield, A. C., Ketchum, B. K., and Richards, F. A.: The influence of organisms on the
758 composition of sea-water, in: *The sea*, vol. 2, *The composition of sea water:*
759 *Comparative and descriptive oceanography*, edited by: Hill, M. N., Wiley-Interscience,
760 26–77, 1963.
- 761 Santos, I. R., Burdige, D. J., Jennerjahn, T. C., Bouillon, S., Cabral, A., Serrano, O.,
762 Wernberg, T., Filbee-Dexter, K., Guimond, J. A., and Tamborski, J. J.: The
763 renaissance of Odum's outwelling hypothesis in 'Blue Carbon' science, *Estuarine,*
764 *Coastal and Shelf Science*, 255, 10.1016/j.ecss.2021.107361, 2021.
- 765 Sharp, J. H., Benner, R., Bennett, L., Carlson, C. A., Dow, R., and Fitzwater, S. E.: Re-
766 evaluation of high temperature combustion and chemical oxidation measurements of

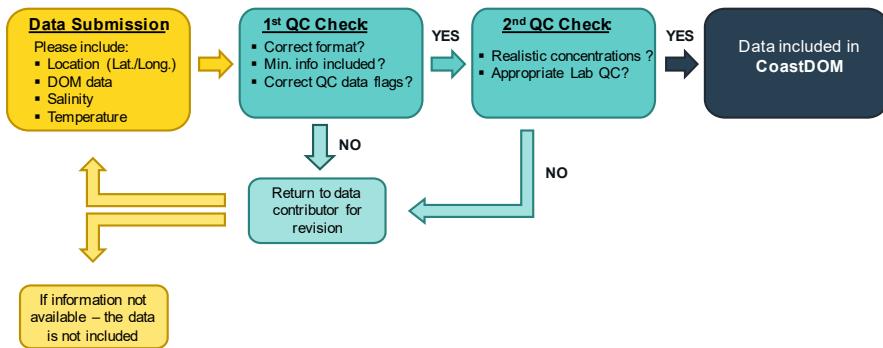
- 767 dissolved organic carbon in seawater, Limnology and Oceanography, 38, 1774-1782,
768 <https://doi.org/10.4319/lo.1993.38.8.1774>, 1993.
- 769 Sharp, J. H., Rinker, K. R., Savidge, K. B., Abell, J., Benaim, J. Y., Bronk, D., Burdige,
770 D. J., Cauwet, G., Chen, W., Doval, M. D., Hansell, D., Hopkinson, C., Kattner, G.,
771 Kaumeyer, N., McGlathery, K. J., Merriam, J., Morley, N., Nagel, K., Ogawa, H.,
772 Pollard, C., Pujo-Pay, M., Raimbault, P., Sambrotto, R., Seitzinger, S., Spyres, G.,
773 Tirendi, F., Walsh, T. W., and Wong, C. S.: A preliminary methods comparison for
774 measurement of dissolved organic nitrogen in seawater, Marine Chemistry, 78, 171-
775 184, 2002.
- 776 Sipler, R. E. and Bronk, D. A.: Dynamics of Dissolved Organic Nitrogen, in:
777 Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D. A., and
778 Carlson, C. A., 127-232, 10.1016/b978-0-12-405940-5.00004-2, 2015.
- 779 Solorzano, L. and Sharp, J. H.: Determination of total dissolved phosphorus and
780 particulate phosphorus in natural waters, Limnology and Oceanography, 25, 754-
781 758, 1980.
- 782 Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T., Kim,
783 G., Moosdorf, N., and Burnett, W. C.: Submarine Groundwater Discharge: Updates
784 on Its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects,
785 Frontiers in Environmental Science, 7, 10.3389/fenvs.2019.00141, 2019.
- 786 Valderrama, J. C.: The simultaneous analysis of total nitrogen and total phosphorus in
787 natural waters, Marine Chemistry, 10, 109-122, 1981.
- 788 Wada, S., Aoki, M. N., Mikami, A., Komatsu, T., Tsuchiya, Y., Sato, T., Shinagawa, H.,
789 and Hama, T.: Bioavailability of macroalgal dissolved organic matter in seawater,
790 Marine Ecology Progress Series, 370, 33-44, 2008

791

792 **Figure legends**

793 **Figure 1.** Flow diagram of data collation, quality control and inclusion into CoastDOM v1

