
Responses and Revisions to Comments 

Dear editor and reviewers 

Thanks for your reviewing and valuable comments of our manuscript entitled "A 

global estimate of monthly vegetation and soil fractions from spatio-temporally 

adaptive spectral mixture analysis during 2001–2022". We also appreciate you for 

providing insightful feedback and comments to strengthen our manuscript.  

We have revised our manuscript with considering each detailed suggestion that you 

have graciously provided. These major revisions include:  

◼ We have changed our data-sharing platform to Science Data Bank 

(https://doi.org/10.57760/sciencedb.13287, Sun and Sun, 2023) because the 

storage capacity of the previous platform (Zenodo) couldn't guarantee the sharing 

of all our data. We found errors in the original shared data during exporting from 

GEE, and we've addressed these issues in the new sharing platform. 

◼ We have refined the validations and comparisons of our product recommended 

by reviewers, which includes the utilization of a new land cover reference dataset 

(n=1083) and the addition of two global-scale fractional vegetation cover 

products (GLASS fractional vegetation cover dataset and GEOV Fcover dataset). 

◼ We conducted in-depth analysis and discussion on the significance and reliability 

of our product, which encompass elucidating the necessity of data through 

previous studies (especially fractional vegetation cover) in Introduction, 

providing a clear depiction of the data validation and comparison process and 

outcomes in Methods and Results, and engaging in an in-depth discussion 

regarding the validation and comparison in Discussions. 

◼ We adjusted the structure of the article, primarily to emphasize the n the process, 

outcomes, and discusses on reliability and limitations of data validations and 

comparisons. 

◼ We have also further enhanced the presentation of the paper. 

Besides these revisions, all authors checked the manuscript carefully and several 

minor revisions have been done to finalize the manuscript.  

The following is a point-by-point response to the questions and comments. For your 

convenience, revisions made by the authors have been highlighted in red color in the 

both response and revised manuscript, which could be easily checked. We hope that 

our revisions and responses can satisfactorily address all the issues and concerns. 

 

 

 



Reviewer 1 

Spatially-explicit monitoring of vegetation and soil fractions is critical for 

understanding terrestrial ecological processes. There are thus many global 

vegetation fractional cover products including ENVISAT, CYCLOPES, GEOV, 

MuSyQ, GLASS, and CGLS. The authors provided a unified monthly fractional 

vegetation-soil nexuses product during 2001-2022 with MESMA. As a user, we 

would like to rely on more precise satellite-derived fraction data. Therefore, I pay 

more attention to the credibility of the new fraction products presented in this paper. 

This paper merely presented the evaluation of the estimates of vegetation and soil 

fractions datasets in Section 3.1 and Section 4.1, respectively. However, this 

validation is inadequate. It’s difficult to persuade me that the presented product is 

superior to existing fraction products. Thus, further validations are required. 

We value your thoughtful recommendations regarding the validation of vegetation 

and soil fractions. Acknowledging the crucial role of data reliability in accurately 

depicting land surface processes, our manuscript incorporates CLCVRD data along 

with other land cover and land use reference data for validating the estimated 

vegetation and soil fractions in Sections 3.1, and provides additional fractional 

vegetation cover data for comparison in Section 3.2.  

First, to enhance the validation process for the showcased product, we have enhanced 

the procedural description for estimating fractional vegetation-soil compared to 

GLCVRD, ensuring product reliability (page 11, line 236-251).  

“Moreover, due to challenges in conducting fraction estimation validation through 

field surveys, we employ reference data obtained from high spatial resolution images 

as validation set. We thus select for two sets of reference data that their land cover 

classification systems are closely related to our five endmembers. 

... 

Firstly, we filter the estimated fractions based on the corresponding year and month 

obtained from the reference data. Simultaneously, aligning the interpretations of land 

cover types with our endmembers, we pair them accordingly, that is, tree and other 

vegetation represent PV and NPV, barren stands for BS, water and shadow 

correspond to DA, and ice & snow denote IS. Subsequently, we reclassify these 

paired land cover types and calculated their percentage within 5×5 km blocks, in 

which we exclude cloud coverage (named no data). Additionally, utilizing these 

cloud-free pixels in each block, we compute the mean of fractional values for each 

endmember, and then compare these estimated fractions with the measured 

percentage of paired the reclassified land cover types to validate the reliability of our 

product (Fig. S4).” 



We further authenticate our product through incorporating comprehensive global land 

cover and land use reference data, which were obtained from the Geo-Wiki 

crowdsourcing platform across four campaigns1 (page 12, line 265-276).  

“Besides, we also authenticate our product through incorporating comprehensive 

global land cover and land use reference data (Fritz et al. 2017), which were obtained 

from the Geo-Wiki crowdsourcing platform across four campaigns: Human impact, 

wilderness, reference and disagreement. Over 150000 samples of land cover and land 

use were acquired in this reference data. To effectively validate our product, we need 

to filter the reference data, considering aspects such as data acquisition time, 

measurement methods, and credibility. We select first three campaigns, which have a 

good match with MODIS pixels (size 1×1km) and were observed during 2001 to 2022, 

and then select 1038 high feasibility reference data through the confidence 

information of land cover estimates and the status of use of high spatial resolution 

imagery provided by the metadata. Finally, Similarly to the procedural description 

used for fractional vegetation-soil compared to GLCVRD, we reclassified ten classes 

of this dataset into our four groups of endmembers, including (1) tree cover, shrub 

cover, herbaceous vegetation/grassland, cultivated and managed, and mosaic of 

cultivated and managed/natural vegetation to PV and NPV; (2) flooded/wetland and 

open water to DA; (3) urban and barren to BS; (4) snow and ice to IS. This involved 

comparing the measured percent of land cover with the mean of endmember fractions 

within the corresponding 1x1km pixels.” 

 
1 Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D., Duerauer, M., Karner, M., Dresel, C.,r 

Laso-Bayas, J. C., Lesiv, M., Moorthy, I., Salk, C. F., Danylo, O., Sturn, T., Albrecht, F., You, L., Kraxner F., 

Obersteiner, M.: A global dataset of crowdsourced land cover and land use reference data. Scientific data, 4, 1-8, 

https://doi.org/10.1038/sdata.2017.75, 2017. 



 

Fig. S5 Evaluation of global fractional endmember estimates based on land cover 

reference data. a, the location of high-feasibility land cover reference data. b-d, 

Scatter plots of PV+NPV, BS, DA, IS fractions against land cover reference data 

Moreover, in addition to the original two datasets, we included two additional datasets 

recommended by you for conducting relevant comparisons. Finally, we strengthened 

the comparisons between our generated data and four existing datasets: NDVI, 



MOD44B Vegetation Continuous Fields product, GLASS fractional vegetation cover 

dataset, and GEOV Fcover dataset in Section 2.4 Comparisons and uncertainties 

analysis (page 12-13, line 278-293), and present results in Section 3.2 Compared with 

other datasets and traditional spectral mixture analysis model. Such comparisons 

include bi-dimensional histogram of fractional endmembers and other dataset (Fig. 4) 

and detailed figures (Fig. S6). 

“To verify the consistency and merits of our dataset against existing ones, we 

conducted comparisons with four distinct pre-existing datasets: NDVI, MOD44B 

Vegetation Continuous Fields product, GLASS fractional vegetation cover dataset, 

and GEOV Fcover dataset.  NDVI is derived from monthly synthesized MCD43A4 

images. Both mean values of NDVI and our estimated fractional PV across all years 

and months are considered for comparison. The MOD44B Vegetation Continuous 

Fields product provides annual information about the percent tree cover, percent non-

tree cover, and percent non-vegetated within each 250-meter pixel globally (DiMiceli 

et al., 2015). Consequently, we compare vegetation cover proportions—sum of 

percent tree cover and percent non-tree cover—to the sum of fractional PV and NPV. 

To align spatial and temporal resolutions, we aggregated the sum of percent tree cover 

and percent non-tree cover to a 500-meter scale. Simultaneously, we computed 

monthly Fractional PV and NPV as annual averages. The GLASS fractional 

vegetation cover dataset, offering an 8-day temporal frequency and dual spatial 

resolutions of 0.05° and 500 meters, was generated using a machine learning 

approach correlating MODIS reflectance with fractional vegetation cover (Jia et al., 

2015). In our study, the 500-meter GLASS data was utilized to validate our estimated 

fractions. We computed annual averages from all the CLASS fractional vegetation 

cover data within a year and compared it with the annual averages of Fractional PV 

and NPV. GEOV FCover is a 10-day product estimated through the neural network 

using visible, near-infrared and shortwave infrared at 1km resolution (Baret et al. 

2013). We aggregate our product to a 1km spatial resolution, and compare their 

annual averages with the annual averages of GEOV FCover.” 



 

Figure 4: Comparisons with other datasets and traditional spectral mixture 

analysis models. a, b, c, d the bi-dimensional histogram of fractional endmembers 

and other dataset with bin size of 2%, including fractional PV against NDVI (a), 

fractional PV and NPV against fractional tree and non-tree vegetation of MOD44B 

vegetation continuous fields product (b), fractional PV and NPV against GLASS 

fractional vegetation cover product (c), fractional PV and NPV against fractional 

vegetation cover of GEOV Fcover product; e, f, the boxplot and violin plot for 

average of monthly 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 for two fixed endmember spectral curves using fully 

constrained linear spectral mixture models, including (e) average of all spectral 

spectra for each endmember and (f) existing spectral spectra from Small and Sousa 

(2019). 



 

Fig. S6 The detailed graphs for comparing different datasets. a, b, and c represent 

comparisons of vegetation abundance products in different scenarios, specifically, 

regions with low vegetation cover in arid areas, high vegetation cover in tropical 

rainforests, and transitional zones from low to high values. The compared products 

include our produced PV and NPV, MOD44B, GLASS, and GEOV. 

 

MESMA needs a large library of endmembers representative of each ground 

component. In Section 2.2.1, the paper depicted the selection of endmembers. I 

suggest that supplement some RGB images of these selected pure pixels. 



Thank you very much for your valuable suggestions, we've chosen several typical 

images representing selected pure pixel of each endmember. These images have been 

used as part of the supporting material (supplement) to underpin the reliability of the 

data. 

 

Figure S2: Typical images representing selected pure pixel of each endmember. 

a-o are tropical rainforest, temperate forest, cropland, grasslands, temperate deciduous 

forest in winter, crop residues, shrubs in dryland, moving sands, sand dunes, bare 

ground, moving sands. waters, bare rock, polar glaciers, and alpine glaciers.  

Please clarify the reason that the mean error and mean absolute error were used as 

accuracy metrics. 

The mean error (ME) and mean absolute error (MAE) are commonly used accuracy 

metrics in various fields, especially in statistics and machine learning, for assessing 

the performance of predictive models.  

Mean Error (ME): ME measures the average of all errors in a dataset where errors are 

the differences between predicted and actual values. ME helps in understanding the 

overall bias of the model. Mean Absolute Error (MAE): MAE is the average of the 



absolute differences between predicted and actual values. It measures the average 

magnitude of errors without considering their direction. It's easier to interpret as it 

provides a straightforward understanding of the average prediction error. 

Both ME and MAE are useful metrics to evaluate the accuracy of predictive models, 

the use of ME and MAE depends on the specific context of the problem and what 

kind of error measurement is more important for the analysis2. 

We thus improve the descriptions of these four accuracy metrics (page 11, line 253-

258). 

