
Response Letter  
CEDAR-GPP: spatiotemporally upscaled estimates of gross primary 

productivity incorporating CO2 fertilization 
 
 

Referee #1 
  
Dear reviewer, 
 
We are grateful for your thorough and constructive feedback, which has helped us 
improve our manuscript. We have carefully addressed all concerns, including clarifying 
our methodology, providing additional context for the limitations of our dataset particularly 
in tropical regions in the revised manuscript. Below we provide our point-to-point 
response to reviewers’ comments, with revisions highlighted in red. For revisions, we 
provide line numbers from the track-change revised manuscript. 
  
[Reviewer Comment 1] The authors just added some results to make their results more 
convincing. However, I have pointed out the dataset itself is not robustness since the GPP 
trend at tropics is highly uncertain. Moreover, they didn’t revise the dataset itself since the 
first time of submission. As a reviewer, my duty is to find out the potential shortcoming of 
this dataset and make this dataset reliable to the public. Till now, the dataset is not fully 
convincing. I am not doubting the innovation for this dataset, but the current version of 
dataset is not convincing. 
Response: Thank you for your feedback. We understand your desire to ensure the 
dataset is as robust as possible, but respectfully disagree with the point that our dataset 
is “not convincing” due to high uncertainties in tropical GPP. Quantifying GPP trends, 
particularly in tropics, is a known challenge across the field. Current state-of-the-art 
datasets, such as FLUXCOM, do not capture these trends from site to global levels, partly 
because they overlook CO2 fertilization. By incorporating this effect, our models (CFE-ML 
and CFE-Hybrid) significantly improved trend estimates, compared to the Baseline (which 
represents state-of-the-art approaches). This improvement demonstrates the robustness 
and significance of our work and how it advances over currently available approaches. 

We acknowledge that estimation of GPP trends in tropics remains highly uncertain, 
a limit shared by all upscaling studies due to limitations in eddy covariance data 
availability and remote sensing data quality in tropical regions. We have quantified these 
uncertainties (Fig. 12) to ensure transparency. Additionally, we have expanded our 
discussion in the revised manuscript to emphasize the limitations and challenges 



associated with validation. This aspect is highlighted in the abstract and conclusion (see 
text provided below).  

We want to emphasize that the reviewer is correct, in that GPP trends in tropical 
regions are highly uncertain (as our results clearly show (Fig. 12)), but that this is an issue 
that affects our entire field, not just our paper, and the improvements we introduce greatly 
advance over previous efforts regardless. 
Revisions: Line 857 – 865: Finally, direct validation of GPP trends is limited, particularly 
in tropical regions, constrained by the availability of long-term records. Detecting and 
evaluating trends is challenging and typically requires long monitoring records (e.g. over 
10 to 15 years), since long-term changes, such as those induced by CO2, are very small 
relative to large interannual variations. Evaluating aggregated GPP trends across multiple 
sites presents an alternative approach; however, there were still insufficient sites in 
tropical and evergreen broadleaf areas to robustly validate our estimates for those 
ecosystems (Figure 5). Partly due to data limitation, uncertainties in GPP estimated from 
bootstrapped samples are very high in tropical areas (Figure 12). Thus, trend estimates 
in these areas should be interpreted in the context of associated uncertainties and 
limitations.  
Line 37 – 39: Estimating and validating GPP trends in data-scarce regions, such as the 
tropics, remains challenging, underscoring the importance of ongoing ground-based 
monitoring and advancements in modeling techniques. 
Line 955 – 958: However, trend estimation and validation remain particularly challenging 
in data-scarce regions, such as the tropics, emphasizing the need for enhanced data 
availability and methodological advancements. 
  
  
[Reviewer Comment 2] The CO2 fertilization effect indeed affects the global trend of 
GPP, but current dataset just explain 51% of the global trend, which is quite low.  
Response: This comment appears to misinterpret our statement in the abstract: 
“Incorporation of the direct CO2 effects substantially enhanced the predicted long-term 
trend in GPP across global flux towers by up to 51%, aligning much closer to a strong 
positive trend from eddy covariance data” 
Our finding indicates that the CO2 effects improved the model-predicted GPP trends at 
eddy covariance sites, when compared to models without considering CO2. We have 
revised this sentence to improve clarity and avoid confusion. 
Revisions: Line 28 – 32: After incorporating the direct CO2 effects, predicted long-term 
GPP trend across global flux towers substantially increased from 3.1 gCm-2year-1 to 4.5 
– 5.4 gCm-2year-1, which aligns more closely with the 7.7 gCm-2year-1 trend detected from 
eddy covariance data.  
  



[Reviewer Comment 3] More importantly, the GPP trend in CEDAR-GPP at tropics is 
not convincing (based on the limited results in the revised manuscript), so I cannot 
recommend this study for publication. I need to remind the authors should revise and 
answer the questions point to point, but not omit some key questions in the last round of 
revision. Therefore, a rejection but an invitation for resubmission is appropriate. 
Response: Thank you for your feedback. We agree that estimating and validating GPP 
trends in tropics remain a major challenge in the field, due to data availability. However, 
we conducted thorough validation in regions with sufficient data, demonstrating the 
robustness of our dataset (Figure 5b,c). Additionally, we provided detailed uncertainty 
quantification, transparently outlining the limitations of our estimates (Figure 12). In the 
revised manuscript, we have expanded our discussion to emphasize these limitations. 
  
  
[Reviewer Comment 4] 1 Validation 1.1 ‘Moreover, intercomparisons with other 
RSbased datasets, including FLUXCOM, FLUXSAT, and MODIS, confirm strong 
consistency inglobal patterns of annual mean GPP, interannual variability, and mean 
seasonal cycles’ . 
Comment: I think this part of result is convincing, no need to clarify it again. 
Response: Thanks for the feedback. 
  