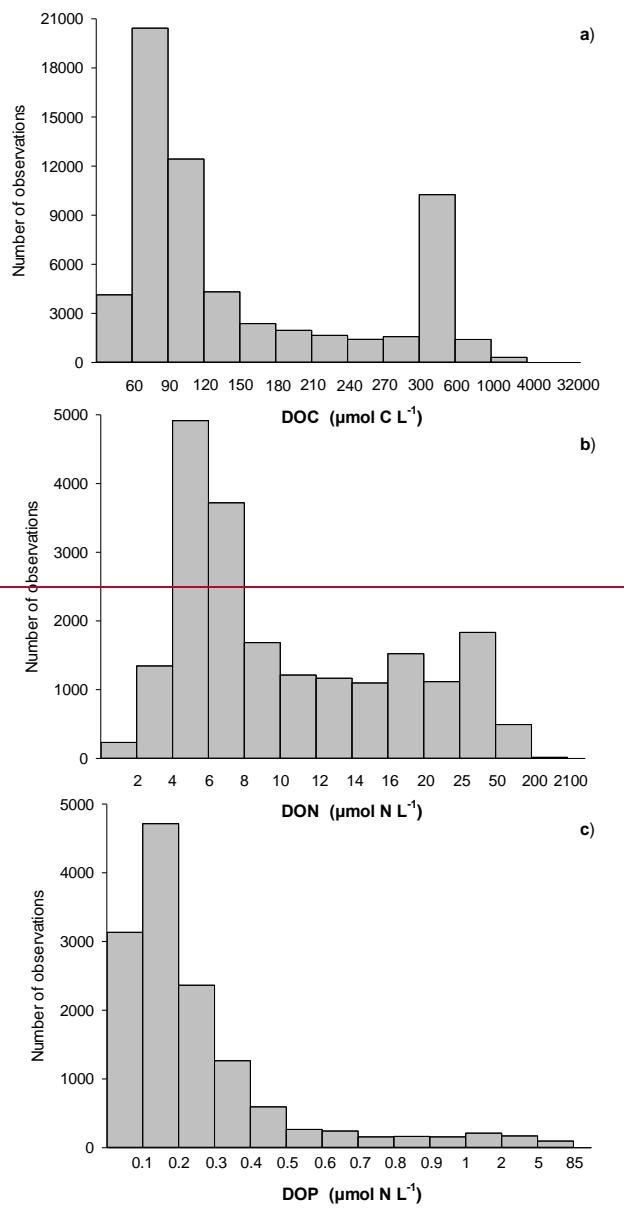
794 database.

