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Spatial-temporal distribution information on global crop production is of is crucial for studying 

global food security and promoting sustainable agricultural development. However, the presently 10 

available datasets related to this subject are characterized by coarse resolution and discontinuous time 

spans. To tackle these problems, we have integrated multiple data sources, including statistical data, 

gridded production data, agroclimatic indicator data, agronomic indicator data, global land surface 

satellite products and ground data, to develop a data-driven crop production spatial allocation model, 

and generated the first global temporally continuous 10km resolution gridded production dataset of four 15 

major crops (maize, wheat, rice and soybean) from 2010 to 2020 (Global gridded crop production 

dataset at 10km, GGCP10). A set of data-driven models were trained based on agro-ecological zones to 

achieve accurate predictions of crop production for different agricultural regions. The performance of 

the models is demonstrated by the cross-validation results. The accuracy and reliability of GGCP10 

have been evaluated from various perspectives using gridded, survey and statistical data. GGCP10 can 20 

reveal the spatial-temporal distribution patterns of global crop production and contribute to the 

understanding of the mechanisms driving changes in crop production. GGCP10 provides crucial data 

support for research on global food security and sustainable agricultural development. The GGCP10 

dataset is available on Harvard Dataverse:  https://doi.org/10.7910/DVN/G1HBNK(Qin et al., 2023). 
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1 Introduction 25 

Crop production information plays a critical role in global food security and sustainable 

agricultural development (Wu et al., 2022; Ray et al., 2012). The four major crops, namely maize, 

wheat, rice, and soybean, contribute over 64% of the world's caloric intake (Ray et al., 2012). The 

increased demand for food, coupled with global climate change and population growth, puts immense 

pressure on countries to secure their food supplies(Gil et al., 2019; Hinz et al., 2020). Thus, there is a 30 

growing need to gain insight into food production distribution for sustainable agriculture (Foley et al., 

2011; Clark et al., 2020; Myers et al., 2017). Therefore, it is critical to develop a long-term, high-

precision dataset of global crop production distribution for research on food production and 

consumption, policy-making, optimizing resource use, and planning for sustainable agricultural 

development (Dempewolf et al., 2014). 35 

Currently available global crop production datasets include SPAM (Yu et al., 2020) which covers 

the years 2000, 2005 and 2010, M3-Crops (Monfreda et al., 2008) which covers the year 2000, GDHY 

(Iizumi and Sakai, 2020) which covers the period from 1995 to 2005 at a five-year interval, GGCMI 

(Müller et al., 2019) which covers the period from 1901 to 2012 at a ten-year interval, and GAEZ 

(Grogan et al., 2022) which covers the years 2010 and 2015. Nonetheless, the different research 40 

purposes and technical limitations of these datasets result in insufficient temporal and spatial resolution 

and coverage. Furthermore, the lack of temporal continuity and timeliness of the data fails to capture the 

effects of drastic global climate changes that occurred in the past decade (Zhang et al., 2016; Kukal and 

Irmak, 2018). Therefore, there remains a global shortage of long-term, high-resolution, and gridded 

crop production datasets. 45 

The era of remote sensing big data has produced a wealth of global observation data, which offers 

new opportunities to address the spatial distribution of crop production. These massive and diverse 

remote sensing data contain rich information related to crop production, such as climate, land cover and 

vegetation growth conditions(Benami et al., 2021; Ahmad et al., 2021). Additionally, ground 

information such as soil characteristics and topographic conditions, also serve as essential references for 50 

estimating crop production. Machine learning techniques have exhibited solid performance in predicting 
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crop yields and production(Cai et al., 2019; Ji et al., 2022; Li et al., 2023), thereby revealing the deep 

correlations between crop production and various observation indicators in recent years. Hence, 

integrating information from multiple sources and using machine learning models to uncover the 

intrinsic relationships between crop production and observation indicators to obtain accurate spatial 55 

distributions of crop production is a feasible approach(Zhang et al., 2019; Han et al., 2020). 

A global gridded dataset of maize, wheat, rice, and soybean production was constructed at a 10 km 

resolution from 2010 to 2020 in this study(Qin et al., 2023). Developing this dataset involved utilizing a 

data-driven spatial production allocation model that incorporated multiple source datasets, and it was 

rigorously examined through pre-processing and consistency checks to ensure the accuracy and 60 

reliability of the data. The dataset can significantly support monitoring global food security and 

promoting sustainable development by providing reliable data. 

2 Data and Methods 

2.1 Data 

To construct the production allocation model, we collected data from multiple sources, including 65 

FAO statistical data, GAEZ+ 2015 annual crop data, CropWatch crop phenology data, CropWatch 

global eco-agricultural zoning, Harmonized World Soil Database (HWSD) soil texture data, CropWatch 

irrigated land distribution data, latitude and longitude, topographic data, CropWatch agroclimatic 

indicators, CropWatch agronomic indicators and Global Land Surface Satellite (GLASS) remote 

sensing data products. 70 

2.1.1 FAO Statistical Data 

The global food production data of various countries from FAOSTAT (FAOSTAT) was used as 

the baseline data for the production allocation model. Specifically, the data consists of the production of 

four major crops (maize, wheat, rice and soybean), with countries as the statistical units. The data are 

measured in thousands of tonnes and the years covered by the data are from 2010 to 2020. 75 
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2.1.2 GAEZ+ 2015 Annual Crop Data 

The 2015 GAEZ gridded crop production dataset and gridded crop harvested area dataset (Grogan 

et al., 2022) were used as training data to train the production spatial allocation model. These data are 

presented in a gridded format with a grid size of 10KM × 10KM. The pixel values in the production and 

harvested area datasets represent crop production and harvested area within each grid. Data were used 80 

for four types of crops, namely maize, wheat, rice and soybean. 

2.1.3 CropWatch Crop Phenology Data 

To better represent crop characteristics at different growth stages, we performed precise temporal 

window segmentation of additional data using phenology data. The crop phenology data (Zheng et al., 

2016) was obtained from CropWatch Cloud (CropWatch Cloud, 2023), which is based on extensive 85 

field observations and scientific experiments.  These data primarily provide information on the growing 

and harvesting periods of major crops across various countries globally, with a temporal resolution of 

10 days.  

