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Abstract: Gross primary productivity (GPP) is the largest carbon flux in the Earth system, playing a 13 

crucial role in removing atmospheric carbon dioxide and providing the sugars and 14 

starchescarbohydrates needed for ecosystem metabolism. Despite the importance of GPP, however, 15 

existing estimates present significant uncertainties and discrepancies. A key issue is the 16 

underrepresentation of the CO2 fertilization effect, a major factor contributing to the increased 17 

terrestrial carbon sink over recent decades. This omission could potentially bias our understanding 18 

of ecosystem responses to climate change. 19 

Here, we introduce CEDAR-GPP, the first global machine-learning-upscaled GPP product 20 

that incorporates the direct CO2 fertilization effect on photosynthesis. Our product is comprised of 21 

monthly GPP estimates and their uncertainty at 0.05º resolution from 1982 to 2020, generated using 22 

a comprehensive set of eddy covariance measurements, multi-source satellite observations, climate 23 

variables, and machine learning models. Importantly, we used both theoretical and data-driven 24 

approaches to incorporate the direct CO2 effects. Our machine learning models effectively predicted 25 

monthly GPP (R2 ~ 0.74), the mean seasonal cycles (R2 ~ 0.79), and spatial variabilities (R2 ~ 0.67). 26 

Incorporation of the direct CO2 effects substantially improved enhanced the predicted long-term 27 

trend in GPP across global flux towers by up to 51%, aligning much closer to a strong positive trend 28 
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from eddy covariance data the models’ ability to estimate long-term GPP trends across global flux 29 

sites. While the global patterns of annual mean GPP, seasonality, and interannual variability generally 30 

aligned with existing satellite-based products, CEDAR-GPP demonstrated higher long-term trends 31 

globally after incorporating CO2 fertilization, particularly in the tropics, reflecting a strong 32 

temperature control on direct CO2 effects. CEDAR-GPP offers a comprehensive representation of 33 

GPP temporal and spatial dynamics, providing valuable insights into ecosystem-climate interactions. 34 

The CEDAR-GPP product is available at 35 

https://zenodo.org/doi/10.5281/zenodo.8212706https://doi.org/10.5281/zenodo.8212707 (Kang 36 

et al., 2024).  37 

  38 
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1. Introduction 39 

Terrestrial ecosystem photosynthesis, known as Gross Primary Productivity (GPP), is the 40 

primary source of food and energy for the Earth system and human society (Keenan and Williams, 41 

2018). Through photosynthesis, terrestrial ecosystems also mitigate climate change, by removing 42 

thirty percent of anthropogenic carbon emissions from the atmosphere each year (Friedlingstein et 43 

al., 2023). However, due to the lack of direct measurements at the global scale, our understanding of 44 

photosynthesis and its spatiotemporal dynamics is limited, leading to considerable disagreements 45 

among various GPP estimates (Anav et al., 2015; Smith et al., 2016; O’Sullivan et al., 2020; Yang et 46 

al., 2022). Addressing these uncertainties is crucial for improving the predictability of ecosystem 47 

dynamics under climate change (Friedlingstein et al., 2014). 48 

Over the past three decades, global networks of eddy covariance flux towers collected in situ 49 

carbon flux measurements that allow for accurate estimates of GPP, providing valuable insights into 50 

photosynthesis dynamics under various environmental conditions (Baldocchi, 2020; Beer et al., 51 

2010). To quantify and understand GPP at scales and locations beyond the ~ 1km2 flux tower 52 

footprints, machine learning has been employed with gridded satellite and climate datasets to upscale 53 

site-based measurements and produce wall-to-wall GPP maps (Yang et al., 2007; Xiao et al., 2008; 54 

Jung et al., 2011; Tramontana et al., 2016; Joiner and Yoshida, 2020; Zeng et al., 2020; Dannenberg 55 

et al., 2023). This “upscaling” approach provides data-driven and observation-based quantifications 56 

without prescribed functional relations between GPP and its climatic or environmental drivers. It 57 

offers important unique observational empirical constraints of global ecosystem carbon dynamics, 58 

complementing those derived from process-based and semi-process-based modeling approaches 59 

such as terrestrial biosphere models or the Light Use Efficiency (LUE) models (Beer et al., 2010; 60 

Jung et al., 2017; Schwalm et al., 2017; Gampe et al., 2021). In recent years, the growth of global and 61 

regional flux networks, coupled with increasing efforts in data standardization, has offered new 62 

opportunities for the advancement of upscaling frameworks, enabling comprehensive 63 

quantifications of terrestrial photosynthesis (Joiner and Yoshida, 2020; Pastorello et al., 2020).  64 

Effective machine learning upscaling depends on a complete set of input predictors that fully 65 

explain GPP dynamics. Upscaled datasets have primarily relied on satellite-observed greenness 66 

indicators, such as vegetation indicesexes, Leaf Area Index (LAI), the fraction of absorbed 67 

photosynthetically active radiation (fAPAR), which effectively capture canopy-level GPP dynamics 68 

related to leaf area changes (Tramontana et al., 2016; Ryu et al., 2019; Joiner and Yoshida, 2020). 69 
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However, important aspects of leaf-level physiology, such as those controlled by climate factors, are 70 

often omitted in major upscaled datasets, preventing accurate characterization of GPP responses to 71 

climate change (Stocker et al., 2019; Bloomfield et al., 2023). In particular, none of the previous 72 

upscaled datasets have considered the direct effect of atmospheric CO2 on leaf-level photosynthesis, 73 

which is a key factor contributing to at least half of the enhanced land carbon sink observed over the 74 

past decades (Keenan et al., 2016, 2023; Walker et al., 2021; Ruehr et al., 2023). This omission can 75 

lead to incorrect inferences regarding long-term trends in various components of the terrestrial 76 

carbon cycle (De Kauwe et al., 2016).  77 

Multiple independent lines of evidence from the atmospheric inversion (Wenzel et al., 2016), 78 

atmospheric 13C/12C measurements (Keeling et al., 2017), ice core records of carbonyl sulfide 79 

(Campbell et al., 2017), glucose isotopomers (Ehlers et al., 2015), as well as free-air CO2 enrichment 80 

experiments (FACE) (Walker et al., 2021), suggest a widespread positive effect of elevated 81 

atmospheric CO2 on GPP from site to global scales. Increasing atmospheric CO2 directly stimulates 82 

the biochemical rate or the light use efficiency (LUE) of leaf-level photosynthesis, known as the 83 

direct CO2 fertilization effect (CFE). Enhanced photosynthesis could lead  leading to an increase 84 

ingreater net carbon assimilation, and contributing to an increase in total leaf area. This expansion,, 85 

contributing to a higher light interception,  which further enhances canopy-level photosynthesis (i.e. 86 

GPP), which is referred to as the indirect CFE. Furthermore, high CO2 concentration is expected to 87 

reduce stomatal conductance and increase water use efficiency, indirectly enhancing photosynthesis 88 

under water-limited conditions (De Kauwe et al., 2013; Keenan et al., 2013). The direct biochemical 89 

effectCFE has been found to dominate GPP responses to CO2 compared to the indirect effect, 90 

from both theoretical and observational analyses (Haverd et al., 2020; Chen et al., 2022). 91 

Satellite-based estimates have shown an increasing global GPP trend in the past few decades 92 

largely attributable to CO2-induced increases in LAI (De Kauwe et al., 2016; Zhu et al., 2016; Chen 93 

et al., 2019; Piao et al., 2020). However, previous upscaled GPP datasets, as well as most LUE 94 

models such as the MODIS GPP product, have failed to consider the direct CO2 effects on leaf-95 

level biochemical processes (Jung et al., 2020; Zheng et al., 2020). Consequently, these products 96 

likely underestimated the long-term trend of global GPP, leading to large discrepancies when 97 

compared to process-based models, which typically consider both direct and indirect leaf-level CO2 98 

effects (Anav et al., 2015; De Kauwe et al., 2016; Keenan et al., 2023; O’Sullivan et al., 2020). 99 

Notably, recent improvements in LUE models have included the CO2 response and show improved 100 

long-term changes in GPP globally (Zheng et al., 2020), yet, this important mechanism is still 101 
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missing in GPP products upscaled from in situ eddy covariance flux measurements based on 102 

machine learning models. 103 

To improve the quantification of GPP spatial and temporal dynamics and provide a robust 104 

representation of long-term dynamics in global photosynthesis, we developed the CEDAR-GPP1 105 

data product. CEDAR-GPP was upscaled from global eddy covariance carbon flux measurements 106 

using machine learning along with a broad range of multi-source satellite observations and climate 107 

variables. In addition to incorporating direct CO2 fertilization effects on photosynthesis, we also 108 

account for indirect effects via greenness indicators and include novel satellite datasets such as solar-109 

induced fluorescence (SIF), Land Surface Temperature (LST) and soil moisture to explain variability 110 

under environmental stresses. We provide monthly GPP estimations and associated uncertainties at 111 

0.05° resolution derived from ten model setups. These setups differ by the temporal range 112 

depending on satellite data availability, the method for incorporating the direct CO2 fertilization 113 

effects, and the partitioning approach used to derive GPP from eddy covariance measurements. 114 

Short-term model setups were primarily based on data derived from MODIS satellites generating 115 

GPP estimates from 2001 to 2020, while long-term estimates spanned 1982 to 2020 using combined 116 

Advanced Very High Resolution Radiometer (AVHRR) and MODIS data. We used two approaches 117 

to incorporate the direct CO2 fertilization effects, including direct prescription with eco-evolutionary 118 

theory and machine learning inference from the eddy-covariance data. Additionally, we provided a 119 

baseline configuration that did not incorporate the direct CO2 effects. Uncertainties in GPP 120 

estimation were quantified using bootstrapped model ensembles. We evaluated the machine learning 121 

models’ skills in predicting monthly GPP, seasonality, interannual variability, and trend against eddy 122 

covariance measurements, and compared the CEDAR-GPP spatial and temporal variability to 123 

existing satellite-based GPP estimates. 124 

2. Data and Methods 125 

2.1 Eddy covariance data 126 

We obtained monthly eddy covariance GPP measurements from 2001 to 2020 from the 127 

FLUXNET2015 (Pastorello et al., 2020), AmeriFlux FLUXNET 128 

(https://ameriflux.lbl.gov/data/flux-data-products/), and ICOS Warm Winter 2020 (Warm Winter 129 

 
1 CEDAR stands for upsCaling Ecosystem Dynamics with ARtificial inteligence 

https://ameriflux.lbl.gov/data/flux-data-products/
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2020 Team, 2022) datasets. All data were processed with the ONEFLUX pipeline (Pastorello et al., 130 