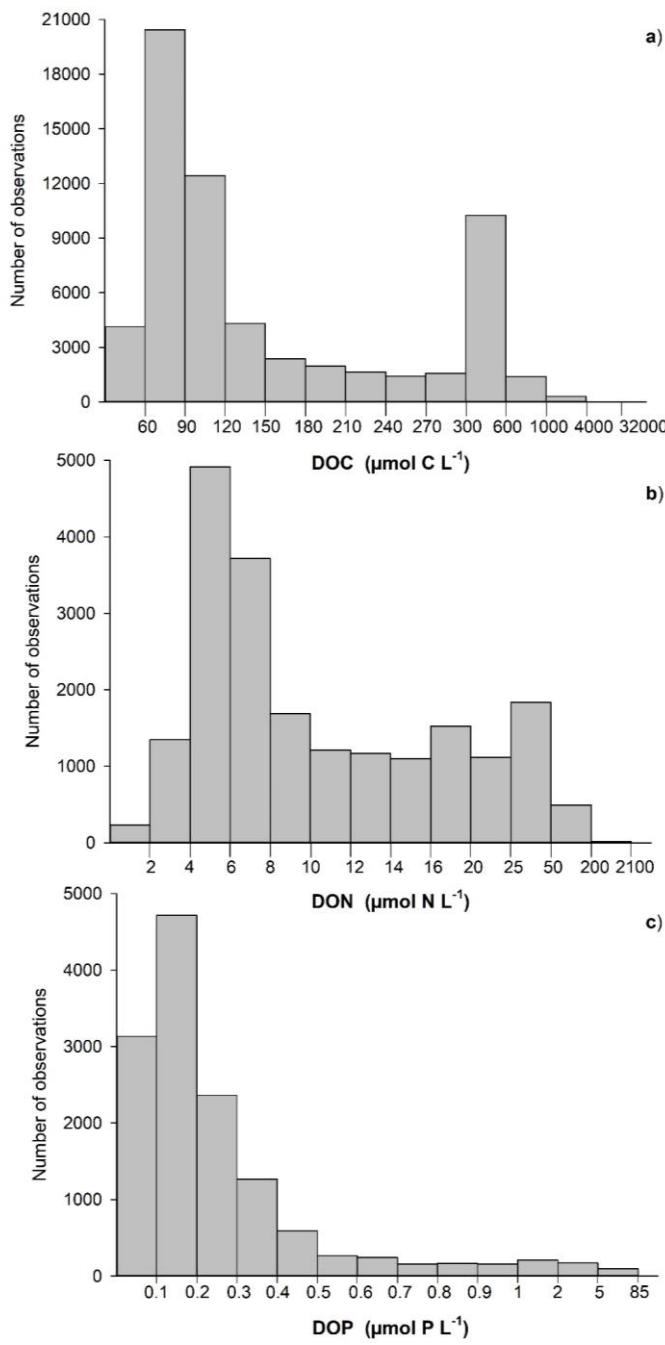

795 **Figure 24.** Histograms showing the distribution of observations for **a**) dissolved organic
796 carbon (DOC), **b**) nitrogen (DON) and **c**) phosphorus (DOP), within defined
797 concentration ranges in the coastal ocean. Note that the concentration ranges are not
798 uniform in all cases due to the large difference in concentrationslevels.

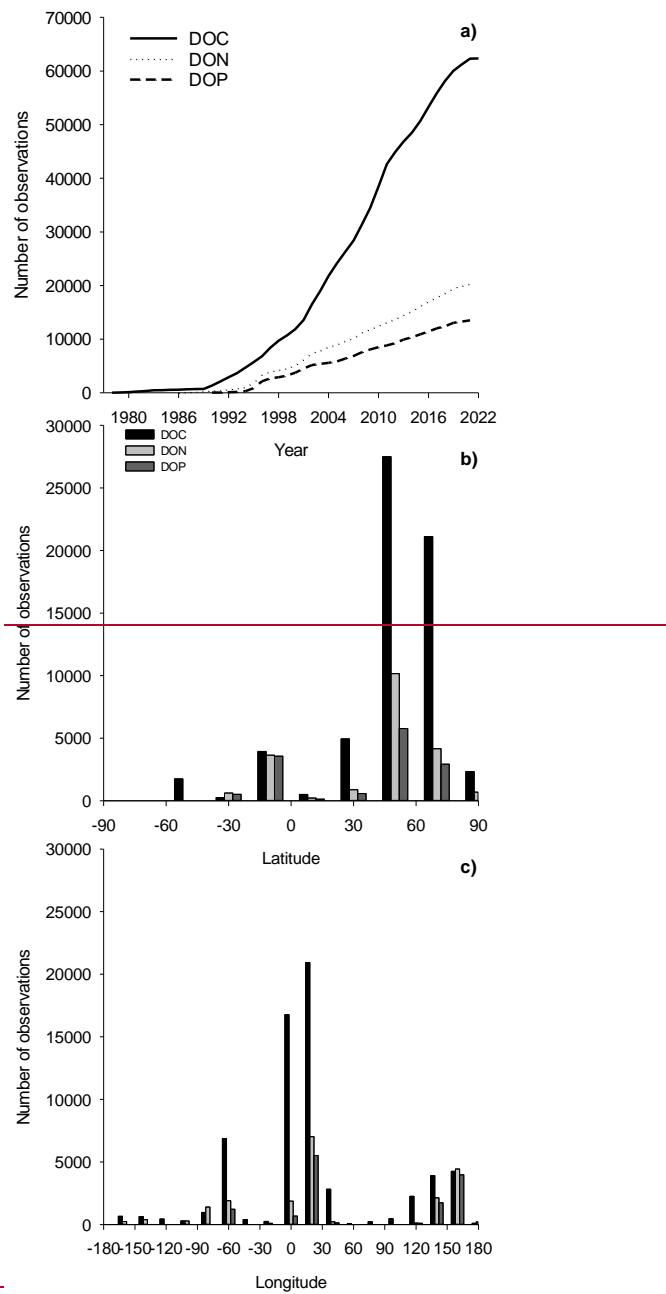
799 **Figure 23.** **a**) Cumulative number of concentration observations for dissolved organic
800 carbon (DOC), nitrogen (DON), and phosphorus (DOP). Number of concentration
801 observations shown as a function of b) sampling month ("N.S" are samples for which
802 the sampling month is not specified), **b**) latitude, and **de**) longitude, grouped into bins
803 of 10° latitude or longitude.