[Reviewer Comment 5] 1.2’ Our estimates of long-term trends agree with eddy 
covariance data across global sites. Notably,the Baseline model, which does not consider 
the direct CFE, underestimates GPP trends at flux towers. In contrast, the CFE-ML and 
CFE-Hybrid models show significant improvements, underscoring the need to consider 
both direct and indirect CFE. In our last revision, we performed additional validation of 
GPP trend by climate zones and plant functional types (Figure 5b, 5c). We also provided 
comparisons of estimated and observed trends at long-term sites (Figure S4).’ 
Comment: I think this validation is weak, since in Figure 5b,c, the author still not show the 
results at tropics.  
Response: Thanks for the feedback! Tropics were not included because there were 
insufficient sites to support a reliable analysis, as noted in the manuscript (line 354 – 355). 
Specifically, at least five sites with five years of continuous observations (with no gaps 
more than one month per year) were required. For upscaling purposes, we applied strict 
quality control, discarding records with more than 20% missing or low-quality gap-filled 
data – a standard procedure in upscaling studies - which further limited data availability.  
In the revised manuscript, we expanded our discussion to emphasize the limitations of 
our dataset in tropical and data scarce conditions, and we noted that the estimated 
uncertainty could be used as a reference of data quality. 
Line 354 – 355: Categories with less than six long-term sites available were excluded 
from the analysis, which includes 



355 EBF and Tropics. 
 
In figure S4, what I can see is, half of the CFE-hybrid and CFE-ML cannot capture the 
trend in EC sites. So this validation is not convincing. 
Response: We respectfully disagree with the statement that our “validation is not 
convincing”. CEDAR-GPP greatly improved the quantification of trends when compared 
to existing state-of-the-art approaches. We established the Baseline model as a reference 
to the current methods ensuring a fair comparison. In Figure S4 (now S7), the CFE-Hybrid 
and CFE-ML models showed significantly better performance than the Baseline (current 
state-of-the-art) in most sites, demonstrating the effectiveness of our methods. 
Note that directly benchmarking existing datasets (such as FLUXCOM) against eddy 
covariance data is not an apples-to-apples comparison, as the datasets were not 
developed using the same sites. To ensure fairness, we established the Baseline model 
to represent current methods used by datasets like FLUXCOM and FluxSat.  
We agree that substantial differences exist between estimated (even with CO2 effects) 
and EC-based GPP trends in Figure S4. It is important to consider factors other than CO2 
that can cause long-term GPP changes, such as nitrogen deposition, forest aging, 
succession, changes in surface roughness, or natural and manmade disturbances. These 
factors may be underrepresented in our models, contributing to the underestimation of 
trends. Robustly reconstructing trends in individual sites across the globe remains 
challenging, given the current limitations in eddy covariance and remote sensing inputs. 
Despite the challenges, our incorporation of the CO2 effects marks a significant 
improvement over current approaches and a meaningful advancement to the field. 
In the revised manuscript, we have expanded our discussion on the limitations of our 
datasets in representing CO2 fertilization and trends and highlighted this aspect in the 
abstract and conclusion. We have introduced the following changes to highlight these 
points:  
  
Revisions: Line 830 – 850: Several limitations should be noted regarding GPP trend 
estimation and validation. First, the CFE-ML model may not fully capture the intricate 
mechanisms of plant physiological responses to CO2. For example, eddy covariance 
towers, especially long-term sites, are typically located in homogeneous and undisturbed 
ecosystems, not representative of the full diversity of ecosystems globally. Thus, 
interactions between CO2 and natural or human-induced disturbance, as well as many 
other stresses, are likely underrepresented in the models. Ultimately, the model’s capacity 
to robustly quantify CO2 fertilization is constrained by the scope and diversity of the eddy 
covariance data. Additionally, the use of spatially invariant CO2 data may not fully 
represent the actual CO2 variations that plants experience across different environments. 

Secondly, CO2 effects inferred by the CFE-ML models may be confounded by 
other factors that correlate with CO2 over time. Industrialization-induced nitrogen 



deposition could synergistically boost GPP alongside CO2 (O’Sullivan et al., 2019). 
Technological and management improvements in agriculture that contribute to a global 
enhancement of crop photosynthesis (Zeng et al., 2014), might also be indirectly reflected 
in the model estimates. Moreover, interactions with the other input features that exhibit 
long-term trends, such as those induced by non-biological factors (e.g. sensor orbital 
drifts), also affect the CO2 effects inference. Additionally, other factors that could lead to 
long-term GPP trends (e.g. forest aging, disturbances) might also be underrepresented 
in our models. 
Line 37 – 39: However, estimating and validating GPP trends in data-scarce regions, such 
as the tropics, remains challenging, underscoring the importance of ongoing ground-
based monitoring and advancements in modeling techniques. 
Line 955 – 958: However, trend estimation and validation remain particularly challenging 
in data-scarce regions, such as the tropics, emphasizing the need for enhanced data 
availability and methodological advancements. 
  
[Reviewer Comment 6] ‘we show that CEDARGPP exhibits higher consistency with 
TRENDY models after incorporating the direct CFE’ 
Comment: The TRENDY models cannot be the validation! The TRENDY models are 
results from simulations but not the ground measurement. So this could just be cross-
validation at the model world but the observations at the real world. 
Response: We fully agree with the reviewer that the TRENDY model comparison should 
not be considered validation. The TRENDY intercomparison was used to illustrate that 
previous inconsistencies between satellite-based GPP and TRENDY may be induced by 
an omission of the direct CO2 effect in satellite estimates.  
  
