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Abstract. Satellite-based solar-induced chlorophyll fluorescence (SIF) serves as a valuable proxy for monitoring the 10 

photosynthesis of vegetation globally. Global Ozone Monitoring Experiment-2A (GOME-2A) SIF product has gained 

widespread popularity, particularly due to its extensive global coverage since 2007. However, serious temporal degradation 

of the GOME-2A instrument is a problem, and for now, there is a lack of time-consistent GOME-2A SIF products that meet 

the needs of temporal trend analysis. In this paper, the GOME-2A instrument’s temporal degradation was first calibrated 

using a pseudo-invariant method, which revealed 16.21 % degradation of the GOME-2A radiance at the near-infrared (NIR) 15 

band from 2007 to 2021. Based on the calibration results, the temporal degradation of the GOME-2A radiance spectra was 

successfully corrected by using a fitted quadratic polynomial function whose determination coefficient (R2) is 0.851. Next, a 

data-driven algorithm was applied for SIF retrieval at the 735–758 nm window. Besides, a photosynthetically active radiation 

(PAR)-based upscaling model was employed to upscale the instantaneous clear-sky observations to monthly average values 

to compensate for the changes in cloud conditions and atmospheric scattering. Accordingly, a global GOME-2A SIF dataset 20 

(TCSIF) with correction of temporal degradation was successfully generated from 2007 to 2021, and the spatiotemporal 

pattern of global SIF was then investigated. Corresponding trend maps of the global temporally consistent GOME-2A SIF 

showed that 62.91 % of vegetated regions underwent an increase in SIF, and the global annual averaged SIF exhibited a 

trend of increasing by 0.70 % yr−1 during the 2007–2021 period. The TCSIF dataset is available at 

https://doi.org/10.5281/zenodo.8242928 (Zou et al., 2023). 25 
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1 Introduction 

Solar-induced chlorophyll fluorescence (SIF) retrieved from satellite-based hyperspectral data provides a new way to 

proxy the photosynthesis of vegetation globally. Numerous studies have demonstrated that satellite-based SIF observations 

are able to produce better estimates of gross primary productivity (GPP) than the widely used reflectance-based approaches 30 

(Sun et al., 2017; Guanter et al., 2014; Zhang et al., 2014). 

Currently, the satellite sensors used for SIF retrieval can be generally divided into two types according to their spectral 

resolution (Frankenberg et al., 2011; Frankenberg et al., 2014; Guanter et al., 2012; Du et al., 2018). The first type of satellite 

was originally designed to measure the atmospheric XCO2 concentration using observations with a spectral resolution higher 

than 0.05 nm; these satellites include GOSAT (Frankenberg et al., 2011; Guanter et al., 2012), OCO-2 (Frankenberg et al., 35 

2014; Sun et al., 2017), TanSat (Du et al., 2018), and OCO-3 (Taylor et al., 2020). The other type of satellite instrument was 

originally designed for atmospheric chemistry applications and had a spectral resolution of about 0.5 nm. These instruments 
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included the Global Ozone Monitoring Experiment 2 (GOME-2) onboard the MetOp-A/B/C satellites (Joiner et al., 2013; 

Joiner et al., 2016; Köhler et al., 2015); the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograhY 

(SCIAMACHY) onboard the ENVIronmental SATellite (ENVISAT) (Köhler et al., 2015; Joiner et al., 2016); and the 40 

TROPO-spheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5P satellite (Köhler et al., 2018). Given that its 

global coverage capability starts from 2007, the GOME-2 satellite-based SIF dataset has been the most widely used for 

global monitoring of GPP, crop yield, drought, vegetation phenology, etc. (Sun et al., 2015; Guanter et al., 2014; Yoshida et 

al., 2015; Lu et al., 2018; Chen et al., 2019). Yet, the volatile coating used within GOME-2’s optical bench enclosure makes 

the optical lens more susceptible to contamination, which eventually leads to instrument degradation (A. Hahne; Munro et al., 45 

2016). Further, such degradation may affect the solar and Earth radiance measurements in different ways, depending on the 

optical components involved, and correcting this via the onboard calibration method may be impossible (Munro et al., 2016). 

Moreover, how degradation impacts the quality of different level-2 products is highly dependent on the individual algorithms 

used. Generally, there is a strong decreasing trend in the GOME-2A level-2 SIF product as derived from the GOME-2A 

level-1B radiance product. For example, the GOME-2A SIF generated by Joiner et al. (2016) as well as the Sun-Induced 50 

Fluorescence of Terrestrial Ecosystems Retrieval (SIFTER) SIF dataset produced by Sanders et al. (2016) were both found 

to harbor an artificial trend caused by instrument degradation (Zhang et al., 2018; Koren et al., 2018). For example, Yang et 

al. (2018) reported the SIF emission of the Amazon forests decreased during the 2015/2016 El Niño event when analyzed 

using the GOME-2 SIF data by Joiner et al. (2016), which is in conflict with the increase of the enhanced vegetation index 

(EVI) and downward solar shortwave radiation. Zhang et al. (2018) argued that the reduced GOME-2A SIF signal in the 55 

Amazon Forest observed by Yang et al. (2018) could have been caused by artifacts associated with the temporal degradation 

of the GOME-2A instrument, instead of an actual decline in photosynthesis. Hence, it is imperative to address the temporal-

decreasing artifact of the GOME-2A dataset before its application to any analysis and interpretation of interannual trends.  

