Dear Reviewer,

Thank you for your valuable comments and suggestions. Below, we are providing a point-to-point response to each comment.

Comment 1:

Qin et al. used multiple data sources, including statistical data, gridded production data, agroclimatic indicator data, agronomic indicator data, global land surface satellite products and ground data, to develop a data-driven crop production spatial allocation model, and generated the global 10km resolution gridded production dataset of four major crops (maize, wheat, rice and soybean) from 2010 to 2020. Basically, this topic is necessary. However, this study has several serious issues.

Response to Comment 1:

Thank you for recognizing the importance of this research work and affirming the innovations in data and models. At the same time, we greatly value the issues and suggestions you have raised. These comments provide important insights for us to further refine and improve the research ideas, methods, and quality of the results. We will carefully analyze and incorporate your valuable feedback and make every effort to address them in the revised manuscript. We look forward to receiving your review comments and guidance again after the completion of the revised manuscript to further enhance the academic and application value of the paper. Thank you again for your pertinent suggestions.

Comment 2:

First, the method for generating production map is not robust. The authors used an existing production map as the reference and training a machine learning model to allocate statistical production to grids. The method is not innovative, and is unreasonable from the importance analysis of input features (see my below comment). In principle, there is no reason to prove the machine learning method work here, because the planting area of a given pixel can not be predicted at all which depends on the famers' activities. Therefore, I did not believe this method can work for generating production map globally or regionally.

Response to Comment 2:

1) We greatly appreciate your insightful comments. You have raised a critical
challenge in production mapping research, which is how to effectively establish a quantitative relationship between production and environmental factors. Traditional parameterization methods often struggle to fully capture the non-linearity and multi-scale effects of the production formation process. In contrast, the machine learning method employed in this study has unique advantages in this regard. **By constructing complex non-linear models, machine learning methods can better capture the response patterns of production to changes in environmental factors and explore the key influencing factors in the production formation process.** This data-driven modeling paradigm has been successfully applied in the field of agricultural remote sensing, such as [1-5]. We will add corresponding references in the revised manuscript to demonstrate the effectiveness and successful application of such modeling methods. Furthermore, the large amount of multi-source input data used in this study, including key indicators such as maximum vegetation condition index, and cropland arable land fraction, are unique features developed by the research team. Moreover, to better adapt to the differences in agricultural planting systems in different regions, we have adopted an agro-ecological zoning modeling strategy, where model training and parameter optimization are performed independently within each zone. This modeling concept helps to improve the model's ability to characterize regional features. Therefore, the method used in this study is reasonable and innovative.

2) Regarding the issue of predicting farmers' planting areas, we believe that our unclear description may have caused some misunderstanding. When modeling, we do not directly use natural factors to predict farmers' planting areas. Instead, **based on the remote sensing observed planting area data of the reference year, we dynamically update it using interannual change information, which
is an important innovation of our method. We used the title "harvested area estimation" but the actual method adopted is a dynamic area calculation method, i.e., using the change in cropland utilization intensity (the proportion of cropland planted within the grid) observed by remote sensing to characterize the spatiotemporal dynamics of planting area. This strategy, to a certain extent, reflects farmers' dynamic responses to market and policy signals. However, our description of this method in the manuscript may not be detailed and comprehensive enough, which may have led to some misunderstandings. In the revised manuscript, we will further clarify the principles and innovations of the planting area estimation method.

3) We agree that due to the lack of socio-economic behavior data at the farmer scale, the current model cannot directly characterize the impact of farmer decision-making on planting structure, which is a limitation of this study. We will explain this in the discussion section. However, we believe that by integrating environmental factor data and knowledge of crop growth processes, the existing model can still well reveal the spatiotemporal patterns of regional production, which is of great value for understanding the geographical differentiation of food production.

Comment 3:

Second, the harvested area map used by the authors too simple to indicate the spatial and temporal variations. As we know, the most important feature for production is harvested area. However, the authors assumed a fixed ratio to exact the harvested area from a given year to other years. I did not think the harvested area map can reproduce the spatial and temporal changes, which is still static like the previous study. And anyone can easily generate production map based on this assumption without as an input of harvested area.

Response to Comment 3:

1) We sincerely appreciate your valuable comments. Characterizing the spatiotemporal dynamics of harvested area is critical in production mapping. Based on this understanding, we did not adopt a simple fixed ratio method in this study. Instead, we fully utilized the cropland utilization dynamics information provided by remote sensing observations to dynamically update the harvested area on an annual basis. This method not only considers the temporal changes in cropland planting intensity but also characterizes the spatial heterogeneity of these changes. It is an important improvement and complement to the traditional static area estimation method. This is also a key innovation of this study.