2.1.4 CropWatch Agro-Ecological Zones 

In this study, we used the agro-ecological zones (AEZs) data from CropWatch Cloud (CropWatch 90 

Cloud, 2023), which covers 228 agro-ecological zones in 45 countries around the world. These data are 

based on multiple factors such as climate, soil and topography in different parts of the world, and they 

comprehensively divide different agricultural ecological zones. These ecological zones represent 

regions with similar agricultural production conditions and crop planting patterns, and are of great value 

in understanding and predicting the global distribution of crop production. In this study, we used the 95 

divided ecological zones as the smallest modelling scale and built corresponding production spatial 

allocation models for each ecological zone. For countries or regions without subdivided agro-ecological 

zones, modelling was carried out using the country/region and other administrative units as 

homogeneous areas. 
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2.1.5 HWSD Soil Texture Data 100 

In this study we used the soil texture data (Fischer et al., 2008) from HWSD. These data describe 

the texture of soils around the world, including the proportions of clay, sand and silt. Soil texture affects 

the ability of the soil to retain moisture and fertility, and therefore has a direct impact on crop growth 

and production. In our model, these soil texture data were used as a feature input to the model for 

training. 105 

2.1.6 CropWatch Irrigated Land Distribution Data 

In this study, we used global irrigated farmland distribution data (Wu et al., 2023a) from 

CropWatch Cloud as one kind input features. These data provide the types of irrigation across the 

world's cropland, including irrigated and rainfed types. Irrigation plays a key role in ensuring stable and 

high crop production, especially in arid and water-scarce regions. In our model, the irrigation type data 110 

(irrigated, rainfed and unknown) were uniquely coded and transformed into a three-dimensional feature 

for modelling. 

2.1.7 Location Data 

We used latitude and longitude data to represent the geographical location of each sample. Latitude 

and longitude data are crucial for capturing the influence of geographical location on crop production, 115 

such as solar radiation conditions at different latitudes and climatic zone characteristics at different 

longitudes. However, in model construction, latitude and longitude coordinates differ from Cartesian 

coordinates; Cartesian coordinates have smooth and uniform variations, while latitude and longitude, as 

polar coordinates, have uneven numerical changes and are not suitable for direct expression or 

measurement of positional or relational changes. Therefore, in this study we overcame this problem by 120 

converting latitude and longitude polar coordinates into coordinate features in three-dimensional 

Cartesian coordinates through geospatial encoding. 
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2.1.8 Terrain Data 

In this study, we used global terrain data, including elevation and terrain variation coefficients. 

Topographical factors affect climatic conditions and water flow, thereby influencing crop growth and 125 

production. In our model, topographic data serve as an essential environmental feature used to train the 

production distribution model. All topographic data have been standardised to reduce the influence of 

dimensions and to improve the generalisability of the model. 

2.1.9 CropWatch Agroclimatic Indicator Data 

We used the agroclimatic indicator data from CropWatch Cloud(CropWatch Cloud, 2023), 130 

including cumulative potential biomass (BIOMASS), cumulative precipitation (RAIN), 

photosynthetically active radiation (PAR) and average air temperature (TEMP). These indicators are 

time-series data, with BIOMSS available four times a year and RAIN, PAR and TEMP available 36 

times a year. These data reflect the energy and moisture conditions of agricultural ecosystems. In 

processing these data, we used crop phenology data to slice these agro-meteorological indicators into 135 

time windows and calculated the maximum, minimum, standard deviation and total sum within each 

time window as feature inputs to the model. 

2.1.10 CropWatch Agronomic Indicator Data 

In this study we used the agronomic indicator data from CropWatch Cloud(CropWatch Cloud, 

2023), including the cropped arable land fraction (CALF) and the maximum vegetation condition index 140 

(VCIx). The CALF is the ratio of planted area to total cultivated area, calculated based on normalized 

difference vegetation index (NDVI). The VCIx is used to describe the historical level of vegetation 

condition during the observation period. A value of 0 indicates that the vegetation condition 

corresponds to the worst level of recent decades; 1 indicates that the vegetation condition corresponds to 

the best level of recent decades; and a value greater than 1 indicates that the vegetation condition of the 145 

current observation period exceeds the historical optimum level. These indicators are time-series data 

with four periods per year. These indicators reflect crop growth conditions and area. In processing these 
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data, we used crop phenology data to divide these crop condition indicators into time windows that 

serve as feature inputs to the model. 

2.1.11 GLASS Remote Sensing Data Products 150 

In this study, we used GLASS remote sensing data products (Liang et al., 2013) including net 

primary productivity (NPP) and leaf area index (LAI). These data can comprehensively and accurately 

reflect the growth status of vegetation and the intensity of photosynthetic activity. Specifically, NPP is 

provided as annual data, while LAI is a time series data with a period every 9 days. In processing the 

LAI data, we used crop phenology data to divide it into time windows and calculated the maximum, 155 

minimum, standard deviation and sum of the data within each time window, which served as feature 

inputs for the model. 

2.2 Methods 

The production process of the GGCP10 dataset consists of four main steps: harvest area estimation, 

indicator data processing, data-driven model training and production calculation, as shown in Fig. 1. 160 
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Figure 1. Flowchart for generating the GGCP10. 

2.2.1 Harvested Area Estimation 

To calculate the crop production of a grid cell, its harvested area must first be determined. A 

simple method is to calculate the harvested area of each grid cell in the target year based on statistical 165 

data and gridded harvested area data from a reference year using proportional allocation (Grogan et al., 

2022). However, this approach ignores changes in cropping conditions between different grid cells 

within a region. 
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Based on a multi-scale correlation analysis using GAEZ+ 2015 harvested area data and CropWatch 

cropped area fraction data, we found that the gridded harvested area is significantly positively correlated 170 

with the contemporaneous cropped area fraction. Therefore, to estimate the gridded harvested area more 

accurately for the target year, we proposed a harvested area estimation method based on the change in 

cropped area fraction. The main steps are as follows: 

（1）Preparation of reference data 

The gridded harvested area data 𝐻𝑖𝑗
𝑟𝑒𝑓

 from GAEZ+ 2015 data were used as a reference, where i is 175 

the grid cell index and j is the crop type. The crop types contained in each grid and their proportion of 

harvested area in each grid were then calculated. 

