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Abstract: Gross primary productivity (GPP) is the largest carbon flux in the Earth system, playing a 13 

crucial role in removing atmospheric carbon dioxide and providing carbohydrates needed for 14 

ecosystem metabolism. Despite the importance of GPP, however, existing estimates present 15 

significant uncertainties and discrepancies. A key issue is the underrepresentation of the CO2 16 

fertilization effect, a major factor contributing to the increased terrestrial carbon sink over recent 17 

decades. This omission could potentially bias our understanding of ecosystem responses to climate 18 

change. 19 

Here, we introduce CEDAR-GPP, the first global machine-learning-upscaled GPP product 20 

that incorporates the direct CO2 fertilization effect on photosynthesis. Our product is comprised of 21 

monthly GPP estimates and their uncertainty at 0.05º resolution from 1982 to 2020, generated using 22 

a comprehensive set of eddy covariance measurements, multi-source satellite observations, climate 23 

variables, and machine learning models. Importantly, we used both theoretical and data-driven 24 

approaches to incorporate the direct CO2 effects. Our machine learning models effectively predicted 25 

monthly GPP (R2 ~ 0.74), the mean seasonal cycles (R2 ~ 0.79), and spatial variabilities (R2 ~ 0.67) 26 

based on cross-validation at flux sites. Incorporation of the direct CO2 effects substantially enhanced 27 

the predicted long-term trend in GPP across global flux towers by up to 51%, aligning much closer 28 
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to a strong positive trend from eddy covariance data . While the global patterns of annual mean 29 

GPP, seasonality, and interannual variability generally aligned with existing satellite-based products, 30 

CEDAR-GPP demonstrated higher long-term trends globally after incorporating CO2 fertilization, 31 

particularly in the tropics, reflecting a strong temperature control on direct CO2 effects. CEDAR-32 

GPP offers a comprehensive representation of GPP temporal and spatial dynamics, providing 33 

valuable insights into ecosystem-climate interactions. The CEDAR-GPP product is available at 34 

https://zenodo.org/doi/10.5281/zenodo.8212706 (Kang et al., 2024).  35 

  36 
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1. Introduction 37 

Terrestrial ecosystem photosynthesis, known as Gross Primary Productivity (GPP), is the 38 

primary source of food and energy for the Earth system and human society (Keenan and Williams, 39 

2018). Through photosynthesis, terrestrial ecosystems also mitigate climate change, by removing 40 

thirty percent of anthropogenic carbon emissions from the atmosphere each year (Friedlingstein et 41 

al., 2023). However, due to the lack of direct measurements at the global scale, our understanding of 42 

photosynthesis and its spatiotemporal dynamics is limited, leading to considerable disagreements 43 

among various GPP estimates (Anav et al., 2015; O’Sullivan et al., 2020; Smith et al., 2016; Yang et 44 

al., 2022). Addressing these uncertainties is crucial for improving the predictability of ecosystem 45 

dynamics under climate change (Friedlingstein et al., 2014). 46 

Over the past three decades, global networks of eddy covariance flux towers collected in situ 47 

carbon flux measurements that allow for accurate estimates of GPP, providing valuable insights into 48 

photosynthesis dynamics under various environmental conditions (Baldocchi, 2020; Beer et al., 49 

2010). To quantify and understand GPP at scales and locations beyond the ~ 1km2 flux tower 50 

footprints, machine learning has been employed with gridded satellite and climate datasets to upscale 51 

site-based measurements and produce wall-to-wall GPP maps (Dannenberg et al., 2023; Joiner and 52 

Yoshida, 2020; Jung et al., 2011; Tramontana et al., 2016; Xiao et al., 2008; Yang et al., 2007; Zeng et 53 

al., 2020). This “upscaling” approach provides data-driven and observation-based quantifications 54 

without prescribed functional relations between GPP and its climatic or environmental drivers. It 55 

offers unique empirical constraints of ecosystem carbon dynamics, complementing those derived 56 

from process-based and semi-process-based approaches such as terrestrial biosphere models or the 57 

Light Use Efficiency (LUE) models (Beer et al., 2010; Gampe et al., 2021; Jung et al., 2017; Schwalm 58 

et al., 2017). In recent years, the growth of global and regional flux networks, coupled with 59 

increasing efforts in data standardization, has offered new opportunities for the advancement of 60 

upscaling frameworks, enabling comprehensive quantifications of terrestrial photosynthesis (Joiner 61 

and Yoshida, 2020; Pastorello et al., 2020).  62 

Effective machine learning upscaling depends on a complete set of input predictors that fully 63 

explain GPP dynamics. Upscaled datasets have primarily relied on satellite-observed greenness 64 

indicators, such as vegetation indices, Leaf Area Index (LAI), the fraction of absorbed 65 

photosynthetically active radiation (fAPAR), which effectively capture canopy-level GPP dynamics 66 

related to leaf area changes (Joiner and Yoshida, 2020; Ryu et al., 2019; Tramontana et al., 2016). 67 
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However, important aspects of leaf-level physiology, such as those controlled by climate factors, are 68 

often omitted in major upscaled datasets, preventing accurate characterization of GPP responses to 69 

climate change (Bloomfield et al., 2023; Stocker et al., 2019). In particular, none of the previous 70 

upscaled datasets have considered the direct effect of atmospheric CO2 on leaf-level photosynthesis, 71 

which is a key factor contributing to at least half of the enhanced land carbon sink observed over the 72 

past decades (Keenan et al., 2016, 2023; Ruehr et al., 2023; Walker et al., 2021). This omission can 73 

lead to incorrect inferences regarding long-term trends in various components of the terrestrial 74 

carbon cycle (De Kauwe et al., 2016).  75 

Multiple independent lines of evidence from the atmospheric inversion (Wenzel et al., 2016), 76 

atmospheric 13C/12C measurements (Keeling et al., 2017), ice core records of carbonyl sulfide 77 

(Campbell et al., 2017), glucose isotopomers (Ehlers et al., 2015), as well as free-air CO2 enrichment 78 

experiments (FACE) (Walker et al., 2021), suggest a widespread positive effect of elevated 79 

atmospheric CO2 on GPP from site to global scales. Increasing atmospheric CO2 directly stimulates 80 

the biochemical rate or the light use efficiency (LUE) of leaf-level photosynthesis, known as the 81 

direct CO2 fertilization effect (CFE). Enhanced photosynthesis could lead to greater net carbon 82 

assimilation, contributing to an increase in total leaf area. This expansion, contributing to a higher 83 

light interception, further enhances canopy-level photosynthesis (i.e. GPP), which is referred to as 84 

the indirect CFE. The direct CFE has been found to dominate GPP responses to CO2 compared to 85 

the indirect effect, from both theoretical and observational analyses (Chen et al., 2022; Haverd et al., 86 

2020). 87 

Satellite-based estimates have shown an increasing global GPP trend in the past few decades 88 

largely attributable to CO2-induced increases in LAI (Chen et al., 2019; De Kauwe et al., 2016; Piao 89 

et al., 2020; Zhu et al., 2016). However, previous upscaled GPP datasets, as well as most LUE 90 

models such as the MODIS GPP product, have failed to consider the direct CO2 effects on leaf-91 

level biochemical processes (Jung et al., 2020; Zheng et al., 2020). Consequently, these products 92 

likely underestimated the long-term trend of global GPP, leading to large discrepancies when 93 

compared to process-based models, which typically consider both direct and indirect CO2 effects 94 

(Anav et al., 2015; De Kauwe et al., 2016; Keenan et al., 2023; O’Sullivan et al., 2020). Notably, 95 

recent improvements in LUE models have included the CO2 response and show improved long-96 

term changes in GPP globally (Zheng et al., 2020), yet, this important mechanism is still missing in 97 

GPP products upscaled from in situ eddy covariance flux measurements based on machine learning 98 

models. 99 
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To improve the quantification of GPP spatial and temporal dynamics and provide a robust 100 

representation of long-term dynamics in global photosynthesis, we developed the CEDAR-GPP1 101 

data product. CEDAR-GPP was upscaled from global eddy covariance carbon flux measurements 102 

using machine learning along with a broad range of multi-source satellite observations and climate 103 

variables. In addition to incorporating direct CO2 fertilization effects on photosynthesis, we also 104 

account for indirect effects via greenness indicators and include novel satellite datasets such as solar-105 

induced fluorescence (SIF), Land Surface Temperature (LST) and soil moisture to explain variability 106 

under environmental stresses. We provide monthly GPP estimations and associated uncertainties at 107 

0.05° resolution derived from ten model setups. These setups differ by the temporal range 108 

depending on satellite data availability, the method for incorporating the direct CO2 fertilization 109 

effects, and the partitioning approach used to derive GPP from eddy covariance measurements. 110 

Short-term model setups were primarily based on data derived from MODIS satellites generating 111 

GPP estimates from 2001 to 2020, while long-term estimates spanned 1982 to 2020 using combined 112 

Advanced Very High Resolution Radiometer (AVHRR) and MODIS data. We used two approaches 113 

to incorporate the direct CO2 fertilization effects, including direct prescription with eco-evolutionary 114 

theory and machine learning inference from the eddy-covariance data. Additionally, we provided a 115 

baseline configuration that did not incorporate the direct CO2 effects. Uncertainties in GPP 116 

estimation were quantified using bootstrapped model ensembles. We evaluated the machine learning 117 

models’ skills in predicting monthly GPP, seasonality, interannual variability, and trend against eddy 118 

covariance measurements, and compared the CEDAR-GPP spatial and temporal variability to 119 

existing satellite-based GPP estimates. 120 

2. Data and Methods 121 

2.1 Eddy covariance data 122 

We obtained monthly eddy covariance GPP measurements from 2001 to 2020 from the 123 

FLUXNET2015 (Pastorello et al., 2020), AmeriFlux FLUXNET 124 

(https://ameriflux.lbl.gov/data/flux-data-products/), and ICOS Warm Winter 2020 (Warm Winter 125 

2020 Team, 2022) datasets. All data were processed with the ONEFLUX pipeline (Pastorello et al., 126 

2020). Following previous upscaling efforts (Tramontana et al., 2016), we selected monthly GPP 127 

 
1 CEDAR stands for upsCaling Ecosystem Dynamics with ARtificial inteligence 

https://ameriflux.lbl.gov/data/flux-data-products/
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data with at least 80% of high-quality hourly or half-hourly data for temporal aggregation. We 128 

further excluded large negative GPP values, setting a cutoff of -1 gCm-2d-1. We utilized GPP 129 

estimates from both the night-time (GPP_REF_NT_VUT) and day-time (GPP_REF_DT_VUT) 130 

partitioning approaches. We classified flux tower sites according to the C3 and C4 plant categories 131 

reported in metadata and related publications when available and used a C4 plant percentage map 132 