[Reviewer Comment 7] I think the authors didn’t pay enough attention to my comments. 
Table S1 should provide the validated and training year for each flux site as I mentioned 
in the first time. 
Response: We appreciate the feedback but noted a misinterpretation of our approach. 
We split data by sites rather than years. In our five-fold cross-validation, each site 
(including all data years) was randomly assigned to one of five groups, with each iteration 
training on four groups and testing on one. This scheme assesses model performance on 
unseen sites, which is more applicable for upscaling. Splitting sites by years would risk 
overfitting and deflating error metrics.  

In the revised manuscript, we have added each site’s time span and IGBP class 
to Table S1 and relocated it to the Appendix, so individual site citations can be integrated 
to the main text. 
  
  



[Reviewer Comment 8] To my knowledge, there are at least 7 EC sites with long term 
GPP observation are at tropics: 
  
(1) AU-Rob 
https://ozflux.org.au/monitoringsites/robsoncreek/index.html 
(2) GF-Guy 
https://fluxnet.org/sites/siteinfo/GF-Guy 
(3) BR-Sa1 
https://ameriflux.lbl.gov/sites/siteinfo/BR-Sa1 
(4) AU-ASM 
https://ozflux.org.au/monitoringsites/alicesprings/index.html 
(5) AU-LIF 
https://ozflux.org.au/monitoringsites/litchfield/index.html 
(6) CN-Xishuangbanna 
https://www.scidb.cn/en/detail?dataSetId=db9bf2dde00746f7a40cfc3dbad324b2 
(7) CG-YPS 
https://www.congo-biogeochem.com/congoflux 
All of these sites contain more than 8 years of observation. 
Response: Thank you for sharing the list of EC sites with long-term observations. While 
increased data availability could benefit model robustness, adding a few sites is likely still 
insufficient for comprehensive inference and validation. As we noted earlier, evaluating 
CO2 effects and benchmarking trends in a single site can be problematic, due to the 
impacts of other factors that may not be fully represented in the models.  

We have reviewed these data sources and found that they have limited years of 
publicly available data insufficient for robust evaluation (e.g. AU-Rob has only 2014 
available in FLUXNET2015; CN-Xishuangbana, only has data from 2011 to 2015). Some 
sites were included in our analysis but lacked long records due to quality issues (e.g. GF-
Guy and BR-Sa1).  

Given that adding a few sites would not significantly alter our results, we did not 
include them in this manuscript. But we are committed to continue improving our methods 
and datasets as more data becomes available, such as the upcoming FLUXNET dataset.  
  
  
[Reviewer Comment 9] 2 Model 
As the second reviewer also concerned using a constant 𝜒 value for the generation of 
long-term GPP. So if my understanding is right, the constant 𝜒 value can only reproduce 
the spatial difference of different PFT, but it cannot reproduce the trend of VPD and soil 
moisture control to 𝜒.  
Following the assumption of FvCB model, a constant 𝜒 value indicated that the GPP is 
driven by atmospheric CO2 concertation and air temperature but not related to the water 



stress such as VPD and soil moisture control. So this also lead to the CEDAR-GPP is 
leak of robustness. 
Response: There appears to be a misinterpretation of our methods here. All our models 
account for GPP responses to VPD, soil moisture, and other environmental factors. The 
optimality theory that the reviewer refers to, which assumes a constant 𝜒 value, only 
simulates the response of LUE/GPP to CO2 concentration. The machine learning models 
were designed to capture the effects of all other factors on 𝜒/LUE/GPP. The CFE-Hybrid 
model combines the two components (machine learning and optimality theory) to fully 
represent GPP dynamics.  

Our choice of a constant 𝜒 value is based on rigorous sensitivity analysis at eddy 
covariance towers, where we found that the CO2 fertilization effects were highly 
consistent between the constant and dynamic 𝜒 approaches with r2 > 0.99 (Figure S14). 
Given that the dynamic approach did not result in meaningful differences, and that 
quantification of VPD effects on stomatal conductance remains an active research area 
with high uncertainties, we decide to use the constant method for the main results. We 
therefore respectfully disagree with the reviewer’s statements here, and hope these 
clarifications highlight why they are a misinterpretation of our methods and results.  
  
  
[Reviewer Comment 10] Once again, it is not doubt that adding the direct CO2 
fertilization effect to machine learning based GPP modelling is important. But I think the 
high uncertainties in the trend of GPP especially at tropics make this dataset untrusted. 
The seasonal trend, IAV, and mean spatial distribution of annual GPP are good, but the 
GPP trend is still not convincing and it is the most important outcome for direct CFE. 
Providing a robust dataset for the science community is important, since sometime the 
wrong results caused the misleading to climate change feedback evaluation. 
Response: We thank the reviewer for highlighting the importance of incorporating direct 
CO2 effect and agree on the need for robust datasets. However, we respectfully disagree 
on the statement that “the high uncertainties in the trend of GPP especially at tropics 
make this dataset untrusted.”  

We have demonstrated significant improvements in trend estimates in eddy 
covariance sites against existing state-of-the-art datasets, particularly in arid, temperate, 
and cold regions. We acknowledge that estimation and validation of trends in tropics 
remain highly uncertain due to data limitation. To ensure transparency, we provided 
detailed uncertainty quantification and emphasized in the manuscript that our datasets 
should be used and interpreted in the context of uncertainties and limitations. 

We concur that robust estimation and uncertainty quantification are important for 
accurate assessment of ecosystem changes and climate feedback. To further emphasize 
this, we have added a clarifying note in the revised manuscript. 



