
Response Letter  
CEDAR-GPP: spatiotemporally upscaled estimates of gross primary 

productivity incorporating CO2 fertilization 
 
 

Referee #1 
 
Dear reviewer, 
 
We are grateful for your thorough and constructive feedback, which has helped us 
improve our manuscript. We have carefully considered each comment and made the 
following key changes to address your suggestions: 

1) We conducted additional site-level evaluation using 11 independent sites in tropical 
and arid areas, which were previously not involved in model development. 

2) We expanded the intercomparison analysis for global and regional GPP trends 
using three process-based models forced with remote sensing data. 

3) We developed further analysis of the direct CO2 effect on GPP trends 
4) We added new illustrations and discussion on uncertainties associated with the 

estimated GPP trends. 
Below we provide our point-to-point response to reviewers’ comments, with revisions 
highlighted in red. For revisions, we provide line numbers from the track-change revised 
manuscript. 
  
 
As I pointed out, the trend of GPP is the most important result for model effectiveness, 
so validation is very important. Besides, I have provided several sites (comment #8) for 
model data validation in the last round of revision, however, the new version of the 
manuscript has nothing new about it. Because the site validation is the most effective 
way for the direct validation for GPP trend, and the ESSD also highlight the robustness 
for dataset especially in the model validation. So the validation has to be done. 
 
So I think four possible ways to prove the results are robustness especially the trend of 
GPP 
 
[Reviewer Comment 1] 1、Site validation in the EBF at tropics. 
The authors should use at least 6 or more sites to validate other results at EBF at 
tropics, because the sites in the EBF tropics contributes a very high amount of global 
GPP and now the sites in this study cannot reproduce the spatial representativeness. 
So please follow the [comment#8] from the last round of revision and validate it. 
 
Response: Thank you for your suggestion of enhancing site validation in EBF and 
tropics. In response, we expanded our validation to include the new OzFlux FluxNet 
dataset 
(https://data.ozflux.org.au/portal/pub/viewColDetails.jspx?collection.id=1882723&collecti

https://data.ozflux.org.au/portal/pub/viewColDetails.jspx?collection.id=1882723&collection.owner.id=450&viewType=anonymous


on.owner.id=450&viewType=anonymous), which contains 11 Australian sites, previously 
not involved in our model training. This dataset contains three tropical sites (savannas) 
and two non-tropical EBF sites (Table S3). Notably, it includes two sites you previously 
suggested—AU-Lit (Litchfield) and AU-ASM (Alice Springs). Regarding the other five 
suggested sites, we note that long-term high-quality data necessary for trend evaluation 
were not available. A detailed explanation of each site’s data limitation are provided at 
the end of the response. 

In the validation based on the OzFlux FluxNet dataset, we evaluated annual trends 
in seven sites with at least four years of good-quality data (Figure S9). Of these, only 
two sites - AU-Cpr (Tropical) and AU-Stp (Arid) exhibited a trend with p-value < 0.3. The 
CEDAR-GPP model estimates align closely with the observed trend. The other sites 
showed strong interannual variabilities, which CEDAR-GPP captured effectively, 
particularly in AU-ASM (savanna) and AU-Cum (EBF) (Figure S9, Figure S10, Table 
S4). 

Within OzFlux and our existing data from FLUXNEXT2015, ICOS, and AmeriFlux 
datasets, we have a total of 5 tropical and 5 EBF sites (Figure R1). However, high-
quality data spanning over five years are available only in 1 tropic and 3 EBF sites. This 
still limits our ability to assess aggregated trends for tropical areas and the effect of CO2 
fertilization. 

Lastly, we carefully assessed the sites suggested by the reviewer. AU-Rob, GF-Guy, 
and BR-Sa1 were part of FLUXNEXT2015, thus already included in our analysis. 
Unfortunately, AU-Rob had only one year of high-quality data in FLUXNET2015. BR-
Sa1 had frequent missing values for at least three months per year from 2002 to 2011. 
GF-Guy was located in a coastal area and did not contain GPP estimates from the 
night-time partitioning method. Moreover, while both the Xishuangbanna and CongoFlux 
sites are valuable for enhancing representation in Africa and Asia, Xishuangbanna only 
has five years of data with large interannual variation, and CongoFlux data collection 
started after 2020, thus lacking sufficient long-term observations for trend evaluation.  