(Still et al., 2003) otherwise. Our analysis encompassed 233 sites, predominately located in North 133 

America, Western Europe, and Australia (Figure 1, Table S1). Despite their uneven geographical 134 

distribution, these sites effectively cover a diverse range of climatic conditions and are representative 135 

of global biomes (Figure 1c, 1d). In total, our dataset included over 18000 site-months. Note that we 136 

did not include eddy covariance data before 2001, since it was limited to only a few sites with only . 137 

four sites containing data before 1996. This scarcity might introduce biases in the machine learning 138 

models, particularly in the relationship between GPP and CO2, leading to unreliable extrapolations 139 

across space and time in the long-term predictions..  140 

 141 

Figure 1. (a) Spatial distribution of eddy covariance sites used to generate the CEDAR-142 
GPP product. (b) Annual site counts. (c) Site counts by biomes. ENF: evergreen 143 
needleleaf forests, EBF: evergreen broadleaf forests, DBF: deciduous broadleaf forests, 144 
MF: mixed forests, WSA: woody savannas, SAV: savannas, OSH: open shrublands, 145 
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CSH: closed shrublands, GRA: grasslands, CRO: croplands, WET: wetlands. (d) Sites 146 
distributions in the annual temperature and precipitation space. Whittaker biome 147 
classification is shown as a reference of natural vegetation based on long-term climatic 148 
conditions. It does not directly indicate the actual biome associated with each site. The 149 
base map in (a) was obtained from the NASA Earth Observatory map by Joshua 150 
Stevens using data from NASA’s MODIS Land Cover, the Shuttle Radar Topography 151 
Mission (SRTM), the General Bathymetric Chart of the Oceans (GEBCO), and 152 
Natural Earth boundaries. Whittaker biomes were plotted using the “plotbiomes” R 153 
package (Ștefan and Levin, 2018). 154 

2.2 Global input datasets 155 

We compiled an extensive set of covariates from gridded climate reanalysis data, multi-source 156 

satellite datasets including optical, thermal, and microwave observations, as well as categorical 157 

information on land cover, climate zone, and C3/C4 classification. The datasets that we compiled 158 

offer comprehensive information about GPP dynamics and its responses to climatic variabilities and 159 

stresses. Table 1 lists the datasets and associated variables used to generate CEDAR-GPP. 160 

Table 1. Datasets and input variables used to generate the CEDAR GPP product. For a list of 161 
selected variables used in different model setups, please refer to Table S1. 162 

Category Dataset Temporal 
coverage 

Spatial 
resolution 

Temporal 
resolution 

Variables Reference 

Climate ERA5-Land 
Monthly 
Averaged data 

1950 – 
present 

0.1º Monthly Air temperature; 
vapor pressure 
deficit, 
Precipitation, 
Air and skin 
temperature, surface 
downwelling solar 
radiation, 
Potential 
evaporation 

(Sabater, 
2019) 

ESRA Global 
Monitoring 
Laboratory 
Atmospheric 
Carbon Dioxide 

1976 – 
present 

- Monthly Atmospheric CO2 
concentration 
averaged from 
Mauna Loa, Hawaii, 
US and South Pole, 
Antarctica  

(Thoning 
et al., 
2021) 

Satellite-
based 
datasets 

MODIS Nadir 
BRDF-adjusted 
reflectance 
(MCD43C4v006) 

2000 – 
present 

0.05º Daily Surface reflectance 
b1 – b7, Vegetation 
indices (NIRv, 
NDVI, kNDVI, 
EVI, CIgreen, 
NDWI), percent 
snow 

(Schaaf 
and Wang, 
2015) 

MODIS Terra 
and Aqua 

2000 – 
present 

500m 4-day, 8-
day 

LAI, fPAR (Myneni et 
al., 2015a, 
b) 
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LAI/fPAR 
(MCD15A3H, 
MOD15A2H, 
v006) 
MODIS Terra 
and Aqua LST 
(MYD11A1, 
MOD11A1, 
v006) 

2000 – 
present 

1 km Daily Daytime LST 
Nighttime LST 

(Wan et al., 
2015b, a) 

BESS_Rad 2000 – 
2020 

0.05º Daily PAR, diffuse PAR, 
downwelling solar 
radiation 

(Ryu et al., 
2018) 

Continuous-SIF 
(from OCO-2 
and MODIS) 

2000 – 
2020 

0.05º 4-day all-sky daily average 
SIF 

(Zhang, 
2021) 

ESA CCI Soil 
Moisture 
Combined 
Passive and 
Active (v06.1) 

1979 – 
2021  

0.25º Daily Surface soil 
moisture 

(Gruber et 
al., 2019) 

GIMMS LAI4g 1982 – 
2021  

0.0833º Half-
month 

LAI (Cao et al., 
2023) 

GIMMS 
NDVI4g 

1982 – 
2021  

0.0833 º Half-
month 

NDVI (Li et al., 
2023) 

Static 
categorical 
datasets 

MODIS Land 
Cover 
(MCD12Q1v006) 

Average 
status 
used 
between 
2001 and 
2020 

500m - Plant function types (Friedl and 
Sulla-
Menashe, 
2019) 

Koppen-Geiger 
Climate 
Classification 

present 1 km - Koppen-Geiger 
climate classes 

(Beck et 
al., 2018) 

C4 percentage 
map 

present 1º - Percentage of C4 
plants 

(Still et al., 
2003, 
2009) 

 163 

2.2.1 Climate variables 164 

We obtained air temperature, vapor pressure deficit, precipitation, potential 165 

evapotranspiration, and skin temperature from the EAR5-Land reanalysis dataset (Sabater, 2019) 166 

(Table 1; Table S1). We applied a three-month lag to precipitation, to reflect the memory of soil 167 

moisture and represent the root zone water availability. Averaged monthly atmospheric CO2 168 

concentrations were calculated as an average of records from the Mauna Loa Observatory and South 169 

Pole Observation stations, retrieved from NOAA’s Earth System Research Laboratory (Thoning et 170 

al., 2021). 171 
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2.2.2 Satellite datasets 172 

We assembled a broad collection of satellite-based observations of vegetation greenness and 173 

structure, LST, solar radiation, solar-induced fluorescence (SIF), and soil moisture (Table 1, Table 174 

S1).  175 

We used three MODIS version 6 products: surface reflectance, LAI/fAPAR, and LST. 176 

Surface reflectance from optical to infrared bands (band 1 to 7) was sourced from the MODIS 177 

Nadir BRDF-adjusted reflectance (NBAR) daily dataset (MCD43C4) (Schaaf and Wang, 2015). 178 

From these data, we derived vegetation indices, including NIRv (Badgley et al., 2019), kNDVI 179 

(Camps-Valls et al., 2021), NDVI, Enhanced Vegetation Index (EVI), Normalized Difference Water 180 

Index (NDWI) (Gao, 1996), and the green chlorophyll index (CIgreen) (Gitelson, 2003). We also 181 

used snow percentages from the NBAR dataset. We used the 4-day LAI and fPAR composite 182 

derived from Terra and Aqua satellites (MCD15A3H) (Myneni et al., 2015a; Yan et al., 2016a, b) 183 

from July 2002 onwards and the MODIS 8-day LAI and fPAR dataset from Terra only 184 

(MOD15A2H) prior to July 2002 (Myneni et al., 2015b). We used day-time and night-time LST from 185 

the Aqua satellite (MYD11A1) (Wan et al., 2015b), with the Terra-based LST product (MOD11A1) 186 

used after July 2002 (Wan et al., 2015a). Terra LST was bias-corrected with the differences in the 187 

mean seasonal cycles between Aqua and Terra following Walther et al. (2022). 188 

We used the PKU GIMMS NDVI4g dataset (Li et al., 2023) and PKU GIMMS LAI4g (Cao 189 

et al., 2023) datasets available from 1982 to 2020. PKU GIMMS NDVI4g is a harmonized time 190 

series that includes AVHRR-based NDVI from 1982 to 2003 (with biases and corrections mitigated 191 

through inter-calibration with Landsat surface reflectance images) and MODIS NDVI from 2004 192 

onward. PKU GIMMS LAI4g consisted of consolidated AVHRR-based LAI from 1982 to 2003 193 

(generated using machine learning models trained with Landsat-based LAI data and NDVI4g) and 194 

reprocessed MODIS LAI (Yuan et al., 2011) from 2004 onwards. 195 

We utilized photosynthetically active radiation (PAR), diffusive PAR, and shortwave 196 

downwelling radiation from the BESS_Rad dataset (Ryu et al., 2018). We obtained the continuous-197 

SIF (CSIF) dataset (Zhang, 2021; Zhang et al., 2018) produced by a machine learning algorithm 198 

trained using OCO-2 SIF observations and MODIS surface reflectance. We used surface soil 199 

moisture from the ESA CCI soil moisture combined passive and active product (version 6.1) 200 

(Dorigo et al., 2017; Gruber et al., 2019). 201 
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2.2.3 Other categorical datasets 202 

We used plant functional type (PFT) information derived from the MODIS Land Cover 203 

product (MCD12Q1) (Friedl and Sulla-Menashe, 2019). We followed the International Geosphere-204 

Biosphere Program classification scheme but merged several similar categories to maximize the 205 

amount of eddy covariance sites/observations available for each category. Closed shrublands and 206 

open shrublands are combined into a shrubland category. Woody savannas and savannas are 207 

combined into savannas. We generated a static PFT map by taking the mode of the MODIS land 208 

cover time series between 2001 – 2020 at each pixel to mitigate uncertainties from misclassification 209 

in the MODIS dataset. Nevertheless, changes in vegetation structure induced by land use and land 210 

cover change are reflected in the dynamics surface reflectance and LAI/fAPAR datasets we used. 211 

We used the Koppen-Geiger main climate groups (tropical, arid, temperate, cold, and polar) (Beck et 212 

al., 2018). We also utilized a C4 plant percentage map to account for different photosynthetic 213 

pathways when incorporating CO2 fertilization (Still et al., 2003, 2009). The C4 percentage dataset 214 

was constant over time. 215 

2.2.4 Data preprocessing 216 

We implemented a three-step preprocessing strategy for the satellite datasets: 1) quality 217 

control, 2) gap-filling, and 3) spatial and temporal aggregation. In the first stepFirstly, we selected 218 

high-quality data based on the quality control flags of the satellite products when available. For the 219 