“ME measures the average of all errors in the dataset where errors are the differences 

between predicted and actual values, MAE calculates the average of the absolute 

differences between predicted and actual values, RMSE provides a measure of 

prediction error, whereas R2 offers insight into the amount of variability in the 

dependent variable that the model explains. These metrics provide a more 

comprehensive assessment of the model's accuracy, helping to understand different 

facets of its performance, such as bias, variability, and overall predictive power 

(James et al., 2013).” 

Please provide additional information on the source of GLCVRD, such as 

GLCVRD (Bruce Pengra et al., 2015). 

Thanks for your valuable suggestions, we have provided additional information on the 

source of GLCVRD (Olofsson et al. 2012; Pengra et al. 2015; Stehman et al. 2012)3. 

(page 11, line 240) 

“Global Land Cover Validation Reference Dataset (GLCVRD) is provided with a 2m 

reference dataset from very high resolution commercial remote sensing data within 5 

× 5 km blocks from 2003 to 2012 (Olofsson et al. 2012; Pengra et al. 2015; Stehman 

et al. 2012)” 

Could you please provide an explanation for the red dot appearing at the top of 

Figure 3? 

The overlaid red dots in Figure 3a were spatial distribution of the 5 × 5 km validation 

blocks of GLCVRD reference dataset. 

We have included this explanation in page 15, line 338-339: 

 
2 James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning. New York: springer, 

https://doi.org/10.1007/978-1-0716-1418-1. 2013 
3 Olofsson, P., Stehman, S.V., Woodcock, C.E., Sulla-Menashe, D., Sibley, A.M., Newell, J.D., Friedl, M.A., 

Herold, M.: A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens., 33, 

5768-5788, https://doi.org/10.1080/01431161.2012.674230,2012. 

Pengra, B., Long, J., Dahal, D., Stehman, S.V., Loveland, T.R.: A global reference database from very high 

resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree 

cover data. Remote Sens. Environ., 165, 234-248, https://doi.org/10.1016/j.rse.2015.01.018, 2015. 

Stehman, S.V., Olofsson, P., Woodcock, C.E., Herold, M., Friedl, M.A.: A global land-cover validation data set, 

II: Augmenting a stratified sampling design to estimate accuracy by region and land-cover class. Int. J. Remote 

Sens., 33, 6975-6993, https://doi.org/10.1080/01431161.2012.695092, 2012. 

https://doi.org/10.1080/01431161.2012.674230,2012


“The overlaid red dots were spatial distribution of the 5 × 5 km validation blocks of 

GLCVRD reference dataset (n=500)” 

Could you please provide a detailed procedure for fractional vegetation-soil 

estimates compared to GLCVRD? 

Thanks for your valuable suggestions, to enhance the validation process for the 

showcased product, we have enhanced the procedural description for estimating 

fractional vegetation-soil compared to GLCVRD through detailed textual descriptions 

and supporting figures (page 11, line 244-251). 

“Firstly, we filtered the estimated fractions based on the corresponding year and 

month obtained from the reference data. Simultaneously, aligning the interpretations 

of land cover types with our endmembers, we paired them accordingly, that is, tree 

and other vegetation represent PV and NPV, barren stands for BS, water and shadow 

correspond to DA, and ice & snow denote IS. Subsequently, we reclassified these 

paired land cover types and calculated their percentage within 5×5 km blocks, in 

which we excluded cloud coverage (named no data). Additionally, utilizing these 

cloud-free pixels in each block, we computed the mean of fractional values for each 

endmember, and then compared these estimated fractions with the measured 

percentage of paired the reclassified land cover types to validate the reliability of our 

product (Fig. S4).” 

 

Figure S4: Procedural description for estimating fractional vegetation-soil 

compared to GLCVRD. 



Line 332 “estimates vegetation and soil fractions”: estimates of vegetation and soil 

fractions 

Thank you very much for your careful review of our manuscript, we have corrected 

these errors and have also carefully examined and revised the manuscript to ensure 

the accuracy of the presentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer 2 

Monthly vegetation and soil fractions products are important to understand the 

global landcover change and evaluate the impacts of climate change and human 

activities on the terrestrial ecosystem. The topic is interesting and the MESMA 

algorithm may be a practical method for decoupling the mixed pixels. I 

acknowledge the potential of the algorithm; however, I have some major concerns 

regarding the dataset itself, including its significance, validation methods, as well 

as the overall organization of the article. Given that the ESSD journal focuses more 

on the dataset, I am unable to provide a positive evaluation. 

Thank you very much for your feedback on our manuscript. We understand your 

concerns regarding the significance and reliability of the vegetation and soil fractions 

products presented in our manuscript, possibly due to our insufficient description of 

advantages and validation. We believe our dataset holds certain advantages in terms 

of its significance and reliability. Our response primarily encompasses the following 

points: 

[Significance] (1) Our dataset surpasses traditional vegetation index and fractional 

vegetation cover datasets by offering a comprehensive view of various surface 

elements including vegetation, photosynthetic vegetation, bare soil, dark material, ice 

and snow. This expanded coverage not only enhances our comprehension of 

heterogeneous surface dynamics but also presents distinct advantages for modeling 

Earth's biophysical processes. Both our team and researchers have validated these 

advantages4. Consequently, we firmly believe in the practical significance of our 

dataset. (2) Unlike high-resolution fractional vegetation cover data typically 

constrained by temporal resolution limits, our dataset presents a unique perspective on 

surface evolution across extended periods (>20 years) and at high frequencies. 

Meanwhile, Currently, the academic community extensively utilizes high temporal 

resolution images like MODIS and AVHRR to analyze global surface changes and 

biophysical processes 5 , This suggests our 500-meter product stands out as 

 
4 Sun, Q., Zhang, P., Jiao, X., Han, W., Sun, Y., Sun, D.: Identifying and understanding alternative states of 

dryland landscape: a hierarchical analysis of time series of fractional vegetation-soil nexuses in China’s Hexi 

Corridor. Landscape and urban planning. 215,104225, https://doi.org/10.1016/j.landurbplan.2021.104225, 

2021. 

Franke, J., Roberts, D.A., Halligan, K., Menz, G.: Hierarchical Multiple Endmember Spectral Mixture Analysis 

(MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ., 113, 1712-1723, 

https://doi.org/10.1016/j.rse.2009.03.018, 2022. 

Daldegan, G.A., Roberts, D.A., Ribeiro, F.: Spectral mixture analysis in Google Earth Engine to model and 

delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. 

Remote Sens. Environ., 232, 111340. https://doi.org/10.1016/j.rse.2019.111340, 2019 
5 Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R.: 

China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 

122-129, https://doi.org/10.1038/s41893-019-0220-7, 2019 

  Qin, Y., Xiao, X., Dong, J., Zhang, Y., Wu, X., Shimabukuro, Y., Arai, E., Biradar, C., Wang, J., Zou, Z.: 

Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nature Sustainability, 2, 



exceptionally valuable globally. (3) Moreover, owing to the intrinsic significance of 

these surface endmembers, achieving high spatial and temporal resolution abundance 

data through spatiotemporal fusion6 becomes notably easier compared to traditional 

spectral or spectral index approaches. This attribute underscores the dataset's ability to 

capture intricate surface dynamics with enhanced precision. 

We have included a review about vegetation index and fractional vegetation cover in 

Section of Introduction (page 3, line 72-87) and discussed advantage of our product in 

Section 4.1 (page 24-25, line 455-469). 

Section 1: “Continuous vegetation indexes (e.g., normalized difference vegetation 

index (NDVI), enhanced vegetation index (EVI)) provide limited information on 

surface composition, which hinders our ability of understanding ecosystem’s 

structurally and functionally multifaceted shifts (Smith et al. 2019; Sun 2015; Zeng et 

al., 2023). In recent years, there have been significant advancements in fractional 

vegetation cover within the fields of remote sensing and environmental science. This 

progress has led to the development of various products at multiple resolutions, such 

as long-term global land surface satellite (GLASS), GEOV Fcover, multi-source data 

synergized quantitative remote sensing production system (MuSyQ) fractional 

vegetation cover (Baret et al. 2013; Jia et al., 2015; Mu et al., 2017; Zhao et al., 2023). 

These products primarily integrate and utilize data from different spectral bands and 

sensors, employing methods including machine learning and radiative transfer model. 

However, these data primarily focus on green vegetation, posing significant 

limitations in capturing information regarding non-photosynthetic vegetation and bare 

soil. This constraint also restricts the applicability of this data in arid regions. 

Although some initiatives and products focused on multi-element fractions, such as 

MOD44B and the Global Vegetation Fractional Cover Product (DiMiceli et al., 2015; 

Guerschman et al., 2015). For instance, the Global Vegetation Fractional Cover 

Product primarily targets arid regions, particularly Australia, focusing on 

photosynthetic vegetation, non-photosynthetic vegetation, and bare soil. Meanwhile, 

MOD44B achieves global-scale acquisition of trees, non-trees, and non-vegetative 

cover. There is a lack of unified classification systems among these products across 

global scale” 

Section 4.1: “Moreover, our product demonstrates good scalability in terms of time 

and endmember types. These monthly estimates of fractional vegetation-soil nexuses 

can be upgraded to multi-timescale (daily, yearly) products to serve different needs, 

and thus provide time series of multicomponent information on surface heterogeneous 

composition and interactive evolution. Besides, considering the meaningful physical 

interpretations of endmember fraction values, these endmembers can be conveniently 

 
764-772, https://doi.org/10.1038/s41893-019-0336-9, 2019. 
6 Small, C., Milesi, C.: Multi-scale standardized spectral mixture models. Remote Sens. Environ., 136, 442-

454, https://doi.org/10.1016/j.rse.2013.05.024, 2013. 

  Zhang, Y., Foody, G. M., Ling, F., Li, X., Ge, Y., Du, Y., & Atkinson, P. M.: Spatial-temporal fraction map 

fusion with multi-scale remotely sensed images. Remote Sensing of Environment, 213, 162-181, 2018. 



integrated across different temporal and spatial scales using spatiotemporal fusion 

methods (Zhang et al. 2018). The temporal and spatial variability of endmembers has 

always been a significant constraint in obtaining global-scale vegetation and soil 

fractions from imagery (Wang et al. 2021). The spatio-temporally adaptive framework 

employed helps to increase the representativeness of endmember selection, and 

MESMA also considers the suitability of each combination of these endmembers 

within each pixel. However, considering the limitations of computational resources, 

our solution on hierarchical clusters of the endmember spectra can improve 

considerably cost-effective unmixing of long time-series satellite records over globe 

under the trade-offs of certain accuracy requirements (Fig. 3). With the assumption of 

increased computational power in the future, we believe that utilization of 

combination models from selected endmember spectra (35 GV spectra, 40 BS spectra, 

25 NPV spectra, 16 DA spectra, and 15 IS spectra) or expanded endmember spectra 

may further improve the accuracy and stability of estimates of gradations of five 

surface vegetation and soil components at global scale.” 

[Reliability] Concerning data validation, we've improved endmember fraction 

validations through incorporating comprehensive global land cover and land use 

reference data, which were obtained from the Geo-Wiki crowdsourcing platform 

across four campaigns7. We conducted comparisons with four distinct pre-existing 

datasets: NDVI, MOD44B Vegetation Continuous Fields product, GLASS FVC 

dataset, and GEOV Fcover dataset. 