Nevertheless, the most robust assessment of GPP trends and CO2 fertilization 
between observations and models remains the comparison of aggregated trends, for 
which we have included the maximum amount of data that met analysis criteria and 
results indicate that models which incorporate direct CO2 effects improve the match with 
observed GPP trends compared to models that do not include direct CO2 effects 

 
Table S3. Sites from the OzFlux FluxNet dataset used for independent validation. 

Site ID IGBP Koppen zone Data range No. of site-months 
AU-ASM SAV Arid 2010-2019 111 
AU-Adr SAV Tropical 2007-2009 19 
AU-Boy SAV Temperate 2017-2019 24 
AU-Cpr SAV Arid 2011-2019 104 
AU-Cum EBF Temperate 2014-2019 71 
AU-Dry WSA Tropical 2010-2019 90 
AU-GWW SAV Arid 2013-2019 83 
AU-Lit SAV Tropical 2015-2019 53 
AU-Rgf CRO Temperate 2016-2019 39 
AU-Stp GRA Arid 2009-2019 114 
AU-War EBF Temperate 2013-2019 53 

https://data.ozflux.org.au/portal/pub/viewColDetails.jspx?collection.id=1882723&collection.owner.id=450&viewType=anonymous


 

 
Figure S9. Standardized annual GPP anomalies from eddy covariance data and 
estimated by CEDAR-GPP for seven independent sites fomr the OzFlux FluxNet 
dataset. The results compare three CEDAR-GPP model setups – ST_Baseline_NT, 
ST_CFE-Hybrid_NT, and ST_CFE-ML_NT. Eddy covariance GPP was partitioned using 
the Night-time (NT) approach. The bottom right inset table lists the annual GPP trends 
based on Sen’s slopes and the Mann-Kendall test. 
 
Table S4. CEDAR-GPP model performance based on independent data from the 
OzFlux FluxNet dataset 

Model Setup 
R2 RMSE 
Overa
ll 

MS
C 

Anomalie
s 

Cross-
site 

Overa
ll 

MS
C 

Anomalie
s 

Cross-
site 

ST_Baseline_NT 0.75 0.77 0.33 0.77 1.27 1.23 0.77 1.00 
ST_CFE-
Hybrid_NT 0.75 0.77 0.33 0.77 1.27 1.23 0.77 0.99 

ST_CFE-ML_NT 0.75 0.77 0.33 0.76 1.27 1.24 0.77 1.01 
LT_Baseline_NT 0.74 0.80 0.26 0.77 1.29 1.15 0.81 0.98 
LT_CFE-
Hybrid_NT 0.74 0.79 0.26 0.76 1.28 1.16 0.81 1.00 

ST_Baseline_DT 0.73 0.74 0.50 0.69 1.40 1.40 0.67 1.17 
ST_CFE-
Hybrid_DT 0.73 0.74 0.50 0.69 1.39 1.40 0.67 1.16 

ST_CFE-ML_DT 0.74 0.74 0.50 0.69 1.38 1.39 0.67 1.16 
LT_Baseline_DT 0.74 0.78 0.43 0.72 1.37 1.29 0.71 1.11 
LT_CFE-
Hybrid_DT 0.74 0.77 0.43 0.71 1.38 1.30 0.71 1.13 

 



 
Figure S10. CEDAR-GPP performance in estimating monthly GPP, mean seasonal 

cycle, monthly anomalies, and spatial variations in the OzFlux FluxNet dataset. 
 

 
Figure R1. Standardized annual GPP anomalies of tropical and EBF sites. 