MODIS NBAR dataset (MCD43C3), we used data with 75% or more high-resolution NBAR pixels 220 

retrieved with full inversions for each band. For MODIS LST, we selected the best quality data from 221 

the quality control bitmask as well as data where retrieved values had an average emissivity error of 222 

no more than 0.02. For MODIS LAI/fAPAR, we used retrievals from the main algorithm with or 223 

without saturation. We used all available data in ESA-CCI soil moisture due to the presence of 224 

substantial data gaps. In the gap-filling step, missing values in satellite datasets were temporally filled 225 

at the native temporal resolution, following a two-step protocol adapted from Walther et al (2021). 226 

Short temporal gaps were first filled with medians from a moving window, and the remaining gaps 227 

were filled with the mean seasonal cycle. For datasets with a high temporal resolution, including 228 

MODIS NBAR (daily), LAI/fPAR (4-day), BESS (4-day), CSIF (4-day), ESA-CCI (daily), temporal 229 

gaps no longer than 5 days (8 days for 4-day resolution products) were filled with medians of 15-day 230 

moving windows in the first step. An exception is MODIS LST (daily), for which we used a shorter 231 

moving window of 9 days due to rapid changes in surface temperature. GIMMS LAI4g and 232 
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NDVI4g data were only filled with mean seasonal cycle due to their low temporal resolution (half-233 

month). This is because vegetation structure could experience significant changes at half-month 234 

intervals, and gap-filling using temporal medians within moving windows could introduce 235 

considerable uncertainties and potentially over-smooth the time series. In the last processing step, all 236 

the datasets were aggregated to a monthly time step and 0.05-degree spatial resolution. 237 

 238 
Figure 2. Schematic overview of the CEDAR-GPP model setups.  239 

2.3 Machine learning upscaling 240 

2.3.1 CEDAR-GPP model setups  241 

We trained machine learning models with eddy covariance GPP measurements as targets and 242 

climate/satellite variables as input features. We created ten model setups to produce different global 243 

monthly GPP estimates (Figure 2; Table 2). The model setups were characterized by the temporal 244 

range depending on input data availability, the configuration of CO2 fertilization effects, and the 245 

partitioning approach used to derive the GPP from eddy covariance measurements.  246 

The short-term (ST) model configuration produced GPP from 2001 to 2020, and the long-247 

term (LT) configuration spanned 1982 to 2020. Each temporal configuration uses a different set of 248 

input variables depending on their availability. Inputs for the short-term configuration included 249 

MODIS, CSIF, BESS PAR, ESA-CCI soil moisture, ERA5-Land, as well as PFT and Koppen 250 

Climate zone as categorical variables with one-hot encoding. The long-term used GIMMS NDVI4g 251 

and LAI4g data, ERA5-land, PFT and Koppen climate. ESA CCI soil moisture datasets were 252 

excluded from the long-term model setups due to concerns about the product quality in the early 253 

years when the number and quality of microwave satellite data were limited (Dorigo et al., 2015). A 254 

detailed list of input features for each setup is provided in Table S1. 255 

Regarding the direct (leaf-level) CO2 fertilization effects (CFE), we established a “Baseline” 256 

configuration that did not incorporate these effects, a “CFE-Hybrid” configuration that 257 
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incorporated the effects via eco-evolutionary theory, and a “CFE-ML” configuration that inferred 258 

the direct effects from eddy covariance data using machine learning. Detailed information about 259 

these approaches is provided in Sec. 2.3.2. Furthermore, separate models were trained for GPP 260 

target variables from the night-time (NT) and daytime (DT) partitioning approaches.  261 

Table 2 lists the characteristics of ten model setups. Due to the limited availability of eddy 262 

covariance observations before 2001, we did not apply the CFE-ML approach to the long-term 263 

setups. The CFE-ML model, when trained on data from 2001 to 2020 with atmospheric CO2 264 

ranging from 370 to 412 ppm, would not accurately predict GPP response to CO2 for the period 265 

1982 – 2000 when the CO2 levels were markedly lower (roughly 340 – 369 ppm). This is because 266 

machine learning models, especially tree-based models, could not extrapolate beyond the range of 267 

the training data. 268 

Table 2. Specifications of the CEDAR-GPP model setups. 269 
Model Setup Name Temporal range Direct CO2 Fertilization Effects GPP Partitioning Method 

Configuration Method 
ST_Baseline_NT Short-term (ST) 

2001 – 2020 
Baseline Not incorporated Night-time (NT)  

ST_Baseline_DT Day-time (DT) 
ST_CFE-Hybrid_NT CFE-Hybrid Theoretical NT 
ST_CFE-Hybrid_DT DT 
ST_CFE-ML_NT CFE-ML Data-driven NT 
ST_CFE-ML_DT DT 
LT_Baseline_NT Long-term (LT) 

1982 – 2020 
Baseline Not incorporated NT 

LT_Baseline_DT DT 
LT_CFE-Hybrid_NT CFE-Hybrid Theoretical NT 
LT_CFE-Hybrid_DT DT 

 270 

2.3.2 CO2 fertilization effect 271 

We established three configurations regarding the direct CO2 fertilization effects on 272 

photosynthesis. In the baseline configuration, we trained machine learning models with eddy 273 

covariance GPP measurements, input climate and satellite features, but excluding CO2 274 

concentration. As such, the models only include indirect CO2 effects from the satellite-based proxies 275 

of vegetation greenness or structure representing changes in canopy light interception, and they do 276 

not consider the direct effect of CO2 on leaf-level photosynthetic rates (or light use efficiency, LUE). 277 

Our baseline model is therefore directly comparable to other satellite-derived GPP products that 278 

only account for indirect CO2 effects (Joiner and Yoshida, 2020; Jung et al., 2020). 279 
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In the CFE-ML configuration, we added monthly CO2 concentration into the feature set in 280 

addition to those incorporated in the baseline models. Models inferred the functional relationship 281 

between GPP and CO2 from the eddy covariance data. They, thus  encompass both CO2 fertilization 282 

pathways – direct effects on LUE and indirect effects from the satellite-based proxies of vegetation 283 

greenness and structure. 284 

In the CFE-Hybrid configuration, we applied biophysical theory to estimate the response of 285 

LUE to elevated CO2, i.e. the direct CFE (Appendix A). First, we estimated a reference GPP, where 286 

LUE was not affected by any increase in atmospheric CO2, by applying the CFE-ML model with a 287 

constant atmospheric CO2 concentration equal to the 2001 level while keeping all other variables 288 

temporally dynamic. Then, the impacts of CO2 on LUE were prescribed onto the reference GPP 289 

estimates using a theoretical CO2 sensitivity function of LUE according to eco-evolutionary 290 

theoriesthe optimal coordination theory (Appendix A). The theoretical CO2 sensitivity function 291 

represents a CO2 sensitivity that is equivalent to that of the electron-transport-limited (light-limited) 292 

photosynthetic rate. When light is limited, elevated CO2 suppresses photorespiration leading to 293 

increased photosynthesis at a lower rate than when photosynthesis is limited by CO2 (Lloyd and 294 

Farquhar, 1996; Smith and Keenan, 2020). Thus, the CFE-Hybrid scenario provides a conservative 295 

estimation of the direct CO2 effects on LUE. Note that the theoretical sensitivity function describes 296 

the fractional change in LUE due to direct CO2 effects relative to a reference period (i.e. 2001). 297 

Therefore, we used the CFE-ML model to establish this reference GPP by fixing the CO2 effects to 298 

the 2001 level, rather than simply using the GPP from the Baseline model in which the direct CO2 299 

effects were not represented. 300 

For both CFE-ML and CFE-Hybrid scenarios, we made another conservative assumption that 301 

C4 plants do not benefit from elevated CO2, despite potential increases in photosynthesis during 302 

water-limited conditions due to enhanced water use efficiency (Walker et al., 2021). Data from flux 303 

tower sites dominated by C4 plants were removed from our training set, so the machine learning 304 

models inferred CO2 fertilization only from flux tower sites dominated by C3 plants. When applying 305 

models globally, we assumed the reference GPP values (with constant atmospheric CO2 306 

concentration equal to the 2001 level) to represent C4 plants, and GPP estimates from CFE-ML or 307 

CFE-Hybrid models were applied in proportion to the percentage of C3 plants in a grid cell. 308 
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2.3.3 Machine learning model training and validation 309 

We employed the state-of-the-art XGBoost machine learning model, known for its high 310 

accuracy in regression problems across various domains, including environmental and ecological 311 

predictions (Berdugo et al., 2022; Chen and Guestrin, 2016; Kang et al., 2020). XGBoost is a 312 

scalable and parallelized implementation of the gradient boosting technique that iteratively trains an 313 

ensemble of decision trees, with each iteration targeting to minimize the residuals from the last 314 

iteration. A notable merit of XGBoost is its ability to make prediction in the presence of missing 315 

values, a common issue in remote sensing datasets. Without relying on prior assumptions about the 316 

functional forms or statistical distributions, the model is also robust to multi-collinearity between the 317 

predictors in our dataset, particularly for the variables derived from MODIS data.  318 

We used five-fold cross-validation for model evaluation. Training data was randomly split into 319 

five groups (folds), with each fold held out for testing while the rest four folds were used for model 320 

training. We imposed two restrictions on fold splitting: each flux site was entirely assigned to a fold 321 

to test model performance over unseen locations; the random sampling was stratified based on PFT 322 

to ensure coverage of the full range of PFTs in both training and testing. We also used a nested-323 

cross-validation strategy, during which we performed a randomized search of hyperparameters using 324 

three-fold cross-validation within the training set. The nested-cross-validation was aimed to reduce 325 

the risk of overfitting and improve the robustness of the evaluation.  326 

We assessed the models’ ability to capture the temporal and spatial characteristics of GPP, 327 

including monthly GPP, mean seasonal cycles, monthly anomalies, and cross-site variability. Model 328 

performance was assessed separately for each model setup (Table 2) and summarized by PFT and 329 

Koppen climate zone. Mean seasonal cycles were calculated as the mean monthly GPP over the site 330 

observation period, and monthly anomalies were the residuals of monthly GPP after subtracting 331 

mean seasonal cycles. Monthly GPP averaged over years for each site was used to assess cross-site 332 

variability. Goodness-of-fit metrics include RMSE, bias, and coefficient of determination (R2).  333 

To evaluate the models’ ability to capture long-term GPP trends, we aggregated the monthly 334 

GPP to annual values for sites with at least five years of observations following Chen et al. (2022). 335 