(1) We have improved validation through incorporating comprehensive global land 

cover and land use reference data, which were obtained from the Geo-Wiki 

crowdsourcing platform across four campaigns (page 12, line 265-276).  

“Besides, we also authenticate our product through incorporating comprehensive 

global land cover and land use reference data (Fritz et al. 2017), which were obtained 

from the Geo-Wiki crowdsourcing platform across four campaigns: Human impact, 

wilderness, reference and disagreement. Over 150000 samples of land cover and land 

use were acquired in this reference data. To effectively validate our product, we need 

to filter the reference data, considering aspects such as data acquisition time, 

measurement methods, and credibility. We select first three campaigns, which have a 

good match with MODIS pixels (size 1×1km) and were observed during 2001 to 2022, 

and then select 1038 high feasibility reference data through the confidence 

information of land cover estimates and the status of use of high spatial resolution 

imagery provided by the metadata. Finally, Similarly to the procedural description 

used for fractional vegetation-soil compared to GLCVRD, we reclassified ten classes 

of this dataset into our four groups of endmembers, including (1) tree cover, shrub 

cover, herbaceous vegetation/grassland, cultivated and managed, and mosaic of 

 
7 Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D., Duerauer, M., Karner, M., Dresel, C.,r 

Laso-Bayas, J. C., Lesiv, M., Moorthy, I., Salk, C. F., Danylo, O., Sturn, T., Albrecht, F., You, L., Kraxner F., 

Obersteiner, M.: A global dataset of crowdsourced land cover and land use reference data. Scientific data, 4, 

1-8, https://doi.org/10.1038/sdata.2017.75, 2017. 



cultivated and managed/natural vegetation to PV and NPV; (2) flooded/wetland and 

open water to DA; (3) urban and barren to BS; (4) snow and ice to IS. This involved 

comparing the measured percent of land cover with the mean of endmember fractions 

within the corresponding 1×1km pixels.” 

(2) Moreover, we strengthened the comparisons between our generated data and four 

existing datasets: NDVI, MOD44B Vegetation Continuous Fields product, GLASS 

FVC dataset, and GEOV Fcover dataset (page 12-13, line 277-293). 

“2.4 Comparisons and limitations analysis 

To verify the consistency and merits of our dataset against existing ones, we 

conducted comparisons with four distinct pre-existing datasets: NDVI, MOD44B 

Vegetation Continuous Fields product, GLASS fractional vegetation cover dataset, 

and GEOV Fcover dataset.  NDVI is derived from monthly synthesized MCD43A4 

images. Both mean values of NDVI and our estimated fractional PV across all years 

and months are considered for comparison. The MOD44B Vegetation Continuous 

Fields product provides annual information about the percent tree cover, percent non-

tree cover, and percent non-vegetated within each 250-meter pixel globally (DiMiceli 

et al., 2015). Consequently, we compare vegetation cover proportions—sum of 

percent tree cover and percent non-tree cover—to the sum of fractional PV and NPV. 

To align spatial and temporal resolutions, we aggregated the sum of percent tree cover 

and percent non-tree cover to a 500-meter scale. Simultaneously, we computed 

monthly Fractional PV and NPV as annual averages. The GLASS fractional 

vegetation cover dataset, offering an 8-day temporal frequency and dual spatial 

resolutions of 0.05° and 500 meters, was generated using a machine learning 

approach correlating MODIS reflectance with fractional vegetation cover (Jia et al., 

2015). In our study, the 500-meter GLASS data was utilized to validate our estimated 

fractions. We computed annual averages from all the CLASS fractional vegetation 

cover data within a year and compared it with the annual averages of Fractional PV 

and NPV. GEOV FCover is a 10-day product estimated through the neural network 

using visible, near-infrared and shortwave infrared at 1km resolution (Baret et al. 

2013). We aggregate our product to a 1km spatial resolution, and compare their 

annual averages with the annual averages of GEOV FCover.” 

(3) Furthermore, to validate the uncertainties of the hierarchical clustering, we select a 

spectral spectrum from selected endmember spectra that exhibit the largest mean 

squared error from the mean of cluster for each cluster. These selected spectral spectra 

were then used to reconstruct an extreme library of endmember spectra and used to 

estimate fractional vegetation and soil using MESMA. Methodologically, we've 

maximized our model optimizations within the constraints of current computational 

capabilities. This involved leveraging endmember curves from five distinct 

endmember types, totaling 15 subclasses. Through meticulous optimization, we 

obtained superior unmixed results from a pool of 692 models. Notably, the model's 

uncertainty has been thoroughly elucidated in Section 3.3. While our current 



computational resources set the boundaries, our aim is to further refine and amplify 

these models in the future. This includes expanding the spectrum of endmember types 

and increasing the count of endmember spectral curves using the provided code, 

provided that computational resources allow. 

We thus discussed the reliability of our product in Section 4.1 Advances and 

limitations of estimates of global vegetation and soil fractions 

1. For significance and usefulness, the product is derived using the MODIS data 

with a resolution of 500m. Actually, there are a lot of available global or regional 

higher-resolution land cover products and FVC products. As a user, why do I have 

to select your product for the analysis? I think using higher-resolution products can 

acquire more reasonable results. There is not enough evidence in the article that 

convince me of the indispensability of your dataset at this stage. More content 

indicating the importance should be included in the Introduction. 

Thank you very much for your valuable suggestions. Although there are numerous 

high spatial resolution land cover and fractional vegetation cover products available, 

we believe our dataset holds certain advantages for conducting global-scale analyses. 

This is primarily showcased in the following aspects:  

Unique Comprehensive Insights: We highlight the distinctiveness of the dataset in 

providing a comprehensive view that encompasses fractional multiple surface features 

(including vegetation, photosynthetic vegetation, bare soil, dark material, ice and 

snow) beyond traditional land cover or fractional vegetation cover products. This 

breadth of information can offer a holistic understanding of surface dynamics globally. 

Analytical Advantages: Our data exhibits favorable advantages in extended periods and 

at high frequencies, which aids in discovering finer processes. Considering the physical 

significance of the endmembers, it contributes to our dataset's ability to conduct clear 

downscaling and upscaling at the spatiotemporal scale8. Moreover, the scalability of the 

MESMA assists us in expanding the dataset's accuracy in the future by broadening 

endmember types and spectral curves. This dataset can serve as a baseline or reference for 

enhancing our comprehension of heterogeneous surface dynamics and modeling Earth's 

biophysical processes in the future studies, its potential applications in various fields such 

as ecology, climate studies, or urban planning.  

By incorporating these into the Introduction and Discussions, we can provide a more 

compelling argument for the indispensability and significance of our dataset, 

 
8 Small, C., Milesi, C.: Multi-scale standardized spectral mixture models. Remote Sens. Environ., 136, 442-

454, https://doi.org/10.1016/j.rse.2013.05.024, 2013. 

  Zhang, Y., Foody, G. M., Ling, F., Li, X., Ge, Y., Du, Y., & Atkinson, P. M.: Spatial-temporal fraction map 

fusion with multi-scale remotely sensed images. Remote Sensing of Environment, 213, 162-181, 2018. 

 



effectively addressing the concerns of potential users seeking higher-resolution 

products for analysis. 

Introduction (page 3, line 75-87) 

“In recent years, there have been significant advancements in fractional vegetation 

cover within the fields of remote sensing and environmental science. This progress 

has led to the development of various products at multiple resolutions, such as Long-

term global land surface satellite (GLASS), GEOV Fcover, Multi-source data 

Synergized Quantitative remote sensing production system (MuSyQ) fractional 

vegetation cover (Baret et al. 2013; Jia et al., 2015; Mu et al., 2017; Zhao et al., 2023). 

These products primarily integrate and utilize data from different spectral bands and 

sensors, employing methods including machine learning and radiative transfer model. 

However, these data primarily focus on green vegetation, posing significant 

limitations in capturing information regarding non-photosynthetic vegetation and bare 

soil. This constraint also restricts the applicability of this data in arid regions.” 

Discussions (page 24, line 443-454): 

“Our product can overcome the problem of saturation of NDVI in the regions 

embodying high coverage vegetation. Such advance can be supported by previous 

regional comparison research (Rogan et al. 2002; Sun et al. 2019; Sun et al. 2020). 

Additionally, the diversity of information stands as one of the strengths of this dataset, 

encompassing the five primary components of the Earth's land surface globally. 

Moreover, it can be extended to encompass more types through different levels of 

clustering. For instance, the DA component has not been emphasized in many datasets, 

yet current scientific research underscores the need for increased attention to 

vegetation shadows (Zeng et al., 2023). Although our DA component represents 

various types across different land regions, such as water bodies, shadows, bare rocks, 

this dataset may effectively enhance our precise understanding of complex vegetation 

structures. The NPV component is a vital element in arid ecosystems and represents a 

crucial part of vegetation biomass. Our dataset, by finely characterizing NPV, not 

only aids in understanding the evolving features of vegetation structure under 

photosynthetic and non-photosynthetic interactions (Guerschman et al. 2015), but also 

contributes to a more accurate quantification of global biomass in arid land systems 

(Smith et al. 2019).” 

2. The current classification system comprises only five types. While I understand 

that the algorithm proposed by the authors can effectively decompose mixed pixels, 

I am not sure if it is enough for the practical analysis only based on these 

categories. 

We appreciate your concerns about the choice of five endmember types. A framework 

encompassing substrate, vegetation, dark, and ice/snow has been proposed and 

globally validated for both Landsat and MODIS. This framework ensures consistent 



comparison of estimated fractions across diverse climate patterns and land cover 

types9. To enrich the diversity of surface elements on a global scale, we also expanded 

the variety of endmember types based on endmember types commonly used in 

drylands10. Therefore, our selection of five endmembers is both feasible and necessary.  

We added descriptions regarding the determination of endmember types (page 6, line 

163-171). 

“Recent studies have proposed various compositional endmember frameworks in 

different application contexts. For example, a framework including substrate, 

vegetation, dark and ice/snow was proposed and verified globally for both Landsat 

and MODIS to allow estimated fractions, this framework ensures consistent 

comparison of estimated fractions across diverse climate patterns and land cover types 

(Small and Milesi 2013; Sousa and Small 2019). Another framework includes 

photosynthetic vegetation, non-photosynthetic vegetation, soil, and shade (Roberts et 

al. 1993), this framework was widely adopted for presentation surface structure 

worldwide, particularly in tropical rainforest and dryland ecosystems (Guerschman et 

al., 2015). These elements can characterize the fundamental composition of the Earth 

surface. Thus, we embody five endmembers to represent surface units, these five 

endmembers include photosynthetic vegetation (PV), non-photosynthetic vegetation 

(NPV), bare soil (BS), dark (DA), ice/snow (IS)”  

We also discussed the expandability of endmember types of MESMA models (page 

24-25, line 461-469). 

“The spatio-temporally adaptive framework employed helps to increase the 

representativeness of endmember selection, and MESMA also considers the 

suitability of each combination of these endmembers within each pixel. However, 

considering the limitations of computational resources, our solution on hierarchical 

clusters of the endmember spectra can improve considerably cost-effective unmixing 

of long time-series satellite records over globe under the neglect of certain accuracy 

requirements (Fig. 3). With the assumption of increased computational power in the 

future, we believe that utilization of combination models from selected endmember 

spectra (35 GV spectra, 40 BS spectra, 25 NPV spectra, 16 DA spectra, and 15 IS 

spectra) or expanded endmember spectra may further improve the accuracy and 

stability of estimates of gradations of five surface vegetation and soil components at 

global scale.” 

