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Abstract  209 

Measurements of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus 210 

(DOP) concentrations are used to characterize the dissolved organic matter (DOM) pool 211 

and are important components of biogeochemical cycling in the coastal ocean. Here, we 212 

present the first edition of a global database (CoastDOM v1; available at 213 

https://doi.pangaea.de/10.1594/PANGAEA.964012) compiling previously published and 214 

unpublished measurements of DOC, DON, and DOP in coastal waters. These data are 215 

complemented by hydrographic data such as temperature and salinity and, to the extent 216 

possible, other biogeochemical variables (e.g., Chlorophyll-a, inorganic nutrients) and the 217 

inorganic carbon system (e.g., dissolved inorganic carbon and total alkalinity). Overall, 218 

CoastDOM v1 includes observations of concentrations from all continents. However, 219 

most data were collected in the Northern Hemisphere, with a clear gap in coastal water 220 

DOM measurements from the Southern Hemisphere. The data included were collected 221 

from 1978 to 2022 and consist of 62339 data points for DOC, 20360 for DON, and 13440 222 

for DOP. The number of measurements decreases progressively in the sequence DOC 223 

> DON > DOP, reflecting both differences in the maturity of the analytical methods and 224 

the greater focus on carbon cycling by the aquatic science community. The global 225 

database shows that the average DOC concentration in coastal waters (average ± 226 

standard deviation (SD): 182 ± 314 µmol C L-1; median: 103 µmol C L-1) is 13-fold higher 227 

than the average coastal DON concentration (average ± SD: 13.6 ± 30.4 µmol N L-1; 228 

median: 8.0 µmol N L-1), which is itself 39-fold higher than the average coastal DOP 229 

concentration (average ± SD: 0.34 ± 1.11 µmol P L-1; median: 0.18 µmol P L-1). This 230 

dataset will be useful for identifying global spatial and temporal patterns in DOM and help 231 

facilitate the reuse of DOC, DON, and DOP data in studies aimed at better characterizing 232 

local biogeochemical processes, closing nutrient budgets, estimating carbon, nitrogen, 233 

https://doi.pangaea.de/10.1594/PANGAEA.964012
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and phosphorous pools, as well as establishing a baseline for modelling future changes 234 

in coastal waters.  235 

 236 

Keywords: Dissolved organic matter, Dissolved organic carbon, Dissolved organic 237 

nitrogen, Dissolved organic phosphorus, Coastal waters, Global database.   238 
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1. Introduction 239 

Coastal waters are the most biogeochemical dynamic areas of the ocean, exhibiting 240 

the highest standing stocks, process rates and transport fluxes of carbon (C), nitrogen 241 

(N), and phosphorus (P) per unit area (Bauer et al., 2013; Mackenzie et al., 2011). In 242 

these areas, organic matter plays a critical role in numerous biogeochemical processes, 243 

serving as both a C, N, and P reservoir and substrate (Carreira et al., 2021).  244 

Organic material found in the marine environment is commonly distinguished by its 245 

size; material retained on a filter with a pore size typically between 0.2 and 0.7 μm is 246 

classified as particulate organic matter (POM), whereas organic matter that passes 247 

through the filter is referred to as dissolved organic matter (DOM). This partitioning is 248 

operational but has implications for biogeochemical cycling: POM can be suspended in 249 

the water column or sink to the sediments controlled by its size, shape and density 250 

(Laurenceau-Cornec et al., 2015), whereas DOM is a solute that mostly remains in the 251 

water column. In most coastal waters, DOM concentrations are higher than POM, with 252 

POM having a larger proportion of known biochemical classes (e.g., carbohydrates, 253 

proteins) than the dissolved fraction, suggesting that generally, DOM is more reworked 254 

and recalcitrant (Boudreau and Ruddick, 1991; Lønborg et al., 2018; Benner and Amon, 255 

2015).  256 

The DOM pool consists mainly of C (DOC), N (DON), and P (DOP) but it also includes 257 

other elements such as oxygen, sulphur and trace elements (Lønborg et al., 2020). In 258 

coastal waters, DOM originates from multiple sources. Internal, or autochthonous, 259 

sources include planktonic organisms (Lønborg et al., 2009; Carlson and Hansell, 2015), 260 

benthic microalgae, macrophytes, and sediment porewater (Burdige and Komada, 2014; 261 

Wada et al., 2008). On the other hand, DOM from external, or allochthonous, sources, 262 

has mainly terrestrial origins, including wetlands, river and surface runoff, groundwater 263 

discharges, and atmospheric deposition (Lavorivska et al., 2016; Raymond and Spencer, 264 
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2015; Taniguchi et al., 2019; Santos et al., 2021). The main sinks for DOM from the water 265 

column in coastal waters are: 1) bubble coagulation and abiotic flocculation (Kerner et al., 266 

2003) or sorption to particles (Chin et al., 1998); 2) sunlight-mediated photodegradation 267 

(Mopper et al., 2015); and 3) microbial degradation by mainly heterotrophic prokaryotes 268 

(Lønborg and Álvarez-Salgado, 2012). 269 

Given the importance of DOM as a source of nutrients and for coastal biogeochemical 270 

cycling in general, numerous studies have measured the C, N and P content of the DOM 271 

pool over the last few decades (e.g.,(García-Martín et al., 2021; Cauwet, 2002; Osterholz 272 

et al., 2021). Most data, however, are often unavailable or stored in an inaccessible 273 

manner, making it difficult to e.g., analyse global spatial and temporal patterns effectively. 274 

Global open ocean DOM data compilation for DOC total dissolved nitrogen (TDN) 275 

(Hansell et al., 2021) and DOP (Liang et al., 2022; Karl and Björkman, 2015) already exist 276 

and  contains few coastal samples (< 200m) (Hansell et al., 2021), but there are no 277 

compilation specifically focused on coastal waters. Hence, there is a clear need for a 278 

comprehensive global and integrated database of DOC, DON and DOP measurements 279 

for coastal waters. To address this need, we have prepared the first edition of a coastal 280 

DOM database (named CoastDOM v1), by compiling both previously reported as well as 281 

unpublished data. These data have been obtained from authors of the original studies or 282 

extracted directly from the original studies. In order to allow the DOM measurements to 283 

be interpreted across larger scales, and to better understand their relationship with local 284 

environmental conditions, we have included concurrently collected ancillary data (such 285 

as physical and/or chemical seawater properties) whenever available. The objective of 286 

this database is multifaceted. Firstly, we aimed to compile all available coastal DOM data 287 

into a single repository. Secondly, our intention was to make these data easily accessible 288 

to the research community and thirdly, we sought to achieve long-term consistency of the 289 
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measurements, to enable data intercomparison and establish a robust baseline for 290 

assessing, for example, the impacts of climate change and land use changes. 291 

2. Methods  292 

2.1. Data compilation  293 

The measurements included in CoastDOM v1 were obtained either directly from 294 

authors of previously published studies, online databases, or scientific papers. An 295 

extensive search of published reports, Ph.D. theses, and peer-reviewed literature was 296 

performed to identify studies dealing with DOM in coastal waters. First, a formal search 297 

was performed using Google Scholar in January 2022 using the search terms “dissolved 298 

organic carbon”, “dissolved organic nitrogen”, and “dissolved organic phosphorus” in 299 

connection with “marine” or “ocean”, which yielded a total of 897 articles (after filtering 300 

the query by searching content in the title and abstract and excluding non-coastal 301 