（2）Calculation of the cropped area (CA) 

For the reference year, derive the total cropped area 𝐶𝐴𝑖𝑡 of each grid cell i in season t from the 

cropped area fraction data, where 𝐶𝐴𝑖𝑡 is the planted area of grid cell i in season t. According to the 180 

crop calendar information and the grid cell cropping fractions of crop j, divide 𝐶𝐴𝑖𝑡 into different crop 

types to obtain the cropped area 𝐶𝐴𝑖𝑗
𝑟𝑒𝑓

 of each grid cell i for crop j in the reference year. Similarly, first 

the total area data 𝐶𝐴𝑖𝑡 of each grid cell i in different seasons for the reference year are obtained and 

then the area 𝐶𝐴𝑖𝑗
𝑡𝑎𝑟 of each grid cell i for crop j is calculated. 

（3）Calculate the rate of change of the cropped area  185 

This step is carried out separately for each crop j. For each grid cell i, compare its area 𝐶𝐴𝑖𝑗
𝑡𝑎𝑟 in the 

target year with 𝐶𝐴𝑖𝑗
𝑟𝑒𝑓

 in the reference year to derive the area change ratio 𝑟𝑖𝑗 =
𝐶𝐴𝑖𝑗

𝑡𝑎𝑟

𝐶𝐴
𝑖𝑗
𝑟𝑒𝑓. The total rate of 

change in the area 𝑟𝑗 =
∑ 𝐶𝐴𝑖𝑗

𝑡𝑎𝑟
𝑗

∑ 𝐶𝐴
𝑖𝑗
𝑟𝑒𝑓

𝑗

 is then calculated for crop j within the administrative unit. 

(4) Calculation of proportions of harvested area 
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This step is also carried out separately for each crop j. From the reference data, the proportion of 190 

the harvested area of grid cell i in the total harvested area of the administrative unit for crop j can be 

obtained, denoted as 𝑤𝑖𝑗
𝑟𝑒𝑓

=
𝐻𝑖𝑗

𝑟𝑒𝑓

∑
𝑗

𝐻
𝑖𝑗
𝑟𝑒𝑓. 

For crop j, the percentage of harvested area 𝑤𝑖𝑗
𝑟𝑒𝑓

 of grid cell i in the target year shall be calculated 

according to the following formula, based on the percentage change in area 𝑟𝑖𝑗 of each grid cell i, the 

total percentage change in area 𝑟𝑗 of crop j in the administrative unit and the percentage of harvested 195 

area 𝑤𝑖𝑗
𝑟𝑒𝑓

 of grid cell i in the reference year: 

𝑤𝑖𝑗
𝑡𝑎𝑟 = 𝑤𝑖𝑗

𝑟𝑒𝑓
×

𝑟𝑖𝑗

𝑟𝑗
 

(5) Calculate the harvested area 

Obtain the total harvested area 𝐻𝑗
𝑡𝑎𝑟 of crop j within the administrative unit in the target year from 

the FAO data. Then use the proportion of harvested area 𝑤𝑖𝑗
𝑡𝑎𝑟  of each grid cell i to calculate its 200 

harvested area 𝐻𝑖𝑗
𝑡𝑎𝑟 = 𝐻𝑗

𝑡𝑎𝑟 × 𝑤𝑖𝑗
𝑡𝑎𝑟. Finally, consistency processing is performed to ensure that the sum 

of the harvested areas of all grid cells within each administrative unit matches the statistical data after 

calculation. 

Through this approach, the estimation of the harvested area considers the changes in the cropped 

area between different grid cells within a region, reducing the deviations caused by simple proportional 205 

allocation and thus allowing a more accurate estimation of the spatial distribution of the harvested area. 

In addition, to improve the reliability of the results, we detect outliers in the cropped area fraction data 

and apply interpolation to smooth the outliers, eliminating the effects of spatial anomalies commonly 

caused by clouds, shadows and snow cover in remote sensing imagery. This increases the robustness of 

the harvested area estimate and avoids the overall bias introduced by a small number of contaminated 210 

pixels. 
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2.2.2 Indicator Data Processing 

Indicator data processing involves data clipping based on crop phenology and feature extraction 

from the data. First, the time series data are clipped by crop phenology to obtain the data corresponding 

to the crop growth period. Features are then extracted from each type of data to form the feature vector 215 

for each crop, which is used in subsequent model training. All the features used for model training are 

listed in Tab 1. 

Table 1. Input features 

Feature name Feature type Images per year Dimensions 

Harvested area Annual data 1 1 

Maximum vegetation condition index (VCIx) Time series 4 4 

Cropped arable land fraction (CALF) Time series 4 4 

Cumulative potential biomass (BIOMSS) Time series 4 4 

Cumulative precipitation (RAIN) Time series 36 4 

Photosynthetically active radiation (PAR) Time series 36 4 

Average air temperature (TEMP) Time series 36 4 

Net primary productivity (NPP) Annual data 1 1 

Leaf area index (LAI) Time series 46 4 

Location (gx, gy, gz) numerical value - 3 

Terrain (elevation and terrain variation coefficients) numerical value 2 2 

Soil (clay, sand and silt) Category 3 3 

Irrigation Type (irrigated, rainfed and unknown) Category 1 3 

Total - 174 41 
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2.2.3 Data-Driven Model Training 220 

There is a close correlation between crop production and the corresponding harvested area (HA) 

and multi-source indicators for each grid cell, and these correlations are largely consistent within local 

regions. This principle facilitates the development of data-driven models for allocating gridded 

production (P) within each crop and agro-ecological zone (AEZ) as follows: 

𝑃𝑖
𝑗

= 𝑓(𝐻𝐴𝑖
𝑗
, 𝑋𝐼𝑖

𝑗
  ) 225 

Where the variables𝑃𝑖
𝑗
, 𝐻𝐴𝑖

𝑗
 and 𝑋𝐼𝑖

𝑗
 respectively represent production, harvested area, and various 

multi-source indicators in grid cell i of crop type j. The f is a machine learning model customized for 

each AEZ and crop type to capture their unique relationship between production, harvested area and 

indicators. 