 
9 Sousa, D., Small, C.: Globally standardized MODIS spectral mixture models. Remote Sens Lett, 10, 1018-

1027, https://doi.org/10.1080/2150704X.2019.1634299, 2019 
10 Guerschman, J. P., Scarth, P. F., McVicar, T. R., Renzullo, L. J., Malthus, T. J., Stewart, J. B., Trevithick, R.: 

Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, 

non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. 

Environ., 161, 12-26, https://doi.org/10.1016/j.rse.2015.01.021, 2015 



3. The superiority of your dataset is only proved by the comparison with the NDVI 

and MOD44B product and I think is not adequate for the validation and drawing a 

reasonable conclusion that your model is more accurate.  

We appreciate your concerns about comparison and validation. Although our dataset's 

comparison with NDVI and MOD44B products is informative, additional comparison 

and validation measures would indeed fortify the claim of superior accuracy. We thus 

explore further validation to bolster the credibility of our model. 

First, we further authenticate our product through incorporating comprehensive global 

land cover and land use reference data, which were obtained from the Geo-Wiki 

crowdsourcing platform across four campaigns (page 12, line 265-276). 

“Besides, we also authenticate our product through incorporating comprehensive 

global land cover and land use reference data (Fritz et al. 2017) 11 , which were 

obtained from the Geo-Wiki crowdsourcing platform across four campaigns: Human 

impact, wilderness, reference and disagreement. Over 150000 samples of land cover 

and land use were acquired in this reference data. To effectively validate our product, 

we need to filter the reference data, considering aspects such as data acquisition time, 

measurement methods, and credibility. We select first three campaigns, which have a 

good match with MODIS pixels (size 1×1km) and were observed during 2001 to 2022, 

and then select 1038 high feasibility reference data through the confidence 

information of land cover estimates and the status of use of high spatial resolution 

imagery provided by the metadata. Finally, Similarly to the procedural description 

used for fractional vegetation-soil compared to GLCVRD, we reclassified ten classes 

of this dataset into our four groups of endmembers, including (1) tree cover, shrub 

cover, herbaceous vegetation/grassland, cultivated and managed, and mosaic of 

cultivated and managed/natural vegetation to PV and NPV; (2) flooded/wetland and 

open water to DA; (3) urban and barren to BS; (4) snow and ice to IS. This involved 

comparing the measured percent of land cover with the mean of endmember fractions 

within the corresponding 1x1km pixels.” 

 
11 Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D., Duerauer, M., Karner, M., Dresel, C.,r 

Laso-Bayas, J. C., Lesiv, M., Moorthy, I., Salk, C. F., Danylo, O., Sturn, T., Albrecht, F., You, L., Kraxner F., 

Obersteiner, M.: A global dataset of crowdsourced land cover and land use reference data. Scientific data, 4, 

1-8, https://doi.org/10.1038/sdata.2017.75, 2017. 



 

Fig. S5 Evaluation of global fractional endmember estimates based on land cover 

reference data. a, the location of high-feasibility land cover reference data. b-d, 

Scatter plots of PV+NPV, BS, DA, IS fractions against land cover reference data 

Second, we present further comparison with other fractional vegetation cover dataset  

(page 12-13, line 277-293) using scatter plot (Fig. 4) and detailed images (Fig. S6). 



“To verify the consistency and merits of our dataset against existing ones, we 

conducted comparisons with four distinct pre-existing datasets: NDVI, MOD44B 

Vegetation Continuous Fields product, GLASS FVC dataset, and GEOV Fcover 

dataset.  NDVI is derived from monthly synthesized MCD43A4 images. Both mean 

values of NDVI and our estimated fractional PV across all years and months are 

considered for comparison. The MOD44B Vegetation Continuous Fields product 

provides annual information about the percent tree cover, percent non-tree cover, and 

percent non-vegetated within each 250-meter pixel globally (DiMiceli et al., 2015). 

Consequently, we compare vegetation cover proportions—sum of percent tree cover 

and percent non-tree cover—to the sum of fractional PV and NPV. To align spatial 

and temporal resolutions, we aggregated the sum of percent tree cover and percent 

non-tree cover to a 500-meter scale. Simultaneously, we computed monthly Fractional 

PV and NPV as annual averages. The GLASS fractional vegetation cover dataset, 

offering an 8-day temporal frequency and dual spatial resolutions of 0.05° and 500 

meters, was generated using a machine learning approach correlating MODIS 

reflectance with fractional vegetation cover (Jia et al., 2015). In our study, the 500-

meter GLASS data was utilized to validate our estimated fractions. We computed 

annual averages from all the CLASS fractional vegetation cover data within a year 

and compared it with the annual averages of Fractional PV. GEOV FCover is a 10-

day product estimated through the neural network using visible, near-infrared and 

shortwave infrared at 1km resolution (Baret et al. 2013). We aggregate our product to 

a 1km spatial resolution, and compare their annual averages with the annual averages 

of GEOV FCover.” 

 

Figure 4: Comparisons with other datasets and traditional spectral mixture 

analysis models. a, b, c, d the bi-dimensional histogram of fractional endmembers 



and other dataset with bin size of 2%, including fractional PV against NDVI (a), 

fractional PV and NPV against fractional tree and non-tree vegetation of MOD44B 

vegetation continuous fields product (b), fractional PV and NPV against GLASS 

fractional vegetation cover product (c), fractional PV and NPV against fractional 

vegetation cover of GEOV Fcover product; e, f, the boxplot and violin plot for 

average of monthly 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 for two fixed endmember spectral curves using fully 

constrained linear spectral mixture models, including (e) average of all spectral 

spectra for each endmember and (f) existing spectral spectra from Small and Sousa 

(2019). 

 

 



Fig. S6 The detailed graphs for comparing different datasets. a, b, and c represent 

comparisons of vegetation abundance products in different scenarios, specifically, 

regions with low vegetation cover in arid areas, high vegetation cover in tropical 

rainforests, and transitional zones from low to high values. The compared products 

include our produced PV and NPV, MOD44B, GLASS, and GEOV. 

4. I think the accuracy of the algorithm shown in Fig.3e-h is not promising. For the 

BS/DA/IS type, when the reference values are low, why does the algorithm show a 

pronounced overestimation? I think the authors should explain it in the Discussion. 

Comparison with other methods or products is necessary here to prove the 

superiority of your dataset. Additionally, high R-squared values for the IS type are 

likely attributable to the data being excessively scattered along the X-axis and more 

samples should be included for this type.  

Your insights regarding the algorithm's accuracy in Fig. 3e-h are valuable. This is 

resulted from the fact that our estimated DA/BS less than 0.2 is presented as 0 in the 

reference data, because the interpreted reference dataset of high-spatial satellite 

observations ignored the shadows of the vegetation and bare soil within tree. In blocks 

with a DA/BS greater than 0.2, the estimated fractions and measured fractions present 

better consistency, in which the shadows and soil are well measured by GLCVRD. 

We have revised that in the Discussions (page 25, line 470-474) 

“However, due to the absence of corresponding reference data for validation, we 

solely rely on two high-quality land cover reference datasets for validation. 

Unfortunately, these datasets do not intricately characterize small-scale shadows and 

bare soil within complex vegetation structures. Consequently, this leads to a 

misconception in the validation, where our DA and BS are overestimated in low-value 

areas and vegetation is underestimated in high-value areas (Fig. 3, Fig.S5). Therefore, 

in the future, there is a need to further develop high-quality relevant reference data.” 

The IS sample count aligns with other endmembers. However, numerous samples lack 

snow cover, resulting in our predictions and measurements scattering around the (0,0) 

coordinate. This condition contributes to a higher R2 for IS. To bolster the reliability 

of predictive accuracy for these endmember fractions, we've introduced an additional 

1083 new samples from incorporating comprehensive global land cover and land use 

reference data, which were obtained from the Geo-Wiki crowdsourcing platform 

across four campaigns (page 12, line 265-276).  

“Besides, we also authenticate our product through incorporating comprehensive 

global land cover and land use reference data (Fritz et al. 2017), which were obtained 

from the Geo-Wiki crowdsourcing platform across four campaigns: Human impact, 

wilderness, reference and disagreement. Over 150000 samples of land cover and land 

use were acquired in this reference data. To effectively validate our product, we need 

to filter the reference data, considering aspects such as data acquisition time, 



measurement methods, and credibility. We select first three campaigns, which have a 

good match with MODIS pixels (size 1×1km) and were observed during 2001 to 2022. 

High feasibility reference data is then selected through the confidence information of 

land cover estimates and the status of use of high spatial resolution imagery provided 

by the metadata. Similarly to the procedural description used for fractional vegetation-

soil compared to GLCVRD, we reclassify ten classes of this dataset into our four 

groups of endmembers, including (1) tree cover, shrub cover, herbaceous 

vegetation/grassland, cultivated and managed, and mosaic of cultivated and 

managed/natural vegetation to PV and NPV; (2) flooded/wetland and open water to 

DA; (3) urban and barren to BS; (4) snow and ice to IS. This involve comparing the 

measured percent of land cover with the mean of endmember fractions within the 

corresponding 1×1km pixels.” 

5. The current analysis in the paper is predominantly focused on the Chinese 

region and its surroundings. Moreover, much of the work is centered around 

validating existing conclusions. Given that the authors have generated long-time-

series global products, it is suggested to incorporate more globally relevant and 

newly discovered findings. 

Thank you for your insightful suggestions. Expanding the scope beyond the Chinese 

region and its surroundings to encompass more globally relevant insights aligns with the 

long-time-series products. We have therefore strengthened our analysis of the 

remaining regions in the Results and Discussion section. 

Incorporating newly discovered findings on a global scale would enrich the depth and 

breadth of our analysis, and provide a more comprehensive understanding of Earth's 

dynamics. On one hand, we demonstrate the reliability of our data in surface process 

analysis by leveraging existing discoveries. On the other hand, our exploration of 

surface processes highlights the strengths of our data, wherein the interaction between 

these end-members enables a more accurate analysis of surface evolution. For 

instance, the simultaneous increase of photosynthetic and non-photosynthetic 

vegetation signifies the greening of the Earth driven by afforestation. These new 

findings are discussed in Section 4.2 Implications of global and regional shifts from 

pairs of two endmembers. Moreover, we'll diligently consider this recommendation to 

enhance the global relevance of our work and include other novel discoveries in our 

future researches (page 26, line 512-517). 

“This dataset can serve as a baseline for enhancing our comprehension of 

heterogeneous surface dynamics and modeling Earth's biophysical processes through 

a multi-endmember coupling perspective, may significantly advance future research 

by serving as a foundational reference for delving deeper into complex land systems. 

Anticipating its potential applications across diverse domains such as ecology, climate 

studies, and urban planning, this dataset emerges as a pivotal resource. Its 

multifaceted utility is expected to play a pivotal role in informing environmental 

management decisions, advancing studies on ecological shifts, predicting climate 



trends, and facilitating strategic landscape planning.”  

6. The organizational structure of the paper needs revision. Currently, the Method, 

Results, and Discussion sections are intermingled with contents from other sections. 

For example, Lines 150-153, should be moved to the Introduction; Lines 312-313, 

Line 318-320 explain the further reasons, moving them to the Discussion should be 

better; Section 4.1 just describes the intercomparison of different products or 

methods, instead of discuss the potential reasons, I think it should be described in 

the Results section.  