GPP anomalies were computed by subtracting the multi-year mean GPP from the annual GPP for 336 

each site. Anomalies were aggregated across sites to achieve a single multi-site GPP anomaly per 337 

year. We excluded a site-year if less than 11 months of data was available and used linear 338 

interpolation to fill the remaining temporal gaps. We used the Sen slope and Mann-Kendall test to 339 

examine the GPP trends from 2002 to 2019, excluding 2001 and 2020, due to the limited number of 340 
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available sites with more than five years of data. We further assessed the aggregated annual trend by 341 

grouping the sites based on plant functional types and the koppen climate zones. Categories with 342 

less than six long-term sites available were excluded from the analysis, which includes EBF and 343 

Tropics. 344 

2.3.4 Product generation and uncertainty quantification 345 

In the CEDAR-GPP product, we generated GPP estimates from each of the ten model 346 

setups, by applying the model to global gridded datasets within the corresponding temporal range 347 

(Table 2). GPP estimates were named after the corresponding model setups. We used bootstrapping 348 

to quantify estimate uncertainties. For each model setup, we generated 30 bootstrapped sample sets 349 

of eddy covariance data, which were then used to train an ensemble of 30 XGBoost models. The 350 

bootstrapping was performed at the site level, and each bootstrapped sample set contained around 351 

140 to 150 unique sites, 17000 to 19000 site months covering all PFTs. The relative PFT 352 

composition in the bootstrapped sample sites was consistent with the full dataset. The 30 models 353 

trained with bootstrapped samples generated an ensemble of 30 GPP values. We provided the 354 

ensemble GPP mean and used standard deviation to indicate uncertainties, for each of the ten model 355 

setups. 356 

2.4 Product inter-comparison 357 

We compared the global spatial and temporal patterns of CEDAR-GPP with other major 358 

satellite-based GPP products, including three machine learning upscaled and two LUE-based 359 

datasets. We obtained two FLUXCOM products (Jung et al., 2020), the latest version of 360 

FLUXCOM-RS (FLUXCOM-RSv006) available from 2001 to 2020 based on remote sensing 361 

(MODIS collection 6) datasets only, as well as the FLUXCOM-RS+METEO ensemble available 362 

between 1979 to 2018 and based on the climatology of remote sensing observations and ERA5 363 

forcings (hereafter FLUXCOM-ERA5). We used FluxSat (Joiner and Yoshida, 2020), available from 364 

2001 to 2019, which is an upscaled dataset based on MODIS NBAR surface reflectance and PAR 365 

from Modern-Era Retrospective analysis for Research and Applications 2 (MERRA-2). Importantly, 366 

FluxSat does not incorporate climate forcings. We used the MODIS GPP product (MOD17) 367 

available since 2001, which was generated based on MODIS fAPAR and LUE as a function of air 368 

temperature and vapor pressure deficit but not atmospheric CO2 concentration (Running et al., 369 

2015). We also used the rEC-LUE products, available from 1982 to 2018 and based on a revised 370 
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LUE model that incorporated the effect of atmospheric CO2 concentration and the fraction of 371 

diffuse PAR on LUE (Zheng et al., 2020). All datasets were resampled to 0.1 º spatial resolution, and 372 

a common mask for the vegetated land area was applied. We evaluated global mean annual GPP, 373 

mean seasonal cycle, interannual variability, and trend among different datasets, comparing them 374 

over a common time period determined by their data availability. Global total GPP was computed 375 

by scaling the global average GPP flux with the global land area (122.4 million km2) following Jung 376 

et al. (2020). Mean seasonal cycle was defined as above (Sec. 2.3.3). We used the standard deviation 377 

of annual GPP to indicate the magnitude of interannual variability, the Sen slope to indicate the 378 

GPP annual trend, and the Mann-Kendall test for the statistical significance of trends.  379 

3. Results 380 

3.1 Evaluation of model performance 381 

3.1.1 Overall performance 382 

The short-term and long-term models explained approximately 74% and 68%, respectively, of 383 

the variation in monthly GPP across global eddy covariance sites (Figure 3a). The long-term models 384 

consistently yielded lower performance than the short-term models, likely due to differences in the 385 

satellite remote sensing datasets used, as the short-term models benefited from richer information 386 

from surface reflectance of individual bands, LST, CSIF, as well as soil moisture, while the long-387 

term model only exploited NDVI and LAI. The models with different CFE configurations and 388 

target GPP variables (i.e. partitioning approaches) had similar performance in predicting monthly 389 

GPP (Figure 3b, Table S2). All models exhibited minimal bias of less than 0.15. 390 

Model performance in terms of the different temporal and spatial characteristics of monthly 391 

GPP was variable (Figure 3c-h). The models were most successful at predicting mean seasonal 392 

cycles, with the short-term and long-term models explaining around 79% and 73% of the variability, 393 

respectively (Figure 3c-d). The short-term and long-term models captured 67% and 56% , 394 

respectively, of the spatial variabilities in multi-year mean GPP across global sites (i.e., cross-site 395 

variability) (Figure 3g-h). However, all models underestimated monthly anomalies across the sites, 396 

with R2 values below 0.12 (Figure 3e-f). The CFE-ML and CFE-Hybrid models showed slightly 397 

higher accuracy than the Baseline model across all temporal and spatial characteristics in NT setups. 398 

Patterns from the DT setups do not significantly differ from those of the NT setups (Figure S1). 399 
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 400 

 401 
Figure 3. Machine learning model performance in predicting monthly GPP and its 402 
spatial and temporal variability. Only NT models are shown and DT results is provided 403 
in Supplementary Figure S1. Scatter plots illustrated relationships between model 404 
predictions and observations for monthly GPP (a), mean seasonal cycles (MSC) (c), 405 
monthly anomaly (e), and cross-site variability (g) for ST_CFE-Hybrid_NT (left, blue) 406 
and LT_CFE-Hybrid_NT (right, green) models. Corresponding bar plots show the R2 407 
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values for five NT model setups in predicting monthly GPP (b), MSC (d), monthly 408 
anomaly (f), and cross-site variability (h). 409 

3.1.2 Performance by biome and climate zone 410 

The predictive ability of our models varied across different PFTs and Koppen climate zones 411 

(Figure 4). Here we present results from the CFE-Hybrid LT and ST models based on NT 412 

partitioning and note that patterns for the other CFE configurations and the DT GPP were similar 413 

(Figure S2).  414 

Model performance in terms of monthly GPP was the highest for deciduous broadleaf forests, 415 

mixed forests, and evergreen needleleaf forests, with R2 values above 0.78. Model accuracies were 416 

also high for savannas and grasslands, followed by croplands and wetlands, with R2 values between 417 

0.57 and 0.74. Model accuracies were lowest in evergreen broadleaf forests and shrublands, with R2 418 

values as low as 0.14. Across climate zones, models achieved the highest accuracy in predicting 419 

monthly GPP in cold and tropical climate zones with R2 values between 0.64 and 0.80. The short-420 

term models had the lowest performance in polar regions with an R2 value of around 0.42, and the 421 

long-term model had the lowest performance in arid regions with an R2 value of 0.25.  422 

Model performance in terms of mean seasonal cycles across PFTs and climate zones followed 423 

patterns for monthly GPP, while disparities emerged for performance in terms of GPP anomaly and 424 

cross-site variability (Figure 4). The short-term model showed the highest predictive power in 425 

explaining monthly anomalies in arid regions with an R2 value of 0.49, where savanna and 426 

shrublands sites are primarily located. Model performance in all other climate zones was significantly 427 

lower, with R2 values below 0.2, and as low as 0.07 in temperate regions. Besides, the short-term 428 

model demonstrated good performance in capturing anomalies in deciduous broadleaf forests. The 429 

long-term model’s relative performance between PFTs and climate zones was mostly consistent with 430 

that of the short-term model, with lower accuracy in shrublands when compared to the short-term 431 

model. 432 

Models demonstrated the highest accuracy in predicting cross-site variability in savannas, 433 

grasslands, evergreen needleleaf forests, and evergreen broadleaf forests (R2 > 0.36) and the lowest 434 

accuracy in deciduous broadleaf forests, mixed forests, and croplands (R2 < 0.20). The short-term 435 

model additionally showed good performance in shrublands and wetlands (R2 > 0.36), whereas the 436 

long-term model failed to capture any variability for shrublands. In terms of climate zones, models 437 

were most successful at explaining the variabilities within tropical and cold climate zones (R2 > 438 
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0.46), the short-term model was least successful across polar regions, with a R2 value of 0.29, and the 439 

long-term model had low performance for both polar and arid regions with R2 values below 0.15. 440 

 441 
Figure 4. Performance of the ST_CFE-Hybrid_NT (blue) and LT_CFE-Hybrid_NT 442 
(green) models on GPP spatiotemporal estimation by plant functional types (a) and 443 
climate zones (b). The cross-site panels included the number of sites within each 444 
category. Color indicates short-term (ST) or long-term (LT) models. ENF: evergreen 445 
needleleaf forest, EBF: evergreen broadleaf forest, DBF: deciduous broadleaf forest, 446 
MF: mixed forest, SH: shrubland, SA: savanna, GRA: grassland, CRO: cropland, WET: 447 
wetland. Tr: tropical, Ar: arid, Tp: temperate, Cd: cold, Pl: polar. The performance of 448 
DT models is displayed in Supplementary Figure S2. 449 
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3.1.3 Prediction of long-term trends 450 

Eddy covariance derived GPP presented a substantial increasing trend across flux sites 451 

between 2002 and 2019 (Figure 5a, Figure S3a). The observed eddy covariance GPP from the night-452 

time partitioning approach indicated an overall trend of 7.7 gCm-2year-2. In contrast, the ST_ 453 

Baseline_NT model predicted a more modest trend of 2.7 gCm-2year-2, primarily reflecting the 454 

indirect CO2 effect manifested through the growth of LAI. Both the ST_CFE-ML_NT and 455 

ST_CFE-hybrid_NT models predicted much higher trends of 5.5 and 4.3 gCm-2year-2 respectively, 456 

representing an improvement from the Baseline model by 51% and 29%, aligning more closely to 457 

eddy covariance observations. Similarly, the LT_CFE-Hybrid_NT model showed an improved trend 458 

estimation than the LT_Baseline_NT model. All trends were statistically significant (p < 0.05). 459 

Aggregated eddy covariance GPP experienced increasing trends of varied magnitudes across 460 

different climate zones and plant functional types (Figure 5b,c; Figure S3b,c). While the machine 461 

learning models generally did not fully capture the enhancement in GPP for most categories, the 462 