2020). Following previous upscaling efforts (Tramontana et al., 2016), we selected monthly GPP 131 

data with at least 80% of high-quality hourly or half-hourly data for temporal aggregation. We 132 

further excluded large negative GPP values, setting a cutoff of -1 gCm-2d-1. We utilized GPP 133 

estimates from both the night-time (GPP_REF_NT_VUT) and day-time (GPP_REF_DT_VUT) 134 

partitioning approaches. We classified flux tower sites according to the C3 and C4 plant categories 135 

reported in metadata and related publications when available and used a C4 plant percentage map 136 

(Still et al., 2003) otherwise. Our analysis encompassed 233 sites, predominately located in North 137 

America, Western Europe, and Australia (Figure 1). Despite their uneven geographical distribution, 138 

these sites effectively cover a diverse range of climatic conditions and are representative of global 139 

biomes (Figure 1c, 1d).  In total, our dataset included roughly over 18000 site-months. Note that we 140 

did not include eddy covariance data before 2001, since it was limited to only a few sites. This 141 

scarcity might introduce biases in the machine learning models, particularly in the relationship 142 

between GPP and CO2, leading to unreliable extrapolations across space and time.  143 
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144 

 145 

Figure 1. (a) Spatial Global distribution of eddy covariance sites used to generate the 146 
CEDAR-GPP product. (b) The inset displays the aAnnual site counts of sites. (c) Site 147 
counts by biomes. ENF: evergreen needleleaf forests, EBF: evergreen broadleaf 148 
forests, DBF: deciduous broadleaf forests, MF: mixed forests, WSA: woody savannas, 149 
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SAV: savannas, OSH: open shrublands, CSH: closed shrublands, GRA: grasslands, 150 
CRO: croplands, WET: wetlands. (d) Sites distributions in the annual temperature and 151 
precipitation space. Whittaker biome classification is shown as a reference of natural 152 
vegetation based on long-term climatic conditions. It does not directly indicate the 153 
actual biome associated with each site. The base map in (a) was obtained from the 154 
NASA Earth Observatory map by Joshua Stevens using data from NASA’s MODIS 155 
Land Cover, the Shuttle Radar Topography Mission (SRTM), the General Bathymetric 156 
Chart of the Oceans (GEBCO), and Natural Earth boundaries. Whittaker biomes were 157 
plotted using the “plotbiomes” R package (Ștefan and Levin, 2018). 158 

2.2 Global input datasets 159 

We compiled an extensive set of covariates from gridded climate reanalysis data, multi-source 160 

satellite datasets including optical, thermal, and microwave observations, as well as categorical 161 

information on land cover, climate zone, and C3/C4 classification. The datasets that we compiled 162 

offer comprehensive information about GPP dynamics and its responses to climatic variabilities and 163 

stresses. Table 1 lists the datasets and associated variables used to generate CEDAR-GPP. 164 

Table 1. Datasets and input variables used to generate the CEDAR GPP product. For a list of 165 
selected variables used in different model setups, please refer to Table S1. 166 

Category Dataset Temporal 
coverage 

Spatial 
resolution 

Temporal 
resolution 

Variables Reference 

Climate ERA5-Land 
Monthly 
Averaged data 

1950 – 
present 

0.1º Monthly Air temperature; 
vapor pressure 
deficit, 
Precipitation, 
Air and skin 
temperature, surface 
downwelling solar 
radiation, 
Potential 
evaporation 

(Sabater, 
2019) 

ESRA Global 
Monitoring 
Laboratory 
Atmospheric 
Carbon Dioxide 

1976 – 
present 

- Monthly Atmospheric CO2 
concentration 
averaged from 
Mauna Loa, Hawaii, 
US and South Pole, 
Antarctica  

(Thoning 
et al., 
2021) 

Satellite-
based 
datasets 

MODIS Nadir 
BRDF-adjusted 
reflectance 
(MCD43C4v006) 

2000 – 
present 

0.05º Daily Surface reflectance 
b1 – b7, Vegetation 
indices (NIRv, 
NDVI, kNDVI, 
EVI, GCICIgreen, 
NDWI), percent 
snow 

(Schaaf 
and Wang, 
2015) 

MODIS Terra 
and Aqua 

2000 – 
present 

500m 4-day, 8-
day 

LAI, fPAR (Myneni et 
al., 2015a, 
b) 
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LAI/fPAR 
(MCD15A3H, 
MOD15A2H, 
v006) 
MODIS Terra 
and Aqua LST 
(MYD11A1, 
MOD11A1, 
v006) 

2000 – 
present 

1 km Daily Daytime LST 
Nighttime LST 

(Wan et al., 
2015b, a) 

BESS_Rad 2000 – 
2020 

0.05º Daily PAR, diffuse PAR, 
downwelling solar 
radiation 

(Ryu et al., 
2018) 

Continuous-SIF 
(from OCO-2 
and MODIS) 

2000 – 
2020 

0.05º 4-day all-sky daily average 
SIF 

(Zhang, 
2021) 

ESA CCI Soil 
Moisture 
Combined 
Passive and 
Active (v06.1) 

1979 – 
2021  

0.25º Daily Surface soil 
moisture 

(Gruber et 
al., 2019) 

GIMMS LAI4g 1982 – 
2021  

0.0833º Half-
month 

LAI (Cao et al., 
2023) 

GIMMS 
NDVI4g 

1982 – 
2021  

0.0833 º Half-
month 

NDVI (Li et al., 
2023) 

Static 
categorical 
datasets 

MODIS Land 
Cover 
(MCD12Q1v006) 

Average 
status 
used 
between 
2001 and 
2020 

500m - Plant function types (Friedl and 
Sulla-
Menashe, 
2019) 

Koppen-Geiger 
Climate 
Classification 

present 1 km - Koppen-Geiger 
climate classes 

(Beck et 
al., 2018) 

C4 percentage 
map 

present 1º - Percentage of C4 
plants 

(Still et al., 
2003, 
2009) 

 167 

2.2.1 Climate variables 168 

We obtained air temperature, vapor pressure deficit, precipitation, potential 169 

evapotranspiration, and skin temperature from the EAR5-Land reanalysis dataset (Sabater, 2019) 170 

(Table 1; Table S1). We applied a three-month lag to precipitation, to reflect the memory of soil 171 

moisture and represent the root zone water availability. Averaged monthly atmospheric CO2 172 

concentrations were calculated as an average of records from the Mauna Loa Observatory and South 173 

Pole Observation stations, retrieved from NOAA’s Earth System Research Laboratory (Thoning et 174 

al., 2021). 175 
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2.2.2 Satellite datasets 176 

We assembled a broad collection of satellite-based observations of vegetation greenness and 177 

structure, LST, solar radiation, solar-induced fluorescence (SIF), and soil moisture (Table 1, Table 178 

S1).  179 

We sused three MODIS version 6 products: surface reflectance, LAI/fAPAR, and LST. 180 

Surface reflectance from optical to infrared bands (band 1 to 7) was sourced from the MODIS 181 

Nadir BRDF-adjusted reflectance (NBAR) daily dataset (MCD43C4) (Schaaf and Wang, 2015). 182 

From these data, we derived vegetation indexesindices, including NIRv (Badgley et al., 2019), 183 

kNDVI (Camps-Valls et al., 2021), NDVI, Enhanced Vegetation Index (EVI), Normalized 184 

Difference Water Index (NDWI) (Gao, 1996), and the green chlorophyll index (CIgreen) (Gitelson, 185 

2003). We also used snow percentages from the NBAR dataset. We used the 4-day LAI and fPAR 186 

composite derived from Terra and Aqua satellites (MCD15A3H) (Myneni et al., 2015a; Yan et al., 187 

2016a, b) from July 2002 onwards and the MODIS 8-day LAI and fPAR dataset from Terra only 188 

(MOD15A2H) prior to July 2002 (Myneni et al., 2015b). We used day-time and night-time LST from 189 

the Aqua satellite (MYD11A1) (Wan et al., 2015b), with the Terra-based LST product (MOD11A1) 190 

used after July 2002 (Wan et al., 2015a). Terra LST was bias-corrected with the differences in the 191 

mean seasonal cycles between Aqua and Terra following Walther et al. (2022). 192 

We used the PKU GIMMS NDVI4g dataset (Li et al., 2023) and PKU GIMMS LAI4g (Cao 193 

et al., 2023) datasets available from 1982 to 2020. PKU GIMMS NDVI4g is a harmonized time 194 

series that includes AVHRR-based NDVI from 1982 to 2003 (with biases and corrections mitigated 195 

through inter-calibration with Landsat surface reflectance images) and MODIS NDVI from 2004 196 

onward. PKU GIMMS LAI4g consisted of consolidated AVHRR-based LAI from 1982 to 2003 197 

(generated using machine learning models trained with Landsat-based LAI data and NDVI4g) and 198 

reprocessed MODIS BNU LAI from 2004 onwards (Yuan et al., 2011) from 2004 onwards. 199 

We utilized photosynthetically active radiation (PAR), diffusive PAR, and shortwave 200 

downwelling radiation from the BESS_Rad dataset (Ryu et al., 2018). We obtained the continuous-201 

SIF (CSIF) dataset (Zhang et al., 2018; Zhang, 2021) produced by a machine learning algorithm 202 

trained using OCO-2 SIF observations and MODIS surface reflectance. We used surface soil 203 

moisture from the ESA CCI soil moisture combined passive and active product (version 6.1) 204 

(Dorigo et al., 2017; Gruber et al., 2019). 205 
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2.2.3 Other categorical datasets 206 

We used plant functional type (PFT) information derived from the MODIS Land Cover 207 

product (MCD12Q1) (Friedl and Sulla-Menashe, 2019). We followed the International Geosphere-208 

Biosphere Program classification scheme but merged several similar categories to maximize the 209 

amount of eddy covariance sites/observations available for each category. Closed shrublands and 210 

open shrublands are combined into a shrubland category. Woody savannas and savannas are 211 

combined into savannas. We generated a static PFT map by taking the mode of the MODIS land 212 

cover time series between 2001 – 2020 at each pixel to mitigate uncertainties from misclassification 213 

in the MODIS dataset. Nevertheless, changes in vegetation structure induced by land use and land 214 

cover change are reflected in the dynamics surface reflectance and LAI/fAPAR datasets we used. 215 