articles). When data could not be obtained directly from the corresponding authors, 302 

relevant data were extracted. Further searches for relevant datasets were conducted 303 

using the reference lists of the identified scientific papers as well as databases and 304 

repositories to capture as many datasets as possible. Additionally, research groups that 305 

were invited to participate in this effort were also encouraged to submit unpublished data 306 

to CoastDOM v1. 307 

 308 

2.2. Dissolved organic matter analysis  309 

The DOC concentrations included in CoastDOM v1 were commonly measured using a 310 

total organic carbon (TOC) hightemperature catalytic oxidation (HTCO) analyser (81% of 311 

samples (Sharp et al., 1993). Some were measured by a combined wet chemical 312 

oxidation (WCO) step and/or UV digestion, after which the carbon dioxide generated was 313 

quantified (19% of samples). Similarly, concentrations of total dissolved nitrogen (TDN; 314 
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Sipler and Bronk, 2015) were determined using either a nitric oxide chemiluminescence 315 

detector connected in series with the HTCO analyser used for DOC analyses (31% of the 316 

samples), or by employing a UV and/or chemical oxidation step (69%). In the latter 317 

approach, both organic and inorganic N compounds were oxidised to nitrate, which was 318 

subsequently quantified through a colorimetric method to determine the concentration of 319 

inorganic N (Valderrama, 1981; Álvarez-Salgado et al., 2023; Halewood et al., 2022; 320 

Foreman et al., 2019). Another method used for DON determination is oxidizing the 321 

sample and measuring the resulting total nitrate by the nitric oxide chemiluminescence 322 

method (Knapp et al., 2005). However, none of the concentration measurements included 323 

in CoastDOM v1 applied this method. The reported DON concentrations were calculated 324 

as the difference between TDN and dissolved inorganic nitrogen (DIN: sum of ammonium 325 

(NH4
+) and nitrate/nitrite (NO3

- + NO2
-); DON = TDN - DIN) (Álvarez-Salgado et al., 2023). 326 

Analyses of total dissolved phosphorus (TDP) were determined by UV (4%) or wet 327 

chemical oxidation (66%), or a combination of these (30%), and subsequently were 328 

analysed for inorganic phosphorus by a colorimetric method (Álvarez-Salgado et al., 329 

2023). Another method also previously used  for TDP analysis is the ash/hydrolysis 330 

method (Solorzano and Sharp, 1980), even though none of the data included in  331 

CoastDOM v1 used this method. The DOP concentrations were calculated as the 332 

difference between TDP and soluble reactive phosphorus (SRP: HPO4
2–) (DOP = TDP - 333 

SRP) (Álvarez-Salgado et al., 2023). 334 

 335 

3. Description of the dataset  336 

The data compiled in CoastDOM v1 were collected, analysed and processed by different 337 

laboratories, however, all data included have undergone quality control measures, either 338 

by using reference samples or internal quality assurance procedures. While many of the 339 

included DOC and TDN data have been systematically compared against consensus 340 
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reference material (CRM) mainly provided by the University of Miami’s CRM program 341 

(Hansell, 2005), there is a limitation in CoastDOM v1 regarding the intercalibration across 342 

different measurement systems used for both DOP and DON determination. While the 343 

CRM could be used for DOC, DON and DOP measurements, this has not yet been 344 

attempted for DOP and measurement uncertainties increase in the sequence DOC > 345 

DON > DOP. Although some of the reported measurements have quantified the DOP 346 

recovery based on commercially available DOP compounds such as Adenosine 347 

triphosphate (ATP), it is not known if these were conducted systematically in all cases. 348 

Therefore, we strongly recommend undertaking further intercalibration across 349 

laboratories for future measurements of TDP, as has been done for DOC and TDN 350 

measurements (e.g.,(Sharp et al., 2002). Since additional quality control is not possible 351 

in retrospect, we assessed the quality of CoastDOM v1 based on its internal consistency.  352 

In CoastDOM v1, we defined “coastal water” as encompassing estuaries (salinity > 353 

0.1) to the continental shelf break (water depth < 200 m). However, some locations, such 354 

as deep fjords which are close to the coast cannot be classed as coastal due to 355 

bathymetry (deeper than > 200 m). Therefore, we evaluated the inclusion of some 356 

datasets on a case-by-case basis. For inclusion in the database, each DOM 357 

measurement needed at a minimum to contain the following information (if reported in the 358 

original publication or otherwise available): 359 

 360 

- Country where samples were collected 361 

- Latitude of measurement (in decimal units) 362 

- Longitude of measurement (in decimal units) 363 

- Year of sampling 364 

- Month of sampling 365 

- Sampling day (when available) 366 
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- Depth (m) at which the discrete samples were collected 367 

- Temperature (°C) of the sample 368 

- Salinity of the sample 369 

- Dissolved organic carbon (DOC) concentration (µmol L-1) 370 

- Method used to measure DOC concentration  371 

- DOC - QA flag: Quality flag for DOC measurement 372 

- Dissolved organic nitrogen (DON) concentration (µmol L-1) 373 

- Total dissolved nitrogen (TDN) concentration (µmol L-1) 374 

- Method used to measure TDN concentration 375 

- TDN - QA flag: Quality flag for TDN measurement  376 

- Dissolved organic phosphorus (DOP) concentration (µmol L-1) 377 

- Total dissolved phosphorus (TDP) concentration (µmol L-1) 378 

- Method used to measure TDP concentration 379 

- TDP - QA flag: Quality flag for TDP measurement  380 

- Responsible person  381 

- Originator institution 382 

- Contact of data originator 383 

It should be noted that in all entries, at least DOC, DON or DOP should have been 384 

measured. In addition, we also included other relevant data, when available, in the 385 

CoastDOM v1 dataset:  386 

 387 

- Depth at the station where the sample was collected (Bottom depth, m). 388 

- Total suspended solids (TSS) concentration (mg L-1) 389 

- Chlorophyll-a (Chl a) concentration (µg L-1) 390 

- Chl a - QA flag: Quality flag for chlorophyll-a measurement   391 

- Sum of nitrate and nitrite (NO3
-+NO2

-) concentration (µmol L-1) 392 
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- NO3
-+ NO2

- - QA flag: Quality flag for NO3
-+ NO2

- measurement 393 

- Ammonium (NH4
+) concentration (µmol L-1) 394 

- NH4
+ - QA flag: Quality flag for NH4

+ measurement   395 

- Soluble reactive phosphorus (HPO4
2-) concentration (µmol L-1) 396 

- HPO4
2- - QA flag: Quality flag for HPO4

2- measurement   397 

- Particulate organic carbon (POC) concentration (µmol L-1) 398 

- Method used to measure POC concentration  399 

- POC - QA flag: Quality flag for POC measurement  400 

- Particulate nitrogen (PN) concentration (µmol L-1) 401 

- Method used to measure PN concentration 402 

- PN - QA flag: Quality flag for PN measurement   403 

- Particulate phosphorus (PP) concentration (µmol L-1) 404 

- Method used to measure PP concentration 405 

- PP - QA flag: Quality flag for PP measurement   406 

- Dissolved inorganic carbon (DIC) concentration (µmol kg-1) 407 

- DIC - QA flag: Quality flag for DIC measurement 408 

- Total alkalinity (TA) concentration (µmol kg-1) 409 

- TA - QA flag: Quality flag for TA measurement  410 

 411 

Quality control of large datasets is crucial to ensure their reliability and usefulness. 412 