CFE-ML and/or CFE-hybrid models consistently outperformed the Baseline models in both ST 463 

and LT setups. The CFE-ML setup predicted a higher trend than CFE-hybrid in most cases, 464 

suggesting that the data-driven approach captured more dynamics not represented in the theoretical 465 

model, which was based on conservative assumptions regarding the CO2 sensitivity of 466 

photosynthesis (see Sect. 2.3.2 and Appendix A). The choice of remote sensing data (ST vs. LT 467 

configurations) did not lead to substantial differences in the predicted GPP trend. Most long-term 468 

flux sites (at least 10 years of records) with a significant trend experienced an increase in GPP, and 469 

the CFE-ML and/or CFE-hybrid models aligned closer to eddy covariance data than the Baseline 470 

models (Figure S4).  Additionally, we found a considerably higher trend in eddy covariance GPP 471 

measurements derived from the day-time versus night-time partitioning approach, potentially 472 

associated with uncertainties in GPP partitioning methods (Figure S4). Yet, machine learning model 473 

predicted trends were not strongly affected by GPP partitioning methods (Figure S3, S4). 474 

 475 
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 476 
Figure 5. Comparison of observed and predicted GPP (from NT models only) trends 477 
across eddy covariance flux towers. (a) Aggregated annual GPP anomaly from 2002 to 478 
2019 and trend lines from eddy covariance (EC) measurementsdata, and three CFE 479 
model setups (short-term, night-time partitioning) for ST (left) and LT (right) models. 480 
The size of grey circle markers is proportional to the number of sites. (b) Comparison 481 
of annual GPP trends from eddy covariance measurements and the short-term (ST) 482 
CEDAR-GPP model setups by plant functional types and climate zones. (c) 483 
Comparison of annual GPP trends from eddy covariance measurements and the long-484 
term (LT) CEDAR-GPP model setups by plant functional types and climate zones. In 485 
(b) and (c), Categories with less than 6 sites, including Tropics and EBF, were not 486 
shown. While dots on the bars indicate statistically significant trend with p-value < 0.1. 487 
Results for the DT models are shown in Supplementary Figure S3. 488 

 489 
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3.2 Evaluation of GPP spatial and temporal dynamics 490 

We compared CEDAR-GPP estimates with other upscaled or LUE-based datasets regarding 491 

the mean annual GPP (Sect. 3.2.1), GPP seasonality (Sect. 3.2.2), interannual variability (Sect. 3.2.3), 492 

and annual trends (Sect. 3.2.4). CEDAR-GPP model setups generally showed similar patterns in 493 

mean annual GPP, seasonality, and interannual variability, therefore, in corresponding sections, we 494 

present the CFE-Hybrid model setups as representative examples for comparisons with other 495 

datasets, unless otherwise stated. Supplementary figures include comparisons involving CEDAR-496 

GPP estimates from all model setups. 497 

3.2.1 Mean annual GPP 498 

Global patterns of mean annual GPP were generally consistent among CEDAR-GPP model 499 

setups, FLUXCOM, FLUXSAT, MODIS, and rEC-LUE, with few noticeable regional differences 500 

(Figure 6, Figure S5). Differences among CEDAR-GPP model setups were minimal and only 501 

evident between the NT and DT setups in the tropics (Figure 6b-c, Figure S5). CEDAR-GPP short-502 

term datasets showed highest consistency with FLUXSAT in terms of mean annual GPP 503 

magnitudes (2001 – 2018) and latitudinal variations, although FLUXSAT presented slightly higher 504 

GPP values in the tropics compared to CEDAR-GPP (Figure 6b). Mean annual GPP magnitude for 505 

FLUXCOM-RS006 and MODIS was lower globally than CEDAR-GPP and FLUXSAT, with the 506 

most pronounced differences observed in the tropical areas. Among the long-term datasets 507 

(CEDAR-GPP LT, FLUXCOM-ERA5, and rEC-LUE), mean annual GPP (1982 – 2018) exhibited 508 

greater disparities in the northern mid-latitudes than in the tropics and southern hemisphere (Figure 509 

6c). CEDAR-GPP aligned more closely with FLUXCOM-ERA5 than with rEC-LUE, with the latter 510 

showing lower annual mean GPP globally, particularly between 20ºN to 50º N. 511 
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 512 
Figure 6. Global distributions of mean annual GPP from CEDAR-GPP and other 513 
machine learning upscaled and LUE-based reference datasets. (a) Global patterns of 514 
mean annual GPP from two short-term datasets including ST_CFE-Hybrid_NT, and 515 
FLUXCOM-RS006, and two long-term datasets including LT_CFE-Hybrid_NT, and 516 
FLUXCOM-ERA5. (b) Latitudinal distributions of mean annual GPP from short-term 517 
datasets (ST_CFE-Hybrid_NT, FLUXSAT, FLUXCOM-RS006, and MODIS). (c) 518 
Latitudinal distributions of mean annual GPP from long-term datasets (LT_CFE-519 
Hybrid_NT, FLUXCOM-ERA5, and rEC-LUE). Mean annual GPP was computed 520 
between 2001 and 2018 for short-term datasets and between 1982 and 2018 for long-521 
term datasets. 522 
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3.2.2 Seasonal variability 523 

CEDAR-GPP and other machine learning upscaled or LUE-based GPP datasets agreed on 524 

seasonal variabilities (average between 2001 and 2018) at the global scale, characterized by a peak in 525 

GPP in July and a nadir between December and January (Figure 7, Figure S6, S7). At the global 526 

scale, CEDAR-GPP was most closely aligned with FLUXSAT in GPP seasonal magnitude and 527 

amplitude, while both FLUXCOM and MODIS displayed a relatively less pronounced magnitude.  528 

In the northern hemisphere (20ºN - 90ºN), all GPP datasets agreed on seasonal GPP 529 

variation, despite variances in the magnitude of peak GPP. In the southern hemisphere (20ºS - 530 

60ºS), all datasets exhibited their lowest GPP during June and July, and highest GPP from 531 

December to January. However, the seasonal amplitude of GPP was greatest for FLUXCOM-532 

ERA5, followed by CEDAR-GPP and FLUXSAT, and substantially smaller for FLUXCOM-RS006 533 

and MODIS GPP. In the tropics (20ºN - 20ºS), differences between datasets were the strongest, 534 

where seasonal variation is not as prominent compared to other regions. CEDAR-GPP, FLUXSAT, 535 

and FLUXCOM-ERA5 each showed two GPP peaks, occurring in March-April and September-536 

October. Although FLUXCOM-RS006 had a similar seasonal pattern, its GPP magnitude was 537 

markedly smaller. Interestingly, MODIS showed an inverse season pattern with a small peak from 538 

June to August.  539 

 540 
Figure 7. Comparison of GPP mean seasonal cycle between different datasets on a 541 
global scale, specifically within the Northern Hemisphere (20ºN - 90ºN), Southern 542 
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Hemisphere (20ºS - 60ºS), and Tropical regions (20ºN - 20ºS). Monthly means were 543 
averaged from 2001 to 2018 for all datasets. 544 

3.2.3 Interannual variability 545 

We found distinct spatial patterns in GPP interannual variability between upscaled and LUE-546 

based datasets and a high level of agreement within each category, with the exception of 547 

FLUXCOM-ERA5, which showed minimal interannual variability globally (Figure 8, Figure S8). All 548 

datasets agreed on the presence of GPP interannual variability hotspots in eastern and southern 549 

South America, central North America, southern Africa, and western Australia. These hotspots 550 

primarily corresponded to arid and semi-arid areas characterized by grasslands, shrubs, and 551 

croplands (Figure 9). CEDAR-GPP was highly consistent with FLUXSAT, and both datasets also 552 

displayed relatively high interannual variability in the dry subhumid areas of Europe, predominately 553 

covered by croplands. FLUXCOM-RS006 mirrored the relative spatial patterns of CEDAR-GPP 554 

and FLUXSAT, albeit at lower magnitudes. The LUE-based datasets (MODIS and rEC-LUE) 555 

predicted a much higher interannual variability than the upscaled datasets in the tropical areas, 556 

particularly in evergreen broadleaf forests and woody savannas (Figure 8, Figure 9). These datasets 557 

also depicted slightly higher interannual variability for other types of forests, including evergreen 558 

needleleaf forests and deciduous broadleaf forests, compared to the upscaled datasets. The lack of 559 

interannual variability in FLUXCOM-ERA5 is attributable to the use of mean seasonal cycles of 560 

remotely sensed vegetation greenness indicators rather than their dynamic time series. Ten CEDAR-561 

GPP model setups presented consistent patterns in interannual variability, and differences were 562 

minimal (Figure S8). 563 
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 564 
Figure 8. Spatial patterns of GPP interannual variability extracted over 2001 to 2018 565 
for CEDAR-GPP (ST_CFE-Hybrid_NT), FLUXSAT, FLUXCOM-RS006, MODIS, 566 
FLUXCOM-ERA5, and rEC-LUE. 567 
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 568 

Figure 9. Comparison of GPP interannual variability (IAV) across global datasets by 569 
PFT. Colored dots represent the median IAV, thicker gray bars indicate the 25% to 570 
75% percentiles of IAV distributions, and thinner grey bards show the 10% to 90% 571 
percentiles. 572 

3.2.4 Trends 573 

Differences in annual GPP trends among CEDAR-GPP model setups and other upscaled and 574 

LUE-based datasets mainly reflected the variability in the representation of CO2 fertilization effects 575 

(Figure 10, Figure S9). From 2001 to 2018, the CEDAR-GPP Baseline model setups showed spatial 576 

variations in GPP trends consistent with the other upscaled datasets without direct CO2 fertilization 577 

effects, including FLUXSAT and FLUXCOM-RSv006. In these datasets, substantial increases were 578 

seen in southeastern China and India, western Europe, and part of North and South America. These 579 

increases were largely associated with rising LAI due to land use changes and indirect CO2 580 

fertilization effects, as identified by previous studies (Chen et al., 2019; Zhu et al., 2016). Although 581 

MODIS, which also does not include a direct CO2 fertilization effect, generally agreed with these 582 

increasing trends, it also showed a declining GPP in the tropical Amazon and a stronger positive 583 

trend in central South America. After incorporating the direct CO2 fertilization effects, both the 584 

CFE-Hybrid and CFE-ML setups predicted positive trends in tropical forests, an observation absent 585 

in all other datasets. Furthermore, the CFE-Hybrid and CFE-ML models also revealed increasing 586 
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GPP in temperate and boreal forests of North America and Eurasia. Notably, all datasets agreed on 587 

a pronounced GPP decrease in eastern Brazil. 588 

From 2001 to 2018, a positive trend in global annual GPP was uniformly detected by all 589 

datasets, albeit with varying magnitudes (Figure 11a-b). The ST_Baseline_NT model predicted a 590 

GPP growth rate of 0.35 Pg C per year, aligning with FLUXCOM-RS, but lower than FLUXSAT 591 