Researchers have tried to generate consistent long-term SIF datasets. For example, Wang et al. (2022) assembled a 

long-term consistent global SIF dataset (LT_SIFc*) by combining the global SIF products from GOME, SCIAMACHY, and 60 

GOME-2. The temporal degradation problem was corrected based on the satellite SIF measurements over the Sahara Desert 

between 1995 and 2018. Unfortunately, this attempt is not sufficiently rigorous, in that the degradation of sensors does not 

transit to SIF in a linear manner due to post-processing processes. Furthermore, the LT_SIFc* is a reprocessed product 

derived from existing GOME-2 SIF products, which limits its temporal resolution to 1 month and hinders its broader 

application. Earlier, Schaik et al. (2020) applied a seasonal factor to GOME-2 reflectance and retrieved SIF from that 65 

temporally-corrected reflectance data to generate the SIFTER v2 product; however, the function fitted with the season as the 

smallest unit may entail deviations from the actual reality of sensor degradation. Accordingly, in terms of the processing 

results, significant interannual variation persists in the SIFTER v2 time series (Wang et al., 2022). Presently, we still lack a 

robust consistent long-term GOME-2 SIF product that has been generated via rigorous recalibration methods and can yield 

reasonable, meaningful results. This leaves the long-term observations provided by GOME-2 underutilized scientifically. 70 

The objective of this study was to provide a temporally consistent GOME-2A SIF dataset that overcomes the 

degradation problem, spanning 2007 to 2021. Temporal degradation of GOME-2A level-1B radiance was first calibrated 

using the pseudo-invariant method in the Sahara Desert. Then a data-driven approach was applied to retrieve the SIF datasets 

from the corrected GOME-2A measurements. Finally, a global temporally consistent monthly GOME-2A SIF (TCSIF) 

dataset for 2007–2021 was generated, using the PAR-based temporal upscaling method, from the degradation-corrected 75 

GOME-2A instantaneous SIF retrievals. The temporally consistent GOME-2A SIF dataset generated here offers a promising 

tool for monitoring global vegetation variation from 2007 through 2021 and it will advance our understanding of 

vegetation’s photosynthetic activities at a global scale. 
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2 Datasets 

2.1 Datasets for the generation of TCSIF 80 

GOME-2A (launched on October 19th, 2006) was designed by the European Space Agency to measure atmospheric 

ozone, trace gases, and ultraviolet radiation. Since 2007, it has been collecting top-of-atmosphere (TOA) radiance data 

spanning a spectral range of 270 to 790 nm from four channels (Munro et al., 2006). Of these, channel 4 of GOME-2A has a 

spectral coverage of 593–790 nm wavelengths with a spectral resolution of 0.48 nm, which was successfully used to generate 

a global SIF dataset (Joiner et al., 2013). 85 

The MODIS Version 6.1 Nadir Bidirectional reflectance distribution Adjusted Reflectance (NBAR) product 

(MCD43C4) (Schaaf et al., 2002) records the surface reflectance at a nadir viewing angle for each pixel at local solar noon. 

It has a spatial resolution of 0.05° × 0.05° and a daily temporal resolution (Schaaf et al., 2002). The MODIS NBAR product 

is considered stable over long periods of time and was used here to investigate the homogeneity and stability of the 

calibration site (see Sect. 3.1). 90 

The EVI product derived from the MODIS Vegetation Indices 16-Day (MOD13C1) Version 6.1 with a spatial 

resolution of 0.05° was aggregated to 0.5° (Didan, 2021). PAR was obtained from the Merra-2 meteorological assimilation 

reanalysis data (Gelaro et al., 2017) and this PAR dataset had a spatial resolution of 0.5° × 0.625° (resampled to 0.5° × 0.5°) 

and a temporal interval of 1 h. The EVI product and Merra-2 PAR dataset were used to upscale the instantaneous SIF to 

monthly values, as described in Sect. 3.4. 95 

2.2. Datasets for evaluation and comparison 

The dataset was verified through a two-step verification, i.e., the verification of the corrected radiance (compared to 

radiance measurements in the absence of sensor degradation) and SIF retrievals (compared to other long-term products).  

Radiance spectra obtained from GOME-2C serve as a benchmark for the calibrated GOME-2A radiance. Being a sensor 

that measures the same bands with the same spectral resolution as GOME-2A, GOME-2C has a later launching time in 100 

November 2018. Thus, measurements at the initial launch stage of GOME-2C can be taken as accurate values that are not 

affected by degradation. 

The NDVI (normalized difference vegetation index) and three global GPP products were utilized for validation 

purposes. We employed the global NDVI derived from the MOD13C1 product. The MOD17A2H GPP (MODIS GPP) 

product, with a spatial resolution of 500 m (Running et al., 2021), was mosaicked globally every 8 days during the 2007–105 

2021 period. Global-simulated GPP based on the LUE model (Pmodel GPP) is a daily product from 1982 to 2016, whose 

spatial resolution is 0.5° (Stocker et al., 2019). The monthly, 0.5° GPP derived from the Dynamic Global Vegetation Model 

(DGVM) for 2007 to 2021 was also utilized (TRENDY GPP Version 11) (Sitch et al., 2015). The temporal range, temporal 

resolution, and spatial resolution of these datasets are summarized in Table 1. All these products were resampled at a spatial 

resolution of 0.5° and a temporal resolution of 1 month to enable their comparison. 110 

Table 1 GPP and NDVI datasets used in this study and their relevant details. 
Dataset Temporal range Temporal resolution Spatial resolution 

MODIS GPP 2000.2–2023.2 8 days 500 m 

Pmodel GPP 1982.1–2016.12 1 day 0.5° 

TRENDY GPP 1900.1–2021.12 1 month 0.5° 

MODIS NDVI 2000.2–2023.2 16 days 0.05° 

 

Next, we selected four long-term SIF products spanning more than one decade for comparison, including the 

LT_SIFc*(1995–2018) (Wang et al., 2022), SIFTER v2 (2007–2018) (Schaik et al., 2020), GOSIF (2000–2022) (Li and 
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Xiao, 2019), and GOME-2 SIF products generated by the National Aeronautics and Space Administration (hereon 115 

abbreviated as NASA SIF) (2007–2018) (Joiner et al., 2013&2016). The LT_SIFc* is a data fusion product of GOME, 

SCIAMACHY, and GOME-2, having a spatial resolution of 0.05° and a temporal resolution of 1 month. It dealt with the 

temporal decay of the instrument based on statistics of SIF signals in the Sahara Desert. The SIFTER v2 product  is the 

point-by-point SIF product retrieved from GOME-2 measurements after applying a time-related correction factor; it was 

composited to yield a 0.5°, monthly global map in this study. The GOSIF product is the spatiotemporal extrapolation product 120 

based on the global neural network model and OCO-2 SIF V8r product, with a spatial resolution of 0.05° and a temporal 

resolution of 8 days. Apart from the SIF products spanning decades, the OCO-2 SIF product  from 2015 to 2021, and 

TROPOMI SIF  from 2018 to 2021 are also included here for comparative purposed given its high accuracy and it is being 

less affected by sensor degradation. All SIF products were resampled to a 0.5°, monthly spatiotemporal resolution and were 

compared with TCSIF to assess long-term trends in this study. Additionally, we used the NASA GOME-2A level 2 SIF 125 

product, which has not been corrected for temporal decay, to verify the spatial distribution of our product. Key information 

about these SIF products is presented in Table 2. 