Thank you for your detailed feedback regarding the organizational structure. We 

acknowledge the need for refinement and reorganization within the paper.  

Wo have moved content describing the advantage of spectral mixture analysis model 

to the Introduction for better contextualization (page 4, line 94-96), and shifted the 

description of the comparison of different products or methods from Section 4.1 to the 

Section 3.2 to provide more clarity aligns with ensuring a logical flow within the 

paper.  

We appreciate your input and will promptly address these structural adjustments to 

enhance the coherence and readability of our manuscript. 

Some technical problems:  

Thank you for your detailed feedback regarding the technical problems, we are sorry 

for these mistakes. we have corrected these errors and have also carefully examined 

and revised the manuscript to ensure the accuracy of the presentation. 

Lines 44-45: The full name of PV and NPV should be presented for the first time. 

◼ Full name of PV and NPV has been presented (page 2, line 38-39).  

Line 72-73: indexes-->indices; leaf area index (LAI) should be a structural variable 

for the vegetation instead of vegetation index; The abbreviation for Normalized 

Difference Vegetation Index (NDVI) should be mentioned here.  

◼ Continuous vegetation indexes (e.g., normalized difference vegetation index 

(NDVI), enhanced vegetation index (EVI)) provide limited information on 

surface composition, which hinders our ability of understanding ecosystem’s 

structurally and functionally multifaceted shifts (page 3, line 72-74). 

Line 80: human -->human activity? 

◼ under the influence of a changing environment and human activity (page 4, line 

93) 

Lines 138-140: the introduction of the spectral mixture analysis model should be 

moved to the Introduction section. 



◼ The introduction of the spectral mixture analysis model was blended into 

Introduction Section (page 4, line 94-96): 

Recent studies have proven that spectral mixture analysis model has the 

advantage of providing more accurate and physically based representation of 

fraction vegetation-soil continues field in the subpixel level without training 

samples (Daldegan et al. 2019; Smith et al. 2007).  

Lines 153-155: You only mentioned the applicability of this classification system to 

tropical rainforests and drylands. Its suitability for global application is unclear. 

◼ this framework was widely adopted for presentation surface structure worldwide, 

particularly in tropical rainforest and dryland ecosystems (page 6, line 167-168) 

Figure 2: The wavelength of B1-B7 should be specified.  

◼ B1-B7 represent MODIS spectral bands, including 459-479nm, 545-565nm, 620-

670nm, 841-876nm, 1230-1250nm, 1628-1652nm, and 2105-2155nm (page 10, 

line 221-222). 

Line 204: MESMA has already been declared in the Introduction, so it is not 

necessary to use its full name here. 

◼ The MESMA has been used to estimate fractional vegetation-soil nexuses based 

on selected endmember spectra (page 10, line 224). 

Line 137 and Line 231: RMSE is defined twice. Different subscripts should be used 

for distinction. 

◼ We have defined root-mean-square-error of MESMA fitting as 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 (page 6, 

line 152-153). 

Lines 236-245: The introduction of the Mann-Kendall test should not be presented 

here, because the methods section should emphasize your own work. It is suggested 

to move it to the supporting information. 

◼ We refined the descriptions of seasonal Mann-Kendall test (page 13-14, line 302-

317). 

Line 262: “reasonably satisfactory” is not an object expression. Only presenting the 

numbers is enough here. 

◼ Specifically, the performance of PV+NPV, BS, and IS endmember estimates 

have MAE less than 0.118, RMSE less than 0.149, R2 greater than 0.592. (page 

14, line 325-326). 

Lines 264-266 should be moved to the Discussion. 

◼ We have move that to the Discussion. 



Line 274-277: Where is Figure 3 i-k? The full name of LAI should be mentioned 

here. 

◼ We are sorry for this error; we have deleted that. 

Line 294: ×106 km2 -->×106 km2 

◼ ×106 km2 (page 20, line 393) 

Line 312: result from -->results from 

◼ This outcome results from the forest loss induced soil exposure in Brazilian 

Amazon and Southeast Asia (page 20, line 411) 

Line 378: RESE -->RMSE 

◼ It can be found that 90% of the 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 's differences are concentrated within 

1%. (page 18, line 371) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer 3 

Sun et al. generated global monthly vegetation and soil fraction maps during 2001-

2022 using a spectral mixture analysis method. Application of this method in global 

scale is interesting and deserves a scientific publication. However, the proposed 

product at current stage is not enough to publish on ESSD and the accuracy of this 

product is not very well demonstrated, from the perspective of a dataset and users. 

There are some main concerns: 

Thank you for your valuable feedback on our manuscript. We acknowledge your 

concerns regarding the reliability of the vegetation and soil fractions products 

described. We understand these concerns may stem from insufficiently validation in 

our manuscript. We have consequently enhanced the description of the validation 

process and added more validation/comparisons data.  

On the one hand, we further authenticate our product through incorporating 

comprehensive global land cover and land use reference data, which were obtained 

from the Geo-Wiki crowdsourcing platform across four campaigns (page 12, line 265-

276).  

“Besides, we also authenticate our product through incorporating comprehensive 

global land cover and land use reference data (Fritz et al. 2017), which were obtained 

from the Geo-Wiki crowdsourcing platform across four campaigns: Human impact, 

wilderness, reference and disagreement. Over 150000 samples of land cover and land 

use were acquired in this reference data. To effectively validate our product, we need 

to filter the reference data, considering aspects such as data acquisition time, 

measurement methods, and credibility. We select first three campaigns, which have a 

good match with MODIS pixels (size 1×1km) and were observed during 2001 to 2022. 

High feasibility reference data is then selected through the confidence information of 

land cover estimates and the status of use of high spatial resolution imagery provided 

by the metadata. Similarly to the procedural description used for fractional vegetation-

soil compared to GLCVRD, we reclassify ten classes of this dataset into our four 

groups of endmembers, including (1) tree cover, shrub cover, herbaceous 

vegetation/grassland, cultivated and managed, and mosaic of cultivated and 

managed/natural vegetation to PV and NPV; (2) flooded/wetland and open water to 

DA; (3) urban and barren to BS; (4) snow and ice to IS. This involve comparing the 

measured percent of land cover with the mean of endmember fractions within the 

corresponding 1×1km pixels.” 

Moreover, we strengthened the comparisons between our generated data and four 

existing datasets: NDVI, MOD44B Vegetation Continuous Fields product, GLASS 

FVC dataset, and GEOV Fcover dataset (page 12-13, line 277-301). 

“2.4 Comparisons and limitations analysis 



To verify the consistency and merits of our dataset against existing ones, we 

conducted comparisons with four distinct pre-existing datasets: NDVI, MOD44B 

Vegetation Continuous Fields product, GLASS fractional vegetation cover dataset, 

and GEOV Fcover dataset. NDVI is derived from monthly synthesized MCD43A4 

images. Both mean values of NDVI and our estimated fractional PV across all years 

and months are considered for comparison. The MOD44B Vegetation Continuous 

Fields product provides annual information about the percent tree cover, percent non-

tree cover, and percent non-vegetated within each 250-meter pixel globally (DiMiceli 

et al., 2015). Consequently, we compare vegetation cover proportions—sum of 

percent tree cover and percent non-tree cover—to the sum of fractional PV and NPV. 

To align spatial and temporal resolutions, we aggregated the sum of percent tree cover 

and percent non-tree cover to a 500-meter scale. Simultaneously, we computed 

monthly Fractional PV and NPV as annual averages. The GLASS fractional 

vegetation cover dataset, offering an 8-day temporal frequency and dual spatial 

resolutions of 0.05° and 500 meters, was generated using a machine learning 

approach correlating MODIS reflectance with fractional vegetation cover (Jia et al., 

2015). In our study, the 500-meter GLASS data was utilized to validate our estimated 

fractions. We computed annual averages from all the CLASS fractional vegetation 

cover data within a year and compared it with the annual averages of Fractional PV 

and NPV. GEOV FCover is a 10-day product estimated through the neural network 

using visible, near-infrared and shortwave infrared at 1km resolution (Baret et al. 

2013). We aggregate our product to a 1km spatial resolution, and compare their 

annual averages with the annual averages of GEOV FCover.  

Moreover, we also carry out a comparison with traditional linear spectral mixture 

analysis to demonstrate the advantages of our spatio-temporally adaptive spectral 

mixture analysis. Such comparison is performed using average of monthly 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 

of fully-constrained framework based on two fixed endmember spectral curves: (1) 

average of all spectral spectra for each endmember and (2) existing spectral spectra 

from Small and Sousa (2019).  

Furthermore, to validate the uncertainties of the hierarchical clustering, we select a 

spectral spectrum from selected endmember spectra that exhibit the largest mean 

squared error from the mean of cluster for each cluster. These selected spectral spectra 

were then used to reconstruct an extreme library of endmember spectra and used to 

estimate fractional vegetation and soil using MESMA.” 

1 The selection of endmember spectra is critical in this method. The authors 

establish a library of endmember spectral using a nested framework, combined with 

MODIS derived endmember spectra used in previous studies. However, if the 

proposed method is valid enough, why is it necessary to use those from previous 

studies? What are the differences between spectra decided in this study compared to 

existing ones? How about the proportion of endmember from your method and 

previous studies in the final library? Furthermore, the authors used a hierarchical 

clustering method to generate sub-groups of endmembers. This clustering method is 

quite dependent on the input parameters. Among a lot of clustering algorithm, why 



did you select this one? How about the input parameters, as well as the 

performance of its accuracy? 

First, we selected endmember spectra in ten globally representative regions using 

nested framework, and utilizing these previous spectra aimed to complement and 

enrich the diversity of the spectral library. In fact, we gather 7 PV, 5 NPV, 5 BS, and 1 

DA endmember spectra through such literature search method, accounting for less 

than 15% of all endmember spectral curves.  

We have revised this unclear description (page 8, line 205-207). 

“Besides, we collect MODIS derived endmember spectra used in previous study to 

complement and enrich the diversity of the spectral library. (Okin et al. 2013; 

Daldegan et al. 2019; Meyer and Okin 2015; Sousa and Small 2019). We gather 7 PV, 

5 NPV, 5 BS, and 1 DA endmember spectra through such literature search method.” 

Second, hierarchical clustering boasts strong interpretability and adaptability for 

clustering at diverse scales within data analysis12. Our use of hierarchical clustering 

aims to streamline the number of endmembers, thereby optimizing the efficiency of 

MESMA. This is crucial as MESMA requires intricate per-pixel adjustments, a 

challenge with extensive models due to current computational constraints.  

In our approach, input parameters are all spectral curves per endmember to group 

similar curves to compute their mean—a representative typical spectral curve for each 

cluster. We analyze the uncertainties of such clustering in estimates of global 

vegetation and soil fractions, the results indicate the relative stability of the unmixed 

results as well as the effectiveness of the clustering.  

We thus improved the descriptions of hierarchical clustering (page 8, line 210-214). 

“To ensure feasibility of pixel-by-pixel operations in GEE, we also consider the 

similarity between the spectral curves, the hierarchical clustering method is selected 

to aggregate these spectra of each endmember as sub-groups, we input all spectral 

curves per endmember, grouping similar curves to compute their mean—a 

representative typical spectral curve for each cluster. Such hierarchical clustering 

boasts strong interpretability and adaptability for clustering at diverse scales within 

data analysis.” 