2) In the harvested area estimation process, we fully considered the spatial heterogeneity and dependence of harvested area changes. At the agro-ecological
zone scale, we estimated the harvested area using spatial statistics and geographically weighted methods. The related methods have been described in detail in Section 2.2.1 of the manuscript. We realize that in the preprint, the description of the above methods may not be detailed and comprehensive enough, which may affect readers' understanding of the innovation points. In the revised manuscript, we will supplement the detailed description of the estimation principles and key technical routes, accompanied by flow charts and other visual presentations to improve the transparency and reproducibility of the methods.

Comment 4:

Third, the writing still need a lot of work. I am always confused that the authors exactly mean. And there are a lot of places that the authors missed necessary details which made the manuscript hard to follow.

Response to Comment 4:

1) We sincerely appreciate your valuable comments. We will carefully revise and proofread the entire manuscript according to your suggestions, striving to eliminate ambiguities in expressions and make the article more concise, coherent, and readable.

2) Regarding the lack of necessary details mentioned by the reviewer, we will focus on improving the following aspects: First, we will supplement key information such as experimental schemes, technical routes, and model assumptions in different sections of the article according to their focus, providing readers with necessary background knowledge. Second, in the data and methods section, we will provide a more detailed description of the data processing workflow, model parameter selection, and evaluation metric definitions to make the research process more transparent and standardized.

3) Third, we will enhance the correspondence between figures, tables, and text descriptions by adding table headers, legends, and variable annotations to improve the self-explanatory nature of the figures and tables, making it easier for readers to understand. Fourth, when professional terms and algorithm names appear for the first time in the text, we will provide clear definitions or explanations to avoid ambiguity. We will also invite native English-speaking peers to polish the article.

Comment 5:

2.1.9 section: the authors should introduce the indicators first. I do not understand what cumulative potential biomass means, which is a satellite-based observation or a predicted variable. The authors provide a reference which a website in Chinese and
the readers can not find accurate definition from there. Same problem also was found in the section 2.1.10, like VCIx. By the way, there are a lot of places with this kind unclear writing issues making the reading very hard.

Response to Comment 5:

1) We sincerely apologize for the lack of clarity and necessary explanations of the indicators mentioned in the manuscript. We will prioritize improvements in the revised manuscript. Specifically, in Section 2.1 "Data," when introducing each indicator, we will first provide a clear definition, explaining its basic concept, mathematical expression, and ecological significance, providing readers with necessary background knowledge and corresponding references.

2) Taking the cumulative potential biomass (BIOMASS) and maximum vegetation condition index (VCIx) you mentioned as an example, we will supplement the following explanation in the main text:

"Cumulative potential biomass is expressed as the combined effect of rainfall (Rain) and temperature (Temp) accumulated during a reference period (dekad from i to n) using the following equations:

\[
NPP_{\text{Rain}} = \sum_{dek=i}^{n} \frac{NPP[Rain(dek)]}{n} \\
NPP_{\text{Temp}} = \sum_{dek=i}^{n} \frac{NPP[Temp(dek)]}{n} \\
NPP = \min (NPP_{\text{Rain}}, NPP_{\text{Temp}})
\]

The unit of biomass is grams of dry matter per square meter over the concerned period.

Based on the Vegetation Condition Index (VCI) proposed by Kogan (1990), the maximum VCI is adopted in CropWatch bulletins to describe the optimal crop condition of the current period compared with the historical maximum crop biomass potential using the following equation:

\[
\text{Maximum VCI} = \frac{NDVI_{\text{max,c}} - NDVI_{\text{min,h}}}{NDVI_{\text{max,h}} - NDVI_{\text{min,h}}}
\]

where \(NDVI_{\text{max,c}} \) is the maximum NDVI of a fixed period, and \(NDVI_{\text{max,h}} \) and \(NDVI_{\text{min,h}} \) are the historical maximum and minimum NDVI of the same period, respectively, using long-term time series NDVI datasets. Considering that the crop minimum NDVI may be contaminated by clouds or non-vegetation pixels, an empirical minimum vegetation NDVI value (0.15) is introduced to calculate \(NDVI_{\text{min,h}} \) with the following equation:
$NDVI_{\text{min}, h} = \max (0.15, NDVI_{\text{min}, h0})$

where $NDVI_{\text{min}, h0}$ is the original minimum NDVI of the study period from time series NDVI datasets. The value of Maximum VCI ranges from 0 to 1. A higher maximum VCI value indicates better crop condition and larger biomass potential for a concerned period. Therefore, crop maximum VCI is more meaningful when calculated during the crop growing period.