 

Table 2 SIF products used in this study and their relevant details. This information includes the temporal range of the dataset; whether 

the dataset initially had a temporal degradation problem, and if so, whether the degraded dataset was corrected. The signal to which the 130 
correction factor is directly applied, the temporal unit of the correction factor, and the function describing the temporal correction are 

provided as well. 

Dataset 
Temporal 

range 

Temporal 

degradation 

problem? 

Temporal 

correction 

applied? 

Signal directly 

corrected 

Temporal 

unit 
Function 

TCSIF 2007.1–2021.11 Yes Yes Radiance 1 day Quadratic function 

NASASIF 2007.1–2019.3 Yes No - - - 

LT_SIFc* 1995.1–2018.12 Yes Yes SIF 1 month 
Ensemble Empirical Mode 

Decomposition approach 

SIFTER 2007.1–2018.12 Yes Yes Reflectance 
3 

months 
Piecewise function 

GOSIF 2000.3–2022.12 No - - - - 

OCO-2 SIF 2014.9–2021.12 No - - - - 

TROPOMI 

SIF 
2018.4–2022.12 No - - - - 

3. Methods 

3.1 Pseudo-invariant method for calibrating the GOME-2A degradation 

A homogeneous square region in the Sahara Desert (22.5°–23.5° E, 28.5°–29.5° N; Figure 1b) was selected as a pseudo-135 

invariant site for calibrating the GOME-2A degradation. Ignoring the spatiotemporal variation in the far-red surface 

reflectance and atmospheric optical properties over the calibration site during the 2007–2021 period, the temporal trend of 

TOA GOME-2A reflectance could be deemed equivalent to the amount of temporal degradation in the GOME-2A 
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instrument. 

The MCD43C4 product was used here to investigate the homogeneity and stability of this calibration site. Figure 1b 140 

depicts the MCD43C4 surface reflectance and its spatiotemporal variance for the calibration site in 2007–2021. These 

results indicate this site is bright (the near-infrared [NIR] reflectance is high, at 55.3 %–60.6 %), homogeneous (with mean 

spatial variation = 0.29 %), and stable (with very low temporal variation = 0.81 %). Arguably, this site qualified as an 

ideal calibration site for implementing the pseudo-invariant method. 

 145 

(a) Location of the calibration site in the Sahara Desert 

 

(b) Temporal variation in NIR reflectance at the calibration site 
Figure 1. (a) Location of the calibration sites. (b)The NIR surface reflectance and its temporal variance at the calibration site 

(22.5°–23.5° E, 28.5°–29.5° N) during the 2007–2021 period. The NIR reflectance (shown by yellow triangles) and the NIR variance 150 
(shown by blue crosses) are respectively the mean and variance of surface reflectance at the near-infrared band. 

 
The clear-sky GOME-2A level-1B radiance products for the calibration site during 2007–2021 were downloaded to 

derive the temporal degradation. Two selection criteria for the GOME-2A data were applied: (1) a scanning angle < 20°, and 

(2) no cloud contamination. This resulted in a total of 6885 GOME-2A level-1B radiance spectra being collected to correct 155 

for the GOME-2A degradation. 
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Figure 2.Temporal variation in the GOME-2A level-1B top-of-atmosphere (TOA) radiance spectra at the calibration site (22.5°–

23.5° E, 28.5°–29.5° N) for the 2007–2021 period. Different colors represent different years from 2007 to 2021. 
 160 

Figure 2 depicts the yearly averaged TOA radiance spectra over the calibration site for each year in 2007–2021. 

Temporal degradation was determined using GOME-2A level-1B radiance products in the near-infrared (NIR) band between 

735 and 758 nm, which served as the fitting window for SIF retrieval. Evidently, there is pronounced temporal degradation 

in the radiance spectra. Thus, a time-dependent correction factor was calculated, and the temporal correction function was 

assumed to be a second-order polynomial as follows: 165 

Dfactor =  � · ����  +   � · ��� +  �, (1) 

where Dfactor is the degradation correction factor describing the temporal degradation. NOD is the number of elapsed days 

since January 1st, 1900, starting with 1.  a, b, and c are the fitting coefficients of the polynomial function based on the near-

infrared radiance of the pseudo-invariant site, the detailed analysis can be found in Sect.4.1. 

Next, the GOME-2A radiance can be corrected by dividing the measured radiance signal by the Dfactor: 

����(NOD, �) =
����(NOD, �)
Dfactor(NOD), (2) 

where ����  and ���� are respectively the corrected radiance and original radiance without correction for the degradation; 170 

Dfactor is the degradation correction factor in Equation (1), used to compensate for the GOME-2A instrument’s degradation 

since 2007. 

 

3.2 Data-driven based SIF retrieval method 

The TCSIF dataset was separated from far-red SIF and corrected radiance spectra in the 735–758 nm range by using an 175 

SVD-based data-driven approach, namely that proposed by Guanter et al. (2015). 