804 **Figure 34.** Global distribution of concentration observations included in CoastDOM v1 for
805 **a**) dissolved organic carbon (DOC), **b**) nitrogen (DON), and **c**) phosphorus (DOP). The
806 black dots on the map represent the reported data that are included in the CoastDOM
807 v1 database. Histograms show the distribution of observations for DOC, DON and DOP
808 within defined concentration ranges in the continents where measurements are
809 available. Maps were created using the GIS shape file obtained from Laurelle et al.
810 (Laruelle et al., 2013)

811 **Table 1.** Descriptive statistics for the dissolved organic carbon (DOC), dissolved organic
 812 nitrogen (DON), and dissolved organic phosphorus (DOP) [concentration observations](#)
 813 [measurements](#) included in the CoastDOM v1 dataset. [The DOC:DON, DOC:DOP and](#)
 814 [DON:DOP ratios are also reported.](#) The minimum (Min), maximum (Max), average values
 815 (Avg.) and standard deviation (SD), coefficient of variation (CV %), median, 25th and 75th
 816 percentiles (perc.) and number of samples (N) for each variable are shown.


	DOC	DON	DOP			
	$\mu\text{mol C L}^{-1}$	$\mu\text{mol N L}^{-1}$	$\mu\text{mol P L}^{-1}$			
Min	17	< 0.1	< 0.01			
Max	30327	2095.3	84.27			
Avg. (SD)	182 (314)	13.6 (30.4)	0.34 (1.11)			
Median	103	8.0	0.18			
CV %	173	224	326			
25th perc.	77	5.5	0.11			
75th perc.	228	15.8	0.30			
N	62339	20357	13534			
	DOC	DON	DOP	DOC:DON	DOC:DOP	DON:DOP
	$\mu\text{mol L}^{-1}$	$\mu\text{mol L}^{-1}$	$\mu\text{mol L}^{-1}$			
Min	17	< 0.1	< 0.01	1	18	0.14
Max	30327	2095.3	84.27	3046	248024	8894
Avg. \pm SD	182 \pm 314	13.6 \pm 30.4	0.34 \pm 1.11	18 \pm 43	1171 \pm 4248	100 \pm 580
Median	103	8.0	0.18	14	583	47
CV	173	224	324	244	363	578
25%iles	77	5.5	0.11	11	401	30
75%iles	228	15.8	0.30	18	1034	78
N	62339	20357	13534	12632	7415	12954