 
 
Revisions: Table S3, S4; Figure S9, S10 
Line 517 – 523: Finally, we evaluated CEDAR-GPP using independent eddy covariance 
data (11 sites, Table S3) that was not involved in model training and obtained from the 
OzFlux FluxNet dataset (Ozflux, 2024). Among these sites, only two - AU-Cpr (Tropical) 
and AU-Stp (Aird) - with more than five years of records exhibite a GPP trend with p-
value less than 0.3. CEDAR-GPP shows strong consistency with the observed trend 
(Figure S9). Additionally, CEDAR-GPP achieves reasonable accuracy in predicting 
monthly GPP (R2 ~ 0.73 – 0.75), mean seasonal cycle (R2 ~ 0.74 – 0.78), and monthly 
anomalies (R2 ~ 0.26 – 0.50) (Table S4, Figure S10), closely aligning with the cross-
validation results.  



 
 
[Reviewer Comment 1]  2、 Provide the uncertainties or more model validation on the 
global trend of GPP. 
The authors could compare their GPP trend with other existing long-term GPP products 
(e.g., FLUXCOM, FLUXSAT, MODIS). However, all of them did not include the direct 
CO2 fertilization effect. Some new datasets, such as BESS (Li et al. 2023), BEPS (Leng 
et al. 2024), PML-v2 (Zhang et al. 2019), have the direct CO2 fertilization effect (CFE), 
but with a different model structure. The authors should compare their trend of GPP with 
these datasets that include the direct CO2 fertilization effect. 
Leng, J., Chen, J. M., Li, W., Luo, X., Xu, M., Liu, J., ... & Yan, Y. (2024). Global 
datasets of hourly carbon and water fluxes simulated using a satellite-based process 
model with dynamic parameterizations. Earth System Science Data, 16(3), 1283-1300. 
Li, B., Ryu, Y., Jiang, C., Dechant, B., Liu, J., Yan, Y., & Li, X. (2023). BESSv2. 0: A 
satellite-based and coupled-process model for quantifying long-term global land–
atmosphere fluxes. Remote Sensing of Environment, 295, 113696. 
Zhang, Y., Kong, D., Gan, R., Chiew, F. H., McVicar, T. R., Zhang, Q., & Yang, Y. (2019). 
Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross 
primary production in 2002–2017. Remote sensing of environment, 222, 165-182. 
 
Response: Thank you for the suggestion. It is beneficial to compare our GPP trend 
estimates with other models that incorporate the direct CO2 fertilization effect. In the 
revised manuscript, we have followed the reviewer’s suggestion and expanded our 
evaluation to include BEPS, BESS, and PLM-V2. We found that CEDAR-GPP aligned 
well with BESS and BEPS in global and regional GPP trends, while patterns in PML V2 
showed considerable differences, especially in Africa and tropics (Figure S17, S18). We 
have incorporated these results in the manuscript as detailed below. Additionally, we 
note that we previously incorporated the intercomparison with rEC-LUE which also 
considered the CO2 effects. 
 



 
Figure S17. Annual GPP trends over 2001 – 2002 from short-term night-time CEDAR 
GPP datasets, BEPS, BESS v2, and PML V2. Hatched areas indicate the GPP trend 

that is statistically significant at p < 0.05 level under the Mann-Kendal test. 



 
Figure S18. Global and regional GPP trends from 2001 to 2020 short-term night-time 

CEDAR GPP datasets, BEPS, BESS v2, and PML V2. a) Global annual GPP over time, 
with an inset showing GPP trends. b) GPP trend in 11 TRANCOM regions. Bars marked 
with a grey dot represent statistically significant trends at p < 0.05 level under the Mann-

Kendal test. Figure S16 shows a map of 11 TRANSCOM regions. 
Revision 

Revisions: Figure S17, S18 



Line 386 – 390: Additionally, to evaluate GPP trends, we compared our product against 
three process-based models forced by remote sensing data – BEPS (Leng et al., 2024), 
BESSv2 (Li et al., 2023a), and PML V2 (Zhang et al., 2019). These products estimate 
GPP by scaling leaf-level biochemical photosynthesis models to the canopy level, using 
satellite-derived vegetation structural variables such as LAI. All three products 
incorporate the direct CO2 effects within their biochemical photosynthesis models. 
 