For each specific crop type, the data-driven models were independently built for each AEZ based 230 

on its geographical subdivision. That is, one model was trained for each crop in each AEZ. Specifically, 

two steps were taken: 

(1) Optimal model selection 

Within an agro-ecological zone, due to the complexity and diversity of influencing factors, the 

predictive performance and parameter optimisation of different machine learning models may vary. 235 

Therefore, for AEZ, model selection and parameter optimisation are first carried out. The specific 

operation is as follows: the data from the reference year are divided into training and test sets, where the 

training set is mainly used to optimise model parameters, and the test set is used to evaluate model 

prediction performance, thereby supporting our final model selection. 

We select three widely used machine learning models, Random Forest (Breiman, 2001), XGBoost 240 

(Chen and Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2019), as candidate models, and use 

grid search and cross-validation methods to optimise the parameters of each model. Then, based on the 

optimised parameters, we train each model on the training set and evaluate its predictive ability on the 

test set, with the evaluation metric chosen as 𝑅2. Finally, the model with the highest 𝑅2 value is selected 

as the optimal model for that ecological zone. 245 

(2) Building predictive models 
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In the optimal model selection stage, 90% of the reference year data are used as the training set. 

Given the limited data resources and their importance for prediction, we prefer to make full use of all 

the reference year data. Therefore, we combine all the reference year data with the optimal parameters 

obtained in the previous step to train the models in order to improve the model stability and prediction 250 

accuracy, thus obtaining production spatial allocation models for each AEZ. 

2.2.4 Production Calculation 

For each AEZ and each crop type, based on its spatial production allocation model, the feature data 

of this zone are imported to obtain the predicted production of each grid as the initial grid production, 

denoted as 𝑃𝑖𝑗
𝑖𝑛𝑖𝑡. 255 

However, while our data-driven models and harvested area estimations provide a robust 

foundation, it's essential to recognize that model-derived predictions might not always perfectly align 

with established agricultural statistics. Such deviations can emerge from various factors, including 

model limitations, data anomalies, or unforeseen agricultural events. 

It is important to recognize that, despite the robust foundation provided by our data-driven models 260 

and harvested area estimates, the model-derived predictions may not always be perfectly consistent with 

established agricultural statistics. Such discrepancies may arise due to various factors such as model 

limitations, data anomalies or unexpected agricultural events. Therefore, data consistency processing is 

necessary. 

The reconciliation process involves recalibrating the initial grid production  𝑃𝑖𝑗
𝑖𝑛𝑖𝑡  based on the 265 

FAO's statistics. This recalibration ensures that the aggregated production figures across all grid cells 

within an administrative unit align with the FAO's reported data. The formula below is meticulously 

applied to achieve this alignment: 

𝑃𝑖𝑗 =
𝑃𝑗

∑ 𝑃𝑖𝑗
𝑖𝑛𝑖𝑡

𝑖

× 𝑃𝑖𝑗
𝑖𝑛𝑖𝑡 

Where i represents a grid, and j represents a crop. 𝑃𝑗 denotes the crop production statistics at the 270 

administrative unit level, and 𝑃𝑖𝑗 denotes final grid production. 
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 The alignment at the administrative unit level ensures that our dataset is a dependable tool for 

granular and macro-level agricultural analyses. 

3 Results and Discussion 

3.1 Spatial Features of Crop Production in GGCP10 275 

 

Figure 2. Production distribution of GGCP10 in 2020: (a) Maize; (b) Wheat; (c) Rice; (d) Soybean. 

The production distribution patterns in 2020 for the four crops are illustrated in Fig 2. In the case 

of maize, regions with higher production are located in the Corn Belt of the United States, southern 

Brazil, the wet Pampas of Argentina, the northwestern Black Sea regions of Ukraine and Romania, and 280 

northeastern and northern China. Regarding wheat, regions with higher production include southern 

Canada, Argentina, Europe, the Nile River Delta, North China, and northern India. For rice, regions 

such as South China, Southeast Asia, and South Asia have a higher production. As for soybeans, grid 

cells with higher production are primarily concentrated in the eastern Great Plains of the United States, 
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southern Brazil, and northern Argentina, but there are also scattered high production areas in Northeast 285 

China and central India. 

The spatial distributions of production shown in the dataset are consistent with the general 

knowledge for these four crops. This validates GGCP10's ability to provide precise insights into global 

crop production patterns. The hotspots on a continental scale and regional clusters demonstrate how 

cropping systems and agro-climatic suitability affect crop distribution globally. Additionally, the spatial 290 

crop production patterns are consistent with expectations, showcasing how useful the dataset is for 

agricultural studies utilizing its exceptional spatiotemporal resolution and range.  

Analyzing the spatial production maps can reveal crop expansion fronts and production 

variabilities within major breadbaskets. Comparing distributions across years may uncover geographic 

shifts in response to climate or policy changes. The value of GGCP10 lies in enabling spatial research 295 

on crop production from local to global scales. Such analysis is particularly beneficial for investigating 

how crop production has changed over time in response to various factors. Its regular gridding and wall-

to-wall coverage facilitate flexible geospatial analysis. In summary, the dataset affords more precise 

production information compared to national statistics, thereby triggering novel research avenues in 

agriculture science and food security evaluations. 300 

3.2 Model Performance Evaluation 

3.2.1 Comparison of Different Models 

To visualize the performance of the three models (XGBoost, CatBoost, and RF) in cross-validation 

(Fig. 3), we employed the Gaussian kernel probability density plot of 𝑅2. 𝑅2 is a measure of model 

prediction accuracy, with a value closer to 1 indicating higher accuracy. The horizontal coordinate 305 

represents the 𝑅2 value, the vertical coordinate shows the Gaussian kernel probability density of 𝑅2, and 

the graph depicts the distribution of 𝑅2  values across all models. By using this approach, we can 

evaluate and compare the overall prediction accuracy of the models. 
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Figure 3. Gaussian kernel probability density of 𝑹𝟐 for models: (a) maize; (b) wheat; (c) rice; (d) soybean 310 

We developed a total of 303 regional models for maize, with 199 XGBoost models, 79 CatBoost 

models, and 25 RF models (Fig. 3a). The XGBoost models had an average 𝑅2 of 0.928 with a primary 

distribution between 0.90 to 1.00, which shows high prediction accuracy. The CatBoost models had an 

average 𝑅2 of 0.915, with most values distributed between 0.86 to 1.00. The RF models had an average 