2 Only five endmembers are select to represent the surface. More evidences are 

necessary to demonstrate the selection of five endmembers, e.g., group of current 

land classifications. 

Thank you for highlighting the importance of providing further evidence regarding 

the selection of five endmembers to represent the surface. Indeed, additional evidence, 

 
12 Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis. John Wiley & 

Sons. 



such as a comparison with current land classifications or other relevant groups, would 

bolster the rationale behind selecting these specific five endmembers.  

(1) In fact, current research has demonstrated that the global land surface can 

essentially be characterized by four components—substrate, vegetation, dark and 

ice/snow—across diverse climate patterns and land cover types13. Moreover, to enrich 

the diversity of surface elements on a global scale, we also expanded the variety of 

endmember types based on endmember types commonly used in drylands14. These 

elements can characterize the fundamental composition of the Earth surface. Thus, we 

embody five endmembers to represent surface units.  

We have improved the descriptions of five endmembers (page 6, line 163-171). 

“(1) Recent studies have proposed various compositional endmember frameworks in 

different application contexts. For example, a framework including substrate, 

vegetation, dark and ice/snow was proposed and verified globally for both Landsat 

and MODIS to allow estimated fractions, this framework ensures consistent 

comparison of estimated fractions across diverse climate patterns and land cover types 

(Small and Milesi 2013; Sousa and Small 2019). Another framework includes 

photosynthetic vegetation, non-photosynthetic vegetation, soil, and shade (Roberts et 

al. 1993), this framework was widely adopted for presentation surface structure 

worldwide, particularly in tropical rainforest and dryland ecosystems (Guerschman et 

al., 2015). These elements can characterize the fundamental composition of the Earth 

surface. Thus, we embody five endmembers to represent surface units, these five 

endmembers include photosynthetic vegetation (PV), non-photosynthetic vegetation 

(NPV), bare soil (BS), dark (DA), ice/snow (IS)”  

(2) Besides, Considering the scalability of hierarchical clustering and MESMA, we 

can analyze land cover types within the 15 subclasses under the five endmembers. We 

discover that these 15 subclasses encompassed tropical rainforest, temperate forest, 

cropland, grasslands, temperate deciduous forest in winter, crop residues, shrubs in 

dryland, moving sands, sand dunes, bare ground, moving sands. waters, bare rock, 

polar glaciers, and alpine glaciers. They cover major land cover types globally, 

indicating the representativeness of our selected endmembers (Fig. S2).  

 
13 Sousa, D., Small, C.: Globally standardized MODIS spectral mixture models. Remote Sens Lett, 10, 1018-

1027, https://doi.org/10.1080/2150704X.2019.1634299, 2019 
14 Guerschman, J. P., Scarth, P. F., McVicar, T. R., Renzullo, L. J., Malthus, T. J., Stewart, J. B., Trevithick, R.: 

Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, 

non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. 

Environ., 161, 12-26, https://doi.org/10.1016/j.rse.2015.01.021, 2015 



 

Figure S2: Typical images representing selected pure pixel of each endmember. 

a-o are tropical rainforest, temperate forest, cropland, grasslands, temperate deciduous 

forest in winter, crop residues, shrubs in dryland, moving sands, sand dunes, bare 

ground, moving sands. waters, bare rock, polar glaciers, and alpine glaciers.  

(3) Furthermore, given sufficient computational resources, we can conduct more in-

depth analyses and utilize MESMA for these 15 subclasses (Discussions, page 25, line 

461-469).  

“The spatio-temporally adaptive framework employed helps to increase the 

representativeness of endmember selection, and MESMA also considers the suitability 

of each combination of these endmembers within each pixel. However, considering 

the limitations of computational resources, our solution on hierarchical clusters of the 

endmember spectra can improve considerably cost-effective unmixing of long time-

series satellite records over globe under the neglect of certain accuracy requirements 

(Fig. 3). With the assumption of increased computational power in the future, we 

believe that utilization of combination models from selected endmember spectra (35 

GV spectra, 40 BS spectra, 25 NPV spectra, 16 DA spectra, and 15 IS spectra) or 



expanded endmember spectra may further improve the accuracy and stability of 

estimates of gradations of five surface vegetation and soil components at global scale.” 

3 The validation step is very important to convince the users to use your datasets, 

instead of other existing products. However, the validation is not enough. For 

example, the authors used GLCVRD reference dataset which was produced in 2010 

to validate the new products during the period during 2001-2022. How did you 

consider the inconsistency between time period and land changes during this long 

period? I would suggest the authors to improve the validation section, either by 

cross-validation with other existing products or by independent datasets. 

Due to challenges in conducting fraction estimation validation through field surveys, 

we employed validation methods based on high-resolution remote sensing imagery. 

The CLCVRD dataset is an example of such high-resolution reference data, hence we 

utilized it for corresponding validation. This dataset has demonstrated effectiveness in 

global-scale land cover verification. It's important to note that this dataset spans 2003-

2012 (mainly 2010), and I apologize for any misleading information in previous 

descriptions. Thus, this data can effectively serve for fraction validation across 

different years and months.  

(1) We have improved our description on CLCVRD and corresponding processes 

(page 11, line 236-251). 

“Moreover, due to challenges in conducting fraction estimation validation through 

field surveys, we employ reference data obtained from high spatial resolution images 

as validation set. We thus select for two sets of reference data that their land cover 

classification systems are closely related to our five endmembers. Global Land Cover 

Validation Reference Dataset (GLCVRD) is provided with a 2m reference dataset 

from very high resolution commercial remote sensing data within 5 × 5 km blocks 

from 2003 to 2012 (Olofsson et al. 2012; Pengra et al. 2015; Stehman et al. 2012). 

These datasets support global estimates of classification accuracy for four major land 

cover classes: tree, water, barren, other vegetation, cloud, shadow, ice & snow. 

Various recent studies have selected this dataset to evaluate the continuous fields of 

land cover types (Baumann et al. 2018; Qin et al. 2019; Song et al. 2018). We use all 

GLCVRD reference dataset (Fig. 3a) to assess the accuracy of globally fractional 

vegetation and soil estimates from MESMA. Firstly, we filter the estimated fractions 

based on the corresponding year and month obtained from the reference data. 

Simultaneously, aligning the interpretations of land cover types with our endmembers, 

we pair them accordingly, that is, tree and other vegetation represent PV and NPV, 

barren stands for BS, water and shadow correspond to DA, and ice & snow denote IS. 

Subsequently, we reclassify these paired land cover types and calculated their 

percentage within 5×5 km blocks, in which we exclude cloud coverage (named no 

data). Additionally, utilizing these cloud-free pixels in each block, we compute the 

mean of fractional values for each endmember, and then compare these estimated 

fractions with the measured percentage of paired the reclassified land cover types to 



validate the reliability of our product (Fig. S4).” 

 

Figure S4: Procedural description for estimating fractional vegetation-soil compared 

to GLCVRD. 

(2) Additionally, we conducted in-depth validation using new datasets15 (page 12, line 

265-276). 

“Besides, we also authenticate our product through incorporating comprehensive 

global land cover and land use reference data (Fritz et al. 2017), which were obtained 

from the Geo-Wiki crowdsourcing platform across four campaigns: Human impact, 

wilderness, reference and disagreement. Over 150000 samples of land cover and land 

use were acquired in this reference data. To effectively validate our product, we need 

to filter the reference data, considering aspects such as data acquisition time, 

measurement methods, and credibility. We select first three campaigns, which have a 

good match with MODIS pixels (size 1×1km) and were observed during 2001 to 2022. 

High feasibility reference data is then selected through the confidence information of 

land cover estimates and the status of use of high spatial resolution imagery provided 

by the metadata. Similarly to the procedural description used for fractional vegetation-

soil compared to GLCVRD, we reclassify ten classes of this dataset into our four 

 
15 Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D., Duerauer, M., Karner, M., Dresel, C.,r 

Laso-Bayas, J. C., Lesiv, M., Moorthy, I., Salk, C. F., Danylo, O., Sturn, T., Albrecht, F., You, L., Kraxner F., 

Obersteiner, M.: A global dataset of crowdsourced land cover and land use reference data. Scientific data, 4, 

1-8, https://doi.org/10.1038/sdata.2017.75, 2017. 



groups of endmembers, including (1) tree cover, shrub cover, herbaceous 

vegetation/grassland, cultivated and managed, and mosaic of cultivated and 

managed/natural vegetation to PV and NPV; (2) flooded/wetland and open water to 

DA; (3) urban and barren to BS; (4) snow and ice to IS. This involve comparing the 

measured percent of land cover with the mean of endmember fractions within the 

corresponding 1×1km pixels.” 

 

Fig. S5 Evaluation of global fractional endmember estimates based on land cover 

reference data. a, the location of high-feasibility land cover reference data. b-d, 

Scatter plots of PV+NPV, BS, DA, IS fractions against land cover reference data 

(3) Moreover, we strengthened the comparisons between our generated data and four 

existing datasets: NDVI, MOD44B Vegetation Continuous Fields product, GLASS 

FVC dataset, and GEOV Fcover dataset (page 12, line 277-301). 



“2.4 Comparisons and limitations analysis 

To verify the consistency and merits of our dataset against existing ones, we 

conducted comparisons with four distinct pre-existing datasets: NDVI, MOD44B 

Vegetation Continuous Fields product, GLASS fractional vegetation cover dataset, 

and GEOV Fcover dataset. NDVI is derived from monthly synthesized MCD43A4 

images. Both mean values of NDVI and our estimated fractional PV across all years 

and months are considered for comparison. The MOD44B Vegetation Continuous 

Fields product provides annual information about the percent tree cover, percent non-

tree cover, and percent non-vegetated within each 250-meter pixel globally (DiMiceli 

et al., 2015). Consequently, we compare vegetation cover proportions—sum of 

percent tree cover and percent non-tree cover—to the sum of fractional PV and NPV. 

To align spatial and temporal resolutions, we aggregated the sum of percent tree cover 

and percent non-tree cover to a 500-meter scale. Simultaneously, we computed 

monthly Fractional PV and NPV as annual averages. The GLASS fractional 

vegetation cover dataset, offering an 8-day temporal frequency and dual spatial 

resolutions of 0.05° and 500 meters, was generated using a machine learning 

approach correlating MODIS reflectance with fractional vegetation cover (Jia et al., 

2015). In our study, the 500-meter GLASS data was utilized to validate our estimated 

fractions. We computed annual averages from all the CLASS fractional vegetation 

cover data within a year and compared it with the annual averages of Fractional PV 

and NPV. GEOV FCover is a 10-day product estimated through the neural network 

using visible, near-infrared and shortwave infrared at 1km resolution (Baret et al. 

2013). We aggregate our product to a 1km spatial resolution, and compare their 

annual averages with the annual averages of GEOV FCover.  

Moreover, we also carry out a comparison with traditional linear spectral mixture 

analysis to demonstrate the advantages of our spatio-temporally adaptive spectral 

mixture analysis. Such comparison is performed using average of monthly 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 

of fully-constrained framework based on two fixed endmember spectral curves: (1) 

average of all spectral spectra for each endmember and (2) existing spectral spectra 

from Small and Sousa (2019).  

Furthermore, to validate the uncertainties of the hierarchical clustering, we select a 

spectral spectrum from selected endmember spectra that exhibit the largest mean 

squared error from the mean of cluster for each cluster. These selected spectral spectra 

were then used to reconstruct an extreme library of endmember spectra and used to 

estimate fractional vegetation and soil using MESMA.” 