Thus, we have not included data that were deemed compromised, such as records that 413 

had not gone through quality control by the data originators. We also accepted a certain 414 

degree of measurement error since multiple groups have been involved in the collection, 415 

analysis, and/or compilation of the information. Some of these errors were corrected (e.g., 416 

when a value was placed in a wrong column, or clearly inaccurate locations were 417 

reallocated for consistency with the place of study), while others could not be rectified 418 
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(e.g., values showing clear signs of contamination) and were consequently excluded from 419 

CoastDOM v1 (Fig. 1). It should also be noted that differences in analytical capabilities 420 

between laboratories and individual measurement campaigns likely caused additional 421 

uncertainty. Outliers, arising for example from contamination, were removed from the 422 

dataset. The data were moreover screened for zero values (i.e., concentrations below the 423 

detection limit or absence of data). In cases where concentrations were below the 424 

detection limit, the zero values were replaced with half the value of the limit-of-detection. 425 

Commonly reported detection limits are  ̴4 µmol L–1 for DOC, 0.3 µmol L–1 for DON and 426 

are  0.03 µmol L–1 for DOP.  427 

To ensure the inclusion of only high-quality data, we only accepted entries with specific 428 

World Ocean Circulation Experiment (WOCE) quality codes: “2- Acceptable 429 

measurement” and “6- Mean of replicate measurements”. In our quality control 430 

assessments, we carefully avoided overly strict criteria, known as “data grooming”, which 431 

could potentially overlook genuine patterns and changes in the dataset that may be 432 

significant over longer temporal and/or wider spatial scales. Coastal waters are known to 433 

exhibit a wide range of environmental concentrations, influenced by factors such as 434 

seasonality and local anthropogenic activities. Consequently, these data points may 435 

encompass a wide concentration range. However, obtaining consistent long-term 436 

datasets is important to enable data intercomparison and establish a robust baseline. 437 

Such long-term consistency can be achieved by using the CRM standards provided by 438 

the Hansell laboratory for DOC and TDN. Another helpful approach is comparing the 439 

DOM concentrations obtained by different laboratories in the same study area and time 440 

of year. 441 

 442 

3.1 Summary of dissolved organic carbon (DOC) concentration observations  443 



18 
 

Measurements of DOC concentrations were conducted between 1978 to 2022, with a 444 

total of 62339 individual data points (Table 1). The DOC concentrations ranged from 17 445 

to 30327 µmol C L-1 (average ± Standard Deviation (SD): 182 ± 314 µmol C L-1; median: 446 

103 µmol C L-1; Table 1). The majority (53%) of the concentrations fell within the range of 447 

60 to 120 µmol C L-1 (Fig. 2). A large number of DOC concentration observations (17%) 448 

ranged between 300 and 600 µmol C L-1, which were predominantly collected in eutrophic 449 

and river-influenced coastal waters of the Northern Hemisphere, such as the Baltic Sea 450 

(Fig. 2). It was observed that 75% of the DOC concentrations were higher than 77 µmol 451 

C L-1, while 25% of the measurements surpassed 228 µmol C L-1 (Table 1).  452 

Coastal environments that experience minimal continental runoff, such as Palmer 453 

Station in Antarctica, typically exhibit low DOC concentrations. On the other hand, coastal 454 

waters heavily influenced by humic-rich terrigenous inputs, such as the Sarawak region 455 

in Malaysia, tended to have high DOC concentrations. In addition, some extremely high 456 

DOC concentrations were measured in the Derwent River in Australia which is impacted 457 

by paper mill effluents. There has been a large increase in the number of DOC 458 

concentration observations after 1992 (Fig. 3), and those measurements were from a 459 

wide range of locations. However, these concentration observations were not evenly 460 

distributed around the globe, with the Southern Hemisphere being under-sampled (10% 461 

of observations), especially in the African, South American and Antarctic continents (Fig. 462 

3, 4).  463 

 464 

3.2. Summary of dissolved organic nitrogen (DON) concentration observations 465 

The DON concentration measurements were collected between 1990 and 2021, with 466 

a total of 20357 data points (Table 1). Concentrations of DON ranged from < 0.1 to 2095.3 467 

µmol N L-1 (average ± SD: 13.6 ± 30.4 µmol N L-1; median: 8.0 µmol N L-1; Table 1), with 468 

the most common range (42%) for DON concentrations between 4 to 8 µmol N L-1 (Fig. 469 
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2). Overall, 75% of DON concentrations were above 5.5 µmol N L-1, while 25% were 470 

above 15.8 µmol N L-1 (Table 1).  471 

The lowest DON concentrations were recorded in Young Sound, Greenland, which 472 

receives direct run-off from the Greenland Ice Sheet, whereas the highest concentrations 473 

were detected during a flood event in the Richmond River Estuary, Australia. Since 1995, 474 

there has been a large increase in the number of DON measurements conducted in 475 

coastal waters globally (Fig. 3); however, the majority of those measurements have been 476 

in the Northern Hemisphere (79% of observations), mostly in Europe and the United 477 

States (Figs. 3, 4). 478 

 479 

3.3. Summary of dissolved organic phosphorus (DOP) concentration 480 

observations 481 

CoastDOM v1 includes a total of 13534 DOP measurements, collected between 1990 482 

and 2021 (Table 1). Overall, DOP concentrations ranged from < 0.10 to 84.27 µmol P L-483 

1 (average ± SD: 0.34 ± 1.11 µmol P L-1; median: 0.18 µmol P L-1; Table 2). The majority 484 

(74%) of DOP concentrations were below 0.30 µmol P L-1 (Fig. 2). Analysis of the DOP 485 

dataset revealed that 75% of the concentrations were above 0.11 µmol P L-1, while 25% 486 

were above 0.30 µmol P L-1 (Table 1).  487 

The lowest DOP concentrations were measured off the Kimberley Coast in Australia, 488 

while the highest concentrations were found in the Vasse-Wonnerup Estuary in the South 489 

west region of Australia. Similar to DOC and DON, most of the DOP measurements have 490 

been conducted from the 1990s onwards, with a predominant focus in the Northern 491 

Hemisphere (70% of observations), particularly in Europe and the United States (Figs. 3, 492 

4).  493 

 494 

3.4. Summary of dissolved organic matter (DOM) concentration observations 495 
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In CoastDOM v1 the number of measurements decreases progressively in the 496 

sequence DOC > DON > DOP (62339, 20357, and 13534, respectively), reflecting both 497 

differences in the maturity of the analytical methods and the greater focus on carbon 498 

cycling by the aquatic science community. In addition, the average DOC concentration in 499 

coastal waters (182 ± 314) µmol C L-1), was 13-fold higher than the average coastal DON 500 

concentrations 13.6 ± 30.4) µmol N L-1), which was itself 39-fold higher than the average 501 

coastal DOP concentrations (0.34 ± 1.11 µmol P L-1) (Table 1). Interestingly the coefficient 502 

of variation (C.V.- dispersion of the data around the mean) increased from DOC (173%) 503 

to DON (224%) and DOP (326%), which is related to the fact that the % contribution of 504 

refractory organic material decreases in the same sequence (Table 1). It should be noted 505 

that CoastDOM v1 only contains 7058 paired measurements of DOC, DON, and DOP, 506 

and therefore only a subset of observations reported all three element pools. The average 507 

C: N: P stoichiometry for these paired DOM measurements was 1171 (± 4248): 100 (± 508 