𝑅2 of 0.858, with a range between 0.72 to 1.00. 315 

We trained 237 regional models for wheat, including 138 XGBoost models, 82 CatBoost models, 

and 17 RF models (Fig. 3b). Out of the three models, CatBoost achieved the highest 𝑅2  values, 

primarily distributed between 0.92-1.00, with an average of 0.927. The XGBoost models exhibited 𝑅2 

values mainly distributed between 0.87-1.00, with an average of 0.924. The RF models demonstrated 

𝑅2 values mainly distributed between 0.75-1.00, with an average of 0.900. 320 
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Out of 202 rice models (Fig. 3c), XGBoost, CatBoost and RF models accounted for 145, 37 and 20 

models, respectively. The 𝑅2 values for XGBoost were primarily distributed between 0.90-1.00 with an 

average of 0.936. The 𝑅2  values for CatBoost were mainly distributed between 0.85-1.00, with an 

average of 0.901. The 𝑅2 values for RF models were primarily distributed between 0.80-1.00 with an 

average of 0.899. 325 

Out of the 155 soybean models (Fig. 3d), 84 were XGBoost, 54 were CatBoost, and 17 were RF. 

XGBoost had an average 𝑅2 value of 0.863, with most of the values distributed between 0.88-1.00; 

CatBoost had an average 𝑅2 value of 0.880, with most of the values distributed between 0.80-1.00; and 

RF had an average 𝑅2 value of 0.845, with most of the values distributed between 0.70-1.00. 

The probability density plots indicate that for all four crops, the 𝑅2 values of XGBoost, CatBoost, 330 

and RF are high, with narrow ranges, demonstrating good model accuracy and stability. For all four 

crops, the number of XGBoost models is significantly higher than that of CatBoost or RF, suggesting 

that XGBoost has the best model performance in most regions, which is consistent with the conclusions 

from our previous study(Li et al., 2023). The number of models for each crop reflects the global area of 

that crop, as we only trained models in regions where we had corresponding data. For instance, maize 335 

has the highest number of models owing to its widespread distribution. These results demonstrate the 

potential of selecting optimal models and parameters adaptively to train relatively accurate models for 

various crops and regions. 

3.2.2 Evaluation of Model Performance in Different Regions 

The purpose of this section is to evaluate and compare the performance of models in different 340 

geographical regions. The models of various regions have been grouped according to their continents, 

and their 𝑅2 distributions for the four crops in different regions at the continental scale are depicted in 

the figure below (Fig. 4). Violin plots have been utilized to present the 𝑅2 distributions of models in 

different regions within each continent. These plots also display the maximum, minimum, median, and 

quartile ranges. 345 
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Figure 4. Evaluation of model performance in different regions: (a) maize; (b) wheat; (c) rice; (d) soybean 

The data suggest that most models perform well, with only a few showing lower accuracy. 

Regarding model performance characteristics, the following observations have been made for each 

continent: 350 

In Africa, the fluctuation range is substantial for wheat models, with an average 𝑅2 of 0.878. In 

contrast, the accuracy of the remaining three crops' models is relatively consistent. 

In Asia, the soybean models depict higher variation range, averaging an 𝑅2 of 0.848. Conversely, 

rice models are the most accurate amongst the four crops with an 𝑅2 of 0.922. 

In Europe, crop models showcase relatively lower variation ranges except for soybean. Wheat 355 

models demonstrate an 𝑅2 of up to 0.960, while soybean models have an average 𝑅2 of 0.843. 

In North America, maize and rice models are more stable, whereas wheat and soybean models 

have comparably wider variation ranges. Rice models have the highest average 𝑅2  of 0.926, while 

wheat models have the lowest average 𝑅2 of 0.805. 
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In South America, models for all four crops in different regions show high accuracy with an 360 

average 𝑅2 greater than 0.910 and small variation ranges. 

In Oceania, maize models show a wider variation range, which may be due to smaller maize 

planting areas in this region, resulting in inadequate samples. 

The data shows that model performance for different crops varies across regions, which is likely 

due to factors such as climate, soil conditions, and cropping patterns specific to each region. Overall, 365 

the models for different crops in various regions demonstrate relatively high accuracy, further 

reinforcing the reliability of the trained models in this study. 

3.3 Feature Importance Analysis 

In this section, we look more closely at the importance of different features in the crop production 

prediction models for different crops, and try to explain this importance in combination with crop 370 

physiology. 

First, we calculate the importance of each feature in each regional model during training, and 

calculate the average value across all models for each feature; meanwhile, we also summarise the 

importance of subsets within each feature class to obtain the overall feature importance. Since harvested 

area was provided as a prior and had the highest importance universally, we focused our analysis only 375 

on the remaining features aside from harvested area.  
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Figure 5. Feature importance scores of maize. 

For maize (Fig. 5), the TEMP class (including maximum, minimum, mean, standard deviation of 

average air temperature during the growing season) has the highest importance. This corresponds to the 380 

temperature sensitivity of maize physiology(Hsiao et al., 2019; Feng et al., 2019; Zhang et al., 2022), 

especially at key growth stages. The second is Location, showing the significant effect of geographical 

location on maize yield. The third is PAR (photosynthetically active radiation), which is explained by 

the high light requirements of maize, with PAR intensity having a direct effect on photosynthesis and 

yield. Among the individual characteristics, altitude is the most important, probably due to the direct 385 

effect of altitude on temperature and climatic conditions, and thus on maize growth. 

https://doi.org/10.5194/essd-2023-346
Preprint. Discussion started: 12 October 2023
c© Author(s) 2023. CC BY 4.0 License.



 

21 

 

 

 

Figure 6. Feature importance scores of wheat. 

For wheat (Fig. 6), the three most important characteristics are TEMP, Location and PAR. Wheat 

growth is sensitive to temperature, especially at the sowing and heading stages, resulting in specific 390 

temperature requirements(Perdomo et al., 2016). TEMP is therefore the most important. Meanwhile, the 

high adaptability of wheat to soils and environments makes geographical location factors particularly 

important. The effect of sunlight on wheat is also not negligible, leading to a high importance of PAR. 

