
Dear Reviewer, 

 

Thank you for your valuable comments and suggestions. Below, we would like to 

address your concerns point by point. 

 

Comment 1: 

Spatial distribution of crops is critical information for food security, agriculture 

development and investment decisions, sustainable agricultural development etc. There 

have been multiple attempts, by different teams in the world, to produce global crop 

maps. And yet so far few attempts have been made to produce time series global crop 

maps. The GGCP10 dataset focuses on maize, wheat, rice, and soybeans and covers the 

years 2010 to 2020, the first temporally continuous, gridded dataset of crop production 

at the global scale. The dataset was constructed using a data-driven spatial production 

allocation model that incorporated multiple source datasets. The use of various data 

sources, including FAO statistical data, GAEZ+ 2015 annual crop data, and other 

sources, demonstrates a robust foundation for the study. This model was rigorously 

examined through pre-processing and consistency checks to ensure data accuracy and 

reliability. The incorporation of machine learning techniques for predicting crop yields 

and production is a forward-looking approach. These techniques have demonstrated 

solid performance in recent years. The approach of combining information from 

multiple sources, including climate, soil, and topographic data, is a commendable 

strategy for predicting crop production accurately. 

Response to Comment 1: 

We sincerely appreciate your positive evaluation of our work and your insightful 

summary of the significance of the paper. Your high appraisal of the importance of this 

research in constructing a temporally continuous and globally spatially covered gridded 

crop production dataset, as well as the robustness and innovativeness of the data-driven 

spatial production allocation model in integrating multi-source datasets, will be a great 

encouragement for our future research work. We will further refine the paper according 

to your valuable comments, striving to provide more long-term and accurate data 

support for global agricultural production mapping and food security research. Thank 

you again for your detailed review and valuable suggestions. We cordially invite you 

to continue providing us with your insightful feedback and guidance when we submit 

the revised manuscript. 



Comment 2: 

My first concern is that their whole modelling approach, production model in particular 

(see Section 2.2.3 Data-driven Model Training), implicitly assumes that the biophysical 

parameters alone could determine the crop production. In other words, their modelling 

approach assumes that the driven factors for the huge spatial heterogeneity of crop 

productivity (or production if crop area is counted) are mainly those biophysical 

parameters such as soil, AEZ zones, various vegetation indices, climate variables 

(multi-source indicators XI(i,j) as shown in their model, Line 225). Any breeders or 

agricultural economists would tell you that this is not true. Social economic factors such 

as crop seeds/varieties, crop management, fertilizer, pesticide are the major driven force 

in crop productivity (and so crop production). This is why, for example, the maize yield 

in a large estate farm in Zambia could be a few times higher than that of a subsistence 

maize farmer next door – just a few hundred meters away! Of course collecting the data 

for these parameters on a global scale is much harder, if possible at all. Without the 

inputs of these critical parameters, estimating crop yields spatially is a huge challenge. 

Response to Comment 2: 

We appreciate your insightful comments. We agree that socio-economic factors (such 

as crop management practices) play a crucial role in shaping the spatial heterogeneity 

of crop production. Obtaining such data on a global scale poses significant challenges, 

which is one of the limitations of the current research. We will supplement the 

discussion section of the paper to elaborate on this limitation. 

1) It is worth noting that although we lack direct data on crop management practices, 

some of the factors included in the model can, to a certain extent, reflect the 

spatial differences in crop management levels. For example, irrigation data 

reflects differences in irrigation management inputs, which greatly influence crop 

growth and production. Crop planting area data partially reflects farmers' planting 

preferences and resource allocation decisions for different crops, demonstrating 

farmers' responses to market conditions and policies. 

2) Some of the remote sensing-derived indicators we included can also reflect the 

impact of crop management to a certain degree. For instance, the Maximum 

Vegetation Condition Index (VCIx) describes the historical relative level of 

vegetation conditions during the study period. A higher VCIx indicates relatively 

better crop growth during that period, which to some extent benefits from farmers' 

good field management. Indicators such as Net Primary Productivity (NPP) and 

Leaf Area Index (LAI) reflect crop biomass accumulation and photosynthetic 

intensity. Higher NPP and LAI are often the result of good management. 

3) Moreover, agro-ecological zone data comprehensively considers the impact of 

natural conditions such as climate, soil, and topography on agricultural production. 

Different ecological conditions often correspond to differentiated planting systems 



and management patterns. Therefore, one important reason we chose to model at 

the agro-ecological zone scale is that we hope the model can characterize the spatial 

variation of production within the ecological zone through the differences in 

multiple variables within the zone. 

4) Of course, we also recognize that due to data limitations, the current model does 

not incorporate key crop management factors such as cropping systems, variety 

selection, and fertilizer use, which may obscure some important drivers of 

production variation. Therefore, in the discussion section, we will further analyze 

this limitation of the model and its impact on data quality. 