580): 1 (Table 1), which was very N- and P- depleted compared to the Redfield Ratio 509 

(Redfield et al., 1963). However, the large variations in C:N, C:P and N:P ratios reveals 510 

large variations in the composition of the DOM pool in coastal waters.  511 

 512 

3.5. Potential use of the dataset 513 

The use of the CoastDOM v1 dataset should be accompanied by the citation of this 514 

paper and the inclusion of the correct doi-reference. CoastDOM v1 is available in full open 515 

access on the PANGEA homepageas a *.csv file. The dataset includes a brief description 516 

of the metadata and methods employed, with emphasis on measurement techniques and 517 

data units. We chose the terminology most familiar to the ocean science community. It is 518 

important to note that all data included in CoastDOM v1, as well as this manuscript, are 519 

considered public domain; as such, a subset of this global dataset is  also available  in 520 

previous data compilations (e.g.,(Hansell et al., 2021). The list of citations and links 521 
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referenced in CoastDOM v1 also provide users with information on how these data have 522 

been previously used in publications or databases.  523 

 524 

3.6. Recommendations and conclusions  525 

In CoastDOM v1, we have compiled available coastal DOM data in a single repository, 526 

making it openly and freely available to the research community. This compilation has 527 

established a consistent global dataset, serving as a valuable information source to 528 

investigate a variety of environmental questions and to explore spatial and temporal 529 

trends. We suggest a set of recommendations for the future expansion of this global 530 

dataset. First, our analysis highlights a spatial bias, with a concentration of sampling 531 

efforts and/or data availability predominantly concentrated in the Northern Hemisphere. 532 

The data gap in coastal DOM measurements in the Southern Hemisphere needs to be 533 

addressed to provide a more representative global understanding of the role of DOM in 534 

coastal water biogeochemistry. Additionally, increased sampling efforts especially around  535 

Africa and South America, and island nations  are warranted due to the vulnerability of 536 

many coastal areas to climate change and intensifying human activities, which will 537 

undoubtedly impact DOM biogeochemistry. Furthermore, there are  comparatively few 538 

data from coastal waters affected by river discharge into the tropics, e.g., the Amazon, 539 

and Indian and Indonesian rivers that together dominate freshwater inputs to the coastal 540 

ocean. Second, there is a need for more comprehensive temporal and spatial datasets to 541 

capture the variability of DOM concentrations  in highly dynamic and productive coastal 542 

systems. Focused efforts should be made to resolve these temporal and spatial changes. 543 

Third, only a fraction of data entries report paired DOC, DON and DOP measurements, 544 

we encourage  that these be measured and reported  together in order to better determine 545 

changes in stoichiometry and composition. Fourth, collecting and reporting ancillary data, 546 

such as temperature, salinity, nutrient measurements, and particulate components, is 547 



22 
 

important to provide context and better understand the underlying processes driving the 548 

observed DOM concentrations. Fifth, studies need to collect a minimum of metadata and 549 

report it in standardized manner.  Lastly, we recommend regular inter-calibration 550 

exercises to establish standardised and interoperable methods and data, particularly for 551 

DON and DOP measurements. This will ensure the comparability and reliability of data 552 

across different studies and enhance our understanding of DON and DOP dynamics in 553 

coastal waters. 554 

In light of ongoing global environmental changes, the mobilisation and open sharing of 555 

existing data for important biogeochemical variables, such as the DOM pool, are crucial 556 

for establishing baselines and determining global trends and changes in coastal waters. 557 

The aim is to publish an updated version of the database periodically to determine global 558 

trends of DOM levels in coastal waters, and we therefore encourage researchers to 559 

submit new data to the corresponding author. The CoastDOM v1 dataset was developed 560 

according to the FAIR principles regarding Findability, Accessibility, Interoperability and 561 

Reusability of data. Thus, CoastDOM v1 will serve as a reliable open-source information 562 

resource, enabling in-depth analyses and providing quality-controlled input data for large-563 

scale ecosystem models.  564 

 565 

4. Data availability  566 

The dataset is available at the PANGEA database 567 

(https://doi.pangaea.de/10.1594/PANGAEA.964012; (Lønborg et al., 2023). The file can 568 

be downloaded as a *.csv merged file and is available in full open access. 569 
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Figure legends  782 

Figure 1. Flow diagram of data collation, quality control and inclusion into CoastDOM v1 783 

database. 784 

Figure 2. Histograms showing the distribution of observations for a) dissolved organic 785 

carbon (DOC), b) nitrogen (DON) and c) phosphorus (DOP), within defined 786 

concentration ranges in the coastal ocean. Note that the concentration ranges are not 787 

uniform in all cases due to the large difference in concentrations. 788 

Figure 3. a) Cumulative number of concentration observations for dissolved organic 789 

carbon (DOC), nitrogen (DON), and phosphorus (DOP). Number of concentration 790 

observations shown as a function of b) sampling month (“N.S” are samples for which 791 

the sampling month is not specified), c) latitude, and d) longitude, grouped into bins of 792 

10° latitude or longitude. 793 

Figure 4 Global distribution of concentration observations included in CoastDOM v1 for 794 

a) dissolved organic carbon (DOC), b) nitrogen (DON), and c) phosphorus (DOP). The 795 

black dots on the map represent the reported data that are included in the CoastDOM 796 

v1 database. Histograms show the distribution of observations for DOC, DON and DOP 797 

within defined concentration ranges in the continents where measurements are 798 

available. Maps were created using the GIS shape file obtained from Laurelle et al. 799 

(Laruelle et al., 2013)  800 
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Table 1. Descriptive statistics for the dissolved organic carbon (DOC), dissolved organic 801 

nitrogen (DON), and dissolved organic phosphorus (DOP) concentration observations  802 

included in the CoastDOM v1 dataset. The DOC:DON, DOC:DOP and DON:DOP ratios 803 

are also reported. The minimum (Min), maximum (Max), average values (Avg.) and 804 

standard deviation (SD), coefficient of variation (CV %), median, 25th and 75th 805 

percentiles (perc.) and number of samples (N) for each variable are shown.  806 

   DOC DON DOP DOC:DON DOC:DOP DON:DOP 

  µmol L– 1 µmol L– 1 µmol L– 1       

Min  17 < 0.1 < 0.01 1 18 0.14 

Max 30327 2095.3 84.27 3046 248024 8894 

Avg. ± SD 182 ± 314 13.6 ± 30.4 0.34 ± 1.11 18 ± 43 1171 ± 4248 100 ± 580 

Median 103 8.0 0.18 14 583 47 

CV 173 224 324 244 363 578 

25%iles 77 5.5 0.11 11 401 30 

75%iles 228 15.8 0.30 18 1034 78 

N 62339 20357 13534 12632 7415 12954 

  807 
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Abstract  209 

MThe measurements of dissolved organic carbon (DOC), nitrogen (DON), and 210 

phosphorus (DOP) concentrations are used to characterize the dissolved organic matter 211 

(DOM) pool and are important components of biogeochemical cycling in the coastal 212 

ocean. Here, we present the first edition of a global database (CoastDOM v1; available 213 

at https://doi.pangaea.de/10.1594/PANGAEA.964012) compiling previously published 214 

and unpublished measurements of DOC, DON, and DOP collected in coastal waters. 215 