Similar to maize, altitude is the most important of the individual characteristics. 
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 395 

Figure 7. Feature importance scores of rice. 

For rice (Fig. 7), the order of importance for the top three characteristics is Location, TEMP and 

PAR, possibly because these characteristics are directly related to the growing environment, 

temperature and photosynthesis of the crop(Su et al., 2023; Perdomo et al., 2016). In addition, 

BIOMASS and RAIN also have relatively high importance, probably related to biomass accumulation 400 

and water requirements of rice(Yan et al., 2022). Among the individual characteristics, the grid 

coordinates (gx and gy) are more important. 
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Figure 8. Feature importance scores of soybean. 

For soybean (Fig. 8), PAR and TEMP have the highest importance, possibly due to the significant 405 

effects of variations in radiation and temperature during growth on soybean yield(Lin et al., 2023). 

Location is also highly significant. In addition, RAIN, Soil, Terrain and BIOMASS also have relatively 

high importance, possibly related to the dependence of soybean on soil, rainfall, topography and 

biomass accumulation. Among the individual features, gy was the most important, followed by altitude, 

probably because latitude (gy) and altitude determine the climate and geography in which soybean 410 

grows(Li et al., 2023). 

In summary, TEMP and PAR show high importance for all four crops, highlighting the 

fundamental effects of temperature and radiation on crop growth(Perdomo et al., 2016). Similarly, 

Location also shows high importance for all crops, highlighting the critical role of geographical location 

in determining crop yield(Li et al., 2023). In contrast, Irrigate Type has a lower importance for all crops. 415 

3.4 Comparing with Existing Datasets 

To assess the reliability and accuracy of the proposed GGCP10 dataset, we evaluated it against 

reference datasets, including gridded, statistical, and survey data. Although the years and regional 
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coverage of these reference datasets may not entirely encompass the GGCP10 dataset, they still serve as 

benchmarks to evaluate its reliability and accuracy from various perspectives, thereby providing 420 

significant comparative value. 

For comparison, we used two gridded datasets - SPAM 2010 and AsiaRiceYield4KM - as 

reference datasets. We selected data from the same years across these datasets to conduct consistency 

analysis with our dataset.  

We obtained statistical data on crop production from the DES for major crop producing states in 425 

India. These data are relatively reliable at the state level. We used this data as the baseline to assess the 

accuracy of our dataset in India's state administrative units.  

The survey data used were obtained from the USDA in the United States and were stratified by 

county. Despite its low reliability, comparing the derived survey data with them can still offer valuable 

insights into the dataset's reliability. 430 

3.4.1 Comparison with SPAM 2010 

SPAM 2010(Yu et al., 2020) is a commonly used global agricultural production dataset. To 

appraise the dependability of GGCP10, we chose four crops (maize, wheat, rice, and soybean) from 

SPAM 2010 for comparative analysis. Given that the unit of measurement in SPAM 2010 is tonnes and 

GGCP10 is expressed in kilotons (kt), we converted the SPAM 2010 data into kilotons for a more 435 

consistent comparison. Scatter plots and kernel density estimation plots were generated to visualize and 

evaluate the coherence between the two datasets (Fig. 9). 
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Figure 9. Scatter plot and marginal distribution: comparing GGCP10 with SPAM 2010. 

To quantitatively assess the agreement, we conducted linear regression analysis on the two 440 

datasets. The results uncovered that the regression slopes for wheat, rice, and soybean were almost 

identical to 1, with 𝑅2 values of 0.39, 0.55, and 0.35, and RMSE values of 3.61 kilotons, 7.33 kilotons, 

and 2.87 kilotons, respectively. This denotes a high level of consistency between the datasets. 

Conversely, the maize slope was marginally lower at 0.72, but still acceptable, with an 𝑅2 of 0.28 and 

an RMSE of 6.35 kilotons. 445 

The kernel density estimation plots show the distribution of crop production quantities for each 

crop. The GGCP10 and SPAM 2010 pixel values were mainly concentrated in the 0-10 kilotons range, 
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indicating good alignment. Rice had the most significant distribution divergence, with the GGCP10 

peak value corresponding to lower pixel quantities than SPAM 2010. 

3.4.2 Comparison with AsiaRiceYield4km 450 

The AsiaRiceYield4km(Wu et al., 2023b) dataset provides a high-resolution (4KM) seasonal grid 

of rice yields in Asia, spanning from 1995 to 2015, and covers single, double, and triple-season rice. In 

the interest of harmonizing the evaluation metrics and ensuring consistency with our GGCP10 dataset, 

several adjustments were made to the AsiaRiceYield4km dataset. 

Due to the unavailability of seasonal harvested area data in AsiaRiceYield4km, the comparison 455 

was constrained to single-season rice areas, which constitute 56.5% of the total AsiaRiceYield4km 

extent. To align with the spatial resolution of GGCP10, the AsiaRiceYield4km dataset was resampled to 

a 10km grid. In the development of the GGCP10 dataset, we also generated corresponding harvested 

area data, allowing us to calculate total production values for AsiaRiceYield4km based on these areas. 

These recalculated total production data served as the basis for consistency evaluation with the 460 

GGCP10 dataset. 

For the overlapping years from 2010 to 2015, scatter density plots (Fig. 10) were used to assess the 

consistency of gridded production data between GGCP10 and AsiaRiceYield4km. 
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Figure 10. Scatter density plots: (a) 2010; (b) 2011; (c) 2012; (d) 2013; (e) 2014; (f) 2015. 465 

The data reveal a strong positive correlation between GGCP10 and AsiaRiceYield4km for the 

years 2010-2014. Data points closely align along the 1:1 line, reinforcing that GGCP10 accurately 

captures the data distribution patterns present in AsiaRiceYield4km. Acceptable error rates are indicated 

by RMSEs ranging from 3.09 to 3.30 kilotons per 10km grid. The 𝑅2 values range from 0.83 to 0.86, 

and correlation coefficients are between 0.91 and 0.93. Notably, the year 2015 exhibits a marginally 470 

lower slope and 𝑅2, yet remains within acceptable limits. It should be highlighted that for all the years 

examined, the slope of the fitted line is less than 1, suggesting that GGCP10 tends to overestimate 

production when compared to AsiaRiceYield4km. 