3) For other indicators mentioned in the text, we will provide detailed explanations following the above approach.

4) To facilitate readers' better understanding of the indicators involved in the study, we will systematically review the references and websites and provide authoritative English definitions and algorithm descriptions whenever possible. For the few indicators that lack English literature support, we will provide more detailed concept explanations and calculation steps in the main text to ensure clarity and completeness of the descriptions. At the same time, we will carefully check the entire manuscript and strive to be professional, rigorous, and standardized in our writing expressions to eliminate language barriers that may affect readers' understanding.

Comment 6:

Line 167: it is very difficult to understand what you mean here.

Response to Comment 6:

We sincerely appreciate your pointing out this expression issue and apologize for the reading barriers caused by it. We will improve it in the revised manuscript.

1) Specifically, line 167 originally read: "However, this approach ignores changes in cropping conditions between different grid cells within a region." Our intention was to say that the simple proportional allocation method assumes that the changes in planting structure of each grid within a region are consistent, ignoring the spatial heterogeneity of crop planting conditions between grids. Specifically, due to the spatial variability of natural conditions and agricultural management, there are often significant differences in planting structure within a region. Directly using the change ratio at the regional level makes it difficult to accurately characterize the dynamics of planting area at the grid scale. Therefore, in response to the above problem, this study proposes a dynamic method that combines the changes in cropland planting area to obtain a more accurate grid-level harvested area. **Compared with traditional methods, this method fully considers the spatial heterogeneity within the region and can more accurately map the spatiotemporal dynamics of planting patterns.**
Thank you again for your valuable comments. In the revised manuscript, we will further emphasize the advantages and innovations of our method and restate the above content in a more concise and accurate language to improve the readability of the article.

Comment 7:

Line 169-171: again, I am confused and did not understand the meaning. You may show the correlation between GAZE and CropWatch.

Response to Comment 7:

1) We sincerely appreciate your raising this question. Our description of the relationship between GAEZ+ and CropWatch data in the manuscript may not be clear enough, causing confusion in your understanding. Regarding the expression in lines 169-171, we will reorganize the writing context of this part in the revised manuscript, adding necessary background and data explanations to ensure that each detail is accurately and clearly stated.

2) Specifically, the core information we want to express in lines 169-171 is that through a multi-scale correlation analysis of GAEZ+ 2015 harvested area data and CropWatch cropped arable land fraction (CALF) data, we found that the gridded harvested area has a significant positive correlation with the contemporaneous CALF. This finding provides a basis for us to use CropWatch's CALF data to dynamically update the harvested area data.

3) To make this finding more intuitive and understandable, we will provide detailed correlation analysis results in the supplementary materials. We calculated the Pearson correlation coefficients between the two datasets at two spatial scales: country and agro-ecological zone. At the country scale, the average correlation coefficients for maize, wheat, rice, and soybean are 0.49, 0.51, 0.44, and 0.48, respectively, with spatial distributions shown in Figure 1. Only a few countries show negative correlations. At the agro-ecological zone scale, the average correlation coefficients for the four crops are 0.47, 0.47, 0.40, and 0.42, respectively, with spatial distributions shown in Figure 2. Only a small number of regions show negative correlations. Overall, the correlation coefficients between gridded harvested area and CALF are relatively high, especially in major food-producing areas. These results statistically verify the high consistency between the two datasets, indicating the feasibility of using CropWatch's CALF data to estimate harvested area data.
4) Thank you again for your valuable suggestions. By supplementing the comparative analysis of GAEZ+ and CropWatch data and visualizing the correlation research results, we believe we can more fully demonstrate the theoretical basis, technical route, and innovative features of the harvested area estimation method in this study.

Comment 8:

Section 2.2.1: the method for estimating harvested area is not robust totally. The authors assumed the same change rates of all crops with the total cultivation area and used the statistical area by FAO (national level) to estimate harvested area of each grid. It is obviously wrong method, and which may induce large bias among different
years. If the authors did this kind estimation for harvested area why did not just estimate production directly. Besides, the writing of method section need improve and it will be good to introduce the principle first and then write out the algorithm, which will be easier for the readers.