 

Figure 4: Comparisons with other datasets and traditional spectral mixture 

analysis models. a, b, c, d the bi-dimensional histogram of fractional endmembers 

and other dataset with bin size of 2%, including fractional PV against NDVI (a), 

fractional PV and NPV against fractional tree and non-tree vegetation of MOD44B 

vegetation continuous fields product (b), fractional PV and NPV against GLASS 

fractional vegetation cover product (c), fractional PV and NPV against fractional 

vegetation cover of GEOV Fcover product; e, f, the boxplot and violin plot for 

average of monthly 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 for two fixed endmember spectral curves using fully 

constrained linear spectral mixture models, including (e) average of all spectral 

spectra for each endmember and (f) existing spectral spectra from Small and Sousa 

(2019). 



 

Fig. S6 The detailed graphs for comparing different datasets. a, b, and c represent 

comparisons of vegetation abundance products in different scenarios, specifically, 

regions with low vegetation cover in arid areas, high vegetation cover in tropical 

rainforests, and transitional zones from low to high values. The compared products 

include our produced PV and NPV, MOD44B, GLASS, and GEOV. 

4 The structure of this manuscript should be re-organized, especially the results and 

discussion. Put all figures in results section. In discussion section, I expect more 

deep analysis and discussions on the intercomparison with existing products, the 

advantages and disadvantages of the new products, and uncertainties. 

Thank you for your valuable feedback on the manuscript's structure, particularly 



emphasizing the need for reorganization, especially in the Results and Discussion 

sections. We will consolidate some figures within the Results section for improved 

coherence. In the Discussion section, we aim to delve deeper into comprehensive 

analyses and discussions. We'll focus on intricate intercomparisons with existing 

products, elucidating the advantages, disadvantages, and uncertainties inherent in the 

new products. This restructured discussion will offer a more comprehensive and 

insightful exploration of our findings, ensuring a clearer and more informative 

narrative. 

We have moved “Compared with other datasets and traditional SMA model” and 

“Uncertainties of estimates of global vegetation and soil fractions” to Section 3.2 and 

Section 3.3. And we have improved the discussions of Advances and limitations of 

estimates of global vegetation and soil fractions in Section 4.1. 

5 Some minor comments: 

Thank you for your detailed feedback regarding the technical problems, we have 

corrected these errors and have also carefully examined and revised the manuscript to 

ensure the accuracy of the presentation. 

Line 85-86: this is not the key scientific question of this study. More emphasis 

should be started from issues of existing global vegetation/soil fraction products, 

instead of application of spectral mixture analysis method in global scale. 

◼ We have improved descriptions of existing global vegetation/soil fraction 

products (page 3, line 75-87). 

“In recent years, there have been significant advancements in fractional 

vegetation cover within the fields of remote sensing and environmental science. 

This progress has led to the development of various products at multiple 

resolutions, such as long-term global land surface satellite (GLASS), GEOV 

Fcover, multi-source data synergized quantitative remote sensing production 

system (MuSyQ) fractional vegetation cover (Baret et al. 2013; Jia et al., 2015; 

Mu et al., 2017; Zhao et al., 2023). These products primarily integrate and utilize 

data from different spectral bands and sensors, employing methods including 

machine learning and radiative transfer model. However, these data primarily 

focus on green vegetation, posing significant limitations in capturing information 

regarding non-photosynthetic vegetation and bare soil. This constraint also 

restricts the applicability of this data in arid regions. Although some initiatives 

and products focused on multi-element fractions, such as MOD44B and the 

Global Vegetation Fractional Cover Product (DiMiceli et al., 2015; Guerschman 

et al., 2015). For instance, the Global Vegetation Fractional Cover Product 

primarily targets arid regions, particularly Australia, focusing on photosynthetic 

vegetation, non-photosynthetic vegetation, and bare soil. Meanwhile, MOD44B 

achieves global-scale acquisition of trees, non-trees, and non-vegetative cover. 



There is a lack of unified classification systems among these products across 

global scale” 

Line 135: Spectral mixture analysis, ‘s’ should be capitalized. 

◼ We have improved as “Spectral mixture analysis” 

Line 166: what is the resolution of this land cover product? There are multiple land 

cover products, why do you select this one? How did you overlap the climate 

classification zones and the land cover products when the resolution is quite 

different? 

◼ MCD12Q1 is a 500m land use cover data from Terra and Aqua Version 6 product. 

We selected the MCD12Q1 land cover product due to its widely acknowledged 

accuracy, high spatial resolution, and global coverage. This product is generated 

by a robust algorithm using multiple remote sensing datasets, providing 

comprehensive and detailed land cover information across various land cover 

classes. Its consistency, reliability, and compatibility with our study's objectives 

make it an ideal choice for comparison and validation against our newly 

developed products. 

Moreover, we do not overlap the climate classification zones and the land cover 

products, we used MODIS sinusoidal grid (10°× 10°intervals) to count the land 

cover diversity (D) and the full coverage capacity of climate types. 

“Finally, we selected the top 10 grids (i.e., h08v05, h12v12, h13v09, h16v01, 

h21v03, h22v02, h22v08, h24v06, h26v05, h27v06, h29v12) in terms of 

Simpson's Diversity Index (D) among all MODIS grids (Fig. S1a, b), and 

containing all Köppen-Geiger climate types” (page 7, line 182-185) 

Line 180-181: While ***, especially in vegetation growing seasons. This sentence 

seems not complete. 

◼ We have revised that as “PC eigenvector with relatively high contrast between 

the near-infrared band and other bands primarily captures information related to 

photosynthetic vegetation (PV), particularly during vegetation growing seasons. 

(page 7, line 193-195)” 

Line 192: 35 GV spectra, should be PV spectra? 

◼ We establish a library of endmember spectra considering spatio-temporal 

variability, this library includes 35 PV spectra, 40 BS spectra, 25 NPV spectra, 

16 DA spectra, and 15 IS spectra (page 8, line 208). 

Lien 212-213: how long it took to generate one global map on GEE? 

◼ Exporting the data will take approximately 30-40 minutes per month per our 

generated grid, according to the grid of longitude 60° and Latitude 50°. 



Line 260: It is strange that Sahara Desert and polar regions had higher RMSE. 

These regions were well-known for unique land cover type. 

◼ Even though the two regions have a single land cover type of desert and snow/ice, 

the internal spectral profile is more complex and extreme, for example, deserts 

have both high and low reflectance sands. However, to realize the global-scale 

dominant element information extraction, we input all spectral curves per 

endmember, grouping similar curves to compute their mean, resulting in larger 

𝑅𝑀𝑆𝐸𝑠𝑚𝑎 for these extreme regions, but basically, they are also in line with the 

requirements of model fitting accuracy. 

Such inaccurately pixels have been discussed in Section 4.1 Advances and 

limitations of estimates of global vegetation and soil fractions (page 25, line 481-

485). 

Figure 3.e-h are not enough to support your conclusion. 

◼ We conducted in-depth validation using new datasets and discussed the 

limitations of validation using current land cover reference dataset (see details in 

response of comment 3). 

Section 3.1: add more analysis for pixels that were estimated inaccurately. 

◼ We have added more discissions for pixels that were estimated inaccurately (page 

25, line 481-485). 

“We observed higher 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 values in seemingly homogeneous areas like the 

Sahara Desert and Arctic regions. However, within these regions, there often exist 

extremely diverse land cover types, such as high and low reflectance sands and 

ice. When selecting endmembers and hierarchical clustering models, we might 

not have adequately considered these extreme spectral curves. As a result, these 

extreme areas exhibit a higher uncertainty.” 

Lie 358: indicate the resolution of MODIS pixel. 

◼ each MODIS pixel (500 m) (page 24, line 434) 

 

 

 

 

 

 

 



Reviewer 3 

This paper aims to provide a globally comprehensive record of monthly vegetation 

and soil fractions during the period 2001–2022 using the spatiotemporally adaptive 

MESMA methods at the powerful Google Earth Engine (GEE) platform. However, 

in my view, some issues should be resolved. Please find my detailed comments 

below. 

Thanks for your reviewing and valuable comments of our manuscript, we have 

revised our manuscript with considering each detailed suggestion that you and 

reviewers have graciously provided. 

The overall structure of this article appears to be somewhat confusing. I 

recommend considering adjustments to enhance the clarity and coherence of the 

presentation. 

Thank you for your valuable feedback on the manuscript's structure, particularly 

emphasizing the need for reorganization. We have moved “Compared with other 

datasets and traditional spectral mixture analysis model” and “Uncertainties of 

estimates of global vegetation and soil fractions” to Section 3.2 and Section 3.3. In the 

Discussion section, we have improved the discussions of Advances and limitations of 

estimates of global vegetation and soil fractions in Section 4.1 to delve deeper into 

comprehensive analyses and discussions.  

In your paper, you have utilized Köppen-Geiger climate classification maps Version 

1, while Version 2 is also available at https://www.gloh2o.org/koppen/. Could you 

please provide some insights into the rationale behind selecting Version 1 over 

Version 2? Additionally, considering the abundance of global land cover products, 

what motivated the choice of MCD12Q1?  

We opted for Köppen-Geiger climate classification maps Version 1 due to their 

widespread acceptance and usage within the scientific community at the period of our 

research. While Version 2 is available and might offer certain improvements or 

updates, our choice was based on the prevalence and familiarity of Version 1 within 

the research community during our study period. Moreover, we utilized this data 

solely to ensure that our selected representative MODIS grids encompass all climate 

zones. Therefore, the utilization of data from versions 1 and 2 had negligible 

influence. 

Regarding the selection of MCD12Q1 among various global land cover products, we 

chose it due to its established accuracy, high spatial resolution, and comprehensive 

coverage. MCD12Q1 utilizes multiple datasets and robust algorithms to provide 

detailed and reliable land cover information, aligning well with the requirements of 



our study for endmember selection. Its proven consistency and compatibility with our 

research objectives influenced our decision in utilizing this specific product. 

We have improved descriptions of Köppen-Geiger climate classification (page 5, line 

124-126) and MCD12Q1 (page 5, line 132-135). 

“The Köppen-Geiger climate classification is a reasonable approach to aggregate 

complex climate gradients into a simple but ecologically meaningful classification 

scheme (Beck et al. 2018). This dataset presents their widespread acceptance and 

usage within the scientific community.” 

“MCD12Q1 utilizes multiple datasets and robust algorithms, and provides detailed 

and reliable land cover information. It has been proven advantages in representing the 

global land cover structure, patterns, and dynamics, aligning well with the 

requirements of our study for endmember selection.” 

In this paper, authors selected the typical sites employed for standardized 

endmembers selection based on 2020 MCD12Q1. Could you elaborate on the 

decision-making process behind employing this particular year for standardized 

endmembers selection? 

Thank you very much for your suggestion. We chose the MCD12Q1 data not directly 

for endmember selection but for identifying representative zones. Subsequently, we 

will carry out endmember selection in these representative regions. The criterion for 

selecting representative MODIS grids is a high diversity of land cover types. 

Therefore, we need to choose the recent available MCD12Q1 land cover dataset (in 

2020) to calculate land cover diversity (page 7, line 179-180). 