In summary, GGCP10 exhibits a strong degree of consistency with AsiaRiceYield4km in terms of 

single-season rice production grids, although localized discrepancies do warrant further investigation. 475 
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3.4.3 Comparison with Statistical Data from India DES 

To further validate the effectiveness of the proposed GGCP10, we collected maize, wheat, rice and 

soybean production data from 2010 to 2020 in the major producing states of India from website of 

Directorate of Economics and Statistics (DES)(DES, 2023) from department of agriculture as a 

reference. To increase the representativeness of the sample, multi-year data were aggregated for each 480 

crop due to potential random effects in single-year data. 

We used correlation coefficients, RMSE and 𝑅2 to quantify the consistency between GGCP10 and 

the Indian DES statistics, supplemented by scatter plots, with the results shown in Fig 11. 
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Figure 11. Scatter plots of four crops: (a) maize; (b) wheat; (c) rice; (d) soybean 485 

The results show that although there are subtle differences in the consistency performance for each 

crop, GGCP10 shows significant agreement with the statistical data. 

In particular, although maize shows some underestimation and overestimation in regions with 

higher total production, its correlation coefficient reaches 0.76 and 𝑅2 is 0.55, indicating that GGCP10 

remains reasonably consistent with the statistics to some extent. For wheat and soybean, the correlation 490 

coefficients exceed 0.93 and 𝑅2 exceeds 0.84, indicating a higher consistency between these crops in 
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our dataset and the DES statistics. For rice, the correlation coefficient is 0.87, but the 𝑅2 is only 0.19. 

The scatter plots show that GGCP10 has a systemic overestimation compared to the DES statistics. 

Overall, our dataset shows remarkable consistency compared to the Indian DES statistics, especially for 

crops like soybean, wheat and maize where the consistency is more significant. 495 

3.4.4 Comparison with USDA Data 

We selected the United States Department of Agriculture (USDA) “SURVEY” data(USDA, 2023) 

as validation data (county level). This type of data is obtained from sample surveys rather than general 

statistics. Although they may be less comprehensive than CENSUS data, survey data are often more 

flexible, more targeted and cover longer time periods. Despite the sampling errors inherent in their 500 

sample-based nature, they remain a very valuable reference in the absence of more comprehensive data. 

Therefore, although the use of survey data as validation data has limitations, it remains very important 

for our research. 

To assess the consistency between GGCP10 and the USDA data, we used kernel density estimation 

plot, as shown below. This type of plot shows the joint distribution of two variables on a two-505 

dimensional plane, allowing us to visually identify data distribution densities. Darker coloured regions 

represent areas where data points are more concentrated, i.e. these points occur more frequently. 
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Figure 12. Kernel density estimation plots of the two datasets of maize from 2010 to 2020. 

For maize (Fig. 12), the consistency between GGCP10 and the USDA data varies from year to 510 

year. The consistency is lowest in 2011 and 2013, while it is relatively higher in 2010, 2014, 2019 and 

2020. Specifically, 𝑅2 reaches a maximum of 0.45 in 2020, with an RMSE of 191.5 thousand tonnes 

and a correlation coefficient of 0.69, indicating relatively high consistency. Overall, however, GGCP10 

tends to overestimate production in low-production areas and underestimate production in high-

production areas compared to the USDA survey data. 515 
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Figure 13. Kernel density estimation plots of the two datasets of wheat from 2010 to 2020. 

For wheat (Fig. 13), although the 𝑅2  values are relatively low, the lower RMSE and higher 

correlation coefficients indicate significant correlations between GGCP10 and the USDA data. Overall, 

the distributions of the data mainly follow the 1:1 line, and despite the lower consistency compared to 520 

other crops, the correlations remain generally high. 
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Figure 14. Kernel density estimation plots of the two datasets of rice from 2010 to 2020. 

For rice (Fig. 14), GGCP10 shows no significant underestimation or overestimation in any of the 

11 years when compared to the USDA data, demonstrating extremely high consistency. Over the 11 525 

years, 𝑅2 exceeds 0.50 for seven years, demonstrating the high correlation between the datasets. The 

lowest correlation coefficients in all years are 0.73 in 2012 and 2019, further demonstrating the 

consistency between our dataset and the USDA data in overall trends. 
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Figure 15. Kernel density estimation plots of the two datasets of soybean from 2010 to 2020. 530 

For soybean (Fig. 15), GGCP10 shows a high consistency with the USDA dataset. Although 𝑅2 

drops to 0.44 in 2015, this is still a relatively high consistency. Further analysis shows that the majority 

of values in both datasets are concentrated in low-production areas where consistency is very high. For 

the small number of data points in high-production areas, GGCP10 shows a slight underestimation 

compared to the USDA data. This may reflect small deviations of our model in handling data for high-535 

production areas, but the overall consistency remains substantial. 

The four crops all have relatively high correlation coefficients, showing good agreement between 

our dataset and the USDA data. Although 𝑅2 is relatively lower for wheat, this may be due to potential 

sampling bias as the USDA dataset is derived from sample surveys. Overall, our dataset shows high 

consistency with the USDA data, demonstrating its higher reliability and reference value. 540 
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After conducting a thorough comparison between the GGCP10 and USDA datasets, we sought to 

further investigate the discrepancies and potential causes by analyzing the trends in harvested areas 

from both datasets. Understanding the variations in harvested areas is pivotal in assessing the quality of 

production data, hence getting insights into these changes can aid in a more comprehensive evaluation 

and interpretation of discrepancies in production values. To this end, we present the annual changes in 545 

production harvested area, accuracy between GGCP10 and USDA datasets from 2010 to 2020 (Fig. 16). 

It's worth mentioning that the USDA harvested area data, along with the production data, is 

obtained from the "SURVEY" dataset, ensuring consistency in our comparison sources. Regarding our 

dataset, the harvested area values are intermediate data produced during the development of GGCP10. 

To illustrate the differences between the two datasets objectively, we aggregated data from all counties 550 

for each year. 