Response to Comment 8:

We sincerely appreciate your constructive suggestions. Due to our lack of accurate and comprehensive descriptions in the manuscript, some misunderstandings may have arisen, for which we deeply apologize. **In fact, when estimating the harvested area, we did not simply assume that all crops have the same change rate as the total cropland area. Instead, we performed separate processing for each crop type.**

1) Specifically, we first obtained the total harvested area of major crops in each country from FAO statistical data; then, using the crop spatial distribution weights provided by GAEZ+ data, we decomposed the national totals to each grid cell; on this basis, we further utilized the interannual change information of cropland area reflected by CropWatch data to dynamically correct the initial gridded harvested area. It is worth mentioning that we also fully considered the differences in climatic conditions and planting systems of different countries, incorporating the crop phenology information of each country into the estimation process to further improve the refinement level of the estimation from the temporal dimension. Due to the limited length of the article, our description of these details in the preprint may not be sufficient, which may have led to some misunderstandings. In the revised manuscript, we will focus on strengthening this part of the content to eliminate possible biases in understanding.

2) Regarding the question of why we estimate harvested area separately, it is mainly based on the following considerations: On the one hand, harvested area data itself contains rich agricultural production information, such as multiple cropping index and rotation patterns, which are key factors in assessing regional agricultural planting structure and land use intensity, and have important research value; on the other hand, production is the product of harvested area and yield, and estimating harvested area separately helps us more clearly understand the relative contributions of these two factors to production changes and deepen our understanding of the production composition mechanism. Therefore, although directly estimating production is technically feasible, we believe that separately estimating harvested area is still a necessary and valuable fundamental work. In fact, the harvested area data estimated in this study is not only used for subsequent production mapping but can also support research in other related fields, such as land use change analysis and agricultural policy assessment.

3) Regarding the writing issue of the methods section, we fully agree with you suggestion. We will adjust the current writing approach and, when introducing the research methods, first explain the theoretical basis and main assumptions of the method, and then systematically explain the technical implementation steps in the
form of an algorithm flow chart. In this process, we will also pay attention to supplementing necessary formulas and parameter explanations to enhance the rigor and reproducibility of the method description.

Comment 9:

Line 214: a typical writing error 'First, the time series data are clipped by crop phenology to obtain the data corresponding to the crop growth period.' How can the series datasets are clipped by crop phenology? Is it separated into different seasons? Or separate various crop types according to their own phenology? However, these series datasets also include location, terrain or soil according to table 1. How to clip, and why clip these features?

Response to Comment 9:

We sincerely appreciate your comments. As you mentioned, the expression "clipping" is indeed not rigorous and accurate enough, which can easily cause misunderstandings. We will follow your advice to carefully revise this part of the content in the revised manuscript, striving to accurately and clearly describe the processing of time-series data.

1) In fact, the method we adopted is not "clipping" but extracting time windows and calculating feature indicators from time-series data based on crop phenology information. Specifically, we first determine the time range of the main growth stages (such as sowing, growing and maturity) for each crop type according to the crop phenology; then, we extract the corresponding remote sensing, meteorological, and other time-series data based on the main growth stages of each crop as time windows; finally, within each time window, we calculate the statistical feature values (such as maximum, minimum, standard deviation and total sum) of the time-series indicators and use them as input features for the model. The reason for performing this data processing is based on the following considerations: First, crops have different sensitivities and response mechanisms to environmental conditions at different growth stages. Selecting environmental factor data from specific growth stages helps to improve the correlation between environmental factors and production; second, there are differences in phenology between different crop types. Separately extracting environmental factor data for key growth stages of each crop type can highlight the differences in crop responses to environmental conditions. Therefore, through the definition of crop phenology, we have achieved the matching of environmental factor time-series data with key growth stages of crops and constructed a time-window-based indicator system for different crop types.

2) As for the location, terrain, soil, and other time-invariant environmental factor data in Table 1, our processing method is to directly use their original values or standardized values as input features for the model, without time-window
processing. The reason for listing them in the summary table of time-series data in Table 1 is that they, together with the time-series data, constitute the input feature set of the production estimation model. This point may not be clearly expressed in the text, leading to some ambiguity.

3) Thank you again for your valuable comments. We will follow the above ideas to revise the relevant expressions in line 214 and its context to more accurately and systematically describe the processing of time-series data.

Comment 10:

Table 1: the title of table is just 'input features'? what does 'dimensions' mean? What does the total dimension indicate?

Response to Comment 10:

We sincerely appreciate your careful review and pertinent comments on the table content. We will carefully revise Table 1 to improve the quality of information transmission in the table. The main purpose of this table is to list the types of input data used for model training, their temporal resolution, and the extracted features and their dimensions. Through the table, readers can clearly understand the basic attributes of each type of input data and the dimensions of the feature vectors extracted from the raw data.