(0.51 Pg C yr-2) and MODIS (0.39Pg C yr-2) (Figure 11b). The CFE-hybrid models estimated a 592 

notably faster GPP growth at 0.58 Pg C yr-2. The CFE-ML models predicted the highest trends, up 593 

to 0.76 Pg C yr-2 from the ST_CFE-ML_NT model and 0.59 Pg C yr-2 from the ST_CFE-ML_DT 594 

model. Also, a higher variance was observed among ensemble members in the ST_CFE-ML setups 595 

compared to the ST_Baseline and ST_CFE-Hybrid models.  596 

The LT_Baseline_NT model identified increasing GPP trends in large areas of Europe, East 597 

and South Asia, as well as the Northern Amazon from 1982 to 2020 (Figure 10b). The pattern from 598 

the LT_CFE-Hybrid_NT model aligned closely with the LT_Baseline_NT model but exhibited a 599 

stronger positive trend in global tropical areas as well as Eurasian boreal forests. In contrast, 600 

FLUXCOM-ERA5 showed overall negative trends in the tropics, with a small magnitude. Lastly, 601 

rEC-LUE agreed with positive GPP trends identified in CEDAR-GPP in the extratropical areas, but 602 

predicted a pronounced negative trend in the tropics. At the global scale, all the CEDAR-GPP long-603 

term models predicted a positive global GPP trend (Figure 11d). The LT_Baseline models showed a 604 

trend of 0.13 to 0.15 Pg C yr-2, while the LT_CFE-Hybrid setups doubled that rate. rEC-LUE 605 

showed a two-phased pattern with a strong increase in GPP from 1982 to 2000 (0.54 Pg C yr-2), 606 

followed by a decreasing trend after 2001 (-0.20 Pg C yr-2) (Figure S10). This resulted in an overall 607 

positive change at a rate comparable to that of the Baseline model. FLUXCOM-ERA5 exhibited a 608 

small negative trend. 609 
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 610 
Figure 10. Annual GPP trend over 2001 – 2018 for short-term CEDAR-GPP, 611 
FLUXCOM-RS006, FLUXSAT, and MODIS datasets (a) and over 1982 – 2018 for 612 
long-term CEDAR-GPP, FLUXCOM-ERA5 and rEC-LUE datasets (b). Hatched 613 
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areas indicate the GPP trend that is statistically significant at p < 0.05 level under the 614 
Mann-Kendal test. 615 

 616 

Figure 11. Global annual GPP variations (a) and trends (b) from 2001 to 2018 for 617 
short-term CEDAR-GPP, FLUXCOM-RS006, FLUXSAT, and MODIS datasets. 618 
Global annual GPP variations (c) and trends (d) over 1982 to 2018 for long-term for 619 
long-term CEDAR-GPP, FLUXCOM-ERA5, and rEC-LUE datasets. Error bars in 620 
(b) and (d) represent the 25% to 75% percentile from the model ensembles of 621 
CEDAR-GPP. Dots in (b) and (d) indicate the minimum and maximum from the 622 
model ensembles of CEDAR-GPP. 623 

 624 
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3.3 GPP estimation uncertainties 625 

We analyzed the spread between the 30 model ensemble members in CEDAR-GPP as an 626 

indicator of uncertainties in GPP estimations. The spatial pattern of uncertainty in estimating annual 627 

mean GPP largely resembled that of the mean map (Figure 12, Figure 6a). The largest model spread 628 

was found in highly productive tropical forests, and this uncertainty decreased in temperate and cold 629 

areas (Figure 12a). Tropical ecosystems, with a mean annual GPP between 1000 to 3500 PgCyr-1, 630 

only exhibited a 2% and 6% variation within the model ensemble (Figure 12b). Ecosystems in the 631 

temperate and cold climates had a smaller annual GPP and proportionally small uncertainties of up 632 

to 6%. However, ecosystems in Arid and Polar climates, despite their similarly low GPP, showed 633 

higher model uncertainty, reaching 10% to 40% of the ensemble mean. The estimation uncertainty 634 

of GPP trends was generally below 15% to 20% in the CEDAR-GPP datasets under the 635 

ST_Baseline and ST_CFE-Hybrid setups (Figure 12c). However, in the ST_CFE-ML setup, the 636 

estimation increased substantially, with model spread reaching up to 40% in tropical areas. Notably, 637 

the long-term models showed a higher uncertainty compared to the short-term models. 638 
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 639 
Figure 12. CEDAR-GPP estimation uncertainty derived from ensemble spread 640 
(standard deviation of 30 model predictions). (a) Spatial patterns of the absolute 641 
standard deviation from ensemble members in estimating the mean annual GPP from 642 
2001 to 2018, using data from the ST_CFE-Hybrid_NT setup. (b) Relationships 643 
between ensemble standard deviation and ensemble mean in mean annual GPP. 644 
Colored contours denote clusters of Koppen climate zones. Dashed lines indicate the 645 
ratio between the ensemble standard deviation and the ensemble mean with values 646 
shown in percentage. (c) Spatial patterns of model uncertainty in GPP long-term trend 647 
estimation. Only areas where 90% of the ensemble members showed a statistically 648 
significant trend (p<0.05) are shown in the maps. The trend for the short-term datasets 649 
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(left column) was computed between 2001 to 2018. The trend for the long-term 650 
datasets (right column) was computed between 1982 to 2018. 651 

4. Discussion 652 

4.1 Reducing uncertainties in GPP upscaling  653 

Here we examine the three predominate sources of uncertainties in machine learning 654 

upscaling of GPP: eddy covariance measurements, input datasets, and the machine learning model. 655 

We discuss strategies used in CEDAR-GPP to reduce the impacts of these uncertainties and 656 

highlight potential future research directions. 657 

4.1.1 Eddy covariance data 658 

Uncertainties associated with eddy covariance measurement and data processing can 659 

propagate through the upscaling process. CEDAR-GPP was produced using monthly aggregated 660 

eddy covariance data, where the impact of random errors in half-hourly measurements was 661 

minimized due to the temporal aggregation (Jung et al., 2020). Our stringent quality screening 662 

further reduced data processing uncertainties such as those associated with gap-filling. Yet, the 663 

discrepancy in GPP patterns between the CEDAR-GPP NT and DT setups is indicative of 664 

systematic biases linked to the partitioning approaches used to derive GPP from the Net Ecosystem 665 

Exchange (NEE) measurements (Keenan et al., 2019; Pastorello et al., 2020). Interestingly, the mean 666 

annual GPP from the DT setup was slightly higher than that from the NT setup (Figure 6), and the 667 

DT setup also predicted a higher GPP trend in the long-term dataset (Figure 11). While these 668 

discrepancies were relatively small compared to the predominant spatiotemporal patterns, the 669 

separate DT and NT setups in CEDAR-GPP offered an interesting quantification of the GPP 670 

partitioning uncertainties over space and time, providing insights for future methodology 671 

improvements. 672 

The unbalanced spatial representativeness of the eddy covariance data constitutes a more 673 

significant source of uncertainty, as highlighted by previous studies (Jung et al., 2020; Tramontana et 674 

al., 2015). Effective generalization of machine learning models requires a substantial volume of 675 

training data that adequately represents and balances unseen varied conditions. In CEDAR-GPP, 676 

this issue was mitigated with a large set of eddy covariance data (~18000 site-months) integrating 677 

FLUXNET2015 and two regional networks. However, data availability remains limited in critical 678 
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carbon exchange hotspots such as tropical, subtropical, and boreal regions, as well as in 679 

mountainous areas (Figure 1). Contrary to widespread perception that sparse training data leads to 680 

high upscaling uncertainties, our findings from the bootstrapped model spread indicated that modest 681 

uncertainties in tropical areas relative to their high GPP magnitude (Figure 12). This observation 682 

aligns with findings from the FLUXCOM product, revealing low extrapolation uncertainty in humid 683 

tropical regions (Jung et al., 2020). Additionally, an early study found that a machine learning model, 684 

when trained with simulated data from a terrestrial biosphere model that matches the locations and 685 

times of FLUXNET sites,  could explain 92% of the global variation of GPP (Jung et al., 2009). 686 

These findings suggest that to fully understand the upscaling uncertainty, it is essential to evaluate 687 

the generalization or extrapolation errors within the predictor space, which indicates the 688 

environmental controls and physiological mechanisms of the ecosystem carbon fluxes (van der 689 

Horst et al., 2019; Villarreal and Vargas, 2021). Nevertheless, data limitations in mountainous areas 690 

and the absence of topology information in the predictor space in our models suggest potential 691 

uncertainties related to topographical effects on GPP (Hao et al., 2022; Xie et al., 2023). 692 

Furthermore, our analysis suggested that the estimated global GPP magnitudes were related 693 

to the specific eddy covariance GPP data used in upscaling. Notably, global GPP magnitudes 694 

derived from CEDAR-GPP closely aligned with those from FLUXSAT, while the estimates from 695 

FLUXCOM were considerably lower (Figure 6, Figure 11). FLUXSAT used eddy covariance data 696 

from FLUXNET2015, which largely overlapped with that included in CEDAR-GPP (Joiner and 697 

Yoshida, 2020). FLUXCOM utilized data from FLUXNET La Thuile set and CarboAfrica network, 698 

which consisted of a distinct set of sites (Tramontana et al., 2016). The influence from the predictor 699 

datasets was minimal since all three datasets relied on MODIS-derived products. For a more in-700 

depth evaluation of the impacts of flux site representativeness on upscaling, future research 701 

directions could include conducting synthetic experiments with simulations of ensembles of 702 

terrestrial biosphere models. 703 

4.1.2 Input predictors and controlling factors 704 

Upscaled GPP inherent uncertainties from the input predictors, including satellite and climate 705 

datasets. First, satellite remote sensing data contains noises resulting from sun-earth geometry, 706 

atmospheric conditions, soil background, and geolocation inaccuracies. The models or algorithms 707 

used for variable estimation, such as those for retrieving LAI, fAPAR, LST, and soil moisture, also 708 

contain random errors and systematic biases specific to certain regions, biome types, or climatic 709 
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conditions (Fang et al., 2019; Ma et al., 2019; Yan et al., 2016b). Moreover, satellite observations 710 

frequently contain missing values due to clouds, aerosols, snow, and algorithm failure, leading to 711 

both systematic and random uncertainties. In producing CEDAR-GPP, we mitigated these 712 

uncertainties through comprehensive preprocessing procedures. Our temporal gap-filling strategy 713 

exploited both the temporal dependency of vegetation status and long-term climatology, to reduce 714 

biases from missing values. Temporal and spatial aggregation further reduced the remaining data 715 

gaps and random noises. Nevertheless, considerable uncertainties likely remained in satellite datasets 716 

impacting the upscaled estimations. 717 

A potentially more impactful source of uncertainty is the mismatch between the footprint of 718 

the eddy covariance measurements and the coarse resolution of satellite observations. While flux 719 

towers typically have a footprint of around ~1 km2 (Chu et al., 2021), satellite observations 720 

employed in CEDAR-GPP and most other upscaled datasets were at 5 km or lower resolution. 721 