Line 660 – 668: Among the process-based models forced by remote sensing data, 
CEDAR-GPP aligns closely with BESS v2 and BEPS, showing widespread positive 
GPP trends in the boreal and temperate regions of the Northern Hemisphere, as well as 
across tropical areas (Figure S17, S18). In contrast, PML V2 presents minimal GPP 
changes in tropics and substantial reduction in Africa. The CEDAR-GPP CFE-ML model 
exhibits higher trends in tropical and northern hemisphere temperate regions, while 
BEPS shows more pronounced trends in boreal regions. None of the products indicates 
significant GPP trends in Australia. Globally, trends from BEPS and BESS V2 are 
around 0.55 PgC year-1, consistent with CEDAR’s ST_CFE-Hybrid_NT model at 0.58 
PgC year-1, while PML V2 displays a neutral trend of 0.08 PgC year-1. 
 
Line 875 – 880: CEDAR CFE-ML and CFE-Hybrid models align well with two process-
based models forced with remote sensing data which consider direct CO2 effects (BESS 
and BEPS). Nevertheless, considerable differences between CEDAR-GPP and other 
remote sensing products that include direct CO2 effects (rEC-LUE and PML V2) warrant 
more in-depth investigations into long-term GPP responses to changes in atmospheric 
CO2 and climate patterns. 
 
 
[Reviewer Comment 3]  3、Evaluating the sensitivity of CFE to GPP trend at the site 
level 
As the direct CFE is important, the authors could conduct a new analysis on the 
sensitive of CFE to GPP trend. This could provide a new point to demonstrate how the 
direct CFE affects GPP trends at site levels. The analytical framework could follow Chen 
et al. 2022. These results could be added to the supplementary data. 
Chen, C., Riley, W. J., Prentice, I. C., & Keenan, T. F. (2022). CO2 fertilization of 
terrestrial photosynthesis inferred from site to global scales. Proceedings of the National 
Academy of Sciences, 119(10), e2115627119. 
 
Response: We agree with the reviewer that evaluating the contribution of the direct 
CFE on GPP trends offers valuable insights. As the only distinction between the CFE 
and Baseline models is the incorporation of the direct CFE in the former, the observed 
differences in GPP trends between these two types of models reflect the impact of direct 
CFE on the GPP trends (see Fig. 5). 

While Chen et al. utilize partial derivatives (ΔGPP/ΔCO2) from their analytical evo-
evolutionary optimality model to quantify the direct CO2 effect, such an approach is not 
applicable to machine learning models due to the lack of analytical solutions. Therefore, 
in the revised manuscript, we used two explainable machine learning approaches, 
Accumulated Local Effect (ALE) and SHAP, to isolate the direct CO2 effect on GPP. ALE 



is a global explaining method, similar to partial dependence plot. It evaluates how a 
feature (e.g. CO2) influences the prediction of a machine learning model on average, 
across the dataset. SHAP is a local effect model, describing the prediction of a single 
instance (i.e. a site-month) as the sum of individual feature effects. 

In our revisions, we present the CO2 dependence plots (GPP responses to CO2) 
using ALE and SHAP (Figure S8). Both analyses demonstrated an increase of GPP in 
response to CO2, as expected from theory (Chen et al., 2022). 

 

 
Figure S8. GPP responses to CO2, NIRv, and PAR from the ST_CFE-ML_NT model 
evaluated with (a) the Accumulated Local Effectis (ALE) and (b) the SHAP (SHapley 
Additive exPlanations) explaining approaches. Light green lines in (a) represent ALE 
response curves of 30 model ensembles, and the thick black presents the ensemble 
mean curve. Green dots in (b) correspond to SHAP values of individual samples (i.e. 
GPP observation from one site-month). 
 
Revisions: Figure S8 
Line 350-357: To further analyze GPP responses to CO2 in the CFE-ML models, we 
leveraged two explainable machine learning approaches: ALE (Accumulated Local 
Effects) and SHAP (SHapley Additive exPlanations). SHAP is a model interpretation 
method derived from game theory, providing a value for each feature’s contribution to a 
prediction, elucidating how each feature impacts the model’s output in a specific 
instance. Conversely, ALE quantifies the average effect of a feature across the data, 
isolating its impact by aggregating local effects and avoiding the biases associated with 
correlated features.  
 