1) First, we will modify the table title to more accurately and comprehensively summarize the main content of the table. The new table title is proposed as "Table 1. Input data and extracted features used for model training." This title clearly states that the variables listed in the table are the input data and features of the crop production estimation model, providing necessary background information for readers to understand the table content. At the same time, this title also echoes the relevant descriptions of input data and feature engineering in the main text, which helps to enhance the logical consistency of the entire article.

2) Second, we will optimize and adjust the column names of the table to express the meaning of each column more accurately and concisely. For example, change the column name of the second column from "Feature type" to "Data type" to clarify that this column represents the type of input data (such as annual data, time-series data), rather than the type of extracted features. Change the column name of the third column from "Images per year" to "Temporal resolution" to highlight that this column reflects the temporal resolution information. Below the table, we will also add brief table notes to provide necessary explanations of the main content represented by the rows and columns of the table, helping readers better understand the organizational logic and information structure of the table.

3) Regarding the issue of "dimensions," we will add footnotes in the table to strictly
define the connotation and measurement units of this term. Specifically, "dimensions" refer to the length of the feature vector extracted from each type of input data, which determines the representation capability of that type of data in the model's feature space. Finally, regarding the total dimension, it refers to the total number of dimensions of the feature space obtained by summing the feature dimensions of all input data, reflecting the breadth and depth of information covered by the model inputs. In this study, we used 13 categories and 41 dimensions of input features, which comprehensively characterize the biophysical mechanisms of the crop production formation process. In the revised manuscript, we will further consider and refine the connotation, measurement, and representation of the total dimension information to provide readers with more standardized and clear model complexity information.

Comment 11:

Line 222: 'these correlations are largely consistent within local regions', what do you mean here? It is meaningless to correlate production and harvested area, which is an obvious correlation.

Response to Comment 11:

We completely understand the your question about the expression in line 222, we will carefully revise this expression and its context, striving to accurately and concisely explain our research findings and their significance

1) As you pointed out, there is usually a significant linear correlation between production and harvested area, which has been widely recognized in the academic community. The expression in line 222 did not effectively convey our research basis and may cause confusion for readers. We apologize for this. In fact, what we want to emphasize is that, in addition to harvested area, production also has complex non-linear coupling relationships with multiple environmental factors, and these relationships exhibit significant regional differentiation characteristics in space. It is based on the recognition of this regional heterogeneity that this study adopts an agro-ecological zoning modeling strategy, striving to establish targeted production relationships in different regions.

2) Therefore, in order to more accurately and clearly convey the theoretical basis of this study, we will reorganize and restate line 222 and its context. The proposed revision is: "Within each AEZ, crop production at the pixel level exhibits non-linear relationships with multiple environmental drivers. Moreover, these non-linear relationships vary significantly across different AEZs. This highlights the importance of developing zone-specific production allocation models to capture spatial heterogeneity." In the revised manuscript, we will also supplement the theoretical explanation of the production composition mechanism in the literature review section, emphasizing the interactive influence
of natural conditions and artificial management; in the discussion section, we will further analyze the advantages and limitations of the agro-ecological zoning model and future improvement directions.

3) Thank you again for your valuable comments, which are of great benefit to improving the logical expression of our article.

Comment 12:

Line 279: you may not use comparative degree in the sentence when you accurately did not make comparison between two things. There are same grammar errors in the close following sentences.

Response to Comment 12:

1) We sincerely appreciate your careful review and pertinent criticism. We will more strictly adhere to English grammar rules in the revised manuscript. While correcting grammatical errors, we will also thoroughly check other language expression issues in the article, such as redundancy, repetition, and inappropriate wording, striving to make the writing more concise, fluent, and idiomatic.

2) To further improve the language quality of the article, we will invite native English-speaking peers to review and polish the revised manuscript.

Comment 13:

Line 284: 'regions --- have ---' is not good expression. I strongly suggest the authors rewrite the manuscript.

Response to Comment 13:

We sincerely appreciate your suggestion on the writing quality of the article. We fully accept your recommendation and will carefully rewrite and refine the entire manuscript. We will also invite native English-speaking peers to review and polish the revised manuscript.