These data are complemented by hydrographic data such as temperature and salinity 216 

and, to the extent possible, other biogeochemical variables (e.g., Chlorophyll-a, inorganic 217 

nutrients) and the inorganic carbon system (e.g., dissolved inorganic carbon and total 218 

alkalinity). Overall, CoastDOM v1 includes observations of concentrations from all 219 

continents. Hhowever, most data were collected in the Northern Hemisphere, with a clear 220 

gap in coastal water DOM measurements from the Southern Hemisphere. The data 221 

included were collected from 1978 to 2022 and consist of 62339 data points for DOC, 222 

20360 for DON, and 13440 for DOP. The number of measurements decreases 223 

progressively in the sequence DOC > DON > DOP, reflecting both differences in the 224 

maturity of the analytical methods and the greater focus on carbon cycling by the aquatic 225 

science community. The global database shows that the average DOC concentration in 226 

coastal waters (average ± (standard deviation;  (SD): 182 ±( 314) µmol C L-1; median: 227 

103 µmol C L-1), is 13-fold greathigher than the average coastal DON concentrations 228 

(average ±( SD): 13.6 ±( 30.4) µmol N L-1; median: 8.0 µmol N L-1), which was is itself 39-229 

fold highgreater than the average coastal DOP concentrations (average ±( SD): 0.34 ± 230 

1.11 µmol P L-1; median: 0.18 µmol P L-1). This dataset will be useful to for identifying 231 

global spatial and temporal patterns in DOM and help to facilitateing thee reuse of DOC, 232 

DON, and DOP data in studies aimed at better characterischaracterizingzinge local 233 

biogeochemical processes, closinge nutrient budgets, estimatinge carbon, nitrogen, and 234 

https://doi.pangaea.de/10.1594/PANGAEA.964012
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phosphorous pools, as well as establishing identifying a baseline for modelling future 235 

changes in coastal waters.  236 

 237 

Keywords: Dissolved organic matter, Dissolved organic carbon, Dissolved organic 238 

nitrogen, Dissolved organic phosphorus, Coastal waters, Global database.   239 
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1. Introduction 240 

Coastal waters are the most biogeochemical dynamic areas of the ocean, exhibiting 241 

the highest standing stocks, process rates and transport fluxes of carbon (C), nitrogen 242 

(N), and phosphorus (P) per unit area (Bauer et al., 2013; Mackenzie et al., 2011). In 243 

these areas, organic matter plays a critical role in numerous biogeochemical processes, 244 

serving as both a C, N, and P reservoir and substrate (Carreira et al., 2021).  245 

Organic matterial found in the marine environment is commonly distinguished by its 246 

size; material retained on a filter with a pore size typically between 0.2 and 0.7 μm is 247 

classified as particulate organic matter (POM), whereas organic matter that passes 248 

through the filter is referred to as dissolved organic matter (DOM). This partitioning is 249 

operational but has implications for biogeochemical cycling: POM can be suspended in 250 

the water column or sink to the sediments controlled by its size, shape and density 251 

(Laurenceau-Cornec et al., 2015), whereas DOM is a solute that mostly remains in the 252 

water column. In most coastal waters, DOM concentrations are higher than POM, with 253 

POM having a larger proportion of known biochemical classes (e.g., carbohydrates, 254 

proteins) than the dissolved fraction, suggesting that generally, DOM is more reworked 255 

and recalcitrant In most coastal waters, the DOM concentrations are greater than POM, 256 

with the POM fraction being less degraded and more bioavailable (Boudreau and 257 

Ruddick, 1991; Lønborg et al., 2018; Benner and Amon, 2015).  258 

The DOM pool consists mainly of C (DOC), N (DON), and P (DOP) but it also includes 259 

other elements such as oxygen, sulphur and trace elements (Lønborg et al., 2020). In 260 

coastal waters, DOM originates from multiple sources. Internal, or autochthonous, 261 

sources include planktonic organisms (Lønborg et al., 2009; Carlson and Hansell, 2015), 262 

benthic microalgae, macrophytes, and sediment porewater (Burdige and Komada, 2014; 263 

Wada et al., 2008 ). On the other hand, DOM from external, or allochthonous, sources, 264 

has mainly terrestrial origins, including wetlands, river and surface runoff, groundwater 265 
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discharges, and atmospheric deposition (LIavorivska et al., 2016; Raymond and Spencer, 266 

2015; Taniguchi et al., 2019; Santos et al., 2021). The main sinks for DOM from the water 267 

column in coastal waters are: 1) bubble coagulation and abiotic flocculation (Kerner et al., 268 

2003) or sorption to particles (Chin et al., 1998); 2) sunlight -mediated photodegradation 269 

(Mopper et al., 2015); and 3) microbial degradation by mainly heterotrophic prokaryotes 270 

(Lønborg and Álvarez-Salgado, 2012). 271 

Given the importance of DOM as a source of nutrients and for coastal biogeochemical 272 

cycling in general, numerous studies have measured the C, N and P content of the DOM 273 

pool over the last few decades (e.g.,(García-Martín et al., 2021; Cauwet, 2002; Osterholz 274 

et al., 2021). Most data, however, are often unavailable or stored in an inaccessible 275 

manner, making it difficult to e.g., analyse global spatial and temporal patterns effectively. 276 

A Gglobal open ocean DOM data compilation for DOC, total dissolved nitrogen (TDN) 277 

DON (Hansell et al., 2021) and DOP (Liang et al., 2022; Karl and Björkman, 2015) already 278 

exists, and  contains few coastal samples (< 200m) (Hansell et al., 2021), but there are 279 

no compilation specifically  focused on coastal waters. Hence, there is a clear need for a 280 

comprehensive global and integrated database of DOC, DON and DOP measurements 281 

for coastal waters. To address this need, we have prepared the first edition of a coastal 282 

DOM database (named CoastDOM v1), by compiling both previously reported as well as 283 

unpublished data. These data have been obtained from authors of the original studies or 284 

extracted directly from the original studies. In order to allow the DOM measurements to 285 

be interpreted across larger scales, and to better understand their relationship with local 286 

environmental conditions, we have included concurrently collected ancillary data (such 287 

as physical and/or chemical seawater properties) whenever available. The objective of 288 

this database is multifaceted. Firstly, we aimed to compile all available coastal DOM data 289 

into a single repository. Secondly, our intention was to make these data easily accessible 290 

to the research community and thirdly, we sought to achieve long-term consistency of the 291 
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measurements, to enable data intercomparison, and establish a robust baseline for 292 

assessing, for example, the impacts of climate change and land use changes. 293 

2. Methods  294 

2.1. Data compilation  295 

The measurements included in CoastDOM v1 were obtained either directly from 296 

authors of previously published studies, online databases, or scientific papers. An 297 

extensive search of published reports, Ph.D. theses, and peer-reviewed literature was 298 

performed to identify studies dealing with DOM in coastal waters. First, a formal search 299 

was performed using Google Scholar in January 2022 using the search terms “dissolved 300 

organic carbon”, “dissolved organic nitrogen”, and “dissolved organic phosphorus” in 301 

connection with “marine” or “ocean”, which yielded a total of 897 articles (after filtering 302 

the query by searching content in the title and abstract and excluding non-coastal 303 

articles). When data could not be obtained directly from the corresponding authors, 304 

relevant data were extracted. Further searches for relevant datasets were conducted 305 

using the reference lists of the identified scientific papers as well as databases and 306 

repositories to capture as many datasets as possible. Additionally, research groups that 307 

were invited to participate in this effort were also encouraged to submit unpublished data 308 

to CoastDOM v1. 309 

 310 

2.2. Dissolved organic matter analysis  311 

The DOC concentrations included in CoastDOM v1 were commonly measured using a 312 

total organic carbon (TOC) high temperature catalytic oxidation (HTCO) analyser (81% 313 

of samples; (Sharp et al., 1993). Some were measured by a combined wet chemical 314 

oxidation (WCO) step and/or UV digestion, after which the carbon dioxide generated was 315 

quantified (19% of samples). Similarly, concentrations of total dissolved nitrogen (TDN; 316 
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(Sipler and Bronk, 2015) were determined using either a nitric oxide chemiluminescence 317 

detector connected in series with the HTCO analyser used for DOC analyses (31% of the 318 

samples), or by employing a UV and/or chemical oxidation step (69%). In the latter 319 

approach, both organic and inorganic N compounds were oxidised to nitrate, which was 320 

subsequently quantified through a colorimetric method to determine the concentration of 321 

inorganic N (Valderrama, 1981; Álvarez-Salgado et al., 2023; Halewood et al., 2022; 322 