Comment 3: 

My second concern is that the paper is a data description paper and yet it misses the 

critical dataset: a global sub-national crop statistics data. Their major statistical data 

source is the FAOSTATA data at country level, which is too coarse for the gridded 

product. Crop type mapping is too complex and too dynamic to be able to be modeled 

without the actual sub-national statistics. For example, farmers may decide to reduce 

their maize area and instead plant more rice in the current season if they expect more 

rain in the coming season or simply they believe the maize price will go down next year. 

Any fancy modelling approach is difficult to capture that without the actual data. The 

paper itself emphasizes a lot on their modelling approach while ignoring the time-

consuming effort of collecting crop data for the four crops (maize, rice, wheat and 

soybean). I would say the latter is much more critical, in particular considering that the 

ESSD journal is, which I quote, "for the publication of articles on original research data 

(sets), furthering the reuse of high-quality data of benefit to Earth system sciences". 

Response to Comment 3: 

1) We strongly agree with your view on the importance of crop statistics at the 

national/regional level. However, we would like to further clarify that in this study, 

national-level statistics are mainly used for post-processing of model results, 

i.e., calibrating the gridded production estimates with national official statistics 

through consistency processing to ensure statistical consistency of the estimates at 

the administrative unit level. During the model training and prediction stages, we 

mainly use spatialized multi-source data such as remote sensing-derived indicators, 

meteorological and soil data, etc., which can provide high-resolution crop growth 

information to support fine-scale production mapping. Therefore, the spatial 

resolution of statistical data does not directly affect the modeling accuracy. 

2) Indeed, obtaining crop statistics at sub-national administrative levels is of great 

importance for understanding farmers' planting behaviors and assessing the impact 

of regional agricultural policies. To this end, we have made every effort to collect 

state/provincial-level crop statistics from major agricultural countries such as the 

United States, Canada, Argentina, Brazil, India, China, Thailand, and Australia 



through official channels and partnerships. However, as the reviewer mentioned, 

these data vary greatly in terms of access channels, update frequency, and 

spatiotemporal coverage, making it difficult to fully unify the format and 

connotation of data from different countries. If they are used for consistency 

calibration, it may be difficult to ensure statistical consistency at the national scale. 

3) In contrast, the national agricultural statistics released by the FAO have 

obvious advantages. Although the spatial resolution is coarser, the data sources 

are authoritative, the time series is long, and the official statistics of various 

countries have been systematically summarized and verified. At the current stage, 

using FAO data for global-scale production estimation result calibration can 

maximize the use of existing data resources while ensuring the consistency of data 

benchmarks across countries. Such global production mapping data based on a 

unified benchmark can better serve applications such as monitoring the SDGs and 

assessing global food security. Of course, in the long run, agricultural statistics at 

sub-national administrative levels are irreplaceable for understanding regional 

agricultural production processes and optimizing resource allocation. 

4) In addition, we would like to further emphasize that the collection, production and 

processing of the large amount of basic data used in this study is very time-

consuming. In addition to using publicly published data products, the potential 

biomass, CALF, and VCIx indicators we use require the research team to go 

through a series of complex processing steps from raw data acquisition to final 

indicator generation, including data storage, format conversion, radiometric 

calibration, atmospheric correction, geometric correction, cloud and snow masking, 

vegetation index calculation, and pixel compositing. Each step requires 

professional algorithm design and parameter tuning to ensure data quality. 

Comment 4: 

The paper could benefit from more transparency regarding data preprocessing steps, 

such as how data clipping based on crop phenology is conducted and how missing or 

corrupted data are handled. For example, Line 179-183, Where does CA(i,t) come from? 

How to divide CA(i, t) into CA(i,j) ? Not clear at al. I think (I am not 100% sure as I 

have a hard time to understand this section) "reference year" at Line 184 should be 

"target year". After reading the section multiple times, I still don't know how the 

harvested area is estimated at the pixel level. I considered myself as an expert, imagine 

how an ordinary reader would feel! 

Response to Comment 4: 

Thank you for your thorough review and constructive suggestions. We will follow your 

advice to provide a clearer and more detailed description of the data preprocessing steps 

in the data and methods section, so that readers can accurately understand each 

processing step. 



1) First, regarding data clipping based on crop phenology, we adopt a method of 

extracting time windows and calculating feature indicators from time-series 

data based on crop phenology information. Specifically, we first determine the 

time range of the main growth stages (such as sowing, growing and maturity) for 

each crop type according to the crop phenology; then, we extract the corresponding 

time-series data based on the main growth stages of each crop as time windows; 

finally, within each time window, we calculate the statistical feature values (such 

as maximum, minimum, standard deviation and total sum) of the time-series 

indicators (such as cumulative precipitation, average air temperature) and use them 

as input features for the model. For the processing of missing or abnormal data, we 

will also provide detailed technical details in the revised manuscript to facilitate 

readers' understanding and improve the transparency and reproducibility of the data 

processing methods. 