We used the Koppen-Geiger main climate groups (tropical, arid, temperate, cold, and polar) (Beck et 216 

al., 2018). We also utilized a C4 plant percentage map to account for different photosynthetic 217 

pathways when incorporating CO2 fertilization (Still et al., 2003, 2009). The C4 percentage dataset 218 

was constant over time. 219 

2.2.4 Data preprocessing 220 

We implemented a three-step preprocessing strategy for the satellite datasets: 1) quality 221 

control, 2) gap-filling, and 3) spatial and temporal aggregation. In the first step, we selected high-222 

quality data based on the quality control flags of the satellite products when available. For the 223 

MODIS NBAR dataset (MCD43C3), we used data with 75% or more high-resolution NBAR pixels 224 

retrieved with full inversions for each band. For MODIS LST, we selected the best quality data from 225 

the quality control bitmask as well as data where retrieved values had an average emissivity error of 226 

no more than 0.02. For MODIS LAI/fAPAR, we used retrievals from the main algorithm with or 227 

without saturation. We used all available data in ESA-CCI soil moisture due to the presence of 228 

substantial data gaps. In the gap-filling step, missing values in satellite datasets were temporally filled 229 

at the native temporal resolution, following a two-step protocol adapted from Walther et al (2021). 230 

Short temporal gaps were first filled with medians from a moving window, and the remaining gaps 231 

were filled with the mean seasonal cycle. For datasets with a high temporal resolution, including 232 

MODIS NBAR (daily), LAI/fPAR (4-day), BESS (4-day), CSIF (4-day), ESA-CCI (daily), temporal 233 

gaps no longer than 5 days (8 days for 4-day resolution products) were filled with medians of 15-day 234 

moving windows in the first step. An exception is MODIS LST (daily), for which we used a shorter 235 

moving window of 9 days due to rapid changes in surface temperature. GIMMS LAI4g and 236 
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NDVI4g data were only filled with mean seasonal cycle due to their low temporal resolution (halfbi-237 

monthly). This is because vegetation structure could experience significant changes at half-month 238 

intervals, and gap-filling using temporal medians within moving windows could introduce 239 

considerable uncertainties and potentially over-smooth the time series. In the last processing step, all 240 

the datasets were aggregated to a monthly time step and 0.05-degree spatial resolution. 241 

 242 
Figure 2. Schematic overview of the CEDAR-GPP model setups.  243 

2.3 Machine learning upscaling 244 

2.3.1 CEDAR-GPP model setups  245 

We trained machine learning models with eddy covariance GPP measurements as targets and 246 

climate/satellite variables as input features. We created ten model setups to produce different global 247 

monthly GPP estimates (Figure 2; Table 2). The model setups were characterized by the temporal 248 

range depending on input data availability, the configuration of CO2 fertilization effects, and the 249 

partitioning approach used to derive the GPP from eddy covariance measurements.  250 

The short-term (ST) model configuration produced GPP from 2001 to 2020, and the long-251 

term (LT) configuration spanned 1982 to 2020. Each temporal configuration uses a different set of 252 

input variables depending on their availability. Inputs for the short-term configuration included 253 

MODIS, CSIF, BESS PAR, ESA-CCI soil moisture, ERA5-Land, as well as PFT and Koppen 254 

Climate zone as categorical variables with one-hot encoding. The long-term used GIMMS NDVI4g 255 

and LAI4g data, ERA5-land, PFT and Koppen climate. ESA CCI soil moisture datasets were 256 

excluded from the long-term model setups due to concerns about the product quality in the early 257 

years when the number and quality of microwave satellite data were limited (Dorigo et al., 2015). A 258 

detailed list of input features for each setup is provided in Table S1. 259 

Regarding the direct (leaf-level) CO2 fertilization effects (CFE), we established a “Baseline” 260 

configuration that did not incorporate these effects, a “CFE-Hybrid” configuration that 261 
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incorporated the effects via eco-evolutionary theory, and a “CFE-ML” configuration that inferred 262 

the direct effects from eddy covariance data using machine learning. Detailed information about 263 

these approaches is provided in Sec. 2.43.2. Furthermore, separate models were trained for GPP 264 

target variables from the night-time (NT) and daytime (DT) partitioning approaches.  265 

Table 2 lists the characteristics of ten model setups. Note that dDue to the limited availability 266 

of eddy covariance observations before 2001, we did not apply the CFE-ML approach to the long-267 

term setups. The CFE-ML model, when trained on data from 2001 to 2020 with atmospheric CO2 268 

ranging from 370 to 412 ppm, would not accurately predict GPP response to CO2 for the period 269 

1982 – 2000 when the CO2 levels were markedly lower (roughly 340 – 369 ppm). This is because, as 270 

the machine learning models, especially tree-based models, could not extrapolate beyond the range 271 

of the training data inferred CO2 fertilization effects cannot be robustly extrapolated back to 1982. 272 

Table 2. Specifications of the CEDAR-GPP model setups. 273 
Model Setup Name Temporal range Direct CO2 Fertilization Effects GPP Partitioning Method 

Configuration Method 
ST_Baseline_NT Short-term (ST) 

2001 – 2020 
Baseline Not incorporated Night-time (NT)  

ST_Baseline_DT Day-time (DT) 
ST_CFE-Hybrid_NT CFE-Hybrid Theoretical NT 
ST_CFE-Hybrid_DT DT 
ST_CFE-ML_NT CFE-ML Data-driven NT 
ST_CFE-ML_DT DT 
LT_Baseline_NT Long-term (LT) 

1982 – 2020 
Baseline Not incorporated NT 

LT_Baseline_DT DT 
LT_CFE-Hybrid_NT CFE-Hybrid Theoretical NT 
LT_CFE-Hybrid_DT DT 

 274 

2.3.2 CO2 fertilization effect 275 

We established three configurations considering regarding the direct CO2 fertilization effects 276 

on photosynthesis. In the baseline configuration, we trained machine learning models with eddy 277 

covariance GPP measurements, input climate and satellite features, but excluding CO2 278 

concentration. As such, the models only include indirect CO2 effects from the satellite-based proxies 279 

of vegetation greenness and or structure representing changes in canopy light interception, and they 280 

and do not consider the direct effect of CO2 on leaf-level photosynthetic rates (or light use 281 

efficiency, LUE). Our baseline model is therefore directly comparable to other satellite-derived GPP 282 

products that only account for indirect CO2 effects (Jung et al., 2020; Joiner and Yoshida, 2020). 283 
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In the CFE-ML configuration, we added monthly CO2 concentration into the feature set in 284 

addition to those incorporated in the baseline models. Thus, mModels inferred the functional 285 

relationship between GPP and CO2 from the eddy covariance data. They, thus,  encompassing both 286 

CO2 fertilization pathways – direct effects on LUE and indirect effects from the satellite-based 287 

proxies of vegetation greenness and structure. 288 

In the CFE-Hybrid configuration, we applied biophysical theory to estimate the response of 289 

LUE to elevated CO2. First, we estimated a reference GPP, where LUE was not affected by any 290 

increase in atmospheric CO2, by applying the CFE-ML model with a constant atmospheric CO2 291 

concentration equal to the 2001 level while keeping all other variables temporally dynamic. Then, the 292 

impacts of CO2 on LUE were prescribed onto the reference GPP estimates using a theoretical CO2 293 

sensitivity function of LUE according to eco-evolutionary theories (Appendix A). The theoretical 294 

CO2 sensitivity function represents a CO2 sensitivity that is equivalent to that of the electron-295 

transport-limited (light-limited) photosynthetic rate. When light is limited, elevated CO2 suppresses 296 

photorespiration leading to increased photosynthesis at a lower rate than when photosynthesis is 297 

limited by CO2 (Lloyd and Farquhar, 1996; Smith and Keenan, 2020). Thus, the CFE-Hybrid 298 

scenario provides a conservative estimation of the direct CO2 effects on LUE. Note that the 299 

theoretical sensitivity function describes the fractional change in LUE due to direct CO2 effects 300 

relative to a reference period (i.e. 2001). Therefore, we used the CFE-ML model to establish this 301 

reference GPP by fixing the CO2 effects to the 2001 level, rather than simply using the GPP from 302 

the Baseline model in which the direct CO2 effects were not represented. 303 

For both CFE-ML and CFE-Hybrid scenarios, we made another conservative assumption that 304 

C4 plants do not benefit from elevated CO2, despite potential increases in photosynthesis during 305 

water-limited conditions due to enhanced WUEwater use efficiency (Walker et al., 2021). Data from 306 

flux tower sites dominated by C4 plants were removed from our training set, so the machine 307 

learning models inferred CO2 fertilization only from flux tower sites dominated by C3 plants. When 308 

applying models globally, we assumed the reference GPP values (with constant atmospheric CO2 309 

concentration equal to the 2001 level) to represent C4 plants, and GPP estimates from CFE-ML or 310 

CFE-Hybrid models were applied in proportion to the percentage of C3 plants in a grid cell. 311 

2.3.3 Machine learning model training and validation 312 

We employed the state-of-the-art XGBoost machine learning model, known for its high 313 

accuracy in regression problems across various domains, including environmental and ecological 314 
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predictions (Chen and Guestrin, 2016; Kang et al., 2020; Berdugo et al., 2022). XGBoost is a 315 

scalable and parallelized implementation of the gradient boosting technique that iteratively trains an 316 

ensemble of decision trees, with each iteration targeting to minimize the residuals from the last 317 

iteration. A notable merit of XGBoost is its ability to make prediction in the presence of missing 318 

values, a common issue in remote sensing datasets. Without relying on prior assumptions about the 319 

functional forms or statistical distributions, the model is also robust to multi-collinearity between the 320 

predictors in our dataset, particularly for the variables derived from MODIS data.  321 

We used five-fold cross-validation for model evaluation. Training data was randomly split into 322 

five groups (folds), with each fold held out for testing while the rest four folds were used for model 323 

training. We imposed two restrictions on fold splitting: each flux site was entirely assigned to a fold 324 

to test model performance over unseen locations; the random sampling was stratified based on PFT 325 

to ensure coverage of the full range of PFTs in both training and testing. We also used a nested-326 

cross-validation strategy, during which we performed a randomized search of hyperparameters using 327 

three-fold cross-validation within the training set. The nested-cross-validation was aimed to reduce 328 

the risk of overfitting and improve the robustness of the evaluation.  329 

We assessed the models’ ability to capture the temporal and spatial characteristics of GPP, 330 

including monthly GPP, mean seasonal cycles, monthly anomalies, and cross-site variability. Model 331 

performance was assessed separately for each model setup (Table 2) and summarized by PFT and 332 

Koppen climate zone. Mean seasonal cycles were calculated as the mean monthly GPP over the site 333 

observation period, and monthly anomalies were the residuals of monthly GPP after subtracting 334 

mean seasonal cycles. Monthly GPP averaged over years for each site was used to assess cross-site 335 

variability. Goodness-of-fit metrics include RMSE, bias, and coefficient of determination (R2).  336 