Foreman et al., 2019). Another method used for DON determination is oxidizing the 323 

sample and measuring the resulting total nitrate by the nitric oxide chemiluminescence 324 

method (Knapp et al., 2005). However, none of the concentration measurements included 325 

in CoastDOM v1 applied this method. The reported DON concentrations were calculated 326 

as the difference between TDN and dissolved inorganic nitrogen (DIN;: sum of ammonium 327 

(NH4
+) and nitrate/nitrite (NO3

- + NO2
-); DON = TDN - DIN) (Álvarez-Salgado et al., 2023). 328 

Analyses of total dissolved phosphorus (TDP) were determined by UV (4%) or wet 329 

chemical oxidation (66%), or a combination of these (30%), and subsequently were 330 

analysed for inorganic phosphorus by a colorimetric method (Álvarez-Salgado et al., 331 

2023). Another method also previously used  for TDP analysis is the ash/hydrolysis 332 

method (Solorzano and Sharp, 1980), even though none of the data included in  333 

CoastDOM v1 used this method. The DOP concentrations were calculated as the 334 

difference between TDP and soluble reactive phosphorus (SRP: HPO4
2–) (DOP = TDP - 335 

SRP) (Álvarez-Salgado et al., 2023). 336 

 337 

3. Description of the dataset  338 

The data compiled in CoastDOM v1 were collected, analysed and processed by different 339 

laboratories, however, all data included have undergone quality control measures, either 340 

by using reference samples or internal quality assurance procedures. While many of the 341 

included DOC and TDN data have been systematically compared against consensus 342 
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reference material (CRM) mainly provided by the University of Miami’s CRM program 343 

(Hansell, 2005), there is a limitation in CoastDOM v1 regarding the intercalibration across 344 

different measurement systems used for both DOP and DON determination. While the 345 

CRM could be used for DOC, DON and DOP measurements, this has not yet been 346 

attempted for DOP and measurement uncertainties increase in the sequence DOC > 347 

DON > DOP. Although some of the reported measurements have quantified the DOP 348 

recovery based on commercially available DOP compounds such as Adenosine 349 

triphosphate (ATP), it is not known if these were conducted systematically in all cases. 350 

Therefore, we strongly recommend undertaking further intercalibrations across 351 

laboratories for future measurements of TDP, as has been done for DOC and TDN 352 

measurements (e.g.,(Sharp et al., 2002). Since additional quality control is not possible 353 

in retrospect, we assessed the quality of CoastDOM v1 based on its internal consistency.  354 

In CoastDOM v1, we defined “coastal water” as encompassing estuaries (salinity > 355 

0.1) to the continental shelf break (water depth < 200 m). However, some locations, such 356 

as deep fjords which are close to the coast cannot be classed as coastal due to 357 

bathymetry (deeper than > 200 m). Therefore, we evaluated the inclusion of some 358 

datasets on a case-by-case basis. For inclusion in the database, each DOM 359 

measurement needed at a minimum to contain the following information (if reported in the 360 

original publication or otherwise available): 361 

 362 

- Country where samples were collected 363 

- Latitude of measurement (in decimal units) 364 

- Longitude of measurement (in decimal units) 365 

- Year of sampling 366 

- Month of sampling 367 

- Sampling day (when available) 368 
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- Depth (m) at which the discrete samples were collected 369 

- Temperature (°C) of the sample 370 

- Salinity of the sample 371 

- Dissolved organic carbon (DOC) concentration (µmol L-1) 372 

- Method used to measure DOC concentration  373 

- DOC - QA flag: Quality flag for DOC measurement 374 

- Dissolved organic nitrogen (DON) concentration (µmol L-1) 375 

- Total dissolved nitrogen (TDN) concentration (µmol L-1) 376 

- Method used to measure TDN concentration 377 

- TDN - QA flag: Quality flag for TDN measurement  378 

- Dissolved organic phosphorus (DOP) concentration (µmol L-1) 379 

- Total dissolved phosphorus (TDP) concentration (µmol L-1) 380 

- Method used to measure TDP concentration 381 

- TDP - QA flag: Quality flag for TDP measurement  382 

- Responsible person  383 

- Originator institution 384 

- Contact of data originator 385 

 386 

It should be noted that in all entries, at least DOC, DON or DOP should have been 387 

measured. In addition, we also included other relevant data, when available, in the 388 

CoastDOM v1 dataset:  389 

 390 

- Depth at the station where the sample was collected (Bottom depth, m). 391 

- Total suspended solids (TSS) concentration (mg L-1) 392 

- Chlorophyll-a (Chl a) concentration (µg L-1) 393 

- Chl a - QA flag: Quality flag for chlorophyll-a measurement   394 
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- Sum of nitrate and nitrite (NO3
-+NO2

-) concentration (µmol L-1) 395 

- NO3
-+ NO2

- - QA flag: Quality flag for NO3
-+ NO2

- measurement 396 

- Ammonium (NH4
+) concentration (µmol L-1) 397 

- NH4
+ - QA flag: Quality flag for NH4

+ measurement   398 

- Soluble reactive phosphorus (HPO4
2-) concentration (µmol L-1) 399 

- HPO4
2- - QA flag: Quality flag for HPO4

2- measurement   400 

- Particulate organic carbon (POC) concentration (µmol L-1) 401 

- Method used to measure POC concentration  402 

- POC - QA flag: Quality flag for POC measurement  403 

- Particulate nitrogen (PN) concentration (µmol L-1) 404 

- Method used to measure PN concentration 405 

- PN - QA flag: Quality flag for PN measurement   406 

- Particulate phosphorus (PP) concentration (µmol L-1) 407 

- Method used to measure PP concentration 408 

- PP - QA flag: Quality flag for PP measurement   409 

- Dissolved inorganic carbon (DIC) concentration (µmol kg-1) 410 

- DIC - QA flag: Quality flag for DIC measurement 411 

- Total alkalinity (TA) concentration (µmol kg-1) 412 

- TA - QA flag: Quality flag for TA measurement  413 

 414 

Quality control of large datasets is crucial to ensure their reliability and usefulness. 415 

Thus, we have not included data that were deemed compromised, such as records that 416 

had not gone through quality control by the data originators. We also accepted a certain 417 

degree of measurement error since multiple groups have been involved in the collection, 418 

analysis, and/or compilation of the information. Some of these errors were corrected (e.g., 419 

when a value was placed in a wrong column, or clearly inaccurate locations were 420 
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reallocated for consistency with the place of study), while others could not be rectified 421 