Comment 14:

Line 290 and 295: it is very mess and redundant paragraph. Especially, at the result section, the authors talked a lot of potential implications which should be put into the discussion section, and by the way these implications also mentioned in the introduction and discussion sections too.
Response to Comment 14:

1) We sincerely appreciate your valuable comments on the article structure and content arrangement. We fully agree with your point of view that excessively discussing the research implications in the results section is indeed a serious problem that can disrupt the logical structure of the article and cause confusion for readers. We deeply apologize for any inconvenience caused by this. We will carefully revise lines 290, 295, and related paragraphs according to your suggestions.

2) At the same time, we will also check the entire manuscript to see if there are content repetition issues in sections such as the introduction, results, and discussion, especially regarding the description of research implications and significance. For unnecessary repetitive discussions, we will delete them; for necessary content, such as problem statements in the introduction and results interpretation in the discussion section, we will focus on how to express them in a more concise and accurate language, avoiding verbosity and redundancy.

Comment 15:

Line 305: this paragraph is to introduce the method, which should be put into the method section, and it is no need to introduce the common information as the reader easily know it.

Response to Comment 15:

1) We completely agree with the your point of view that placing method-related content in the results section is indeed not reasonable enough and will affect the logical structure and readability of the article. Thank you for your careful review and reminder. We will move line 305 and related paragraphs to the methods section in the revised manuscript to ensure the normative and completeness of the article structure. At the same time, we will also appropriately delete some of the content, removing some overly basic background knowledge introductions, and highlighting the key information descriptions of the methods used in this study.

2) Thank you again for your valuable suggestions. We will scrutinize the organization of the article with more rigorous standards, ensuring that the focus of each part is prominent, the details are appropriate, and the content is coherent, so that the revised manuscript better meets the publication requirements of the ESSD journal.

Comment 16:

Figures (fig. 2 and 3 at least) should show up after the main text that mentioned them.
Response to Comment 16:

We sincerely appreciate your careful examination of the correspondence between the figures and the main text in the article and for pointing out the issue of figures not being closely adjacent to the text. We will carefully check and adjust the positions of all figures in the revised manuscript to ensure that the figures are in the correct positions to help readers read and understand better.

Comment 17:

Line 309: I cannot read these numbers in fig. 3.

Response to Comment 17:

We sincerely appreciate your pointing out this issue. Regarding the figure and table analysis issues in line 309 and its context, we will systematically sort out the figure and table analysis paragraphs in the article, carefully check each numerical description, and ensure that they can all find direct basis in the corresponding figures and tables. We will also proofread the figure and table titles and legends to check the consistency of their content descriptions with the main text; verify that the symbols and abbreviations used in the figures and tables are all explained in the main text.

Comment 18:

Line 350-360: you may consider to improve the writing here.

Response to Comment 18:

We sincerely appreciate your valuable suggestions on the writing. Regarding the content of lines 350-360, i.e., the numerical analysis part of the "Evaluation of Model Performance in Different Regions" section, we will optimize the writing, sorting out the logical thread of data analysis, ensuring clear analysis ideas, enhancing the coherence of the context, and making the text expression more fluent and natural. At the same time, in order to further improve the overall language quality of the article, we will invite native English-speaking peer experts to polish the entire manuscript to meet the requirements of the ESSD Journal.

Comment 19:

Section 3.3: this section is the best choice to examine the reasonability of the method. All four figures showed the most important role of location for simulating production, which is unreasonable. Why did the authors select the location as an input feature?
And why the location is important for simulating production. These results made me suspect this method. I really hope the authors be careful here, and the wrong method made the validation not too bad but will induce totally wrong regional or global distribution. Besides, the satellite-based features should play an important role, but they did not in this study. The explanation of this section does not make sense mostly. For example, at paragraph with line 380, and most of these explanations also are correct for other crops.

Response to Comment 19:

1) We sincerely appreciate your valuable comments. After careful analysis, we realize that directly taking the average of the feature importance of each region on a global scale is indeed unreasonable. This analysis approach may weaken the differences in crop planting conditions and model influencing factors between regions, and cannot objectively reflect the key features of different agro-ecological zones. In fact, during the experiment, we also observed that for different regions and crop types, there are significant differences in the dominant factors affecting production estimation. Simply averaging the feature importance of all regions may obscure this heterogeneity, leading to the location feature being overly emphasized while the roles of other important features are underestimated.

2) In response to the above problems, we will make major adjustments to the feature importance analysis method in the revised manuscript. Specifically, we will summarize the key features of the corresponding crop production estimation model for each region according to the agro-ecological zoning and crop type, and present them in the form of a heat map, as shown in Figure 3, Figure 4, Figure 5 and Figure 6. By horizontally comparing the analysis results of different regions, we will more intuitively and accurately present the differences between regions, highlighting the specificity of different agro-ecological zones in the production composition mechanism. Due to the large number of indicators and regions, the readability of the figures below may be insufficient. We will optimize them in the revised manuscript to present them in a clearer way.
Figure 3. Heatmap of feature importance for each modeling region: Maize.