To evaluate the models’ ability to capture long-term GPP trends, we aggregated the monthly 337 

GPP to annual values for sites with at least five years of observations following Chen et al. (2022). 338 

GPP anomalies were computed by subtracting the multi-year mean GPP from the annual GPP for 339 

each site. Anomalies were aggregated across sites to achieve a single multi-site GPP anomaly per 340 

year. We excluded a site-year if less than 11 months of data was available and used linear 341 

interpolation to fill the remaining temporal gaps. We used the Sen slope and Mann-Kendall test to 342 

examine the GPP trends from 2002 to 2019, excluding 2001 and 2020, due to the limited number of 343 

available sites with more than five years of data. We further assessed the aggregated annual trend by 344 

grouping the sites based on plant functional types and the koppen climate zones. Categories with 345 
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less than six long-term sites available were excluded from the analysis, which includes EBF and 346 

Tropics. 347 

2.3.4 Product generation and uncertainty quantification 348 

In the CEDAR-GPP product, we generated GPP estimates from each of the ten model 349 

setups, by applying the model to global gridded datasets within the corresponding temporal range 350 

(Table 2). GPP estimates were named after the corresponding model setups. We used bootstrapping 351 

to quantify estimate uncertainties. For each model setup, we generated 30 bootstrapped sample sets 352 

of eddy covariance data, which were then used to train an ensemble of 30 XGBoost models. The 353 

bootstrapping was performed at the site level, and each bootstrapped sample set contained around 354 

140 to 150 unique sites, 17000 to 19000 site months covering all PFTs. The relative PFT 355 

composition in the bootstrapped sample sites was consistent with the full dataset. The 30 models 356 

trained with bootstrapped samples generated an ensemble of 30 GPP values. We provided the 357 

ensemble GPP mean and used standard deviation to indicate uncertainties, for each of the ten model 358 

setups. 359 

2.4 Product inter-comparison 360 

We compared the global spatial and temporal patterns of CEDAR-GPP with other major 361 

satellite-based GPP products, including three machine learning upscaled and two LUE-based 362 

datasets. We obtained two FLUXCOM products (Jung et al., 2020), the latest version of 363 

FLUXCOM-RS (FLUXCOM-RSv006) available from 2001 to 2020 based on remote sensing 364 

(MODIS collection 6) datasets only, as well as the FLUXCOM-RS+METEO ensemble available 365 

between 1979 to 2018 and based on the climatology of remote sensing observations and ERA5 366 

forcings (hereafter FLUXCOM-ERA5). We used FluxSat (Joiner and Yoshida, 2020), available from 367 

2001 to 2019, which is an upscaled dataset based on MODIS NBAR surface reflectance and PAR 368 

from Modern-Era Retrospective analysis for Research and Applications 2 (MERRA-2). Importantly, 369 

FluxSat does not incorporate climate forcings. We used the MODIS GPP product (MOD17) 370 

available since 2001, which was generated based on MODIS fAPAR and LUE as a function of air 371 

temperature and vapor pressure deficit but not atmospheric CO2 concentration (Running et al., 372 

2015). We also used the rEC-LUE products, available from 1982 to 2018 and based on a revised 373 

LUE model that incorporated the effect of atmospheric CO2 concentration and the fraction of 374 

diffuse PAR on LUE (Zheng et al., 2020). All datasets were resampled to 0.1 º spatial resolution, and 375 
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a common mask for the vegetated land area was applied. We evaluated global mean annual GPP, 376 

mean seasonal cycle, interannual variability, and trend among different datasets, comparing them 377 

over a common time period determined by their data availability. Global total GPP was computed 378 

by scaling the global average GPP flux with the global land area (122.4 million km2) following Jung 379 

et al. (2020). Mean seasonal cycle was defined as above (Sec. 2.3.3). We used the standard deviation 380 

of annual GPP to indicate the magnitude of interannual variability, the Sen slope to indicate the 381 

GPP annual trend, and the Mann-Kendall test for the statistical significance of trends.  382 

3. Results 383 

3.1 Evaluation of model performance 384 

3.1.1 Overall performance 385 

The short-term and long-term models explained approximately 74% and 68%, respectively, of 386 

the variation in monthly GPP across global eddy covariance sites (Figure 3a). The long-term models 387 

consistently yielded lower performance than the short-term models, likely due to differences in the 388 

satellite remote sensing datasets used, as the short-term models benefited from richer information 389 

from surface reflectance of individual bands, LST, CSIF, as well as soil moisture, while the long-390 

term model only exploited NDVI and LAI. The models with different CFE configurations and 391 

target GPP variables (i.e. partitioning approaches) had similar performance in predicting monthly 392 

GPP (Figure 3b, Table 3, Table S2). All models exhibited minimal bias of less than 0.15. 393 

Model performance in terms of the different temporal and spatial characteristics of monthly 394 

GPP was variable (Figure 3c-h). The models were most successful at predicting mean seasonal 395 

cycles, with the short-term and long-term models explaining around 79% and 73% of the variability, 396 

respectively (Figure 3c-d). The short-term and long-term models captured 67% and 56% , 397 

respectively, of the spatial variabilities in multi-year mean GPP across global sites (i.e., cross-site 398 

variability) (Figure 3g-h). However, all models underestimatedpredicted monthly anomalies across 399 

the sites, with R2 values below 0.12 (Figure 3e-f). The CFE-ML and CFE-Hybrid models showed 400 

slightly higher accuracy than the Baseline model across all temporal and spatial characteristics in NT 401 

setups. Patterns from the DT setups do not significantly differ from those of the NT setups (Figure 402 

S1). 403 
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Table 3. Machine learning model performance for five CEDAR-GPP setups based on NT GPP 404 
(Table 2). Results of DT setups can be found in Table S2. 405 

Model Setup 
Name 

Monthly Mean seasonal 
cycles  

Monthly anomalies Cross-site 

RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 
ST_Baseline_NT 1.96 -0.05 0.74 1.57 0.02 0.79 1.22 0.00 0.11 1.11 0.03 0.66 
ST_CFE-ML_NT 1.95 -0.05 0.74 1.56 0.02 0.80 1.22 0.00 0.12 1.10 0.03 0.67 
ST_CFE-
Hybrid_NT 

1.96 -0.05 0.74 1.57 0.03 0.79 1.23 0.00 0.12 1.10 0.04 0.67 

LT_Baseline_NT 2.18 -0.10 0.68 1.82 0.01 0.72 1.26 0.00 0.06 1.29 0.03 0.54 
LT_CFE-
Hybrid_NT 

2.16 -0.11 0.69 1.79 0.01 0.73 1.25 0.00 0.07 1.27 0.03 0.56 

 406 

 407 
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 408 

Figure 3. Machine learning model performance in predicting monthly GPP and its 409 
spatial and temporal variability. Only NT models are shown and DT results is provided 410 
in Supplementary Figure S1. Scatter plots illustrated relationships between model 411 
predictions and observations for monthly GPP (a), mean seasonal cycles (MSC) (c), 412 
monthly anomaly (e), and cross-site variability (g) for ST_CFE-Hybrid_NT (left, blue) 413 
and LT_CFE-Hybrid_NT (right, green) models. Corresponding bar plots show the R2 414 
values for five all ten NT model setups in predicting monthly GPP (b), MSC (d), 415 
monthly anomaly (f), and cross-site variability (h). 416 
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3.1.2 Performance by biome and climate zone 417 

The predictive ability of our models varied across different PFTs and Koppen climate zones 418 

(Figure 4). Here we present results from the CFE-Hybrid LT and ST models based on NT 419 

partitioning and note that patterns for the other CFE configurations and the DT GPP were similar 420 

(Figure S2).  421 

Model performance in terms of monthly GPP was the highest for deciduous broadleaf forests, 422 

mixed forests, and evergreen needleleaf forests, with R2 values above 0.78. Model accuracies were 423 

also high for savannas, and grasslands, followed by croplands and wetlands, with R2 values between 424 

0.57 and 0.74. Model accuracies were lowest in evergreen broadleaf forests and shrublands, with R2 425 

values as low as 0.14. Across climate zones, models achieved the highest accuracy in predicting 426 

monthly GPP in cold and tropical climate zones with R2 values between 0.64 and 0.80. The short-427 

term models had the lowest performance in polar regions with an R2 value of around 0.42, and the 428 

long-term model had the lowest performance in arid regions with an R2 value of 0.25.  429 

Model performance in terms of mean seasonal cycles across PFTs and climate zones followed 430 

patterns for monthly GPP, while disparities emerged for performance in terms of GPP anomaly and 431 

cross-site variability (Figure 4). The short-term model showed the highest predictive power in 432 

explaining monthly anomalies in arid regions with an R2 value of 0.49, where savanna and 433 

shrublands sites are primarily located. Model performance in all other climate zones was significantly 434 

lower, with R2 values below 0.2, and as low as 0.07 in temperate regions. Besides, the short-term 435 

model demonstrated good performance in capturing anomalies in deciduous broadleaf forests. The 436 

long-term model’s relative performance between PFTs and climate zones was mostly consistent with 437 

that of the short-term model, with lower accuracy in shrublands when compared to the short-term 438 

model. 439 

Models demonstrated the highest accuracy in predicting cross-site variability in savannas, 440 

grasslands, evergreen needleleaf forests, and evergreen broadleaf forests (R2 > 0.36) and the lowest 441 

accuracy in deciduous broadleaf forests, mixed forests, and croplands (R2 < 0.20). The short-term 442 

model additionally showed good performance in shrublands and wetlands (R2 > 0.36), whereas the 443 

long-term model failed to capture any variability for shrublands. In terms of climate zones, models 444 

were most successful at explaining the variabilities within tropical and cold climate zones (R2 > 445 

0.46), the short-term model was least successful across polar regions, with a R2 value of 0.29, and the 446 

long-term model had low performance for both polar and arid regions with R2 values below 0.15. 447 
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 448 
Figure 4. Performance of the ST_CFE-Hybrid_NT (blue) and LT_CFE-Hybrid_NT 449 
(green) models on GPP spatiotemporal estimation by plant functional types (a) and 450 
climate zones (b). The cross-site panels included the number of sites within each 451 
category. Color indicates short-term (ST) or long-term (LT) models. ENF: evergreen 452 
needleleaf forest, EBF: evergreen broadleaf forest, DBF: deciduous broadleaf forest, 453 
MF: mixed forest, SH: shrubland, SA: savanna, GRA: grassland, CRO: cropland, WET: 454 
wetland. Tr: tropical, Ar: arid, Tp: temperate, Cd: cold, Pl: polar. The performance of 455 
DT models is displayed in Supplementary Figure S2. 456 