(e.g., values showing clear signs of contamination) and were consequently excluded from 422 

CoastDOM v1 (Fig. 1). It should also be noted that differences in analytical capabilities 423 

between laboratories and individual measurement campaigns likely caused additional 424 

uncertainty. Outliers, arising for example from contamination, were removed from the 425 

dataset. The data were moreover screened for zero values (i.e., concentrations below the 426 

detection limit or absence of data). In cases where concentrations were below the 427 

detection limit, the zero values were replaced with half the value of the limit-of-detection. 428 

Commonly reported detection limits are reach   4̴ µmol L–1 for DOC,   ̴0.3 µmol L–1 for 429 

DON and are  ̴ 0.03 µmol L–1 for DOP.  430 

To ensure the inclusion of only high-quality data, we only accepted entries with specific 431 

World Ocean Circulation Experiment (WOCE) quality codes: “2- Acceptable 432 

measurement” and “6- Mean of replicate measurements”. In our quality control 433 

assessments, we carefully avoided overly strict criteria, known as “data grooming”, which 434 

could potentially overlook genuine patterns and changes in the dataset that may be 435 

significant over longer temporal and/or wider spatial scales. Coastal waters are known to 436 

exhibit a wide range of environmental concentrations, influenced by factors such as 437 

seasonality and local anthropogenic activities. Consequently, these data points may 438 

encompass a wide concentration range. However, obtaining consistent long-term 439 

datasets is important to enable data intercomparison, and establish a robust baseline. 440 

Such long-term consistency can be achieved by using the CRM standards provided by 441 

the Hansell laboratory for DOC and TDN. Another helpful approach is comparing the 442 

DOM concentrations obtained by different laboratories in the same study area and time 443 

of year. 444 

 445 

3.1 Summary of dissolved organic carbon (DOC) concentration observations  446 
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Measurements of DOC concentrations were conducted between 1978 to 2022, with a 447 

total of 62339 individual data points (Table 1). The DOC concentrations ranged from 17 448 

to 30327 µmol C L-1 (average ± (Standard Deviation;  (SD): 182 ±( 314) µmol C L-1; 449 

median: 103 µmol C L-1; Table 1). The majority (53%) of the concentrations fell within the 450 

range of 60 to 120 µmol C L-1 (Fig. 21). A large number of DOC concentration 451 

observations (17%) ranged between 300 and 600 µmol C L-1, which were predominantly 452 

collected in eutrophic and river-influenced coastal waters of the Northern Hemisphere, 453 

such as the Baltic Sea (Fig. 21). It was observed that 75% of the DOC concentrations 454 

were higher than 77 µmol C L-1, while 25% of the measurements surpassed 228 µmol C 455 

L-1 (Table 1).  456 

Coastal environments that experience minimal continental runoff, such as Palmer 457 

Station in Antarctica, typically exhibit low DOC concentrations. On the other hand, coastal 458 

waters heavily influenced by humic-rich terrigenous inputs, such as the Sarawak region 459 

in Malaysia, tended to have high DOC concentrations. In addition, some extremely high 460 

DOC concentrations were measured in the Derwent River in Australia which is impacted 461 

by paper mill effluents. There has been a large increase in the number of DOC 462 

concentration observations after 1992 (Fig. 32), and those measurements were from a 463 

wide range of locations. However, these concentration observations were not evenly 464 

distributed around the globe, with the Southern Hemisphere being relatively under-465 

sampled (10% of observations), especially in the African, South American and Antarctic 466 

continents (Fig. 32, 43).  467 

 468 

3.2. Summary of dissolved organic nitrogen (DON) concentration observations 469 

The DON concentration measurements were collected between 1990 and 2021, with 470 

a total of 20357 data points (Table 1). Concentrations of DON ranged from < 0.1 to 2095.3 471 

µmol N L-1 (average ±( SD): 13.6 ±( 30.4) µmol N L-1; median: 8.0 µmol N L-1; Table 1), 472 
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with the most common range (42%) for DON concentrations between 4 to 8 µmol N L-1 473 

(Fig. 12). Overall, 75% of DON concentrations were above 5.5 µmol N L-1, while 25% 474 

were above 15.8 µmol N L-1 (Table 1).  475 

The lowest DON concentrations were recorded in Young Sound, Greenland, which 476 

receives direct run-off from the Greenland Ice Sheet, whereas the highest concentrations 477 

were detected during a flood event in the Richmond River Estuary, Australia. Since 1995, 478 

there has been a large increase in the number of DON measurements conducted in 479 

coastal waters globally (Fig. 23); however, the majority of those measurements have been 480 

in the Northern Hemisphere (79% of observations), mostly in Europe and the United 481 

States (Figs. 23, 43). 482 

 483 

3.3. Summary of dissolved organic phosphorus (DOP) concentration 484 

observations 485 

CoastDOM v1 includes a total of 13534 DOP measurements, collected between 1990 486 

and 2021 (Table 1). Overall, DOP concentrations ranged from < 0.10 to 84.27 µmol P L-487 

1 (average ±( SD): 0.34 ±( 1.11) µmol P L-1; median: 0.18 µmol P L-1; Table 2). The 488 

majority (74%) of DOP concentrations were below 0.30 µmol P L-1 (Fig. 12). Analysis of 489 

the DOP dataset revealed that 75% of the concentrations were above 0.11 µmol P L-1, 490 

while 25% were above 0.30 µmol P L-1 (Table 1).  491 

The lowest DOP concentrations were measured off the Kimberley Coast in Australia, 492 

while the highest concentrations were found in the Vasse-Wonnerup Estuary in the South 493 

west region of Australia. Similarly to DOC and DON, most of the DOP measurements 494 

have been conducted from the 1990s onwards, with a predominant focus in the Northern 495 

Hemisphere (70% of observations), particularly in Europe and the United States (Figs. 496 

32, 43).  497 

 498 
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3.4. Summary of dissolved organic matter (DOM) concentration observations 499 

In CoastDOM v1 the number of measurements decreases progressively in the 500 

sequence DOC > DON > DOP (62339, 20357, and 13534, respectively), , reflecting both 501 

differences in the maturity of the analytical methods and the greater focus on carbon 502 

cycling by the aquatic science community. In addition, the average DOC concentration in 503 

coastal waters (182 ±( 314) µmol C L-1), was 13-fold greathigher than the average coastal 504 

DON concentrations 13.6 ±( 30.4) µmol N L-1), which was itself 39-fold highgreater than 505 

the average coastal DOP concentrations (0.34 ±( 1.11) µmol P L-1) (Table 1). Interestingly 506 

the coefficient of variation (C.V.- dispersion of the data around the mean) increased from 507 

DOC (173%) to DON (224%) and DOP (326%), which is related to the fact that the % 508 

contribution of refractory organic material decreases in the same sequence (Table 1). It 509 

should be noted that CoastDOM v1 only contains 7058 paired measurements of DOC, 510 

DON, and DOP, and therefore only a subset of observations reported all three element 511 

pools. The average C: N: P stoichiometry for these paired DOM measurements was 1171 512 

(± 4248): 100 (± 580): 1 (Table 1), which was very N- and P- depleted compared to the 513 

Redfield Ratio (Redfield et al., 1963).  However, the large variations in C:N, C:P and N:P 514 

ratios reveals large variations in the composition of the DOM pool in coastal waters.  515 