The TOA radiance (����) was modeled this way: 

 ���� =  �∑ �� · ����
��� � · �∑ �� ∙ ��

���
��� � + �� · ℎ� · �↑

� , (3) 

where ����  is the TOA radiance at 735–758 nm; �  is the measured wavelength used to represent the low-frequency 

information in surface reflectance and atmospheric scattering; and �� is the j-th singular vector derived from non-vegetated 

targets (referred to as training datasets) describing the high-frequency information in solar irradiance and atmospheric 180 

transmittance. The �� and �� are the coefficients of the polynomial and singular vectors, respectively; �� is the SIF intensity  

at 740 nm; � is the wavelength; �� is the order of the polynomial; and ��� is the number of singular vectors selected. Finally, 
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�↑
� is the effective upward transmittance estimated as follows (Köhler et al., 2015): 

�↑
� =  ��� ��� ��↓↑

� ·  
sec (��)

sec(��) + sec (��)
��, (4) 

where �↓↑
�  is the effective two-way atmospheric transmittance derived by normalizing the TOA reflectance using the low-

order polynomial function; �� and �� denote the solar zenith angle and viewing zenith angle, respectively. 185 

 

3.3 Post-processing of SIF retrieval results 

The following quality-filtering criteria were applied (Guanter et al., 2012): 

(1) Land cover type is set to vegetation; 

(2) Range of the mean radiance within the 735–758nm window is between 25 and 200 mW m−2 nm−1 sr−1; 190 

(3) Absolute value of SIF is <5 mW m−2 nm−1 sr−1; 

(4) Solar zenith angle is <75°; 

(5) χ� is <2.  

Here, χ�is the reduced chi-square value calculated based on the residuals of fitting (Sun et al., 2018), which 

characterizes the fit between the modeled and measured radiance using the forward model described above, in Equation (3). 195 

Its calculation is given by: 

χ� =
∑ (

(������
� ��������

� )�

����� )����
�

��
, (5) 

where ������
�  and �������

�  denote the i-th spectral point of the modeled and measured radiance within the fitting window, 

respectively; ����� denotes the random noise spectra; �� is the degrees of freedom, and ��� is the number of bands within 

the fitting window. 

Besides, we dealt with the effect of a zero-offset error in the SIF retrievals. The spectrometer radiance signals’ 200 

nonlinear response and the SVD data-driven algorithm can inevitably introduce systematic biases to SIF retrieval results, 

especially so in non-vegetated areas. Previous studies have identified systematic biases in SIF retrievals that depend on either 

the TOA radiance (Frankenberg et al., 2011; Guanter et al., 2012; Sun et al., 2017; Sun et al., 2018) or latitude (Köhler et al., 

2015; Joiner et al., 2016; Schaik et al., 2020). Here we corrected the systematic biases (bias) by considering the radiance at 

the 735–758 nm window (Rad), latitude (lat), and observation zenith angle (��) of each footprint as follows (Joiner et al., 205 

2016): 
����

��� (��)
 = A + B· �� + C· ��

� + D· ��
� + E· Rad + F· ���� + G· ���� + H·lat,  (6) 

where A to H are the correction factors. These factors were firstly determined using the training dataset (where SIF is 

supposed to be zero and the retrieved SIF can be taken as “bias”) which are uniform in latitude dimension by applying the 

least squares model. Next, the bias was calculated and subtracted from SIF retrievals for each pixel. 

3.4 Accuracy evaluation of the product 210 

First, the root mean square of the model residual (RMS_residual) was used to assess the accuracy of the data-driven 

model to fit the radiance spectra. The model residual (Res) is the difference between the modeled and measured radiance: 

Res(λ) = ������� (λ) - ������(λ), (7) 

where ������
�  and �������

�  denote the modeled and measured radiance spectra, respectively. 

Second, the covariance matrix �� of the least squares for SIF retrieval was calculated to assess the precision of SIF 

retrievals: 215 
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�� = ������(���)��,  (8) 

where K is the Jacobian matrix formed by those linear model parameters from Eq. (3), and ����� refers to the spectrally 

uncorrelated noise, which was calculated here based on the radiance and signal-to-noise ratio. 

The standard error of the weighted mean (����) within each grid cell was calculated this way (Du et al., 2018): 

���� = �

�∑ (�/���)�
�

,  (9) 

where �� is the 1–σ error, which is the diagonal element of �� corresponding to Fs, and n is the number of sample points 

within each grid cell. 220 

3.5 Upscaling the instantaneous SIF to the monthly averaged value 

In previous studies, the global satellite-observed SIF was upscaled to a daily scale by using the diurnal cycle of the 

cosine of the solar zenith angle (cos[SZA]) to correct for day-length effects (Frankenberg et al., 2011; Zhang et al., 2018). 

These effects can cause large overestimates of SIF on cloudy days because the satellite-observed SIF data are only available 

on clear-sky days. In this study, the downwelling PAR rather than cos(SZA) was used to compensate for the significant 225 

effects of diurnal weather changes due to cloud and atmospheric scattering (Hu et al., 2018) while upscaling the 

instantaneous SIF to monthly values. The all-sky monthly averaged SIF (SIF���) can be determined using the PAR-based 

upscaling model, as follows: 

SIF��� = �

∑ ������
�
���

∑ ������×������
�
���

× PAR��� × EVI���, if EVI��� > 0.2
 

∑ ������
�
���

∑ ������
�
���

× PAR���, if EVI��� ≤ 0.2
,   (10)

 

where SIF��� is the GOME-2A level-2 daily instantaneous clear-sky (i.e., <30 % cloud fraction) SIF; the terms PAR��� and 230 

PAR��� are the corresponding monthly and instantaneous values of PAR; and EVI��� and EVI��� are the respective monthly 

and daily EVI values. M is the number of valid measurements within the 0.5° grid cell during the relevant monthly period. 

The EVI is negligible if the EVI value for the cell is <0.2. 

Based on the PAR-based upscaled model, the instantaneous GOME-2A SIF clear-sky observations with a correction of 

temporal degradation were upscaled to their monthly average values. 235 
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4 Results 
4.1 Correction of GOME-2A sensor degradation 

 
Figure 3. Temporal variation in the TOA reflectance at 758 nm at the calibration site (left) and the temporal correction coefficients 

used to compensate for the degradation of GOME-2A since 2007 (right). The blue dots and red curves in (a) represent NIR 240 
reflectance and the fitted quadratic function. The degradation factor (Dfactor) in (b) were calculated by dividing the NIR 

reflectance by the value of the quadratic function in (a) at the starting date (1 January  2007). “NOD” in the degradation 

correction equation is the GOME-2A acquisition date since 2007, which equals the number of days from 1 January 1900. 