3.1.3 Prediction of long-term trends 457 

Eddy covariance derived GPP presented a substantial increasing trend across flux sites 458 

between 2002 and 2019 (Figure 5a, Figure S3a). The observed GPP from the night-time partitioning 459 



 22 

approach indicated an overall trend of 7.7 gCm-2year-2. In contrast, the ST_ Baseline_NT model 460 

predicted a more modest trend of 2.7 gCm-2year-2, primarily reflecting the indirect CO2 effect 461 

manifested through the growth of LAI. Both the ST_CFE-ML_NT and ST_CFE-hybrid_NT 462 

models predicted much higher trends of 5.5 and 4.3 gCm-2year-2, respectively, representing an 463 

improvement from the Baseline model by 51% and 29%, aligning more closely to eddy covariance 464 

observations. Similarly the LT_CFE-Hybrid_NT model showed an improved trend estimation than 465 

the LT_Baseline_NT model. All trends were statistically significant (p < 0.05). 466 

Aggregated eddy covariance GPP experienced increasing trends of varied magnitudes across 467 

different climate zones and plant functional types (Figure 5b,c; Figure S3b,c). While the machine 468 

learning models generally did not fully capture the enhancement in GPP for most categories, tThe 469 

CFE-ML and/or CFE-hybrid models consistently outperformed the Baseline models in both ST 470 

and LT setups. The CFE-ML setup predicted a higher trend than CFE-hybrid in most cases, 471 

suggesting that the data-driven approach captured more dynamics not represented in the theoretical 472 

model, which was based on conservative assumptions regarding the CO2 sensitivity of 473 

photosynthesis (see Sect. 2.3.2 and Appendix A). The choice of remote sensing data (ST vs. LT 474 

configurations) did not lead to substantial differences in the predicted GPP trend. Most long-term 475 

flux sites (at least 10 years of records) with a significant trend experienced an increase in GPP, and 476 

the CFE-ML and/or CFE-hybrid models aligned closer to eddy covariance data than the Baseline 477 

models (Figure S4). in predicting GPP trends in global eddy covariance towers (Figure 6b) and all 478 

trends were statistically significant (p < 0.05). NotablyAdditionally, we found a considerably higher 479 

trend in eddy covariance GPP measurements derived from the day-time versus night-time 480 

partitioning approach, potentially associated with uncertainties in GPP partitioning methods (Figure 481 

S4). Yet, machine learning model predicted trends were not strongly affected by GPP partitioning 482 

methods The predicted trends of different model setups between the partitioning approaches were 483 

similar despite a smaller trend predicted by the ST_CFE-ML_DT model compared to the 484 

corresponding NT model (Figure S3, S46b). 485 

 486 
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 487 

Figure 5. Comparison of observed and predicted GPP (from NT models only) trends 488 
across eddy covariance flux towers. (a) Aggregated annual GPP anomaly from 2002 to 489 
2019 and trend lines from eddy covariance (EC) measurements, and three CFE model 490 
setups (short-term, night-time partitioning) for ST (left) and LT (right) models. The 491 
size of grey circle markers is proportional to the number of sites. (b) Comparison of 492 
aAnnual GPP trends from eddy covariance measurements and ten the short-term (ST) 493 
CEDAR-GPP model setups by plant functional types and climate zones. s.(c) 494 
Comparison of annual GPP trends from eddy covariance measurements and the long-495 
term (LT) CEDAR-GPP model setups by plant functional types and climate zones. In 496 
(b) and (c), Categories with less than 6 sites, including Tropics and EBF, were not 497 
shown. While dots on the bars indicate statistically significant trend with p-value < 0.1. 498 
Results for the DT models are shown in Supplementary Figure S3. 499 

 500 
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3.2 Evaluation of GPP spatial and temporal dynamics 501 

We compared CEDAR-GPP estimates with other upscaled or LUE-based datasets regarding 502 

the mean annual GPP (Sect. 3.2.1), GPP seasonality (Sect. 3.2.2), interannual variability (Sect. 3.2.3), 503 

and annual trends (Sect. 3.2.4). CEDAR-GPP model setups generally showed similar patterns in 504 

mean annual GPP, seasonality, and interannual variability, therefore, in corresponding sections, we 505 

present the CFE-Hybrid model setups as representative examples for comparisons with other 506 

datasets, unless otherwise stated. Supplementary figures include comparisons involving CEDAR-507 

GPP estimates from all model setups. 508 

3.2.1 Mean annual GPP 509 

Global patterns of mean annual GPP were generally consistent among CEDAR-GPP model 510 

setups, FLUXCOM, FLUXSAT, MODIS, and rEC-LUE, with few noticeable regional differences 511 

(Figure 6, Figure S51). Differences among CEDAR-GPP model setups were minimal and only 512 

evident between the NT and DT setups in the tropics (Figure 6b-c, Figure S51). CEDAR-GPP 513 

short-term datasets showed highest consistency with FLUXSAT in terms of mean annual GPP 514 

magnitudes (2001 – 2018) and latitudinal variations, although FLUXSAT presented slightly higher 515 

GPP values in the tropics compared to CEDAR-GPP (Figure 6b). Mean annual GPP magnitude for 516 

FLUXCOM-RS006 and MODIS was lower globally than CEDAR-GPP and FLUXSAT, with the 517 

most pronounced differences observed in the tropical areas. Among the long-term datasets 518 

(CEDAR-GPP LT, FLUXCOM-ERA5, and rEC-LUE), mean annual GPP (1982 – 2018) exhibited 519 

greater disparities in the northern mid-latitudes than in the tropics and southern hemisphere (Figure 520 

6c). CEDAR-GPP aligned more closely with FLUXCOM-ERA5 than with rEC-LUE, with the latter 521 

showing lower annual mean GPP globally, particularly between 20ºN to 50º N. 522 
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 523 
Figure 6. Global distributions of mean annual GPP from CEDAR-GPP and other 524 
machine learning upscaled and LUE-based reference datasets. (a) Global patterns of 525 
mean annual GPP from two short-term datasets including ST_CFE-Hybrid_NT, and 526 
FLUXCOM-RS006, and two long-term datasets including LT_CFE-Hybrid_NT, and 527 
FLUXCOM-ERA5. (b) Latitudinal distributions of mean annual GPP from short-term 528 
datasets (ST_CFE-Hybrid_NT, ST_CFE-Hybrid_DT, FLUXSAT, FLUXCOM-529 
RS006, and MODIS). (c) Latitudinal distributions of mean annual GPP from long-530 
term datasets (LT_CFE-Hybrid_NT, LT_CFE-Hybrid_DT, FLUXCOM-ERA5, and 531 
rEC-LUE). Mean annual GPP was computed between 2001 and 2018 for short-term 532 
datasets and between 1982 and 2018 for long-term datasets. 533 
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3.2.2 Seasonal variability 534 

CEDAR-GPP and other machine learning upscaled or LUE-based GPP datasets agreed on 535 

seasonal variabilities (average between 2001 and 2018) at the global scale, characterized by a peak in 536 

GPP in July and a nadir between December and January (Figure 7, Figure S6, S7). At the global 537 

scale, CEDAR-GPP was most closely aligned with FLUXSAT in GPP seasonal magnitude and 538 

amplitude, while both FLUXCOM and MODIS displayed a relatively less pronounced magnitude.  539 

In the northern hemisphere (20ºN - 90ºN), all GPP datasets agreed on seasonal GPP 540 

variation, despite variances in the magnitude of peak GPP. In the southern hemisphere (20ºS - 541 

60ºS), all datasets exhibited their lowest GPP during June and July, and highest GPP from 542 

December to January. However, the seasonal amplitude of GPP was greatest for FLUXCOM-543 

ERA5, followed by CEDAR-GPP and FLUXSAT, and substantially smaller for FLUXCOM-RS006 544 

and MODIS GPP. In the tropics (20ºN - 20ºS), differences between datasets were the strongest, 545 

where seasonal variation is not as prominent compared to other regions. CEDAR-GPP, FLUXSAT, 546 

and FLUXCOM-ERA5 each showed two GPP peaks, occurring in March-April and September-547 

October. Although FLUXCOM-RS006 had a similar seasonal pattern, its GPP magnitude was 548 

markedly smaller. Interestingly, MODIS showed an inverse season pattern with a small peak from 549 

June to August.  550 

 551 
Figure 7. Comparison of GPP mean seasonal cycle between different datasets on a 552 
global scale, specifically within the Northern Hemisphere (20ºN - 90ºN), Southern 553 
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Hemisphere (20ºS - 60ºS), and Tropical regions (20ºN - 20ºS). Monthly means were 554 
averaged from 2001 to 2018 for all datasets. 555 

3.2.3 Interannual variability 556 

We found distinct spatial patterns in GPP interannual variability between upscaled and LUE-557 

based datasets and a high level of agreement within each category, with the exception of 558 

FLUXCOM-ERA5, which showed minimal interannual variability globally (Figure 8, Figure S8). All 559 

datasets agreed on the presence of GPP interannual variability hotspots in eastern and southern 560 

South America, central North America, southern Africa, and western Australia. These hotspots 561 

primarily corresponded to arid and semi-arid areas characterized by grasslands, shrubs, and 562 

croplands (Figure 9). CEDAR-GPP was highly consistent with FLUXSAT, and both datasets also 563 

displayed relatively high interannual variability in the dry subhumid areas of Europe, predominately 564 

covered by croplands. FLUXCOM-RS006 mirrored the relative spatial patterns of CEDAR-GPP 565 

and FLUXSAT, albeit at lower magnitudes. The LUE-based datasets (MODIS and rEC-LUE) 566 

predicted a much higher interannual variability than the upscaled datasets in the tropical areas, 567 

particularly in evergreen broadleaf forests and woody savannas (Figure 8, Figure 9). These datasets 568 

also depicted slightly higher interannual variability for other types of forests, including evergreen 569 

needleleaf forests and deciduous broadleaf forests, compared to the upscaled datasets. The lack of 570 

interannual variability in FLUXCOM-ERA5 is attributable to the use of mean seasonal cycles of 571 

remotely sensed vegetation greenness indicators rather than their dynamic time series. Ten CEDAR-572 

GPP model setups presented consistent patterns in interannual variability, and differences were 573 

minimal (Figure S8). 574 
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 575 
Figure 8. Spatial patterns of GPP interannual variability extracted over 2001 to 2018 576 
for CEDAR-GPP (ST_CFE-Hybrid_NT), FLUXSAT, FLUXCOM-RS006, MODIS, 577 
FLUXCOM-ERA5, and rEC-LUE. 578 
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 579 