 

Figure 16. Annual changes in production, harvested area, accuracy between GGCP10 and USDA datasets from 

2010 to 2020: (a) maize; (b) wheat; (c) rice; (d) soybean 
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For all four crops, a noticeable pattern emerges: when the discrepancies in annual harvested area 555 

between the two datasets widen, the accuracy and production curves tend to diverge more. This is 

particularly pronounced for maize and wheat, where fluctuations in annual harvested area inconsistency 

between GGCP10 and the USDA datasets have led to divergent tendencies in both production and 

accuracy trends. For rice and soybean, the harvested area curves of the two datasets are more closely 

aligned, which has resulted in tighter adherence of the accuracy and production change curves. 560 

These findings highlight the significance of maintaining consistent harvested area. As harvested 

area is a crucial parameter in production estimation, any discrepancies in data between databases would 

result in deviations in production estimates. Additionally, annual accuracy changes, associated with 

these area discrepancies, show a direct correlation: the larger the gap in harvested areas, the lower the 

accuracy between datasets. 565 

The results in Fig. 16 underline the fact that although GGCP10 is generally consistent with USDA 

data, the nuances of annual changes in harvested area and the associated inconsistencies are essential 

factors in understanding and interpreting the reliability of crop production datasets. 

3.5 Advantages and Limitations 

The GGCP10 dataset proposed in this study has considerable advantages over currently available 570 

crop production datasets. It is the first continuous (2010-2020) global gridded crop production dataset 

with temporal resolution of 10 km spatial resolution to our knowledge. The temporal continuity and fine 

spatial resolution allow for novel investigations of geographic and interannual variations in crop 

production at regional to global scales(Mohanasundaram et al., 2023). 

The time series data allows for analysis of the long-term trends in crop production in response to 575 

climate change, shifts in land use, and changes in agricultural policies. The gridded format allows for 

precise spatial modelling and assessments that were previously restricted by limited and inconsistent 

agricultural statistics aggregated over large areas(Yu et al., 2020). Examples of research topics in this 

area include optimization of agricultural resource allocation, evaluation of climate impacts on crop 

production, and identification of local production gaps. 580 
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However, uncertainties still exist and need addressing in GGCP10. The estimation of harvested 

area is the primary source of uncertainty. Harvested area data is estimated from area and phenology 

information. Despite the estimated harvested area's consistency with national statistical data, some level 

of uncertainty remains at smaller regional scales, particularly for individual grids. The uncertainty stems 

from our methodology of estimating the harvested area using reference data, cropped area, and 585 

phenology information. Numerous factors such as changes in land use/cover, cropping patterns, and 

climate can impact the estimate's accuracy. This uncertainty will have an impact on the precision of our 

ultimate estimate of crop production. 

In addition, the crop distribution involves a certain degree of uncertainty. Our crop distribution 

information is based on 2015 reference data. However, the allocation of crop areas may differ in various 590 

years as a result of factors such as agricultural policies, market demands, or climate change. This may 

create uncertainty in crop distribution for certain grids, consequently impacting our estimations of 

harvested area and crop production(Ramankutty et al., 2008). The comparison with other datasets, as 

detailed in section 3.4, further highlights some of these limitations. GGCP10 displays considerable 

consistency with datasets such as that of the USDA, for example, but there are instances of 595 

overestimation or underestimation in certain regions or for certain crops. 

Therefore, it is crucial to consider the impacts of the aforementioned uncertainties when using the 

GGCP10 dataset for related research. Firstly, due to the variable nature of harvested area and crop 

distribution data on an annual basis, these elements could affect the model's sensitivity to climate 

change, potentially leading to biased research findings. Secondly, as this dataset is adjusted for 600 

consistency with FAO's national-level statistics, the source data for different countries primarily come 

from their respective agencies. This implies that the reliability of the statistical data may vary between 

countries, and such regional differences in reliability could influence the conclusions drawn from cross-

national or large-scale comparative analyses. Moreover, the calculated yield from this dataset may differ 

from that obtained through ground-based surveys, possibly leading to overestimation or underestimation 605 

of yield-affecting factors.  
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Additionally, this dataset does not consider the instant effects of sudden natural disasters, such as 

dry hot winds or pest infestations on harvested lands, as these short-term events are typically 

challenging to capture precisely through large-scale remote sensing. When researching the impact of 

severe weather events on agricultural production, it should be noted that the data gathered in certain 610 

areas may not entirely represent their short-term effects. Furthermore, the lack of crop distribution 

information gained from field surveys can result in inaccuracies in datasets concerning modifications to 

cropping patterns driven by policy shifts or alterations in market demand. The precise evaluation of 

factors affecting agricultural production at either a global or regional scale may be compromised further 

due to this. 615 

To achieve a more comprehensive and accurate interpretation of results when conducting 

agricultural research with this dataset, users should take into account the possible impacts of multiple 

factors mentioned above. We recognise the significance of continually refining and advancing the 

GGCP10 dataset. By incorporating precise crop distribution data, localizing information, and harnessing 

developments in remote sensing and machine learning, we aim to enhance the precision and 620 

comprehensiveness of future iterations.. 

4 Data availability 

The GGCP10 product is available on Harvard Dataverse:  

https://doi.org/10.7910/DVN/G1HBNK(Qin et al., 2023). It is the first 10km-resolution, temporally 

continuous, gridded dataset of crop production covering a global extent. 625 

5 Conclusion 

We propose a global gridded crop production dataset, named GGCP10, which covers the years 

2010 to 2020 at a spatial resolution of 10km. This is, to our knowledge, the first temporally continuous, 

gridded dataset of crop production that is globally available. The GGCP10 involved data from various 

sources, and a set of data-driven models were developed based on agro-ecological zones and multiple 630 
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factors. These models can capture the inherent correlation between crop production, harvested area, and 

other indicators to achieve high prediction accuracy. The GGCP10 dataset offers a new perspective into 

the spatial distribution of crop production, which could be valuable for enhancing global food security 

and promoting sustainable agricultural development, facilitating relevant research, guiding agricultural 

policies, and enabling multiple applications. 635 

Although our model and dataset exhibit considerable accuracy and reliability, there are still some 

associated uncertainties, mainly due to the ambiguity of harvested area and crop distribution. When 

using the dataset, users need to pay close attention to these uncertainties. In the future, we will continue 

to update and improve this dataset to enhance its usefulness for research in global agricultural and food 

security. 640 
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