A second-order polynomial was fitted to describe the temporal degradation in the reflectance signal of GOME-2A. 

Figure 3a illustrates the temporal variation in TOA reflectance at 758 nm at the calibration site. Significant and continuous 245 

degradation can be observed; however, this nonlinear trend could be accurately captured by a quadratic polynomial function 

with a determination coefficient (R2) of 0.851. These results indicated that, overall, the GOME-2A instrument degraded by 

16.21 % from 2007 to 2021. This temporal degradation was considered spectrally constant in the narrow fitting window of 

SIF retrieval (735–758 nm). 

By dividing the NIR reflectance by the value of the fitted function at the starting date (1 January  2007), we obtain the 250 

degradation factor (Dfactor), as shown in Figure 3b. The second-order polynomial fitted was used in Eq. (2) to calibrate the 

instrument’s degradation since 1 January 2007, as given by: 

Dfactor(NOD) = 80.298 × � ���
������

�
�

− 70.123 × ���
������

+ 16.142,  (�� = 0.851), (11) 

where “NOD” is the number of days since January 1st, 1900. 

 The temporally corrected GOME-2A NIR radiance was validated using GOME-2C radiance spectra (Figure 4). For the 
corrected GOME-2A radiance, the scatter plot shows that the majority of points are concentrated near the 1:1 line (Figure 4a). 255 
The difference between the two products followed a Gaussian distribution with a small mean value of 1.85 mW m-2 sr-1 nm-1, 
which is 2.3% of the mean GOME-2A radiance (Figure 4b). On the contrary, the mean deviation without temporal correction 
is 15.16W m-2 sr-1 nm-1 (Figure 4d). Slight positive offsets can be found in both linear regression results. The difference in 
orbit height between GOME-2A (827 km) and GOME-2C (817 km) leads to the difference in viewing zenith angle (VZA). 
Although only observations with VZA<20° were selected, and the effect of observing angle has been corrected by dividing 260 

the cosine of VZA, there may still be differences due to the anisotropy of the ground surface, which introduces systematic 
errors. 



10 
 

 

Figure 4 Comparison between GOME-2A and GOME-2C NIR radiance after (a,b) and before (c,d) the temporal correction on 1 

July 2019. The histogram of difference for GOME-2C NIR radiance minus the corrected and uncorrected GOME-2A NIR 265 
radiance was shown in (b) and (d), respectively. Spatially matched pixels with cloud fraction of lower than 0.3, VZA of lower than 

20° and SZA of lower than 70° were selected.  

 

4.2 Uncertainty of the data-driven algorithm 

The fitting residual and single retrieval error of the TCSIF dataset was analyzed to verify the feasibility of the data-270 

driven retrieval algorithm as well as the quality control process.  

As Figure 5 shows, the fitted data-driven model described well the measured radiance spectra, with a root mean square 

(RMS) of the residual that was below 0.30 %. The model considering fluorescence is better capable of reconstructing the 

radiance spectra than that ignoring fluorescence, with a slightly lower RMS_residual (around 0.02 % on average). 
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 275 
Figure 5. (a) Measured (Rad, represented by square marks) and modeled (with [Rad_Fit Fs, represented by damond marks] and 

without [Rad_Not Fit of Fs, represented by crosses] accounting for SIF) radiance spectra in the 735–758 nm fitting window over 

vegetated areas on 15 July 2017. (b) Root mean square (RMS) of the fitting residual with (RMS _Fit Fs, represented by yellow 

diamonds) and without (RMS_Not Fit of Fs, represented by blue triangles) accounting for SIF. The spectra are the average of 224 

vegetation spectra over pixels with a cloud fraction < 0.1 and SIF intensity > 1.5 mW m−2 sr−1 nm−1. 280 

4.3 Spatial distribution of the TCSIF dataset 

Figure 6 shows the global pattern of monthly TCSIF in the summer and winter of 2008. The monthly GOME-2A SIF 

dataset captured well the spatial patterning in both seasons, in which Southeast Asia, the North American Corn Belt, and 

Central Europe in July, and the Amazon Rainforest and most of South America in December, all showed high SIF values. 

Crucially, the standard error of the weighted mean (σ(Fs)) is lower than 0.1 mW m-2 sr-1 nm-1 in most regions globally, while 285 

the main vegetated areas have σ(Fs) of lower than 0.05 mW m-2 sr-1 nm-1 (Figure 6). 

We also compared the spatially matched TCSIF and NASA SIF pixels in January and July 2008, July 2017, and 

January 2018 (Figure 7a–d). The linear relationships between the two SIF products revealed these to be strongly correlated 

(R2 > 0.65), significant (p-value < 0.05), and close to the 1:1 correspondence line (slope > 0.84) for either season in 2008 

(Figure 7a, b). For comparison in 2017 and 2018 (Figure 7c, d), there are still good linear relationships between the TCSIF 290 

and NASA SIF (R2 > 0.64). However, it is worth noticing that the regression line deviates from the 1:1 line in both 2017 and 

2018 (slope < 0.80), which was caused by the degradation in NASA SIF. 
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Figure 6. Global patterns in the upscaled monthly TCSIF (a, b) and standard error of the weighted mean (σ(Fs)) (c, d) in July (a, c) 

and December (b, d) in the year 2008. 295 
OCO-2 SIF and TROPOMI SIF were also involved in the validation of TCSIF (Figure 7e,f). To avoid discrepancies in 

wavelength and the overpassing time, the day-length corrected 740 nm provided by OCO-2 SIF, TROPOMI SIF, and TCSIF 

were compared. The spatially matched points were selected. TCSIF versus OCO-2 SIF and TCSIF versus TROPOMI SIF 

comparisons were conducted in July 2019 and July 2021, respectively. Both comparisons show high consistency with R2 > 

0.65, and the linear regression results are close to the 1:1 line. 300 
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Figure 7. Comparison of TCSIF vs. NASA SIF on 14 January (a) and 15 July (b) in the year 2008, 15 July 2017 (c), and 14 January 

2018 (d). Comparison of TCSIF versus OCO-2 in July 2019 (e) and TCSIF versus TROPOMI SIF in July 2021 (f). The comparison 

was made based on the level 2 product. Co-located pixels over land with a cloud fraction < 0.3 have been selected. The color of the 

scatter points represents the density of the points. The blue dotted line and the black solid line represent the line fitted based on 305 
the scatter points and the 1:1 line, respectively. 