Systematic and random errors could be introduced due to this mismatch, particularly in 722 

heterogenous biomes and areas with a mixture of vegetation and non-vegetated land covers. One 723 

mitigation strategy is to generate upscaled datasets at a higher spatial resolution (e.g. 500m). 724 

Alternatively, models could be trained at a high resolution and applied to the coarse resolution to 725 

reduce computation and storage requirements (Dannenberg et al., 2023; Gaber et al., 2023). 726 

However, this approach does not address inherent scaling errors in coarse-resolution satellite images 727 

(Dong et al., 2023; Yan et al., 2016a).  728 

Besides the quality of predictors, successful machine learning upscaling also requires a 729 

comprehensive set of features representing all controlling factors. For example, the lack of GPP 730 

interannual variabilities in FLUXCOM-ERA5 manifests the importance of incorporating dynamic 731 

vegetation signals from remote sensing in the upscaling framework. CEDAR-GPP used satellite 732 

observations from optical, thermal, and microwave systems as well as climate variables thoroughly 733 

representing GPP dynamics. Particularly, the inclusion of LST and soil moisture data provides 734 

important information about resource limitations and stress factors, which are crucial for certain 735 

biomes and/or under specific conditions (Green et al., 2022; Stocker et al., 2018, 2019). Dannenberg 736 

et al. (2023) showed that incorporating LST from MODIS and soil moisture from the SMAP 737 

satellite datasets substantially improved the machine learning estimation accuracy of GPP in North 738 

American drylands. Nevertheless, accurately capturing interannual anomalies remains challenging for 739 

certain biomes, such as evergreen needleleaf forest, cropland, and wetland (Figure 4), as 740 

acknowledged by previous studies (Tramontana et al., 2016; Jung et al., 2020). This suggests that 741 
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vital information on GPP is missing or inadequately represented in existing datasets. To this end, 742 

potential improvement may be achieved by incorporating datasets related to agricultural 743 

management practices (crop type, cultivar, irrigation, fertilization) (Xie et al., 2021), plant hydraulic 744 

and physiological properties (Liu et al., 2021), dynamic C4 plant distributions (Luo et al., 2024), root 745 

and soil characteristics (Stocker et al., 2023), as well as topography (Xie et al., 2023). 746 

4.1.3 Machine learning models and uncertainty quantification 747 

The choice of machine learning models and their parameterization has been found to have a 748 

relatively minor impact on GPP upscaling uncertainties (Tramontana et al., 2015). CEDAR used the 749 

state-of-the-art boosting algorithm, XGBoost, which provided high performance given the current 750 

data availability. Further reduction of model uncertainty will likely rely on additional information, 751 

such as increasing the number of eddy covariance sites or incorporating more high-quality 752 

predictors. Additionally, temporal dependency of carbon fluxes responses to atmospheric controls 753 

may also be exploited with specialized deep neural networks such as recurrent neural networks or 754 

transformers (Besnard et al., 2019; Ma and Liang, 2022).  755 

A key challenge, however, is the quantification of uncertainties in machine learning upscaling 756 

(Reichstein et al., 2019). The limited availability of eddy covariance data hinders a comprehensive 757 

assessment of the extrapolation errors; consequently, metrics of predictive performance from cross-758 

validation are inherently biased. CEDAR derived estimation uncertainty for each GPP prediction 759 

using bootstrapping model ensemble, which naturally mimics the biased sampling ofsampling bias 760 

associated with flux tower locations. Notably, the choice of input climate reanalysis datasets could 761 

also induce systematic differences in GPP spatial and temporal patterns (Tramontana et al., 2015). 762 

As a result, the FLUXCOM product generates model ensembles based on different reanalysis 763 

datasets to capture these uncertainties. Additionally, different satellite datasets of vegetation 764 

structural proxies, such as LAI, also exhibited significant discrepancies (Jiang et al., 2017). Thus, an 765 

ensemble approach combining site-level bootstrapping with multiple sources of input predictors 766 

could potentially provide a more comprehensive quantification of uncertainties. Future work may 767 

also explore Bayesian neural networks, which provide uncertainty along with predictions and, at the 768 

same time, present high predictive power comparable to ensemble tree-based algorithms (Ma et al., 769 

2021).  770 
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4.2 Long-term GPP changes and CO2 fertilization effect 771 

CEDAR-GPP was constructed using a comprehensive set of climate variables and multi-772 

source satellite observations, thus, encapsulating long-term GPP dynamics from both direct and 773 

indirect effects of climate controls. Particularly, CEDAR-GPP included the direct CO2 fertilization 774 

effect, which has been shown to dominate the increasing trend of global photosynthesis (Chen et al., 775 

2022). Incorporating these effects substantially improved long-term trends of GPP from site to 776 

global scales (Figure 5, 10, 11). CEDAR’s CFE-Hybrid setup offered a conservative estimation of 777 

the direct CO2 effects by simulating the light-limited CO2 sensitivity of on light-limited LUE for C3 778 

plants (Walker et al., 2021). NeverthelessHowever, the model did not account for the impacts of 779 

nutrient availability, which could potentially constrain CO2 fertilization (Peñuelas et al., 2017; Reich 780 

et al., 2014; Terrer et al., 2019). Furthermore, the sensitivity of light-limited photosynthesis is a 781 

function of temperature, resulting in the most pronounced increasing trend in the tropics (Figure 782 

10). For simplicity, we assumed a fixed ratio of leaf internal to ambient CO2 (𝜒) representing an 783 

average long-term value typical for C3 plants in the theoretical CO2 sensitivity function. 784 

However,Robust modeling of 𝜒 varies  LUE responses by to rising CO2 under various 785 

environmental conditions, including temperature and vapor pressure deficit, and robustly modeling 786 

these dependencies remains challenging (Wang et al., 2017). Future work is needed could 787 

incorporate more comprehensive representations of the 𝜒 and evaluate how the associated 788 

uncertaintiesto better understand  how these factors affect the quantification of GPP and its long-789 

term temporal variations.  790 

The CFE-ML model adopted a data-driven approach to infer CO2 effects directly from eddy 791 

covariance data. This strategy allowed the model to capture any physiological pathways of the CO2 792 

impact evidenced in the eddy covariance measurements, including the increases of the biochemical 793 

rates as well as enhancements in the water use efficiency (Keenan et al., 2013). The model 794 

successfully detected a strong positive effect of CO2 on eddy covariance measured GPP, consistent 795 

with previous studies based on process-based and statistical models (Chen et al., 2022; Fernández-796 

Martínez et al., 2017; Ueyama et al., 2020). Notably, the CFE-ML model could have included the 797 

impacts of other factors that exhibit a strong temporal correlation with CO2. For example, 798 

industrialization-induced increases in nitrogen deposition could synergistically boost GPP alongside 799 

CO2 (O’Sullivan et al., 2019). Technological and management improvements in agriculture that 800 

contribute to a global boost enhancement of crop photosynthesis (Zeng et al., 2014), might also be 801 
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indirectly reflected in the model estimates. As a result, the CFE-ML predicted a GPP trend that 802 

more closely aligned with eddy covariance observations, and the upscaled dataset also showed a 803 

globally higher trend than CFE-Hybrid (Figure 5; Figure 10). Despite differences in magnitudes, 804 

spatial patterns of GPP trends from the CFE-ML aligned with that from CFE-Hybrid, reflecting a 805 

strong temperature dependency, implying that the effects of CO2 likely remained the most 806 

significant factor. Nonetheless, the considerable ensemble spread in the CO2 trends from the CFE-807 

ML model and discrepancies between the CFE setups (Figure 11, Figure 13) underscored a high 808 

level of uncertainty in the machine learning quantified CO2 effects. Moreover, disentangling the 809 

direct CO2 effects on LUE, water use efficiency, and its indirect effects on fAPAR LAI remains 810 

challenging with machine learning models due to the correlations and interactions between CO2 and 811 

other climatic or environmental factors. Future work may exploit explainable machine learning and 812 

causal inference to unravel the complex mechanisms and distinct pathways of CO2 effects on 813 

vegetation carbon uptake.  814 

Our results suggested that variations in the estimated GPP long-term trends from different 815 

products were largely related to the representation of CO2 fertilization. Products that did not 816 

consider the direct CO2 effect, including our Baseline models, FLUXSAT, FLUXCOM, and 817 

MODIS, showed minimal long-term changes in tropical GPP, while the CEDAR CFE-ML and 818 

CFE-Hybrid models demonstrated significant GPP increases aligning with predictions from the 819 

terrestrial biosphere models (Anav et al., 2015). FLUXCOM-ERA5, not accounting for dynamics 820 

changes in vegetation structures and CO2, did not capture either the direct or indirect CO2 821 

fertilization resulting in a slight negative GPP trend attributable to shifted climate patterns. Notably, 822 

rEC-LUE exhibited contrasting trends before and after circa 2000, primarily attributed to changes in 823 

vapor pressure deficit, PAR, and LAI, while the direct CO2 fertilization effect remained consistent 824 

(Zheng et al., 2020). Nevertheless, considerable differences between CEDAR-GPP and rEC-LUE, 825 

as well as between our CFE-ML and CFE-Hybrid products, warrant more in-depth investigations 826 

into long-term GPP responses to changes in atmospheric CO2 and climate patterns. 827 

Lastly, quantifications of GPP trends and their causes remain highly uncertain from site to 828 

global scales. Trend detection is often complicated by data noises and interannual variabilities, thus 829 

requiring long-term records which are limited in certain areas and biomes, such as tropics, polar 830 

regions, evergreen broadleaf forests and wetlands (Baldocchi et al., 2018; Zhan et al., 2022). 831 