Figure 4. Heatmap of feature importance for each modeling region: Wheat.
3) **Regarding the rationality of using location as a model input feature**, we will provide a more detailed explanation and discussion in the text. The choice to include location information in model training is mainly based on the following considerations: First, location features are not used to characterize the production differences between agro-ecological zones, but to represent the spatial association of different pixels within the agro-ecological zones. In the existing gridded
analysis framework, if location information is not introduced, the model will treat each pixel as an independent individual, ignoring the correlation between adjacent pixels in production composition. By introducing location features, the model can better learn and utilize the spatial autocorrelation between pixels, thereby improving the accuracy of production estimation. Recent studies have also shown that tree-based ensemble learning algorithms (such as XGBoost) can effectively capture the spatial association information contained in location features [1-3]. In the revised manuscript, we will appropriately increase the citation and discussion of these literatures to highlight the scientific and necessary nature of using location features. It should be noted that we are not trying to replace other environmental and management factors with location features, but rather use them as a supplement to improve the model's ability to characterize the spatial differentiation patterns of production from multiple dimensions. We believe that on the basis of comprehensive consideration of natural conditions and location associations, the role of satellite remote sensing and other factors will be more fully utilized.

4) Regarding the problems in the explanation part of Section 3.3, we will carefully sort out the existing expressions, find and correct the unreasonable or logically confusing arguments. At the same time, we will also pay more attention to the interpretation of the results of different crops, deeply analyzing the reasons for the model's performance differences in different crops, and improving the pertinence and effectiveness of the explanations. We strive to accurately convey the applicable conditions and limitations of the model through the optimization and improvement of the explanation content, providing necessary references for readers to comprehensively and objectively understand the research results.

Comment 20:

3.4 Comparing with Existing Datasets: I don't think this dataset is consistent with other existing datasets. Like fig. 9 showed the large difference compared to SPAM2010 for all four crops. It can also be found the systematic differences from fig. 10.
Response to Comment 20:

We sincerely appreciate your questioning on the data comparison results. We will focus on improving the data comparison section in the revised manuscript, striving to present a more comprehensive and clear data quality assessment result to the readers.

Regarding the comparison results with SPAM 2010:

1) We indeed did not effectively show the consistency level between the two datasets in Figure 9 of the preprint. Limited by the form of the scatter plot, it is difficult for readers to fully understand the distribution density of the two datasets in different value ranges, which may overestimate the degree of difference between them. In order to more intuitively and accurately present the actual differences between GGCP10 and SPAM 2010, we performed pixel-by-pixel difference calculations on the two datasets and plotted a frequency distribution histogram of the differences (as shown in Figure 7).

![Histograms of Pixel Differences](image)

Figure 7. Frequency distribution histogram of pixel differences between GGCP10 and SPAM 2010: (a) Maize; (b) Wheat; (c) Rice; (d) Soybean.

2) From the histogram, it can be seen that the pixel differences between the two datasets are mostly concentrated in the range of -0.89 kilotons to 0.60 kilotons. For maize, wheat, rice, and soybean, the percentage of pixels falling within this range are 60.7%, 57.1%, 55.6%, and 74.0%, respectively. Further statistics show that the percentage of pixels with differences between -1 and 1 reaches 66.4%, 64.5%, 60.3%, and 78.2%, respectively. Although there are still a small number of pixels with absolute difference values greater than 5.00 kilotons, their proportions in the four crops are relatively small, at only 8.3%, 5.3%, 13.2%, and 2.5%, respectively. Combining the above results, it can be seen that despite non-negligible local differences, GGCP10 still has a high degree of consistency with SPAM 2010 globally and in major regions.

3) Moreover, we will provide more details for evaluating the consistency and difference between GGCP10 and SPAM 2010, as shown in Figure 8. We selected key regions such as Africa (maize), Western Europe (wheat), Southeast Asia (rice), and Brazil and Argentina in South America (soybean). Due to the
differences in the definition of arable land between the two datasets, inconsistencies in the covered pixels are inevitable. From a detailed perspective, the two datasets have very high consistency in high-production regions, while inconsistent regions are mainly located in low-value areas. Additionally, compared to SPAM2010, GGCP10 exhibits smoother spatial transitions.