 516 

3.5. Potential use of the dataset 517 

The use of the CoastDOM v1 dataset should be accompanied by the citation of this 518 

paper and the inclusion of the correct doi-reference. CoastDOM v1 is available in full open 519 

access on the PANGEA homepage after acceptance of the manuscript, where it will be 520 

available as a *.csv file. The dataset includes a brief description of the metadata and 521 

methods employed, with emphasis on measurement techniques and data units. We 522 

chose the terminology most familiar to the ocean science community. It is important to 523 

note that all data included in CoastDOM v1, as well as this manuscript, are considered 524 
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public domain; as such, a subset of this global dataset is may also available be present 525 

in previous data compilations (e.g.,(Hansell et al., 2021). The list of citations and links 526 

referenced in CoastDOM v1 also provide users with information as toon how these data 527 

haves been previously used in publications or databases.  528 

 529 

3.6. Recommendations and conclusions  530 

In CoastDOM v1, we have compiled available coastal DOM data in a single repository, 531 

making it openly and freely available to the research community. This compilation has 532 

established a consistent global dataset, serving as a valuable information source to 533 

investigate a variety of environmental questions and to explore spatial and temporal 534 

trends. We suggest a set of recommendations for the future expansion of this global 535 

dataset. Firstly, our analysis highlights a spatial bias, with a concentration of sampling 536 

efforts and/or data availability predominantly concentrated in the Northern Hemisphere. 537 

The data gap in coastal DOM measurements in the Southern Hemisphere needs to be 538 

addressed to provide a more representative global understanding of the role of DOM in 539 

coastal water biogeochemistry. Additionally, increased sampling efforts especially around 540 

in the African and South American, and island nations  continents are warranted due to 541 

the vulnerability of many coastal areas to climate change and intensifying human 542 

activities, which will undoubtedly impact DOM biogeochemistry. Furthermore, it is also 543 

worth noting that there are is comparatively few data from coastal waters affected by river 544 

discharge into the tropics, e.g., the Amazon, and Indian and Indonesian rivers that 545 

together dominate freshwater inputs to the coastal ocean. Secondly, there is a need for 546 

more comprehensive temporal and spatial datasets to capture the variability of DOM 547 

concentrations levels in highly dynamic and productive coastal systems. Focused efforts 548 

should be made to resolve these temporal and spatial changes. Third, only a fraction of 549 

data entries report paired DOC, DON and DOP measurements, we encourage  that these 550 
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be measured and reported  together in order to better determine changes in stoichiometry 551 

and composition. FourthThirdly, it is also important to collecting and reporting ancillary 552 

data, such as temperature, salinity, nutrient measurements, and particulate components, 553 

is important to provide context and better understand the underlying processes driving 554 

the observed DOM concentrationslevels. Fifth, studies need to collect a minimum of 555 

metadata and report it in standardized manner.  Lastly, we strongly recommend that the 556 

DOM research community conducts regular inter-calibration exercises to establish 557 

standardised and interoperable methods and data, particularly for DON and DOP 558 

measurements. This will ensure the comparability and reliability of data across different 559 

studies and enhance our understanding of DON and DOP dynamics in coastal waters. 560 

In light of ongoing global environmental changes, the mobilisation and open sharing of 561 

existing data of for important biogeochemical variables, such as the DOM pool, are crucial 562 

for establishing baselines and determining global trends and changes in coastal waters. 563 

The aim is to publish an updated version of the database periodically to determine global 564 

trends of DOM levels in coastal waters, and we therefore encourage researchers to 565 

submit new data to the corresponding author. The CoastDOM v1 dataset was developed 566 

according to the FAIR principles regarding Findability, Accessibility, Interoperability and 567 

Reusability of data. Thus, CoastDOM v1 will serve as a reliable open-source information 568 

resource, enabling in-depth analyses and providing quality-controlled input data for large 569 

-scale ecosystem models.  570 

 571 

4. Data availability  572 

The dataset is available for the review process at Figshare 573 

https://figshare.com/s/512289eb43c4f8e8eaef). The dataset is available at furthermore 574 

submitted to the PANGEA database 575 

(https://doi.pangaea.de/10.1594/PANGAEA.964012; and is currently waiting to be 576 

https://doi.pangaea.de/10.1594/PANGAEA.964012
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assigned a Doi number (Lønborg et al., 2023). The file is will be available as a *.csv 577 

merged file and is will be available in full open access in the PANGEA database after 578 

acceptance of the manuscript. 579 
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Figure legends  792 

Figure 1. Flow diagram of data collation, quality control and inclusion into CoastDOM v1 793 

database. 794 

Figure 21. Histograms showing the distribution of observations for a) dissolved organic 795 

carbon (DOC), b) nitrogen (DON) and c) phosphorus (DOP), within defined 796 

concentration ranges in the coastal ocean. Note that the concentration ranges are not 797 

uniform in all cases due to the large difference in concentrations levels. 798 

Figure 23. a) Cumulative number of concentration observations for dissolved organic 799 

carbon (DOC), nitrogen (DON), and phosphorus (DOP). Number of concentration 800 

observations shown as a function of b) sampling month (“N.S” are samples for which 801 

the sampling month is not specified), cb) latitude, and dc) longitude, grouped into bins 802 

of 10° latitude or longitude. 803 

Figure 34. Global distribution of concentration observations included in CoastDOM v1 for 804 

a) dissolved organic carbon (DOC), b) nitrogen (DON), and c) phosphorus (DOP). The 805 

black dots on the map represent the reported data that are included in the CoastDOM 806 

v1 database. Histograms show the distribution of observations for DOC, DON and DOP 807 

within defined concentration ranges in the continents where measurements are 808 

available. Maps were created using the GIS shape file obtained from Laurelle et al. 809 

(Laruelle et al., 2013)  810 
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Table 1. Descriptive statistics for the dissolved organic carbon (DOC), dissolved organic 811 

nitrogen (DON), and dissolved organic phosphorus (DOP) concentration observations 812 

measurements included in the CoastDOM v1 dataset. The DOC:DON, DOC:DOP and 813 

DON:DOP ratios are also reported. The minimum (Min), maximum (Max), average values 814 

(Avg.) and standard deviation (SD), coefficient of variation (CV %), median, 25th and 75th 815 

percentiles (perc.) and number of samples (N) for each variable are shown.  816 

  DOC DON DOP 

  µmol C L– 1 µmol N L– 1 µmol P L– 1 

Min  17 < 0.1 < 0.01 

Max 30327 2095.3 84.27 

Avg. (SD) 182 (314) 13.6 (30.4) 0.34  (1.11) 

Median 103 8.0 0.18 

CV % 173 224 326 

25th perc. 77 5.5 0.11 

75th perc. 228 15.8 0.30 

N 62339 20357 13534 

   DOC DON DOP DOC:DON DOC:DOP DON:DOP 

  µmol L– 1 µmol L– 1 µmol L– 1       

Min  17 < 0.1 < 0.01 1 18 0.14 

Max 30327 2095.3 84.27 3046 248024 8894 

Avg. ± SD 182 ± 314 13.6 ± 30.4 0.34 ± 1.11 18 ± 43 1171 ± 4248 100 ± 580 

Median 103 8.0 0.18 14 583 47 

CV 173 224 324 244 363 578 

25%iles 77 5.5 0.11 11 401 30 

75%iles 228 15.8 0.30 18 1034 78 

N 62339 20357 13534 12632 7415 12954 
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Figure 21. 822 
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