Revisions: Line 929 – 936: Finally, like other upscaled or remote sensing-based GPP 
datasets, CEDAR-GPP should not be regarded as “observations” but rather as 
model estimates informed by remote sensing and ground-based data. The extent of 
assumptions or structural constraints varies across such datasets. CEDAR-GPP, 
particularly in its CFE-Baseline and CFE-ML configurations, is entirely data-driven and 
incorporates no explicit assumptions regarding the biological and environmental 
processes underlying photosynthesis, apart from the generic assumptions inherent in 
machine learning models. Consequently, the usage and interpretation of this dataset 
should be carefully framed within the context of the input eddy covariance and 
environmental data as well as their limitations.  



Referee #4 
 
Dear Dr. Nelson, 
  
Thank you for your thorough evaluation and thoughtful suggestions for our manuscript. We have 
carefully revised the manuscript in response to your feedback, and these revisions have 
significantly enhanced its quality. Below is a summary of the major changes: 
1. We expanded the discussion on limitations related to the quantification of CO₂ fertilization. 
2. We ensured that all ten CEDAR-GPP model results were included in the cross-validation and 
intercomparison analyses. 
3. We revised the cross-validation sampling protocol to account for co-located sites and updated 
the associated figures, tables, and text. 
We also observed that your review was likely based on an earlier version of our manuscript (the 
preprint available in ESSD discussion). Our most recently submitted version differed from this 
earlier version in that we had implemented revisions in response to previous reviewers’ 
comments, which addressed some of your points. This is noted in our point-by-point response 
below. 
We hope our responses satisfactorily address your concerns and suggestions. We are looking 
forward to any further feedback or questions that you may have. 
Below we provide our point-to-point response, highlighting revisions in red and line numbers from 
the track-change revised manuscript. 
  
[Reviewer Comment 1] The manuscript "CEDAR-GPP: spatiotemporally up-scaled estimates of 
gross primary productivity incorporating CO2 fertilization" outlines an up-scaling approached 
based on eddy covariance estimates, which differentiates itself from other similar exercises by 
incorporating CO2 effects on global GPP. The methodology is benchmarked both in cross-
validation and comparison to existing products, and shows similar performances. Overall, the 
evaluation is well done as a benchmark to introduce the new dataset, with a good framing of the 
motivation and discussion on the general limitations to such up-scaling exercises. The inclusion 
of an ensemble evaluation with some metrics of uncertainty is also well outlined and a welcome 
addition. 
Response: Thank you for your positive feedback on our approach and evaluation of the CEDAR-
GPP product. 
  
[Reviewer Comment 2]  One key aspect that I think needs to be improved is, given that the key 
addition compared to existing products relates to the CO2 fertilization effects, the manuscript 
needs further discussion of the potential limitations and implications of how these effects are 
introduced to the method and how users should interpret them. Some aspects, such as the fact 
that what is interpreted here as impacts of CO2 fertilization could include any factor with temporal 
trends, are mentioned only briefly in the discussion. Many other factors, including non-biological 



factors such as developments in eddy covariance techniques, the bias in the fact that long term 
eddy covariance towers are generally placed in locations that are relatively undisturbed and 
protected, and potential trends in the feature sets such as due to sensor drifts, could be interpreted 
as CO2 fertilization effects. I do not think these represent a fundamental issue with the CEDAR-
GPP products, as I would say they represent a very interesting hypothesis about how CO2 effects 
can be incorporated into a data driven product, and the set-up described is well evaluated. 
However, as data driven products tend to be seen as an "observation", it is especially important 
to highlight these issues to advise on the potential limitations to their use and interpretation. 
Response: Thank you for this insightful suggestion. In the revised manuscript, we have expanded 
the discussion on the limitations of ML-based CO₂ fertilization quantification, addressing potential 
biases stemming from eddy covariance tower representation and the influence of non-biological 
trends. We have also emphasized the challenges in isolating CO₂ fertilization effects, noting the 
constraints due to the limited availability of long-term observations, as well as the confounding 
interactions with other environmental factors. 
In addition, we have previously introduced a new section offering detailed guidance on data 
usage, specifically discussing considerations related to CO₂ fertilization, during previous reviews. 
In this revision, we have further emphasized the “modeled” nature of CEDAR-GPP products, 
providing additional cautionary notes regarding their interpretation and application. 
Revisions: Line 830 – 872: Several limitations should be noted regarding GPP trend estimation 
and validation. First, the CFE-ML model may not fully capture the intricate mechanisms of plant 
physiological responses to CO2. For example, eddy covariance towers, especially long-term 
sites, are typically located in homogeneous and undisturbed ecosystems, not representative of 
the full diversity of ecosystems globally. Thus, interactions between CO2 and natural or human-
induced disturbance, as well as many other stresses, are likely underrepresented in the models. 
Ultimately, the model’s capacity to robustly quantify CO2 fertilization is constrained by the scope 
and diversity of the eddy covariance data. Additionally, the use of spatially invariant CO2 data 
may not fully represent the actual CO2 variations that plants experience across different 
environments.  

Secondly, CO2 effects inferred by the CFE-ML models may be confounded by other 
factors that correlate with CO2 over time. Industrialization-induced nitrogen deposition could 
synergistically boost GPP alongside CO2 (O’Sullivan et al., 2019). Technological and 
management improvements in agriculture that contribute to a global enhancement of crop 
photosynthesis (Zeng et al., 2014), might also be indirectly reflected in the model estimates. 
Moreover, interactions with the other input features that exhibit long-term trends, such as those 
induced by non-biological factors (e.g. sensor orbital drifts), also affect the CO2 effects 
inference. Additionally, other factors that could lead to long-term GPP trends (e.g. forest aging, 
disturbances) might also be underrepresented in our models. 