Figure 8. Spatial comparison of crop production between SPAM 2010 and GGCP10 datasets for selected regions: (a) Maize production in Africa; (b) Wheat production in Western Europe; (c) Rice production in Southeast Asia; (d) Soybean production in Brazil and Argentina, South America.

4) In the revised manuscript, we will use more appropriate charts to provide readers
with a more accurate and detailed perspective for difference assessment. At the same time, we will also appropriately increase the quantitative description and discussion of consistency levels in the main text to further highlight the overall reliability of GGCP10.

Regarding the comparison with AsiaRiceYield4km

1) We believe your comments are very pertinent. GGCP10 does show a high degree of consistency with AsiaRiceYield4km in overall trends and patterns of change, which can be seen from the correlation coefficients (0.91-0.93) and coefficients of determination (0.83-0.86) between the two datasets. However, as revealed in Figure 10 in the preprint, GGCP10 does exhibit a certain degree of systematic overestimation or underestimation in some high-value regions relative to AsiaRiceYield4km.

2) There may be multiple reasons for this local systematic bias. Among them, the difference in spatial resolution between the two datasets cannot be ignored. The original resolution of AsiaRiceYield4km is 4km, while GGCP10 is 10km. For comparison purposes, we resampled the former to a 10km resolution. During the downscaling process, local high and low value differences may be smoothed to a certain extent, resulting in a weakened gradient of change in some regions of the resampled AsiaRiceYield4km. On the other hand, there are also differences in the algorithms and models used by the two datasets in their ability to characterize local production heterogeneity.

3) In addition, differences between the two datasets in terms of training sample representativeness, data source quality, mixed pixel processing, etc., may also introduce systematic biases in local regions. In the revised manuscript, we will use spatial analysis methods to meticulously characterize the local difference patterns between GGCP10 and AsiaRiceYield4km, focusing on regions where the two datasets show significant deviations in high-value areas. We will visually present the spatial distribution of these regions through difference maps, scatter density plots, and other means, and discuss the possible causes of these systematic biases.

For the comparison with India DES and USDA data

We will also refine and improve the comparison with India DES and USDA data in the revised manuscript. In addition to showing global consistency indicators, we will also select typical regions to focus on analyzing the degree of agreement between GGCP10 and validation data at the local scale.

1) For example, in Figures 9, 10, 11 and 12, we showcase the spatial distribution of four crops at the county scale in 2010, 2015, and 2020 for both USDA survey data and GGCP10. The results demonstrate that the two datasets exhibit a high level of overall consistency. However, in some regions with lower production, the consistency is relatively poor. One possible reason for this discrepancy is that our data undergoes a consistency processing based on statistical data, while the
USDA data is derived from surveys. The USDA survey data may not fully align with the official statistical data due to factors such as sampling errors, differences in statistical calibers, and data collection methods. This can lead to inconsistencies between the two datasets, particularly in regions with lower production where the impact of these factors may be more pronounced. We'll discuss more details in a revised manuscript.

2) By providing a more in-depth analysis of the agreement between GGCP10 and USDA data at the local scale, we aim to offer readers a clearer understanding of the strengths and limitations of our dataset. This information will be valuable for users when applying GGCP10 data in different regions and production scenarios. Furthermore, by identifying areas where consistency could be improved, we can guide future efforts to refine our data processing methods and enhance the overall reliability of GGCP10.

![Spatial comparison of Maize production between USDA survey data and GGCP10 at the county level for the years 2010, 2015, and 2020.](image)

Figure 9. Spatial comparison of Maize production between USDA survey data and GGCP10 at the county level for the years 2010, 2015, and 2020.
Figure 10. Spatial comparison of Wheat production between USDA survey data and GGCP10 at the county level for the years 2010, 2015, and 2020.
Figure 11. Spatial comparison of Rice production between USDA survey data and GGCP10 at the county level for the years 2010, 2015, and 2020.
Figure 12. Spatial comparison of Soybean production between USDA survey data and GGCP10 at the county level for the years 2010, 2015, and 2020.

Thank you again for your valuable comments. In the revised manuscript, we will follow your suggestions to provide more detailed quantitative indicators and graphical explanations in the dataset comparison, and conduct a more comprehensive discussion on data limitation issues. We sincerely hope that these revisions can more comprehensively and forcefully demonstrate the advantages and shortcomings of GGCP10, providing an objective and transparent reference for data users and research peers. We also sincerely invite you to review the revised manuscript once we submit it and kindly request your continued valuable comments and suggestions.