818

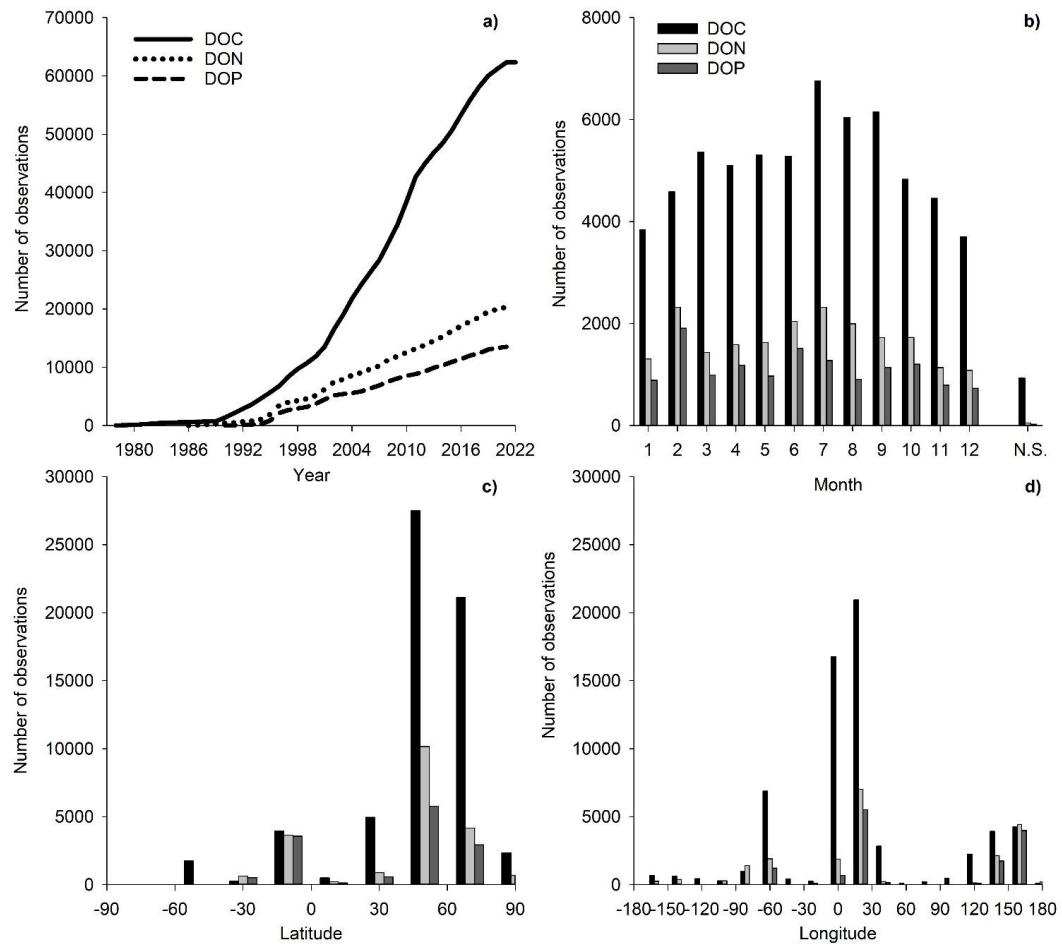
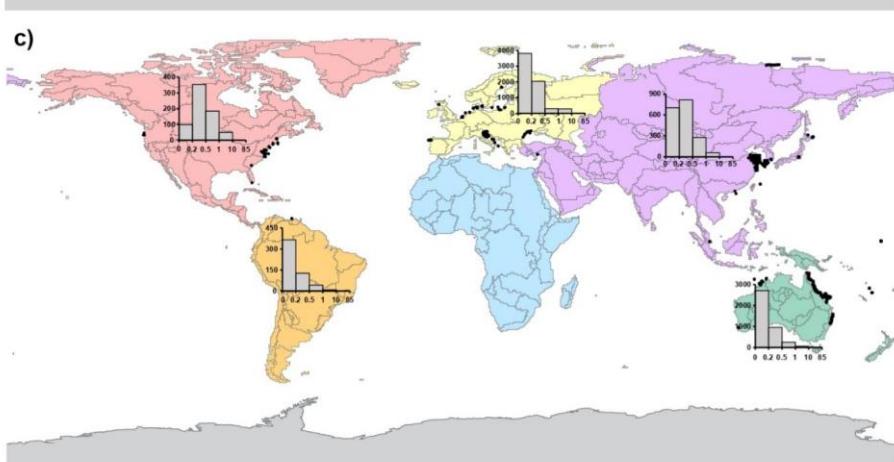
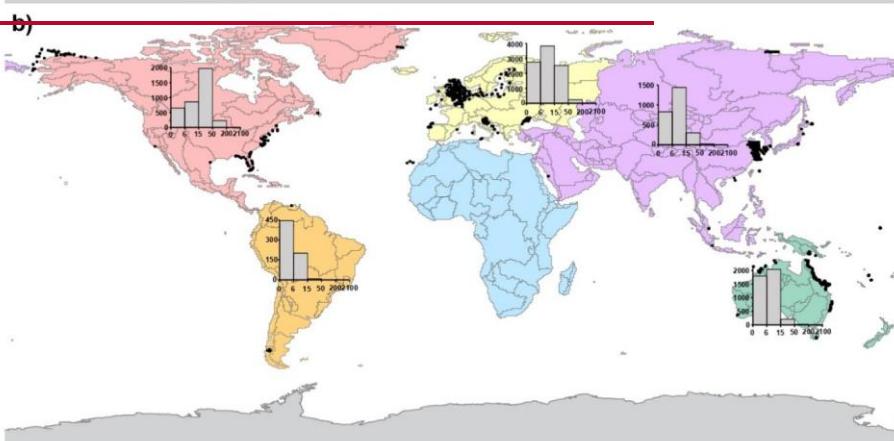