Line 510-516: The differences in estimated GPP trends between the Baseline and CFE 
models underscore the significant long-term GPP changes driven by the direct CO2 
effect. Using explainable machine learning approaches – ALE and SHAP, we further 
assessed the CFE-ML models for quantifying the direct CO2 effect. Both approaches 
revealed a consistently positive influence of CO2 on GPP, aligning with biophysical 
theories (Figure S8). Compared to the effects from light (PAR) and vegetation structures 
(e.g. NIRv), the impacts of CO2 are considerably smaller, which explains the minimal 
differences in overall model accuracy between the Baseline and CFE models. 
 
 
[Reviewer Comment 4]  4、Provide a new result for the uncertainties in the GPP trend. 
I appreciate that the authors provide the new results in Fig.12. But I think it is not 
enough. The authors could plot these results according to this rule. First, provide the 
GPP trend spatially in CEDAR (subplot a, unit in gC m-2 yr-1 in GPP trend); second, the 
minimum GPP trend (could be the minimum trend of 30 models or the original GPP 
trend minus the std of the trend) spatially in CEDAR (subplot b, unit in gC m-2 yr-1 in 
GPP trend); third, the maximum GPP trend spatially in CEDAR (subplot c, unit in gC m-
2 yr-1 in GPP trend). With these results, the user could easily understand the trend of 
GPP in CEDAR and its uncertainty globally. 
 
Response: Thank you for your feedback. We have included a new figure according to 
your suggestion for our six CFE models (Figure S20). Additionally, we note that we 
have previously provided the error range in the global GPP trends for our models 
(Figure 11), which showed the 25% and 75% percentiles as well as minimum and 
maximum trends for all CEDAR-GPP models. In the revisions, we have further detailed 
the standard deviations of the trends within the text. 
 
Revisions: Figure S20 
Line 625 – 630: The ST_Baseline_NT model predictes a GPP growth rate of 0.35 
(±0.02) Pg C per year, aligning with FLUXCOM-RS, but lower than FLUXSAT (0.51 Pg 
C yr-2) and MODIS (0.39 Pg C yr-2) (Figure 11b). The CFE-hybrid models estimate a 
notably faster GPP growth at 0.58 (±0.03) Pg C yr-2. The CFE-ML models predicte the 
highest trends, up to 0.76 (±0.15) Pg C yr-2 from the ST_CFE-ML_NT model and 0.59 
(±0.13) Pg C yr-2 from the ST_CFE-ML_DT model. 
 
Line 639 – 642: The LT_Baseline_NT and LT_Baseline_DT models show a trend of 0.13 
(±0.02) and 0.15 (±0.02) Pg C yr-2 respectively,  while the LT_CFE-Hybrid_NT and 
LT_CFE-Hybrid_DT models double these rates with 0.33 (±0.02) and 0.31 (±0.03) Pg C 
yr-2 respectively. rEC-LUE shows a two-phased pattern with a strong increase in GPP 
from 1982 to 2000 (0.54 Pg C yr-2), followed by a decreasing trend after 2001 (-0.20 Pg 
C yr-2) (Figure S16). 
 
Line 682 – 685: Figure S20 further illustrates the trend uncertainties with the ensemble 
mean error range based on one standard deviation. Both the CFE-ML models show 
large discrepancies between the upper and lower uncertainty ranges particularly within 



the tropics. Additionally, the long-term models also show a higher uncertainty compared 
to the short-term models. 
 

 
Figure S20. Maps of GPP trends and uncertainty range for CEDAR-GPP CFE 
datasets. The first column presents ensemble mean trends, the second 
column shows trends from the mean minus one standard deviation, and third 
column indicates the trend from the mean plus one standard deviation. (a) 
Trends from the short-term (ST) datasets evaluated from 2001 to 2020. (b) 
Trends from the long-term (LT) datasets evaluated from 1982 to 2020. 

  



Referee #4 
 
Thank you for the extensive review, my only suggestion at this point would be to change 
the color scale in Fig. 9, as it is very difficult to differentiate (even though there are 
redundant labels). 
 
Dear reviewer, thank you for your positive feedback. We have revised color scheme in 
Fig. 9 to enhance readability. 
 