Finally, direct validation of GPP trends is limited, particularly in tropical regions, 
constrained by the availability of long-term records. Detecting and evaluating trends is 
challenging and typically requires long monitoring records (e.g. over 10 to 15 years), since long-
term changes, such as those induced by CO2, are very small relative to large interannual 
variations. Evaluating aggregated GPP trends across multiple sites presents an alternative 
approach; however, there were still insufficient sites in tropical and evergreen broadleaf areas to 



robustly validate our estimates for those ecosystems (Figure 5). Partly due to data limitations, 
uncertainties in GPP estimated from bootstrapped samples are very high in tropical areas 
(Figure 12). Thus, trend estimates in these areas should be interpreted in the context of 
associated uncertainties and limitations.  
Line 886 – 894: Lastly, quantifications of GPP trends and their causes remain highly uncertain 
from site to global scales. Trend detection is often complicated by data noises and interannual 
variabilities, thus requiring long-term records which are limited in certain areas, biomes, and 
environmental conditions, such as tropics, polar regions, wetlands, as well as ecosystems with 
regular or anthropogenic disturbances (Baldocchi et al., 2018; Zhan et al., 2022). Moreover, 
isolating the effect of CO2 is challenging, as it is confounded by other factors, such as forest 
regrowth, land cover change, and disturbances, which also significantly impacts long-term GPP 
variations. To this end, continued efforts in expanding ecosystem flux measurements and 
standardizing data processing present new opportunities to assess ecosystem productivity 
responses to changing climate conditions (Delwiche et al., 2024; Pastorello et al., 2020). Future 
research could also leverage novel machine learning techniques, such as knowledge-guided 
machine learning (Liu et al., 2024) and hybrid modeling that combines process-based and 
machine learning approaches (Kraft et al., 2022; Reichstein et al., 2019). 
Line 915 – 924: CO2 Fertilization Effect (CFE) configurations: the CFE-Hybrid and CFE-ML setups 
are preferable when assessing temporal GPP dynamics, especially long-term trends. The CFE-
Hybrid setup includes a hypothetical trend from the direct CO2 effect, while CFE-ML is purely 
data-driven and does not make any specific assumption about the sensitivity of photosynthesis to 
CO2. Averaging the CFE-Hybrid and CFE-ML estimates is acceptable, with the difference 
between them reflecting the uncertainty surrounding the direct CO2 effect. Note that the Baseline 
setup should not be used to study long-term GPP dynamics, especially those induced by elevated 
CO2. The Baseline setup may be useful to compare with other remote sensing-derived GPP 
datasets that do not consider the direct CO2 effect. Differences between these setups regarding 
mean GPP spatial patterns, seasonal and interannual variations are considered to be minor. 
Line 929 – 936: Finally, like other upscaled or remote sensing-based GPP datasets, CEDAR-GPP 
should not be regarded as “observations” but rather as model estimates informed by remote 
sensing and ground-based data. The extent of assumptions or structural constraints varies across 
such datasets. CEDAR-GPP, particularly in its CFE-Baseline and CFE-ML configurations, is 
entirely data-driven and incorporates no explicit assumptions regarding the biological and 
environmental processes underlying photosynthesis, apart from the generic assumptions inherent 
in machine learning models. Consequently, the usage and interpretation of this dataset should be 
carefully framed within the context of the input eddy covariance and environmental data as well 
as their limitations. 
  
[Reviewer Comment 3] Furthermore, in the comparisons between CEDAR GPP and the 
reference datasets, it would be important to always include the three variants (baseline and ML), 
at least in the supplement. Each up-scaling product has many differences due to small choices 
(e.g. QC, version of eddy covariance data, feature set and processing, etc...), so referencing how 
the three variants of CEDAR GPP differ, where the underlying methodology is most similar, will 
help differentiate the effects of CO2 and other methodological choices. 



Response: We completely agree! During previous rounds of reviews, we have included all the 
CEDAR-GPP model variants in the cross-validation and intercomparison analyses, supporting a 
more thorough interpretation of the results. In the main text, we noted the major differences and 
general consistencies between the models. Please refer to our responses to your specific 
comments for detailed changes. 
Revisions: Figures S1, S4, S5, S6, S8, S9, S11, S12 
  
Besides the main point of discussing the limitations to interpreting the CO2 fertilization effects, 
there are a number of clarifications to the methodology that are described in the specific points 
below that should be addressed before publication. 
  
[Reviewer Comment 4]  L120 - I guess here high-quality would be based on the ONEFLUX flags 
as measured or high quality gap filling? Best to be explicit. 
Response: Thank you for pointing this out. We have clarified in the revised manuscript 
Revisions: Line 133 – 135: High-quality data refers to GPP derived from measured or high-
quality gap-filled Net Ecosystem Exchange (NEE) data. 
  
[Reviewer Comment 5] L123 - The classification of C3/C4 at all eddy covariance sites can be a 
difficult task, especially at crop sites with rotations. It could be useful to add this information 
somewhere, either as a supplement or as a referenced dataset. 
Response: Thank you for the suggestion. We have added the data in the supplement. 
Revisions: Line 139: This classification information is included in Supplementary Text S1. 
  
[Reviewer Comment 6]  L125 - A list of all sites used should be included, ideally with the 
corresponding DOI where available. 
Response: Thanks for the suggestion. We included this table in the supplement during our first 
revision. In this round of revision, we have moved the table to Appendix A to ensure the individual 
site DOIs are cited in the main text references. 
Revisions: Appendix A. 
  
[Reviewer Comment 7]  Table 1 - Having the information on which datasets were used in which 
model would be useful to show here (e.g. combining with Table S1), and would make a nice 
overall summary of the set-up, particularly as there is a lot of empty space in this table. 
Response: Thanks for the suggestion. We have revised Table 1 to incorporate specific usage of 
each dataset in the model setups. Table S1 was kept to list original and extracted variables from 
each dataset. 
Revisions: Table 1. 
  