4.4 Temporal variation in the TCSIF dataset 

The global monthly SIF is averaged to demonstrate temporal variation (Figure 8). The autocorrelation coefficient of the 

time series is calculated for each pixel, and only the vegetation-covered pixels with an autocorrelation coefficient greater 

than 0.4 are selected to ensure the authenticity of the time series. Compared with the NASASIF products, which gave a 310 

downward trend of SIF for 2007–2018, the global monthly mean trend of TCSIF exhibited an upward trend. The monthly 

trend in global averaged SIF shifted from one of decreasing by 1.15 % yr−1 to one of increasing by 0.71 % yr−1 after 

correcting the instrument’s degradation. As seen in Figure 9, the trend in SIF’s variation in almost all vegetation regions was 

underestimated before the temporal correction, with the effect of the correction being particularly prominent at low latitudes 

in the Southern Hemisphere (0°–20° S), as well as at middle and high latitudes in the Northern Hemisphere (30°–70° N). 315 
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Figure 8. Time series of the monthly averaged global GOME-2A SIF, with (purple line) and without (orange line) the degradation 

correction, for 2007–2018. The daily level 2 NASASIF product was composited and filtered in the same way as for TCSIF. 

 
Figure 9. (a) Difference in the temporal trend between SIF products with and without temporal correction, and (b) the latitudinal 320 
profiles of (a) for 2007–2018. The brown and green shaded areas in (b) represent the standard deviation of the TCSIF and NASA 

SIF trends, respectively. 
The temporally consistent SIF dataset was then applied to reveal spatiotemporal patterns in the photosynthetic activity 

of global vegetation. Figure 10 shows the global patterns in the trends for the annual average TCSIF in the 2007–2021 period. 

When tallied, 62.91 % of the vegetation areas overall were distinguished by an upward trend of SIF, whereas 13.86 % 325 

corresponded to a significant increase over time (p < 0.05). Those regions undergoing a significant increase in SIF were 

mainly located in Southeast Asia, Eastern China, Western Europe, Central Africa, and South America. Only 4.51 % of the 

vegetated parts of the Earth’s vegetated surface experienced a significant decrease in SIF. 
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Figure 10. Map of trends in the annual average GOME-2A SIF for 2007–2021. The inset shows the percentage of areas 330 
characterized by four types of trends (significant increase: positive correlation with p < 0.05; increase: positive correlation with p ≥ 

0.05; decrease: negative correlation with p ≥ 0.05; significant decrease: negative correlation with p < 0.05). 

  

Figure 11. Map of trends in the annual average (a)NASA SIF for 2007–2018, (b) OCO-2 SIF for 2015–2021, as well as (c) trendy 

GPP and (d) NDVI for 2007–2021. The colors represent four types of trends (significant increase: positive correlation with p < 0.05; 335 

increase: positive correlation with p ≥ 0.05; decrease: negative correlation with p ≥ 0.05; significant decrease: negative correlation 

with p < 0.05).  

 
As shown in Figure 11, 57.11% of vegetation areas are facing a decline in NASA SIF. On the opposite, as seen from 

OCO-2 SIF, trendy GPP, and NDVI, vegetation is growing over a large area globally (>70%) from 2007 (or 2015) to 2021. 340 
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The main inconsistency between NASA SIF and the other products occurs in central and southern Africa, eastern Europe, 

and southern North America, where NASA SIF declines and the others increase. In southeastern China, vegetation greenings 

were found by TCSIF, OCO-2 SIF, and NDVI, while an insignificant downward trend was shown by trendy GPP. 

Vegetation growth in southern North America, Europe, the Amazon rainforest, central Africa, and Southeast Asia was 

detected by all the products apart from NASA SIF. 345 

5 Discussion 

5.1 Degradation at different locations and wavelengths 

 In this study, only one calibration site (Libya 4) was used for the fitting of the degradation function. The results may be 

different for different sites. Previous studies have compiled 20 pseudo-invariant calibration sites(PICS)  for instrument 

calibration (Cosnefroy et al., 1996; Bacour et al., 2019). We have involved three other commonly used sites, and the related 350 

information is shown in Table 3. 

Table 3  Four pseudo-invariant calibration sites(PICS) and related information 
Site name location NIR reflectance mean spatial variation temporal variation 
Libya 4 (23.00° E, 29.00° N) 55.3 %–60.6 % 0.29% 0.81% 

Algeria 3 (7.66° E, 30.33° N) 49.2 %–59.3 % 0.94% 1.20% 
Mauritania 1 (9.30° W, 19.40° N) 48.3 %–65.6 % 3.48% 2.25% 

Libya 1 (13.35° E, 24.42° N) 50.2 %–66.2 % 2.51% 2.25% 
 Among the four PICS, Libya 4 was shown to be the most ideal site for the calibration, which is bright (the near-infrared 
[NIR] reflectance is high, at 55.3 %–60.6 %), most homogeneous (with mean spatial variation = 0.29 %), and most stable 
(with very low temporal variation = 0.81 %). On the other hand, similar interannual decline trends are given by the four 355 
PICS (Figure 12a). The NIR reflectance of Libya 4, Algeria 3, Mauritania 1, and Libya 1 declined by 16.21%, 17.57%, 
17.20%, and 16.38% from 2007 to 2021, respectively. Therefore, it is reliable to fit the degradation of GOME-2A using 
Libya 4 site only. 