2) Secondly, regarding the lack of clarity in the description of harvested area 

estimation at the pixel level in lines 179-183 and the surrounding context. The 

estimation of harvested area is one of the important innovations in this study. We 

combine the gridded data (harvested area, planted area) of the reference year, the 

gridded data (planted area) and statistical data (harvested area) of the target year to 

dynamically estimate the harvested area of each grid within the region. Due to the 

limited space, we will introduce the principles and processes of harvested area 

estimation in detail in the revised manuscript, striving to clearly describe this 

innovative method so that both experts and ordinary readers can better understand 

it. 

3) Regarding other detailed issues you mentioned, such as CA(i,t), CA(i,t) 

represents the total planted area of all crops in the i-th grid in the t-th growing 

season, which is obtained by multiplying the cropped arable land fraction (CALF) 

of the i-th grid by the cropland area of that grid. For line 184, "reference year" 

should indeed be "target year". We will carefully proofread and refine this part of 

the content in the revised manuscript. 

Thank you again for your valuable comments. We will revise the paper accordingly to 

meet the publication requirements. 

Comment 5: 

Model Selection: The paper mentions the selection of machine learning models but 

lacks specific details about the criteria used for model selection. Providing more insight 

into the model selection process would enhance the paper's transparency. 



Response to Comment 5: 

We greatly appreciate your suggestion. We agree that providing more details in the 

model selection section will help improve the transparency of the research. We will 

expand and refine this part of the content. Specific revisions include: 

1) First, in the revised manuscript, we will explain in detail the reasons for choosing 

machine learning models. Compared to traditional statistical models, machine 

learning models have advantages in dealing with complex nonlinear relationships 

and high-dimensional data. At the same time, our previous research has shown that 

machine learning models perform well in crop production estimation[1]. Therefore, 

we adopt machine learning models to construct the spatial allocation relationship 

of production. Regarding the selection of Random Forest, XGBoost, and CatBoost 

as candidate models, it is mainly based on their good performance and robustness 

in the field of geospatial modeling: Random Forest is one of the most commonly 

used algorithms in ensemble learning; XGBoost has achieved excellent results in 

various data mining competitions and has been proven to have significant 

advantages in processing high-dimensional and nonlinear relationship data; 

CatBoost has shown outstanding performance in multiple data science 

competitions and is considered a powerful tool for handling mixed data. We will 

provide a more detailed explanation of the reasons for model selection in the 

revised manuscript. 

[1] Li, Y., Zeng, H., Zhang, M., Wu, B., Zhao, Y., Yao, X., Cheng, T., Qin, X., and Wu, F.: A 

county-level soybean yield prediction framework coupled with XGBoost and 

multidimensional feature engineering, International Journal of Applied Earth Observation and 

Geoinformation, 118, 103269, https://doi.org/10.1016/j.jag.2023.103269, 2023. 

2) Secondly, regarding the specific process of model selection, we adopt a nested 

cross-validation strategy to optimize the hyperparameters and evaluate the 

performance of the three models. Specifically, we first divide the samples into a 

training set and a test set. On the training set, we use 5-fold cross-validation to 

perform grid search optimization on the model hyperparameters. By traversing 

different hyperparameter combinations, such as the number of trees and maximum 

depth of Random Forest, learning rate and number of trees of XGBoost and 

CatBoost, etc., we find the optimal hyperparameter configuration for each model. 

Then, we retrain the models using the optimized hyperparameters and evaluate the 

prediction performance of the models on the test set. The model performance 

evaluation metrics is coefficient of determination (R2), which measure the model's 

ability to explain production variations. We select the model with the highest R2 

on the test set as the optimal model for that agro-ecological zone. It should be 

emphasized that the above hyperparameter optimization and model evaluation 

process is carried out independently within each agro-ecological zone to obtain the 

optimal model for the characteristics of different regions. This strategy helps to 

improve the model's ability to characterize regional production variation 

https://doi.org/10.1016/j.jag.2023.103269


characteristics and enhance the accuracy of regional production estimation. In the 

revised manuscript, we will also display the optimal model for each region in a 

spatialized manner (as shown in Figure 1) to intuitively show the advantageous 

distribution of different models in each agro-ecological zone, aiming to reveal the 

association between model selection and regional characteristics, and explore the 

potential relationship between model applicability and regional factors such as 

climate, soil, topography, and planting systems. It should be noted that this figure 

is intended to intuitively show the spatial distribution pattern of model selection 

results. To simplify the illustration, we have not shown national boundaries. For 

countries without subdivided agro-ecological zones, model selection is performed 

at the national scale. 

 

Figure 1. Spatial distribution of optimal model selection results. 