[Reviewer Comment 8]  L213 - Here it says all data was aggregated to 0.05° resolution, but 
many datasets are at courser resolutions. How was the resampling done? linear interpolation? 
Also, I did not see a description of how the gridded data was matched to the eddy covariance 
towers, I guess the nearest 0.05° pixel was used? 
Response: Following your suggestion, we have included a description of the resampling and the 
nearest pixel approach in the revised manuscript. 
Revisions: Line 243 – 247: Finally, all the datasets were aggregated to a monthly time step and 
0.05-degree spatial resolution. We employed the conservative resampling approach using the 
xESMF python package (Zhuang et al., 2023). To generate the machine learning model training 
data, we extracted values from the nearest 0.05 degree pixel relative to the site locations within 
the gridded dataset. 
  
[Reviewer Comment 8]  L270 - Was there a significant difference between the baseline and the 
reference models? 
Response: Great question! The Baseline and CFE-REF models show no difference in long-term 
trends and their spatial patterns (Figure R1), as indicated by a close to 1 slope and near-zero bias 
term in the regression line (Figure R3a, c). This consistency suggests that the CO2 effect has 
been effectively removed from the CFE-ML models. 
The key difference between the Baseline and CFE-REF models lies in the magnitude of predicted 
GPP (Figure R2, R3). Global annual GPP from the CFE-REF models is systematically lower by 
1.2 – 1.4% compared to the Baseline models (Figure R2, R3). Despite the bias, GPP predictions 
from both models agree well with an R2 over 99% and a regression slope of 1. The difference in 
GPP magnitudes stems from the models’ assumptions. The Baseline model, without accounting 
for CO2 changes over time, essentially assumes a fixed CO2 level, corresponding to an “average” 
level from 2001 to 2020. However, the CFE-REF models remove CO2 effects by fixing it to the 
minimum level of year 2001. Therefore, the CFE-REF predicts lower GPP values, though GPP 
temporal dynamics are consistent between the models. 
Revisions: Line 308 – 309: Long-term trends from the reference and the Baseline models are 
consistent. 



 
Figure R1. Comparison of GPP trend spatial patterns between the Baseline and CFE-
REF setups for NT and DT models.  

 
Figure R2. Global annual GPP from 2001 to 2018 for Baseline and CFE-REF models. 



 
Figure R3. Comparison of Baseline and CFE-REF setups in terms of long-term trends 
(a,c) and annual GPP magnitudes (b,d) for DT models (a,b) and NT models (c,d). Panels 
(a) and (c) show long-term trends, represented by Sen slopes, calculated for each grid 
using annual GPP data from 2001 to 2018. Panels (b) and (d) display the annual GPP 
values for 2010. 

  
[Reviewer Comment 9] L290 - When doing the split, did you account for co-located eddy 
covariance towers, as a number of sites are replicates and should be treated as effectively one 
site in the context of cross validation. 
Response: We appreciate this valuable comment. We did not account for co-located sites and 
we agree that co-located towers should be treated as a single site in the context of cross-validation 
to avoid inflating model performance of generalization. We have updated our cross-validation 
approach to group co-located towers, i.e. towers that are no more than 0.05-degree apart, 
ensuring that each group is treated as a single entity during train/test splitting. The updated cross-
validation results in slightly lower model accuracy (overall R2 = 0.72 vs 0.74), but the comparative 



patterns across model setups are consistent with the previous approach. We have revised all the 
figures and text in the cross-validation result section. 
Revisions: Figure 3 – 5; Table S2; Figure S1 – S7; Text Section 3.1 
  
L303 - When aggregating to annual values, this would mean you only took sites with at least 5 
years of data that also passed the high QC threshold (>80% high-quality) for all 12 months? How 
many sites ended up meeting this threshold to be included in the evaluations? Also, please briefly 
describe Chen et al. 2022 here. 
Response: We included a site-year with at least 11 months of high-quality data, and filled the 
remaining gap with a temporal linear interpolation. There were 81 sites used in this analysis. We 
have included these details in the revised manuscript. 
Revisions: Line 343 – 350: To evaluate the models’ ability to capture long-term GPP trends, we 
aggregated the monthly GPP to annual values following Chen et al. (2022), which detected the 
CO2 fertilization effect across global eddy covariance sites. For sites with at least five years of 
observations, GPP anomalies were computed by subtracting the multi-year mean GPP from the 
annual GPP for each site. Anomalies were aggregated across sites to achieve a single multi-site 
GPP anomaly per year. We excluded a site-year if less than 11 months of data was available 
and used linear interpolation to fill the remaining temporal gaps. This resulted in 81 sites used in 
the GPP trend evaluation. 
  
L315 - Please include an overview of the hyperparameters used in for XGBoost, including model 
sizes and stopping criteria. Best would be in the supplement. 
Response: Thanks! We’ve included a description of the XGBoost hyperparameters used in the 
final product generation in the Supplementary. These parameters were determined based on the 
results of the nest cross-validation for each model setup. 
Revisions: Line 364 – 365: Hyperparameters of the XGBoost models used in the final product 
generation were described in Supplementary Text S2. 
Text S2: During the nested cross-validation (Main text Section 2.3.3), XGBoost model 
hyperparameters were determined using a randomized search based on 3-fold cross-validation 
within each training set. This process generated a best-fit parameter set for each of the five 
folds. When generating the global product, the final hyperparameters were determined based on 
a majority vote from the five best-fit parameter sets. For the short-term model setups, the 
XGBoost models were trained with 500 estimators (parameter “n_estimator” in the XGBoost 
python API), a learning rate (“learning_rate” of 0.01, and a subsample ratio of columns/features 
(“colsample_bytree”) of 0.3 for each tree. For the long-term model setups, the XGBoost models 
used 300 estimators, a learning rate of 0.05, and a subsample ratio of columns of 0.3. Note that 
adding the CO2 features to the models or using NT versus DT GPP did not change the selected 
best-fit parameter sets. 
  