 
Figure 12. Instrument degradation at four different calibration sites. Each bar shows the yearly average ± standard deviation. 360 
 

 In addition, the degradation at different wavelengths may also differ. Degradation functions fitted by different 
wavelengths in the 735–758 nm are compared. A difference of less than 1% was found in the degradation from 2007 to 2021 
fitted at different wavelengths (Figure 13a and Figure 13b). Figure 13b shows the variation of temporal decay at different 
wavelengths, indicating that inconsistency mainly occurs at the Fraunhofer line, which is inherently unstable in time. 365 
On the other hand, SIF retrieval relies on the filling of absorption lines. Extremely high fitting accuracy must be 
ensured if wavelengths are considered an influencing factor of the degradation function. Otherwise, the accuracy of 
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SIF retrieval will be greatly affected. Therefore, in this study, the wavelength dependence of the degradation within the 
735–758 nm window is ignored. 

 370 

Figure 13 (a) The degradation factor (Dfactor) fitted using reflectance at different wavelengths in a 735–758 nm fitting window. 

The red line is the result obtained at 758 nm, while the degradation functions fitted by other wavelengths were shown in gray. (b) 

Normalized NIR reflectance spectra in the 735–758 nm fitting window for different years in 2007–2021. 

5.2 Uncertainty in the temporal correction method 

A wide range of radiance is essential for ensuring the representativeness of the temporal correction function, since the 375 

degradation may differ across different radiance levels. Although the pseudo-invariant sampling region selected in this 

study has a small spatial extent it has a large radiance range (48–284 mW m−2 sr−1 nm−1), which almost covers that of the 

main vegetation areas at the near-infrared band (Figure 14); only the lowest value of vegetation radiance (24 mW m−2 sr−1 

nm−1) is not covered. Since the temporal invariance feature is required for the calibration site, it leaves a few optional 

samples to choose from. The representativeness of samples may have an impact on the correction coefficient. 380 

 

Figure 14. Range of radiance at the near-infrared band at the calibration site and in the six main vegetated areas. The gray bars 

and blue lines are the range and mean of the datasets, respectively. 

The relative residuals of the corrected GOME-2A NIR radiance on vegetated targets under different radiance levels 

were analyzed. As shown in Figure 15, the relative residuals are less than 20% when the NIR radiation is greater than 25 385 



18 
 

mW m-2 sr-1 nm-1, and the averages of the relative residuals are less than 7%. The results indicate that the correction is 

basically accurate at different radiance levels. However, when the radiance is lower than 25 mW m-2 sr-1 nm-1, the relative 

residual error reaches 40%. One reason for the result is that low radiance signals are greatly affected by random noise, 

resulting in poor comparability of GOME-2A and GOME-2C. Besides, the extremely low radiance level cannot be estimated 

by the correction based on desert pixels. Therefore, the correction results can be inaccurate at pixels with low vegetation 390 

coverage or stressed vegetation. 

 
Figure 15. Relative residual of NIR radiance (calculated as the absolute difference between GOME-2A and GOME-2C NIR 

radiance at the co-located points) at different radiance levels. Global vegetation targets with SIF signals greater than 0.1 mW m-2 

sr-1 nm-1 on July 1, 2019 were selected. 395 
 

Another limitation is that we only indirectly verify the reliability of the interannual trend of TCSIF when using several 

long-term remote sensing products, such as GPP, NDVI, and other SIF products. Direct validation data, such as field 

measurements, were not used to prove the accuracy of our results. In this respect, the huge discrepancy in scale between the 

satellite SIF products (0.5°) and ground observations (<100 km2) is one of the major obstacles. In fact, moreover, to our best 400 

knowledge, there is no decade-long in-situ SIF validation dataset available that is sufficiently reliable for such a direct 

validation, and the methodology of directly verifying satellite SIF based on in-situ measurements is still imperfect (Parazoo 

et al., 2019). The accuracy of TCSIF products needs to be verified via future applications. 

Besides, the contamination of the lens may not be the only reason for GOME-2A’s degradation. As shown in Figure 3, 

the intra-annual variation in NIR reflectance does not decrease as the inter-annual average does. Instead, the intra-annual 405 

variation is growing with time. A similar phenomenon was found in the chlorine dioxide products (Pinardi et al., 2022) that 

GOME-2A results are noisier than those of GOME-2B, especially after 2011. These results suggest that in addition to the 

decline in reflectance over time caused by lens contamination, the temporal degradation is impacting GOME-2A 

measurements in other forms. However, the pattern of this effect is not clear now, further research is needed on the impact of 

GOME-2A’s degradation on its measurements in more aspects. Therefore, only the interannual decline trend was considered 410 

in this study, while the inevitable intra-annual variations caused by other factors such as the bidirectional reflectance 

distribution function and atmospheric scattering were neglected. 

5.3 Comparison with other long-term SIF products 

The annual average values of TCSIF and other long-term SIF products were compared (Figure 16). Importantly, most 
of the long-term SIF products were in agreement, featuring an increasing trend of SIF from 2007 to 2018, except for NASA 415 
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SIF and SIFTER (Figure 16a–e). Among the temporal corrected SIF products, the annual curves of TCSIF and LT_SIFc* are 
generally consistent, while LT_SIFc* gives a higher growing trend of 1.247% yr-1, and the uncertainty of the growing trend 
of TCSIF (0.15 % yr−1) is lower. A slightly decreasing trend of -0.08 % yr−1 characterized the SIFTER v2 product (Figure 
16b), while the annual fluctuation of SIFTER v2 was clearly greatest among all the SIF products shown in Figure 16 (0.37 % 
yr−1). The yearly trends according to TCSIF (1.06 % yr−1) are close to the results from OCO-2 SIF from 2015 to 2021 (1.23% 420 
yr−1, Figure 16f), while GOSIF shows a lower growing trend of 0.50% yr−1 during the same period. Compared to GOSIF, 
which was derived from OCO-2 SIF using a machine learning method, TCSIF is even more consistent with OCO-2 SIF, 
suggesting the flaws of machine learning methods in maintaining the temporal trend of the original SIF products. 