Moreover, isolating the effect of CO2 is challenging, as it is confounded by other factors, such as 832 

forest regrowth, land cover change, and disturbances, which also significantly impacts long-term 833 
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GPP variations. To this end, continued efforts in expanding ecosystem flux measurements and 834 

standardizing data processing present new opportunities to assess ecosystem productivity responses 835 

to changing climate conditions (Delwiche et al., 2024; Pastorello et al., 2020). Future research could 836 

also leverage novel machine learning techniques, such as knowledge-guided machine learning (Liu et 837 

al., 2024) and hybrid modeling that combines process-based and machine learning approaches (Kraft 838 

et al., 2022; Reichstein et al., 2019). 839 

5. Data availability and usage note 840 

The CEDAR-GPP product, comprising ten GPP datasets, can be accessed at 841 

https://zenodo.org/doi/10.5281/zenodo.8212706 (Kang et al., 2024). These datasets were 842 

generated at a spatial resolution of 0.05º and monthly time steps. Each dataset includes an ensemble 843 

mean GPP ( “GPP_mean”) and an ensemble standard deviation (“GPP_std”). Data is formatted in 844 

netCDF with the following naming convention: “CEDAR-GPP_<version>_<model 845 

setup>_<YYYYMM>.nc”. 846 

The CEDAR GPP product offers GPP estimates derived from ten different models. Models 847 

are characterized by 1) temporal coverage, 2) configuration of CO2 fertilization, and 3) GPP 848 

partitioning approach (Table 2). We provide a structured approach to selecting the most appropriate 849 

dataset for research or applications. 850 

1) Study period considerations: the Short-Term (ST) setup is ideal for studies focusing on 851 

periods after 2000. These models are constructed using a broader range of explanatory predictors, 852 

offering higher precision and smaller random errors. The Long-Term (LT) datasets shall be used for 853 

research assessing GPP dynamics over a longer time period (before 2001). It is important to note 854 

that trends from the ST and LT datasets are not directly comparable, as they were derived from 855 

different satellite remote sensing data. 856 

2) CO2 Fertilization Effect (CFE) configurations: the CFE-Hybrid and CFE-ML setups are 857 

preferable when assessing temporal GPP dynamics, especially long-term trends. The CFE-Hybrid 858 

setup includes a hypothetical trend for from the direct CO2 effect, while CFE-ML is purely data-859 

driven and does not make any specific assumption about the sensitivity of photosynthesis to CO2. 860 

Averaging the CFE-Hybrid and CFE-ML estimates is acceptable, with the difference between them 861 

reflecting the uncertainty surrounding the direct CO2 effect. Note that the Baseline setup shall not 862 

be used to study long-term GPP dynamics, especially those induced by elevated CO2. Baseline setup 863 

https://zenodo.org/doi/10.5281/zenodo.8212706
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may be useful to compare with other remote sensing-derived GPP datasets that do not consider the 864 

direct CO2 effect. Differences between these setups regarding mean GPP spatial patterns, seasonal 865 

and interannual variations are considered to be minor. 866 

3) GPP partitioning methods: We recommend using the mean value derived from both the 867 

“NT” (Nighttime) and “DT” (Daytime). The difference between these two provides insight into the 868 

uncertainties arising from the partitioning approaches used in GPP estimation from eddy covariance 869 

measurements. 870 

6. Code availability 871 

The code for upscaling and generating global GPP datasets can be accessed at 872 

https://doi.org/10.5281/zenodo.8400968. 873 

7. Conclusions 874 

We present the CEDAR-GPP product generated by upscaling global eddy covariance 875 

measurements with machine learning and a broad range of satellite and climate variables. CEDAR-876 

GPP comprises four long-term datasets from 1982 to 2020 and six short-term datasets from 2001 to 877 

2020. These datasets encompass three configurations regarding the incorporation of direct CO2 878 

fertilization effects and two partitioning approaches to derive GPP from eddy covariance data. The 879 

machine learning models of CEDAR-GPP demonstrated high capability in predicting monthly GPP, 880 

its seasonal cycles, and spatial variability within the global eddy covariance sites, with cross-validated 881 

R2 between 0.56 to 0.79. Short-term model setups consistently outperformed long-term models due 882 

to considerably more and higher-quality information from multi-source satellite observations. 883 

CEDAR-GPP advances satellite-based GPP estimations, as the first upscaled dataset that 884 

considered the direct biochemical effects of elevated atmospheric CO2 on photosynthesis, which is 885 

responsible for an increasing land carbon sink over the past decades. We showed that incorporating 886 

this effect in our CFE-ML and CFE-Hybrid models substantially improved the estimation of GPP 887 

trends at eddy covariance sites. Global patterns of long-term GPP trends in the CFE-ML setups 888 

showed a strong temperature dependency consistent with biophysical theories. Aside from the trend, 889 

global spatial and temporal GPP patterns from CEDAR generally aligned with other satellite-based 890 

GPP datasets.  891 

https://doi.org/10.5281/zenodo.8400968
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In conclusion, CEDAR-GPP, informed by global eddy covariance measurements and a broad 892 

range of multi-source remote sensing observations and climatic variables, offered a comprehensive 893 

representation of global GPP spatial and temporal dynamics over the past four decades. The 894 

different CO2 fertilization configures integrated in CEDAR-GPP offer new opportunities for 895 

understanding global ecosystem photosynthesis’s response to increases in atmospheric CO2 along 896 

different pathways over space and time. CEDAR-GPP is expected to serve as a valuable tool for 897 

benchmarking process-based modeling and constraining the global carbon cycle. 898 

  899 
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Appendix A: Photosynthesis sensitivity function of CO2 sensitivity function of Light Use 900 

Efficiency 901 

In the CFE-Hybrid model, the direct CO2 fertilization effect was prescribed onto machine 902 

learning estimated GPP at a reference CO2 level using a theoretical CO2 sensitivity function of LUE. 903 

The sensitivity function, which describes the fractional change in LUE due to CO2 relative to the 904 

reference period, is described below. 905 

The Light Use Efficiency (LUE) model (Monteith, 1972) of GPP states that, 906 

 𝐺𝑃𝑃 = 𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸 (A1) 907 

where 𝑃𝐴𝑅 is the photosynthetic active radiation, 𝑓𝐴𝑃𝐴𝑅 is the fraction of 𝑃𝐴𝑅 that plant canopy 908 

has absorbed, and 𝐴𝑃𝐴𝑅 is the absorbed 𝑃𝐴𝑅. Eco-evolutionary theory, specifically the optimal 909 

coordination hypothesis, predicts that the electron-transport-limited (light-limited) (𝐴!) and Rubisco-910 

limited (𝐴") rates of photosynthesis converge on the time scale of physiological acclimation, which is 911 

in the order of a few weeks (Harrison et al., 2021; Haxeltine and Prentice, 1996; Wang et al., 2017). 912 

Thus, at a monthly time scale, we assume that 913 

 𝐴 = 𝐴" = 𝐴! (A2) 914 

where 𝐴 is the gross photosynthetic rate, here equivalent to GPP. 915 

In the following, we derive our sensitivity function based on 𝐴! , which has a smaller response 916 

to CO2 than 𝐴" , thus providing conservative estimates of the direct CO2 fertilization effect (Walker 917 

et al., 2021). According to the Fauquhar, von Caemmerer and Berry (FvCB) model (Farquhar et al., 918 

1980), 919 

 𝐴! = 𝜑#𝐼
"!$%∗

"!&'%∗
 (A3) 920 

where 𝜑# is the intrinsic quantum efficiency of photosynthesis, 𝐼 is the absorbed PAR (𝐼 = 𝐴𝑃𝐴𝑅), 921 

𝑐( is the leaf-internal partial pressure of CO2, and Γ∗ is the photorespiratory compensation point that 922 

depends on temperature:  923 

 Γ∗ = 𝑟'*𝑒
∆$(&'()*.,-)
()*.,-/&  (A4) 924 

where 𝑟'* = 4.22	𝑃𝑎 is the photorespiratory point at 25 ºC, ∆𝐻 is the activation energy (37.83 ⋅ 103 925 

J mol-1), 𝑇 is the air temperature in Kelvin, and 𝑅 is the molar gas constant (8.314 J mol-1 K-1. We 926 

denote atmospheric CO2 concentration as 𝑐+, and 𝜒 is the ratio of leaf internal and external CO2, so 927 

 𝑐( = 𝜒𝑐+ (A5) 928 

Combing (A1), (A3), (A5), and assuming (A2), LUE can be written as, 929 
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 𝐿𝑈𝐸 = 𝜑#
"!$,∗

"!&',∗
= 𝜑#

-"0$,∗

-"0&',∗
 (A6) 930 

We can therefore show that under constant absorbed light (𝐼 or 𝐴𝑃𝐴𝑅), the sensitivity of GPP to 931 

CO2 is proportional to that of LUE, 932 

 ./00
."0

=
.112

230'4∗

2305(4∗

."0
= 𝐼 .345

."0
 (A7) 933 

Thus from (A7), we can express the actual GPP at the time 𝑡 and a CO2 level 𝑐+6  as the product of a 934 

reference GPP with a CO2 level 𝑐+# and the ratio between actual and reference LUE (A8-9). We 935 

denote the actual GPP as time t as 𝐺𝑃𝑃"07"06
6  , and the reference GPP at time t as 𝐺𝑃𝑃"07"01

6 .  936 
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 𝐺𝑃𝑃"07"06
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6
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61  (A9) 938 

The reference GPP represents the GPP value at time 𝑡 if the CO2 were at the level of a 939 

reference level, while all other factors, such as 𝑃𝐴𝑅, 𝑓𝐴𝑃𝐴𝑅, temperature, and other environmental 940 

controls remain unchanged. Here the CO2 impacts on LUE depend on atmospheric CO2 (𝑐+), 𝜒 , 941 

and air temperature. We fixed 𝜒 to the global long-term average value 0.7 typical to C3 plants 942 

(Prentice et al., 2014; Wang et al., 2017). We further tested a dynamic model that quantified 𝜒 as a 943 

function of air temperature and vapor pressure deficit following an eco-evolutionary theory across 944 

global flux sites (Keenan et al., 2023). The estimated 𝜒 had a mean and median of 0.7 and a standard 945 

deviation of 0.04 (Figure S11a). Differences in the direct CO2 effect between the dynamic and fixed 946 

𝜒 approaches were minimal, with an R2 of 0.99 and a slope of 0.99 from a least squares linear 947 

regression line (Figure S11b). GPP trends across flux towers were also highly consistent between the 948 

two approaches, with a difference less than 0.1 gC m-2 yr-2 (Figure S11b, c). Since these results 949 

indicated that 𝜒 is relatively stable, we used the fixed 𝜒 approach to produce the CEDAR-GPP 950 

dataset. 951 

In the CFE-Hybrid model, we estimated the reference GPP by fixing the CO2 at the level of the 952 

year 2001 while keeping all other variables dynamic in the CFE-ML model. Then the actual GPP can 953 

be estimated following (A9). Fixing CO2 values to the 2001 level, the start year of eddy covariance 954 

data used in model training, essentially removed the effects of CO2 inferred by the CFE-ML model. 955 
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