L317 - Was it possible to sample all PFTs using only 150 sites? Some PFTs have relatively few 
sites, and I guess each would need something like 10 sites to be represented? Here again is 
where a site list would be useful. 
Response: Good point. Since we combined some similar IGBP classes, such as WSA with SAV, 
and OSH with CSH, to create our PFT categories, all PFTs have at least a few sites in all 
bootstrapped samples. However, as you pointed out, this does not guarantee that the samples 
are fully representative. For example, there were only 8 EBF sites in total. In fact, it is difficult to 
determine the number of sites needed to sufficiently represent each PFT. Despite the reduced 
sample size, bootstrapping introduces variability in representativeness across sub-samples. This 
helps capture at least a portion of uncertainties associated with under-sampling, which remains a 
major challenge in eddy covariance upscaling. 
  
L341 - Just as a check, but was the global GPP average calculated using area weighting to 
account for latitudinal differences in pixel size? How were coastal pixels handled? 
Response: Yes, that is an important aspect to be careful. We calculated the pixel-area-weighted 
GPP global average and now specified it in the revised text. 
  
Table 3 - Here an overall performance is reported. A more comprehensive view would be to 
characterize the distribution of performance across each individual site, such as the median and 
interquartile range of each metric. 
Response: Great suggestion! We have included a figure showing the distribution of R2 across 
sites in monthly GPP, mean seasonal cycle, and monthly anomalies (Figure S2). Please also note 
that Table 3 had been moved to Supplementary Table S2 following suggestions in the previous 
rounds of review. 
Revisions: Line 412- 413: Model performance also varied across sites, and models were more 
advantageous in explaining mean seasonal cycles than monthly anomalies in most sites (Figure 
S2). 
  
Figs. 3/4 - Include a version of these plots for all model variants in the supplement. 
Response: We have included Figure S1 with all the DT models supplementing Figure 3 and 
Figures S3 including all the DT short-term and long-term CFE-Hybrid models supplementing 
Figure 4. Figure S5 provided all the model performance for different PFT and Koppen zones. 
Figure S6 was provided for all the DT models supplementing Figure 5.  
Note that following previous reviewers’ requests, we have revised Figure 5 to include trend 
evaluation for individual PFT and Koppen zones with at least six long-term sites.   
  
L415 - Is this comparing trends of EC and the model output for the EC sites, or the global trends 
from the models? 
Response: Thanks for the note. This section compares trends of EC and model predictions at 
the EC sites. We have revised the text for improved clarity. 



Revisions: Line 470 – 473: The eddy covariance GPP from the night-time partitioning approach 
indicated an overall trend of 7.7 gCm-2year-2. In contrast, the ST_ Baseline_NT model predicted 
a more modest overall trend of 3.1 gCm-2year-2 across the flux sites, primarily reflecting the 
indirect CO2 effect manifested through the growth of LAI. 
  
Fig. 7 - Here more regions would give a clearer view of the differences in mean seasonal cycles. 
Also, please include all CEDAR variants. 
Response: Thanks for the suggestion! In the revised manuscript, we summarized mean seasonal 
cycles of the 11 TransCom regions (Figure 7) and have provided all CEDAR-GPP model results 
in Figure S10.   
Revisions: Line 542 – 563: CEDAR-GPP agreed with other GPP datasets on seasonal 
variabilities (average between 2001 and 2018) at the global scale, characterized by a peak in 
GPP in July and a nadir between December and January (Figure 7, Figure S9). At the global 
scale, CEDAR-GPP was most closely aligned with FLUXSAT in GPP seasonal magnitude and 
amplitude, while both FLUXCOM and MODIS displayed a relatively less pronounced magnitude.  
In boreal and temperate regions of the Northern Hemisphere, all datasets agreed on seasonal 
GPP variation, with only minor variances in the magnitude of peak GPP. In Southern 
Hemisphere temperate regions, datasets demonstrated similar seasonality, though with greater 
variability in peak amplitudes compared to the Northern Hemisphere. The largest disparities 
were found in the South American tropical areas, where seasonal variation is less prominent. 
Here, FLUXSAT showed a distinct bi-modal pattern with peaks in March-April and September-
October. CEDAR-GPP and FLUXCOM-ERA5 aligned with the second peak, but exhibited a less 
pronounced first peak. Interestingly, the DT setups of CEDAR-GPP showed slightly higher 
peaks in March-April in this region (Figure S10). MODIS, in contrast, indicated an inverse 
seasonal pattern with a small peak from June to August. Across all regions, CEDAR-GPP’s 
seasonality aligned more closely with FLUXSAT and FLUXCOM-ERA5 than with other datasets. 
Differences among the ten CDEAR-GPP model setups were minimal, except for small variations 
in GPP magnitude in some tropical areas between NT and DT setups (Figure S10). 
  
Fig. 8 - Does the IAV calculation include the trend? As much of the discussion revolves around 
the trend, it would be good to separate the IAV and the trend in the analysis. For example, are 
the differences between FLUXCOM-RS006 due more to a lack of variability or a lack of trend. 
Furthermore, including the CEDAR baseline and ML versions would help understand what are 
the effects of the added CO2 effect and what is the underlying variability due to the feature set. 
Response: IAV was calculated based on the detrended time series. We have included Figure 
S11 showing the IAV spatial patterns for the ten CEDAR-GPP models in response to previous 
review comments. In general, there were no differences between the Baseline and CFE models. 
The LT models showed slightly lower IAV than the ST models, likely due to differences in the 
input RS data.  
  