Figure 9. Comparison of GPP interannual variability (IAV) across global datasets by 580 
PFT. Colored dots represent the median IAV, thicker gray bars indicate the 25% to 581 
75% percentiles of IAV distributions, and thinner grey bards show the 10% to 90% 582 
percentiles. 583 

3.2.4 Trends 584 

Differences in annual GPP trends among CEDAR-GPP model setups and other upscaled and 585 

LUE-based datasets mainly reflected the variability in the representation of CO2 fertilization effects 586 

(Figure 10, Figure S94). From 2001 to 2018, the CEDAR-GPP Baseline model setups showed 587 

spatial variations in GPP trends consistent with the other upscaled datasets without direct CO2 588 

fertilization effects, including FLUXSAT and FLUXCOM-RSv006. In these datasets, substantial 589 

increases were seen in southeastern China and India, western Europe, and part of North and South 590 

America. These increases were largely associated with rising LAI due to land use changes and 591 

indirect CO2 fertilization effects, as identified by previous studies (Zhu et al., 2016; Chen et al., 592 

2019). Although MODIS, which also does not include a direct CO2 fertilization effect, generally 593 

agreed with these increasing trends, it also showed a declining GPP in the tropical Amazon and a 594 

stronger positive trend in central South America. After incorporating the direct CO2 fertilization 595 

effects, both the CFE-Hybrid and CFE-ML setups predicted positive trends in tropical forests, an 596 

observation absent in all other datasets. Furthermore, the CFE-Hybrid and CFE-ML models also 597 
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revealed increasing GPP in temperate and boreal forests of North America and Eurasia. Notably, all 598 

datasets agreed on a pronounced GPP decrease in eastern Brazil. 599 

From 2001 to 2018, a positive trend in global annual GPP was uniformly detected by all 600 

datasets, albeit with varying magnitudes (Figure 11a-b). The ST_Baseline_NT model predicted a 601 

GPP growth rate of 0.35 Pg C per year, aligning with FLUXCOM-RS, but lower than FLUXSAT 602 

(0.51 Pg C yr-2) and MODIS (0.39Pg C yr-2) (Figure 11b). The CFE-hybrid models estimated a 603 

notably faster GPP growth at 0.58 Pg C yr-2. The CFE-ML models predicted the highest trends, up 604 

to 0.76 Pg C yr-2 from the ST_CFE-ML_NT model and 0.59 Pg C yr-2 from the ST_CFE-ML_DT 605 

model. Also, a higher variance was observed among ensemble members in the ST_CFE-ML setups 606 

compared to the ST_Baseline and ST_CFE-Hybrid models.  607 

From 1982 to 2018, tThe LT_Baseline_NT model identified increasing GPP trends in large 608 

areas of Europe, East and South Asia, as well as the Northern Amazon from 1982 to 2020 (Figure 609 

10b). The pattern from the LT_CFE-Hybrid_NT model aligned closely with the LT_Baseline_NT 610 

model but exhibited a stronger positive trend in global tropical areas as well as Eurasian boreal 611 

forests. In contrast, FLUXCOM-ERA5 showed overall negative trends in the tropics, with a small 612 

magnitude. Lastly, rEC-LUE agreed with positive GPP trends identified in CEDAR-GPP in the 613 

extratropical areas, but predicted a pronounced negative trend in the tropics. At the global scale, all 614 

the CEDAR-GPP long-term models predicted a positive global GPP trend (Figure 11d). The 615 

LT_Baseline models showed a trend of 0.13 to 0.15 Pg C yr-2, while the LT_CFE-Hybrid setups 616 

doubled that rate. rEC-LUE showed a two-phased pattern with a strong increase in GPP from 1982 617 

to 2000 (0.54 Pg C yr-2), followed by a decreasing trend after 2001 (-0.20 Pg C yr-2) (Figure S105). 618 

This resulted in an overall positive change at a rate comparable to that of the Baseline model. 619 

FLUXCOM-ERA5 exhibited a small negative trend. 620 
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 621 
Figure 10. Annual GPP trend over 2001 – 2018 for short-term CEDAR-GPP, 622 
FLUXCOM-RS006, FLUXSAT, and MODIS datasets (a) and over 1982 – 2018 for 623 
long-term CEDAR-GPP, FLUXCOM-ERA5 and rEC-LUE datasets (b). Hatched 624 
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areas indicate the GPP trend that is statistically significant at p < 0.05 level under the 625 
Mann-Kendal test. 626 

 627 

Figure 11. Global annual GPP variations (a) and trends (b) from 2001 to 2018 for 628 
short-term CEDAR-GPP, FLUXCOM-RS006, FLUXSAT, and MODIS datasets. 629 
Global annual GPP variations (c) and trends (d) over 1982 to 2018 for long-term for 630 
long-term CEDAR-GPP, FLUXCOM-ERA5, and rEC-LUE datasets. Error bars in 631 
(b) and (d) represent the 25% to 75% percentile from the model ensembles of 632 
CEDAR-GPP. Dots in (b) and (d) indicate the minimum and maximum from the 633 
model ensembles of CEDAR-GPP. 634 

 635 
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3.3 GPP estimation uncertainties 636 

We analyzed the spread between the 30 model ensemble members in CEDAR-GPP as an 637 

indicator of uncertainties in GPP estimations. The spatial pattern of uncertainty in estimating annual 638 

mean GPP largely resembled that of the mean map (Figure 12, Figure 6a). The largest model spread 639 

was found in highly productive tropical forests, and this uncertainty decreased in temperate and cold 640 

areas (Figure 12a). Tropical ecosystems, with a mean annual GPP between 1000 to 3500 PgCyr-1, 641 

only exhibited a 2% and 6% variation within the model ensemble (Figure 12b). Ecosystems in the 642 

temperate and cold climates had a smaller annual GPP and proportionally small uncertainties of up 643 

to 6%. However, ecosystems in Arid and Polar climates, despite their similarly low GPP, showed 644 

higher model uncertainty, reaching 10% to 40% of the ensemble mean. The estimation uncertainty 645 

of GPP trends was generally below 15% to 20% in the CEDAR-GPP datasets under the 646 

ST_Baseline and ST_CFE-Hybrid setups (Figure 12c). However, in the ST_CFE-ML setup, the 647 

estimation increased substantially, with model spread reaching up to 40% in tropical areas. Notably, 648 

the long-term models showed a higher uncertainty compared to the short-term models. 649 
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 650 
Figure 12. CEDAR-GPP estimation uncertainty derived from ensemble spread 651 
(standard deviation of 30 model predictions). (a) Spatial patterns of the absolute 652 
standard deviation from ensemble members in estimating the mean annual GPP from 653 
2001 to 2018, using data from the ST_CFE-Hybrid_NT setup. (b) Relationships 654 
between ensemble standard deviation and ensemble mean in mean annual GPP. 655 
Colored contours denote clusters of Koppen climate zones. Dashed lines indicate the 656 
ratio between the ensemble standard deviation and the ensemble mean with values 657 
shown in percentage. (c) Spatial patterns of model uncertainty in GPP long-term trend 658 
estimation. Only areas where 90% of the ensemble members showed a statistically 659 
significant trend (p<0.05) are shown in the maps. The trend for the short-term datasets 660 
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(left column) was computed between 2001 to 2018. The trend for the long-term 661 
datasets (right column) was computed between 1982 to 2018. 662 

4. Discussion 663 

4.1 Reducing uncertainties in GPP upscaling  664 

Here we examine the three predominate sources of uncertainties in machine learning 665 

upscaling of GPP: eddy covariance measurements, input datasets, and the machine learning model. 666 

We discuss strategies used in CEDAR-GPP to reduce the impacts of these uncertainties and 667 

highlight potential future research directions. 668 

4.1.1 Eddy covariance data 669 

Uncertainties associated with eddy covariance measurement and data processing can 670 

propagate through the upscaling process. CEDAR-GPP was produced using monthly aggregated 671 

eddy covariance data, where the impact of random errors in half-hourly measurements was 672 

minimized due to the temporal aggregation (Jung et al., 2020). Our stringent quality screening 673 

further reduced data processing uncertainties such as those associated with gap-filling. Yet, the 674 

discrepancy in GPP patterns between the CEDAR-GPP NT and DT setups is indicative of 675 

systematic biases linked to the partitioning approaches used to derive GPP from the Net Ecosystem 676 

Exchange (NEE) measurements (Keenan et al., 2019; Pastorello et al., 2020). Interestingly, the mean 677 

annual GPP from the DT setup was slightly higher than that from the NT setup (Figure 6), and the 678 

DT setup also predicted a higher GPP trend in the long-term dataset (Figure 11). While these 679 

discrepancies were relatively small compared to the predominant spatiotemporal patterns, the 680 

separate DT and NT setups in CEDAR-GPP offered an interesting quantification of the GPP 681 

partitioning uncertainties over space and time, providing insights for future methodology 682 

improvements. 683 

The unbalanced spatial representativeness of the eddy covariance data constitutes a more 684 

significant source of uncertainty, as highlighted by previous studies (Tramontana et al., 2015; Jung et 685 

al., 2020). Effective generalization of machine learning models requires a substantial volume of 686 

training data that adequately represents and balances unseen conditions. In CEDAR-GPP, this issue 687 

was mitigated with a large set of eddy covariance data (~18000 site-months) integrating 688 

FLUXNET2015 and two regional networks. However, data availability remains limited in critical 689 
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carbon exchange hotspots such as tropical, subtropical, and boreal regions, as well as in 690 

mountainous areas (Figure 1). Contrary to widespread perception that sparse training data leads to 691 

high upscaling uncertainties, our findings from the bootstrapped model spread indicated that modest 692 

uncertainties in tropical areas relative to their high GPP magnitude (Figure 12). This observation 693 

aligns with findings from the FLUXCOM product, revealing low extrapolation uncertainty in humid 694 

tropical regions (Jung et al., 2020). Additionally, an early study found that a machine learning model, 695 

when trained with simulated data from a terrestrial biosphere model that matches the locations and 696 

times of FLUXNET sites,  could explain 92% of the global variation of GPP (Jung et al., 2009). 697 

These findings suggest that to fully understand the upscaling uncertainty, it is essential to evaluate 698 

the generalization or extrapolation errors within the predictor space, which indicates the 699 

environmental controls and physiological mechanisms of the ecosystem carbon fluxes (van der 700 

Horst et al., 2019; Villarreal and Vargas, 2021). Nevertheless, data limitations in mountainous areas 701 

and the absence of topology information in the predictor space in our models suggest potential 702 

uncertainties related to topographical effects on GPP (Hao et al., 2022; Xie et al., 2023). 703 