3) In addition, if the paper is finally published, we commit to providing complete 

model training and evaluation code, as well as detailed code documentation, which 

will help readers fully understand our modeling process and reproduce or improve 

our methods in other studies. 

Through the above supplements and improvements, we believe that the transparency of 

the model selection section will be greatly enhanced, allowing readers to better 

understand and evaluate our modeling ideas. Thank you again for your valuable 

suggestions. 

Comment 6: 

Data Limitations: While the paper discusses data limitations briefly, a more thorough 

exploration of potential data limitations, such as inaccuracies in remote sensing data or 

potential biases, would provide a more comprehensive view. 



Response to Comment 6: 

We strongly agree with the your viewpoint that a comprehensive discussion of data 

limitations is valuable for objectively evaluating research results and guiding future 

research. We will expand and deepen this part in the revised manuscript.  

1) First, regarding the uncertainty of remote sensing data, we will focus on the 

following points: Firstly, the quality of remote sensing data is affected by factors 

such as sensor performance, atmospheric conditions, and surface heterogeneity. In 

cloudy and rainy areas, clouds and fog will obscure the surface, resulting in missing 

or decreased quality of data at some spatiotemporal resolutions. In cold high-

latitude regions, winter snow cover also affects the extraction accuracy of surface 

parameters. Secondly, errors may be introduced in the data processing steps such 

as radiometric calibration, atmospheric correction, and geometric registration, 

affecting the accuracy of the data. Furthermore, the mixed pixel problem may lead 

to insufficient representativeness of the extracted surface parameters, especially in 

regions with severe fragmentation of farmland. These factors may cause systematic 

biases in remote sensing products in individual regions or time periods, such as 

overestimating vegetation indices during the growing season. 

2) Secondly, regarding the potential biases in statistical data, we will focus on the 

following aspects: First, differences in statistical caliber and standards may lead to 

insufficient comparability of data between different countries and regions. Second, 

statistical data may have biases such as underreporting, misreporting, and missing 

reports, which affect the reliability of the data.  

3) Third, we will provide detailed comparisons between GGCP10 and reference 

datasets to further explore the strengths and weaknesses of the GGCP10 data 

by conducting spatial consistency analyses. For example, in Figure 2 below, 

GGCP10 exhibits better spatial transitions compared to SPAM 2010; in Figure 3, 

GGCP10 and USDA survey data show high consistency in high-production 

counties, while in low- production counties, overestimation or underestimation 

may exist. In the revised manuscript, we will conduct more detailed analyses to 

better understand these patterns. 



 

Figure 2. Spatial comparison of crop production between SPAM 2010 and GGCP10 

datasets for selected regions: (a) Maize production in Africa; (b) Wheat production in 

Western Europe; (c) Rice production in Southeast Asia; (d) Soybean production in Brazil 

and Argentina, South America. 

 

Figure 3. Spatial comparison of Soybean production between USDA survey data and 

GGCP10 at the county level for the years 2010, 2015, and 2020. 



4) Then, we will also explore the scale effect and spatiotemporal matching issues. 

Production statistics are mostly at the administrative unit scale, while model input 

data are at the pixel scale, and the scale difference between the two may cause 

errors. The spatiotemporal resolution and boundary definitions of different data 

products may also not be completely consistent, affecting the accuracy of data 

matching and fusion. To reduce errors caused by inconsistent administrative 

boundaries, we consistently used the standard administrative boundary data 

provided by the FAO in data processing. On the other hand, the spatial resolution 

of our production data is 10 kilometers, which has a certain scale difference 

compared to the county-level scale of statistical data. This may lead to a certain 

averaging effect of the estimated county-level production, resulting in 

overestimation or underestimation when compared with county-level statistical 

production data. 

5) Finally, we fully understand that users may encounter situations where our 

production dataset is not completely consistent with local statistical data when 

using it. To address this issue, we will suggest the following processing strategies 

for users in the revised manuscript: First, it should be recognized that our data may 

have systematic overestimation or underestimation in individual regions, but 

overall, it can better reflect the spatial distribution differences of production within 

the region. Secondly, if users have more reliable regional statistical data, we 

recommend that users use these data for secondary calibration of our initial 

estimation results. Specifically, users can calculate the ratio coefficient between 

our initial estimates and the regional statistical totals, and then use this coefficient 

to proportionally scale the gridded production data to match the regional statistical 

totals. This post-processing method not only preserves the spatial distribution 

information of production revealed by our data but also utilizes local data to 

improve the accuracy of regional total estimation. 

Through the above discussion, we will fully respond to your concerns about data 

limitations, making the paper's discussion on data quality and applicability more 

comprehensive and objective. Thank you again for your valuable comments. We 

sincerely invite you to review the revised manuscript once we submit it and kindly 

request your continued feedback and suggestions. 
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