L619 - Drylands is another area that is difficult to represent, which is reflected in the highest 
uncertainties in Figure 12. This is likely due to both the tower representation, and the difficulty in 
capturing drought responses. 
Response: This is a good point! We have highlighted this aspect in the revised manuscript. 
Revisions: Line 709 – 711: However, data availability remains limited in critical carbon 
exchange hotspots such as tropics, subtropics, drylands, and boreal regions, as well as in 
mountainous areas (Figure 1).  
Line 771 – 774: High prediction uncertainties (Figure 12) in drylands also suggest the machine 
learning models did not sufficiently represent the mechanisms of water stress and drought 
responses. 
  
L621 - While the uncertainty estimates are an important and welcomed inclusion, it is important 
to mention that tree methods tend to deflate uncertainties in extrapolation, as they tend to stick to 
the edges of the training distribution. This can lead to what looks like high certainty when 
extrapolating, when in fact there may be strong biases. 
Response: Good point! We have discussed this aspect in the revised manuscript.  
Revisions: Line 799 – 802: Furthermore, tree-based models do not generalize well to unseen 
conditions, and the uncertainty estimates derived from bootstrapping of XGBoost models may 
underrepresent actual biases stemming from limitations in training data representation. 
  
L640 - Here it would be very relevant to compare the new FLUXCOM X-BASE products, as they 
are based on similar underlying datasets. However, as it seems both products were developed in 
parallel, it does not seem fair to hold this as a requirement. The data is available here: 
https://gitlab.gwdg.de/fluxcom/fluxcomxdata 
Response: Thanks for pointing this out and sharing the link to the FLUXCOM X-BASE product. 
We will definitely use it as a reference for our future analysis. We have incorporated the X-Base 
preprint as a major reference for upscaling approaches in the Introduction section. 
  
L689 - See comments on L621. 
Response: Thanks! We’ve highlighted the limitations of using tree-based models to quantify 
uncertainty in this section. 
  
L716 - Here there are no mentions of the effects of water limitations, which show the highest 
uncertainty in the model spread, and is a key limitation on GPP. 
Response: Thank you for highlighting this point. The underrepresentation of water stress in the 
models likely constitutes a key limitation, as evidenced by the high uncertainties in GPP estimates 
within dryland regions. We have addressed this aspect in previous sections in response to your 
earlier comments (e.g., Lines 771 - 773).  



Regarding CO₂ fertilization under water stress, it is anticipated that elevated CO₂ could improve 
water use efficiency, thereby enhancing plant productivity under moderate water stress by 
reducing stomatal conductance. While the CFE-Hybrid setup does not incorporate this factor—
yielding a conservative estimate of CO₂ effects—the CFE-ML model may capture some aspects 
of water use efficiency as represented in the eddy covariance measurements. We have noted this 
in the text (see below). However, due to the complex nature of CO₂ effects, it remains challenging 
to isolate individual pathways through which CO₂ influences plant physiological processes. 
Lines 819–821: This strategy allowed the model to potentially capture multiple physiological 
pathways of the CO2 impact evidenced in the eddy covariance measurements, including the 
increases of the biochemical rates and enhancements in the water use efficiency (Keenan et al., 
2013). 
  
L722 - While the CFE-ML product is learning long term trends from the eddy covariance data, as 
I understand it, the CO2 data is from Mauna Loa. I think it is important to be very careful to 
distinguish that fact so as to not conflate the models here with experiments which are actually 
looking at the impacts of CO2 as a plant sees it (such as lab or FACE experiments). 
Response: This is a good point. In the revised manuscript, we discussed the limitations of using 
a spatially invariant CO2 in the model. We have also revised the sentence in question to enhance 
clarity. 
Revisions: Line 819 – 821: This strategy allowed the model to potentially capture multiple 
physiological pathways of the CO2 impact evidenced in the eddy covariance measurements, 
including the increases of the biochemical rates and enhancements in the water use efficiency 
(Keenan et al., 2013). 
Line 837 – 839: Additionally, the use of spatially invariant CO2 data may not fully represent the 
actual CO2 variations that plants experience across different environments. 
  
L731 - In addition to other factors that have long term trends which might coincide with CO2 
increases, it is important to mention that eddy covariance measurements tend to be made in 
specific ecosystems, namely relatively undisturbed and curated. So the long term trends of 
FLUXNET, ICOS, and AmeriFLUX, particularly the sites with long term monitoring of trends, are 
not representative of "real-world" ecosystems. This point should be discussed as a parallel to the 
spatial sampling bias, particularly when talking about trends. 
Response: This is an important point! We have expanded the discussion on the limitations of the 
machine learning approach in quantifying CO₂ effects, specifically addressing the sampling bias 
inherent in eddy covariance data. Additionally, we have highlighted the need for long-term eddy 
covariance observations across a broader range of ecosystems to improve representativeness 
and better capture real-world trends. 
Revisions: Line 830 – 837: First, the CFE-ML model may not fully capture the intricate 
mechanisms of plant physiological responses to CO2. For example, eddy covariance towers, 
especially long-term sites, are typically located in homogeneous and undisturbed ecosystems, 
not representative of the full diversity of ecosystems globally. Thus, interactions between CO2 



and natural or human-induced disturbance, as well as many other stresses, are likely 
underrepresented in the models. Ultimately, the model’s capacity to robustly quantify CO2 
fertilization is constrained by the scope and diversity of the eddy covariance data. 
Line 887 – 890: Trend detection is often complicated by data noises and interannual 
variabilities, thus requiring long-term records which are limited in certain areas, biomes, and 
environmental conditions, such as tropics, polar regions, wetlands, as well as ecosystems with 
regular or anthropogenic disturbances (Baldocchi et al., 2018; Zhan et al., 2022). 
 