“Meanwhile, we also examine land cover diversity, characterized by Simpson's 

Diversity Index (D) of recent MCD12Q1 Version 6 product in 2020 in each MODIS 

grid” 

When comparing your estimated vegetation and soil fractions dataset, along with 

NDVI, fractional PV, and NPV, against the MOD44B vegetation continuous 

fields product, I noticed that you specifically chose to focus on the tree and non-

tree vegetation components. Could you elaborate on the reasoning behind this 

selective comparison?  

We are aware that MOD44B covers only three components: percent tree cover, 

percent non-tree cover, and percent non-vegetated (bare), whereas our endmember 

types encompass five. We thus chose to combine tree and non-tree vegetation 

components as vegetated area, and then it was compared with our PV and NPV due to 

considerations of consistency across different classification systems.  

We have refined the descriptions of comparisons (page 12-13, line 278-293). 



“To verify the consistency and merits of our dataset against existing ones, we 

conducted comparisons with four distinct pre-existing datasets: NDVI, MOD44B 

Vegetation Continuous Fields product, GLASS fractional vegetation cover dataset, 

and GEOV Fcover dataset.  NDVI is derived from monthly synthesized MCD43A4 

images. Both mean values of NDVI and our estimated fractional PV across all years 

and months are considered for comparison. The MOD44B Vegetation Continuous 

Fields product provides annual information about the percent tree cover, percent non-

tree cover, and percent non-vegetated within each 250-meter pixel globally (DiMiceli 

et al., 2015). Consequently, we compare vegetation cover proportions—sum of 

percent tree cover and percent non-tree cover—to the sum of fractional PV and NPV. 

To align spatial and temporal resolutions, we aggregated the sum of percent tree cover 

and percent non-tree cover to a 500-meter scale. Simultaneously, we computed 

monthly Fractional PV and NPV as annual averages. The GLASS fractional 

vegetation cover dataset, offering an 8-day temporal frequency and dual spatial 

resolutions of 0.05° and 500 meters, was generated using a machine learning 

approach correlating MODIS reflectance with fractional vegetation cover (Jia et al., 

2015). In our study, the 500-meter GLASS data was utilized to validate our estimated 

fractions. We computed annual averages from all the CLASS fractional vegetation 

cover data within a year and compared it with the annual averages of Fractional PV. 

GEOV FCover is a 10-day product estimated through the neural network using visible, 

near-infrared and shortwave infrared at 1km resolution (Baret et al. 2013). We 

aggregate our product to a 1km spatial resolution, and compare their annual averages 

with the annual averages of GEOV FCover.” 

Could you please provide more detailed reasons or methods explaining why you 

decided to verify PV and NPV as a single category in your study? Additionally, I 

noticed that you exclusively chose GLCVRD reference data from 2010 for 

validation purposes. Could you please elaborate on the decision-making process 

behind selecting this specific year for validation?  

As mentioned in the previous response, there isn't currently a suitable product 

available to validate photosynthetic and non-photosynthetic vegetation independently. 

Therefore, in our validation process, we conducted validation using vegetation as a 

combined category. 

Moreover, the CLCVRD dataset has demonstrated effectiveness in global-scale land 

cover verification. It's important to note that this dataset spans 2003-2012 (mainly 

2010), and I apologize for any misleading information in previous descriptions. Thus, 

this data can effectively serve for fraction validation across different years and months. 

We thus improved the descriptions of validations (page 11 line 244-251) and 

discussed the limitations of validation datasets (page 25, line 470-481). 

“Firstly, we filter the estimated fractions based on the corresponding year and month 

obtained from the reference data. Simultaneously, aligning the interpretations of land 



cover types with our endmembers, we pair them accordingly, that is, tree and other 

vegetation represent PV and NPV, barren stands for BS, water and shadow 

correspond to DA, and ice & snow denote IS. Subsequently, we reclassify these 

paired land cover types and calculated their percentage within 5×5 km blocks, in 

which we exclude cloud coverage (named no data). Additionally, utilizing these 

cloud-free pixels in each block, we compute the mean of fractional values for each 

endmember, and then compare these estimated fractions with the measured 

percentage of paired the reclassified land cover types to validate the reliability of our 

product (Fig. S4).” 

 

Figure S4: Procedural description for estimating fractional vegetation-soil 

compared to GLCVRD. 

“However, due to the absence of corresponding reference data for validation, we 

solely rely on two high-quality land cover reference datasets for validation. 

Unfortunately, these datasets do not intricately characterize small-scale shadows and 

bare soil within complex vegetation structures. Consequently, this leads to a 

misconception in the validation, where our DA and BS are overestimated in low-value 

areas and vegetation is underestimated in high-value areas (Fig. 3, Fig.S5). Therefore, 

in the future, there is a need to further develop high-quality relevant reference data. 

Considering that MOD44B vegetation continuous fields product provides a gradation 

of three surface cover components: percent tree cover, percent non-tree cover, and 

percent bare, the dark components (i.e., shadow of vegetation and mountain, water) 

are not quantified. Therefore, fractional PV and NPV is overall biased high, especially 

in areas with PV and NPV less than 0.50 (Fig. 4b; Fig. S6b). Besides, we also 

observed a certain degree of underestimation in these three datasets in regions with 



lower vegetation cover compared to our data. This is mainly because these datasets 

focus solely on green vegetation, especially GLASS and GEOV Fcover (Baret et al. 

2013; Jia et al., 2015), and do not accurately estimate non-photosynthetic vegetation 

in arid regions. The above comparisons demonstrate our precision advantage in fine 

extraction of multiple endmembers.” 

Given that your product has a spatial resolution of 500m and a monthly temporal 

resolution, while the MOD44B product has a spatial resolution of 250m and a 

yearly temporal resolution, could you please provide a detailed description of the 

comparison process and the methods employed between them? 

Certainly, the comparison process between our product with a 500m spatial resolution 

and monthly temporal resolution and the MOD44B product with a 250m spatial 

resolution and yearly temporal resolution involved several steps and considerations.  

To conduct the comparison, we first aggregated the monthly data into a yearly format 

to align with the temporal resolution of MOD44B. Meanwhile, we aggregated 250m 

MOD44B product to our data to match the spatial resolutions of our products. This 

allowed us to bridge the temporal gaps and ensure a meaningful evaluation despite the 

differing temporal frequencies. 

We have improved such descriptions of comparisons (page 12-13, line 278-286). 

“To verify the consistency and merits of our dataset against existing ones, we 

conducted comparisons with four distinct pre-existing datasets: NDVI, MOD44B 

Vegetation Continuous Fields product, GLASS fractional vegetation cover dataset, 

and GEOV Fcover dataset.  NDVI is derived from monthly synthesized MCD43A4 

images. Both mean values of NDVI and our estimated fractional PV across all years 

and months are considered for comparison. The MOD44B Vegetation Continuous 

Fields product provides annual information about the percent tree cover, percent non-

tree cover, and percent non-vegetated within each 250-meter pixel globally (DiMiceli 

et al., 2015). Consequently, we compare vegetation cover proportions—sum of 

percent tree cover and percent non-tree cover—to the sum of fractional PV and NPV. 

To align spatial and temporal resolutions, we aggregated the sum of percent tree cover 

and percent non-tree cover to a 500-meter scale. Simultaneously, we computed 

monthly fractional PV and NPV as annual averages.” 

Please revise the abstract of this paper, some sentences are confusing. For example, 

line 32-34: “Sustainably managing terrestrial ecosystems requires an increased 

understanding of these structurally and functionally heterogeneous multi-

component information and their changes, but we remain lack of such records of 

fractional vegetation and soil information at global scale. 

Certainly! Here's a revised version for the mentioned section (page 2 line 32-35): 



"Sustainably managing terrestrial ecosystems necessitates a deeper comprehension of 

the diverse and dynamic nature of multi-component information within these 

environments. However, comprehensive records of global-scale fractional vegetation 

and soil information that encompass these structural and functional complexities 

remain limited." 

Abbreviations are preferably not used in the abstract of a paper, and if they are 

used in the abstract, the full name of each abbreviation should be presented the first 

time it appears. For example, Lines 44-45: “PV and NPV”. 

Thank you very much for your suggestion. We have revised the abbreviations from 

the Abstract (page 2 line 38-39). 

“five physically meaningful vegetation and soil endmembers, including 

photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), bare soil (BS), 

ice/snow (IS), and dark surface (DA), with high accuracy and low uncertainty” 

Line 124: Please correct “croplands and mosaics of croplands and natural 

vegetation;” to “Cropland/Natural Vegetation Mosaics”. 

Thank you very much for your suggestion, we have revised “croplands and mosaics of 

croplands and natural vegetation” to “Cropland/Natural Vegetation Mosaics” (page 5 

line 139) 

Line 137 and 231: Please add the serial number to the formula in this paper. For 

example, RMSE was defined twice. 

Thank you for your thorough review of our manuscript. We have redefined the Root 

Mean Square Error for the fitting of the MESMA model as 𝑅𝑀𝑆𝐸𝑠𝑚𝑎. Additionally, 

we have added numbering to the formulas (page 6 line 152-153). 

Line 171: Why did the authors choose the threshold 'D > 0.7' in this study, and are 

there any references supporting this decision? 

The threshold selection was based on ranking the Simpson's Diversity Index (D) of all 

MODIS grids. We chose the top ten grids, hence setting the threshold at 0.7. To avoid 

confusion, we rephrased it as (page 7 line 182-184),  

"Finally, we selected the top 10 grids (i.e., h08v05, h12v12, h13v09, h16v01, h21v03, 

h22v02, h22v08, h24v06, h26v05, h27v06, h29v12) in terms of Simpson's Diversity 

Index (D) among all MODIS grids (Fig. S1a, b)” 

Line 268-277: Could you please provide the location or clarification for Figure 3 i-

k? I would like to ensure that all relevant chart information is accurate and 

accessible. 



We sincerely apologize for the error in our expression. We have made the necessary 

corrections and also reviewed all the titles of the figures and tables 

Line 331 and 348: The subtitle '4.1 Compared with other datasets and traditional 

SMA model' seems inconsistent with 'Figure 7: Comparisons with other datasets 

and LSMA models.' Could you please clarify whether the LSMA model is 

considered one of the traditional SMA models, and ensure consistency in the 

expression used? 

Thank you for pointing this out. We have revised unclear expression to ensure 

consistency between the LSMA model and traditional SMA models in the context of 

the comparisons made in Figure 4. The traditional SMA models was defined as fully 

constrained linear spectral mixture models (page 17, line 363-369) . 

“Figure 4: Comparisons with other datasets and traditional spectral mixture 

analysis models. a, b, c, d the bi-dimensional histogram of fractional endmembers 

and other dataset with bin size of 2%, including fractional PV against NDVI (a), 

fractional PV and NPV against fractional tree and non-tree vegetation of MOD44B 

vegetation continuous fields product (b), fractional PV and NPV against GLASS 

fractional vegetation cover product (c), fractional PV and NPV against fractional 

vegetation cover of GEOV Fcover product; e, f, the boxplot and violin plot for 

average of monthly 𝑅𝑀𝑆𝐸𝑠𝑚𝑎 for two fixed endmember spectral curves using fully 

constrained linear spectral mixture models, including (e) average of all spectral 

spectra for each endmember and (f) existing spectral spectra from Small and Sousa 

(2019).” 

Line 378: “RESE” --> “RMSE”. 

We sincerely apologize for the error in our expression. We have made the corrections. 

All authors checked the manuscript carefully and several minor revisions have been 

done to finalize the manuscript. 

 