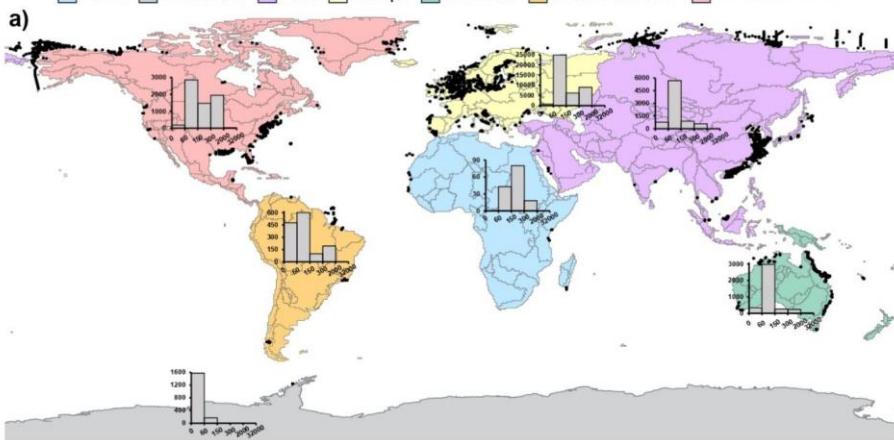
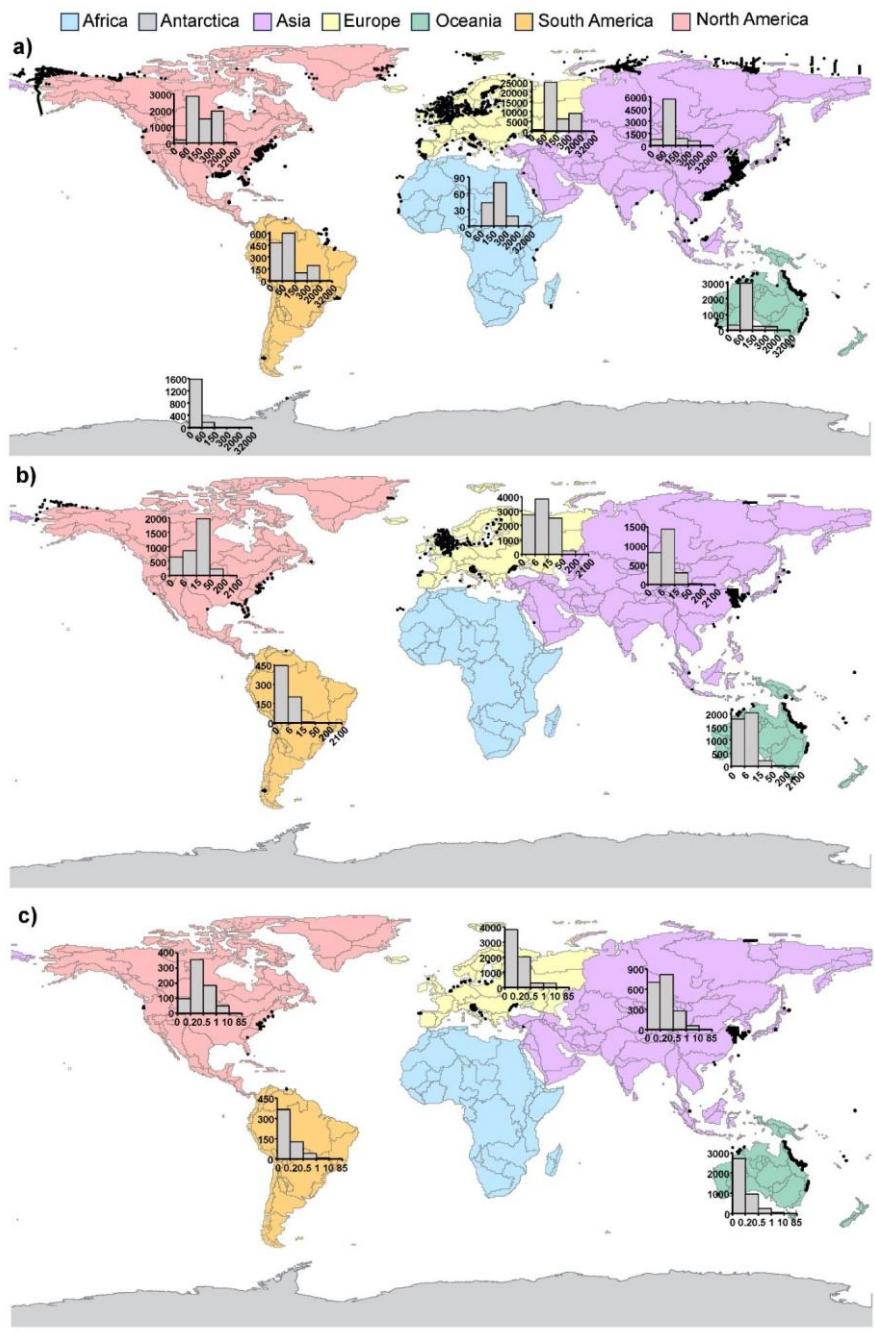

819

Figure 1.



Africa Antarctica Asia Europe Oceania South America North America