Furthermore, our analysis suggested that the estimated global GPP magnitudes were related 704 

to the specific eddy covariance GPP data used in upscaling. Notably, global GPP magnitudes 705 

derived from CEDAR-GPP closely aligned with those from FLUXSAT, while the estimates from 706 

FLUXCOM were considerably lower (Figure 6, Figure 11). FLUXSAT used eddy covariance data 707 

from FLUXNET2015, which largely overlapped with that included in CEDAR-GPP (Joiner and 708 

Yoshida, 2020). FLUXCOM utilized data from FLUXNET La Thuile set and CarboAfrica network, 709 

which consisted of a distinct set of sites (Tramontana et al., 2016). The influence from the predictor 710 

datasets was minimal since all three datasets relied on MODIS-derived products. For a more in-711 

depth evaluation of the impacts of flux site representativeness on upscaling, future research 712 

directions could include conducting synthetic experiments with simulations of ensembles of 713 

terrestrial biosphere models. 714 

4.1.2 Input predictors and controlling factors 715 

Upscaled GPP inherent uncertainties from the input predictors, including satellite and climate 716 

datasets. First, satellite remote sensing data contains noises resulting from sun-earth geometry, 717 

atmospheric conditions, soil background, and geolocation inaccuracies. The models or algorithms 718 

used for variable estimation, such as those for retrieving LAI, fAPAR, LST, and soil moisture, also 719 

contain random errors and systematic biases specific to certain regions, biome types, or climatic 720 
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conditions (Yan et al., 2016b; Fang et al., 2019; Ma et al., 2019). Moreover, satellite observations 721 

frequently contain missing values due to clouds, aerosols, snow, and algorithm failure, leading to 722 

both systematic and random uncertainties. In producing CEDAR-GPP, we mitigated these 723 

uncertainties through comprehensive preprocessing procedures. Our temporal gap-filling strategy 724 

exploited both the temporal dependency of vegetation status and long-term climatology, to reduce 725 

biases from missing values. Temporal and spatial aggregation further reduced the remaining data 726 

gaps and random noises. Nevertheless, considerable uncertainties likely remained in satellite datasets 727 

impacting the upscaled estimations. 728 

A potentially more impactful source of uncertainty is the mismatch between the footprint of 729 

the eddy covariance measurements and the coarse resolution of satellite observations. While flux 730 

towers typically have a footprint of around ~1 km2 (Chu et al., 2021), satellite observations 731 

employed in CEDAR-GPP and most other upscaled datasets were at 5 km or lower resolution. 732 

Systematic and random errors could be introduced due to this mismatch, particularly in 733 

heterogenous biomes and areas with a mixture of vegetation and non-vegetated land covers. One 734 

mitigation strategy is to generate upscaled datasets at a higher spatial resolution (e.g. 500m). 735 

Alternatively, models could be trained at a high resolution and applied to the coarse resolution to 736 

reduce computation and storage requirements (Dannenberg et al., 2023). However, this approach 737 

does not address inherent scaling errors in coarse-resolution satellite images (Yan et al., 2016a; Dong 738 

et al., 2023).  739 

Besides the quality of predictors, successful machine learning upscaling also requires a 740 

comprehensive set of features representing all controlling factors. For example, the lack of GPP 741 

interannual variabilities in FLUXCOM-ERA5 manifests the importance of incorporating dynamic 742 

vegetation signals from remote sensing in the upscaling framework. CEDAR-GPP used satellite 743 

observations from optical, thermal, and microwave systems as well as climate variables thoroughly 744 

representing GPP dynamics. Particularly, the inclusion of LST and soil moisture data provides 745 

important information about resource limitations and stress factors, which are crucial for certain 746 

biomes and/or under specific conditions (Stocker et al., 2018, 2019; Green et al., 2022). Dannenberg 747 

et al. (2023) showed that incorporating LST from MODIS and soil moisture from the SMAP 748 

satellite datasets substantially improved the machine learning estimation accuracy of GPP in North 749 

American drylands. Nevertheless, accurately capturing interannual anomalies remains challenging for 750 

certain biomes, such as evergreen needleleaf forest, cropland, and wetland (Figure 4), as 751 

acknowledged by previous studies (Tramontana et al., 2016; Jung et al., 2020). This suggestsing that 752 
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vital information on GPP is missing or inadequately represented in existing datasets. To this end, 753 

potential improvement may be achieved by incorporating datasets related to agricultural 754 

management practices (crop type, cultivar, irrigation, fertilization) (Xie et al., 2021), plant hydraulic 755 

and physiological properties (Liu et al., 2021), dynamic C4 plant distributions (Luo et al., 2024), root 756 

and soil characteristics (Stocker et al., 2023), as well as topography (Xie et al., 2023). 757 

4.1.3 Machine learning models and uncertainty quantification 758 

The choice of machine learning models and their parameterization has been found to have a 759 

relatively minor impact on GPP upscaling uncertainties (Tramontana et al., 2015). CEDAR used the 760 

state-of-the-art boosting algorithm, XGBoost, which provided high performance given the current 761 

data availability. Further reduction of model uncertainty will likely rely on additional information, 762 

such as increasing the number of eddy covariance sites or incorporating more high-quality 763 

predictors. Additionally, temporal dependency of carbon fluxes responses to atmospheric controls 764 

may also be exploited with specialized deep neural networks such as recurrent neural networks or 765 

transformers (Besnard et al., 2019; Ma and Liang, 2022).  766 

A key challenge, however, is the quantification of uncertainties in machine learning upscaling 767 

(Reichstein et al., 2019). The limited availability of eddy covariance data hinders a comprehensive 768 

assessment of the extrapolation errors; consequently, metrics of predictive performance from cross-769 

validation are inherently biased. CEDAR derived estimation uncertainty for each GPP prediction 770 

using bootstrapping model ensemble, which naturally mimics the biased sampling of flux tower 771 

locations. Notably, the choice of input climate reanalysis datasets could also induce systematic 772 

differences in GPP spatial and temporal patterns (Tramontana et al., 2015). As a result, the 773 

FLUXCOM product generatecgenerates model ensembles based on different reanalysis datasets to 774 

capture these uncertainties. Additionally, different satellite datasets of vegetation structural proxies, 775 

such as LAI, also exhibited significant discrepancies (Jiang et al., 2017). Thus, an ensemble approach 776 

combining site-level bootstrapping with multiple sources of input predictors could potentially 777 

provide a more comprehensive quantification of uncertainties. Future work may also explore 778 

Bayesian neural networks, which provide uncertainty along with predictions and, at the same time, 779 

present high predictive power comparable to ensemble tree-based algorithms (Ma et al., 2021).  780 



 39 

4.2 Long-term GPP changes and CO2 fertilization effect 781 

CEDAR-GPP was constructed using a comprehensive set of climate variables and multi-782 

source satellite observations, thus, encapsulating long-term GPP dynamics from both direct and 783 

indirect effects of climate controls. Particularly, CEDAR-GPP included the direct CO2 fertilization 784 

effect, which has been shown to dominate the increasing trend of global photosynthesis (Chen et al., 785 

2022). Incorporating these effects substantially improved long-term trends of GPP from site to 786 

global scales (Figure 5, 10, 11). CEDAR’s CFE-Hybrid setup offered a conservative estimation of 787 

the direct CO2 effects by simulating the light-limited sensitivity on LUE for C3 plants (Walker et al., 788 

2021). Nevertheless, the model did not account for the impacts of nutrient availability, which could 789 

potentially constrain CO2 fertilization (Reich et al., 2014; Peñuelas et al., 2017; Terrer et al., 2019). 790 

Furthermore, the sensitivity of light-limited photosynthesis is a function of temperature, resulting in 791 

the most pronounced increasing trend in the tropics (Figure 10). For simplicity, we assumed a fixed 792 

ratio of leaf internal to ambient CO2 (𝜒) representing an average long-term value typical for C3 793 

plants in the theoretical CO2 sensitivity function. However, 𝜒 varies by environmental conditions, 794 

including temperature and vapor pressure deficit, and robustly modeling these dependencies remains 795 

challenging (Wang et al., 2017). Future work could incorporate more comprehensive representations 796 

of the 𝜒  and evaluate how the associated uncertainties affect the quantification of GPP and its 797 

temporal variations. Yet the model assumed a fixed ratio of leaf-internal to ambient CO2, and thus 798 

did not include any responses to vapor pressure deficit.  799 

The CFE-ML model adopted a data-driven approach to infer CO2 effects directly from eddy 800 

covariance data. This strategy allowed the model to capture any physiological pathways of the CO2 801 

impact evidenced in the eddy covariance measurements, including the increases of the biochemical 802 

rates as well as enhancements in the water use efficiency (Keenan et al., 2013). The model 803 

successfully detected a strong positive effect of CO2 on eddy covariance measured GPP, consistent 804 

with previous studies based on process-based and statistical models (Fernández-Martínez et al., 805 

2017; Ueyama et al., 2020; Chen et al., 2022). Notably, the CFE-ML model could have included the 806 

impacts of other factors that exhibit a strong temporal correlation with CO2. For example, 807 

industrialization-induced increases in nitrogen deposition could synergistically boost GPP alongside 808 

CO2 (O’Sullivan et al., 2019). Technological and management improvements in agriculture that 809 

contribute to a global boost of crop photosynthesis (Zeng et al., 2014), might also be indirectly 810 

reflected in the model estimates. As a result, the CFE-ML predicted a GPP trend that more closely 811 
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aligned with eddy covariance observations, and the upscaled dataset also showed a globally higher 812 

trend than CFE-Hybrid (Figure 5; Figure 10). NeverthelessDespite differences in magnitudes, spatial 813 

patterns of GPP trends from the CFE-ML aligned with that from CFE-Hybrid, reflecting a strong 814 

temperature dependency, implying that the effects of CO2 likely remained the most significant 815 

factor. AdditionallyNonetheless, the considerable ensemble spread in the CO2 trends from the CFE-816 

ML model and discrepancies between the CFE setups (Figure 11, Figure 13) underscored a high 817 

level of uncertainty in the machine learning quantified CO2 effects. Moreover, disentangling the 818 

direct CO2 effects on LUE, water use efficiency, and its indirect effects on fAPAR remains 819 

challenging with machine learning models due to the correlations and interactions between CO2 and 820 

other climatic or environmental factors. FFuture work may exploit explainable machine learning and 821 

causal inference to investigate unravel the underlying complex mechanisms and distinct pathways of 822 

CO2 effects on vegetation carbon uptake.  823 

Our results suggested that variations in the estimated GPP long-term trends from different 824 

products were largely related to the representation of CO2 fertilization. Products that did not 825 

consider the direct CO2 effect, including our Baseline models, FLUXSAT, FLUXCOM, and 826 

MODIS, showed minimal long-term changes in tropical GPP, while the CEDAR CFE-ML and 827 

CFE-Hybrid models demonstrated significant GPP increases aligning with predictions from the 828 

terrestrial biosphere models (Anav et al., 2015). FLUXCOM-ERA5, not accounting for dynamics 829 

changes in vegetation structures and CO2, did not capture either the direct or indirect CO2 830 

fertilization resulting in a slight negative GPP trend attributable to shifted climate patterns. Notably, 831 

rEC-LUE exhibited contrasting trends before and after circa 2000, primarily attributed to changes in 832 

vapor pressure deficit, PAR, and LAI, while the direct CO2 fertilization effect remained consistent 833 

(Zheng et al., 2020). Nevertheless, considerable differences between CEDAR-GPP and rEC-LUE, 834 

as well as between our CFE-ML and CFE-Hybrid products, warrant more in-depth investigations 835 

into long-term GPP responses to changes in atmospheric CO2 and climate patterns. 836 

5. Data availability and usage note 837 

The CEDAR-GPP product, comprising ten GPP datasets, can be accessed at 838 

https://zenodo.org/doi/10.5281/zenodo.8212706 (Kang et al., 839 

2024).https://doi.org/10.5281/zenodo.8212707 (Kang et al., 2023). These datasets were generated 840 

at a spatial resolution of 0.05º and monthly time steps. Each dataset includes an ensemble mean 841 

https://zenodo.org/doi/10.5281/zenodo.8212706
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GPP ( “GPP_mean”) and an ensemble standard deviation (“GPP_std”). Data is formatted in 842 

netCDF with the following naming convention: “CEDAR-GPP_<version>_<model 843 

setup>_<YYYYMM>.nc”. 844 

The CEDAR GPP product offers GPP estimates derived from ten different models. Models 845 

are characterized by 1) temporal coverage, 2) configuration of CO2 fertilization, and 3) GPP 846 

partitioning approach (Table 2). We provide a structured approach to selecting the most appropriate 847 

dataset for research or applications. 848 

1) Study period considerations: the Short-Term (ST) setup is ideal for studies focusing on 849 

periods after 2000. These models are constructed using a broader range of explanatory predictors, 850 

offering higher precision and smaller random errors. The Long-Term (LT) datasets shall be used for 851 

research assessing GPP dynamics over a longer time period (before 2001). It is important to note 852 

that trends from the ST and LT datasets are not directly comparable, as they were derived from 853 

different satellite remote sensing data. 854 

2) CO2 Fertilization Effect (CFE) configurations: the CFE-Hybrid and CFE-ML setups are 855 

preferable when assessing temporal GPP dynamics, especially long-term trends. The CFE-Hybrid 856 

setup includes a hypothetical trend for the direct CO2 effect, while CFE-ML is purely data-driven 857 

and does not make any specific assumption about the sensitivity of photosynthesis to CO2. 858 

Averaging the CFE-Hybrid and CFE-ML estimates is acceptable, with the difference between them 859 

reflecting the uncertainty surrounding the direct CO2 effect. Note that the Baseline setup shall not 860 

be used to study long-term GPP dynamics, especially those induced by elevated CO2. Baseline setup 861 

may be useful to compare with other remote sensing-derived GPP datasets that do not consider the 862 

direct CO2 effect. Differences between these setups regarding mean GPP spatial patterns, seasonal 863 

and interannual variations are considered to be minor. 864 

3) GPP partitioning methods: We recommend using the mean value derived from both the 865 

“NT” (Nighttime) and “DT” (Daytime). The difference between these two provides insight into the 866 

uncertainties arising from the partitioning approaches used in GPP estimation from eddy covariance 867 

measurements. 868 

6. Code availability 869 

The code for upscaling and generating global GPP datasets can be accessed at 870 

https://doi.org/10.5281/zenodo.8400968. 871 

https://doi.org/10.5281/zenodo.8400968
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7. Conclusions 872 

We present the CEDAR-GPP product generated by upscaling global eddy covariance 873 

measurements with machine learning and a broad range of satellite and climate variables. CEDAR-874 

GPP comprises four long-term datasets from 1982 to 2020 and six short-term datasets from 2001 to 875 

2020. These datasets encompass three configurations regarding the incorporation of direct CO2 876 

fertilization effects and two partitioning approaches to derive GPP from eddy covariance data. The 877 

machine learning models of CEDAR-GPP demonstrated high capability in predicting monthly GPP, 878 

its seasonal cycles, and spatial variability within the global eddy covariance sites, with cross-validated 879 

R2 between 0.56 to 0.79. Short-term model setups consistently outperformed long-term models due 880 

to considerably more and higher-quality information from multi-source satellite observations. 881 

CEDAR-GPP advances satellite-based GPP estimations, as the first upscaled dataset that 882 

considered the direct biochemical effects of elevated atmospheric CO2 on photosynthesis, which is 883 

responsible for an increasing land carbon sink over the past decades. We showed that incorporating 884 

this effect in our CFE-ML and CFE-Hybrid models substantially improved the estimation of GPP 885 

trends at eddy covariance sites. Global patterns of long-term GPP trends in the CFE-ML setups 886 

showed a strong temperature dependency consistent with biophysical theories. Aside from the trend, 887 

global spatial and temporal GPP patterns from CEDAR generally aligned with other satellite-based 888 

GPP datasets.  889 

In conclusion, CEDAR-GPP, informed by global eddy covariance measurements and a broad 890 

range of multi-source remote sensing observations and climatic variables, offered a comprehensive 891 

representation of global GPP spatial and temporal dynamics over the past four decades. The 892 

different CO2 fertilization configures integrated in CEDAR-GPP offer new opportunities for 893 

understanding global ecosystem photosynthesis’s response to increases in atmospheric CO2 along 894 

different pathways over space and time. CEDAR-GPP is expected to serve as a valuable tool for 895 

benchmarking process-based modeling and constraining the global carbon cycle. 896 

  897 
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Appendix A: Photosynthesis sensitivity function of CO2 898 

The Light Use Efficiency (LUE) model (Monteith, 1972) of GPP states that, 899 

 𝐺𝑃𝑃 = 𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸 = 𝑃𝐴𝑅 × 𝑓𝐴𝑃𝐴𝑅 × 𝐿𝑈𝐸 (A1) 900 

where 𝑃𝐴𝑅 is the photosynthetic active radiation, 𝑓𝐴𝑃𝐴𝑅 is the fraction of 𝑃𝐴𝑅 that plant canopy 901 

has absorbed, and 𝐴𝑃𝐴𝑅 is the absorbed 𝑃𝐴𝑅. Eco-evolutionary theory predicts that the electron-902 

transport-limited (light-limited) (𝐴!) and Rubisco-limited (𝐴") rates of photosynthesis converge on 903 

the time scale of physiological acclimation, which is in the order of a few weeks (Harrison et al., 904 

2021; Wang et al., 2017). Thus, at a monthly time scale, we assume that 905 

 𝐴 = 𝐴" = 𝐴! (A2) 906 

where 𝐴 is the gross photosynthetic rate, here equivalent to GPP. 907 

In the following, we derive our sensitivity function based on 𝐴! , which has a smaller response to 908 

CO2 than 𝐴" , thus providing conservative estimates of the direct CO2 fertilization effect (Walker et 909 

al., 2021). According to the Fauquhar, von Caemmerer and Berry (FvCB) model (Farquhar et al., 910 

1980), 911 

 𝐴! = 𝜑#𝐼
"!$%∗

"!&'%∗
 (A3) 912 

where 𝜑# is the intrinsic quantum efficiency of photosynthesis, 𝐼 is the absorbed PAR (𝐼 = 𝐴𝑃𝐴𝑅), 913 

𝑐( is the leaf-internal partial pressure of CO2, and Γ∗ is the photorespiratory compensation point that 914 

depends on temperature:  915 

 Γ∗ = 𝑟'*𝑒
∆$(&'()*.,-)
()*.,-/&  (A4) 916 

where 𝑟'* = 4.22	𝑃𝑎 is the photorespiratory point at 25 ºC, ∆𝐻 is the activation energy (37.83 ⋅ 103 917 

J mol-1), 𝑇 is the air temperature in Kelvin, and 𝑅 is the molar gas constant (8.314 J mol-1 K-1. We 918 

denote atmospheric CO2 concentration as 𝑐+, and 𝜒 is the ratio of leaf internal and external CO2, so 919 

 𝑐( = 𝜒𝑐+ (A5) 920 

Combing (A1), (A3), (A5), and assuming (A2), LUE can be written as, 921 

 𝐿𝑈𝐸 = 𝜑#
"!$,∗

"!&',∗
= 𝜑#

-"0$,∗

-"0&',∗
 (A6) 922 

We can therefore show that under constant absorbed light (𝐼 or 𝐴𝑃𝐴𝑅), the sensitivity of GPP to 923 

CO2 is proportional to that of LUE, 924 

 ./00
."0

=
.112

230'4∗

2305(4∗

."0
= 𝐼 .345

."0
 (A7) 925 
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Thus from (A7), we can express the actual GPP at the time 𝑡 and a CO2 level 𝑐+6  as the product of a 926 

reference GPP with a CO2 level 𝑐+# and the ratio between actual and reference LUE (A8-9). We 927 

denote the actual GPP as time t as 𝐺𝑃𝑃"07"06
6  , and the reference GPP at time t as 𝐺𝑃𝑃"07"01

6 .  928 
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 𝐺𝑃𝑃"07"06
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6 × 889(
6

889(
61  (A9) 930 

The reference GPP represents the GPP value at time 𝑡 if the CO2 were at the level of a reference 931 

level, while all other factors, such as 𝑃𝐴𝑅, 𝑓𝐴𝑃𝐴𝑅, temperature, and other environmental controls 932 

remain unchanged. Here the CO2 impacts on LUE depend on atmospheric CO2 (𝑐+), 𝜒 , and air 933 

temperature. We fixed 𝜒 to the global long-term average value 0.7 typical to C3 plants (Prentice et 934 

al., 2014; Wang et al., 2017). 935 

In the CFE-Hybrid model, we estimated the reference GPP by fixing the CO2 at the level of the 936 

year 2001 while keeping all other variables dynamic in the CFE-ML model. Then the actual GPP can 937 

be estimated following (A9). Fixing CO2 values to the 2001 level, the start year of eddy covariance 938 

data used in model training, essentially removed the effects of CO2 inferred by the CFE-ML model. 939 
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