 
Figure 16. Comparison of temporal trends in the annual SIF average from (a) TCSIF, (b) LT_SIFc*, (c) SIFTER v2, (d) NASA SIF 425 
during 2007–2018, as well as (e) GOSIF during 2007–2021, and (f) OCO-2 SIF during 2015–2021. All data shown are normalized to 

relative values (by dividing the mean). The shaded areas indicated the standard deviations.  
 

The large interannual fluctuation of SIFTER may be caused by the fact that its correction factor is seasonally based. No 

continuous correction functions were applied by SIFTER, which runs counter to the sensor’s general pattern of temporal 430 

decay. (Lyapustin et al., 2014; Wang et al., 2012). In stark contrast, the least amount of interannual fluctuation was found in 

the GOSIF product. A neural network model was used for the spatiotemporal degradation of the GOSIF product, enabling 

GOSIF to inherit the time-stable signal from MODIS reflectance. However, this neural network model has been criticized for 

relying too much on training data such as reflectance data, and overlooking valuable information in the original observations 

(Ma et al., 2020). In the years not covered by the original OCO-2 SIF, the spatial distribution of GOSIF depends almost 435 

entirely on other input parameters of the data-driven model; hence, it cannot reliably capture the long-term temporal trend of 

SIF. 

The LT_SIFc* product uses weak SIF signals over the Sahara Desert to fit the temporal decay pattern of the sensor, 

which can quickly generate corrected SIF products based on the monthly global maps provided by NASA SIF. Nevertheless, 

the method is not rigorous enough, since the sensor’s degradation does not alter the SIF retrievals in a linear way. The post-440 

processing steps, such as the zero-offset correction and quality-filtering procedures, will influence the distribution of global-

gridded SIF products, leading to uncertainties arising in the correction function. Besides that, a large proportion of noise 

signals accompany the weak SIF signals over desert targets, thus restricting the fitting accuracy of the corrective function. 
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Meanwhile, LT_SIFc* is obtained by fusing three SIF products using the cumulative distribution frequency (CDF)-matching 

approach. Accordingly, the spatiotemporal distribution of the original SIF signal may be forced to change due to adjustments 445 

in the distribution frequency of each separate product. In this study, we corrected the degradation in radiance spectra rather 

than SIF by using pseudo-invariant pixels over the Sahara Desert, which should provide a more reliable method. 

To take advantage of SIF’s ability to quickly capture changes in GPP, the temporal resolution of long-term SIF products 

is supposed to be higher than 1 month and even a few days (Zhang et al., 2014; Zhang et al., 2016; Porcar-Castell et al., 

2014). However, LT_SIFc* cannot meet those temporal resolution requirements constrained by the original SIF products. 450 

By contrast, the shorter, repeating cycle of GOME-2 was fully utilized in this study. Our work provides global daily level-2 

SIF products that encompass the world’s terrestrial area, which will greatly improve the application ability of global SIF 

products for monitoring global vegetation dynamics. 

5.4 Interannual trends for the TCSIF, NDVI, and GPP products  

We compared the interannual trend of TCSIF with that of GPP and NDVI. Parameter values during the peak of the 455 

growing season were compared to show the most lush period of vegetation each year. After spatial averaging of monthly 

products, the yearly annual maximum values were calculated year by year. 

As evinced by Figure 17a–e, the global yearly maximum of TCSIF showed a trend of increasing SIF intensity, which 

was consistent with that of GPP and NDVI. The interannual fluctuation of TCSIF (0.16 %) slightly exceeded that of the 

GPP and NDVI products (<0.1 % yr−1) during the 2007–2021 period, and likewise for 2007–2016. The interannual trend 460 

and associated uncertainty of each product are displayed in Figure 17f. Given that the timespan of Pmodel GPP stops at 

2016, we selected the NDVI and TCSIF series from 2007 to 2016 for a fair comparison with Pmodel GPP, this is shown in 

the bottom half of Figure 17f. Evidently, there are deviations in the interannual growing trend of vegetation when inferred 

from different GPP products. For example, from 2007 to 2021, the interannual growth trend estimated by MODIS GPP 

(0.64 %) surpassed that of TRENDY GPP (0.44 %). Meanwhile, the interannual growth rate of TCSIF was close to that of 465 

MODIS GPP and Pmodel GPP in 2007–2021 and 2007–2016, respectively. Notably, when compared with the reflectance-

based index NDVI, the trend of TCSIF was more similar to that of GPP in both periods examined, indicating that TCSIF 

was more capable of tracking GPP than NDVI. 
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Figure 17. Comparison of temporal trends in the yearly maximum from (a) TCSIF, (b) TRENDY GPP, (c) Pmodel GPP, (d) 470 
MODIS GPP, and (e) NDVI. All data shown are normalized to relative values (by dividing the mean). The shaded areas indicate 

the standard deviations and the gray lines represent the fitted lines which show the general trends. The interannual trends 

(shown by the gray or blue vertical short lines) of all the products and their uncertainties (shown by the blue or gray horizontal 

bars) are shown in (f). TCSIF_s1 and NDVI_s1 correspond to the TCSIF and NDVI series for 2007–2016. 

6 Conclusion 475 

Degradation of the GOME-2A instrument has been a major barrier to producing consistent SIF products over an 

extended time period. By normalizing the instrument’s degradation from 2007 to 2021, the radiance spectra of  GOME-2A 

were successfully corrected. The calibrated GOME-2A NIR radiance was shown to be accurate by the comparison of 

GOME-2C, the mean bias is 1.85 mW m-2 sr-1 nm-1. Based on the calibrated radiance, we were able to develop a temporally 

consistent SIF (TCSIF) dataset spanning decades for use in research. The TCSIF is strongly correlated with the NASA SIF, 480 

OCO-2 SIF, and TROPOMI SIF products in terms of its spatial distribution (R2 > 0.65) and has a low retrieval residual (the 

RMS of residual is under 0.30 %). Our findings reveal that the TCSIF product yields a more reliable trend in vegetation SIF 

than does the GOME-2A dataset without a degradation correction applied. After undergoing the temporal correction, the 

vegetation SIF increased by 0.70 % per year during the 2007–2021 period, and 62.91 % of global vegetated regions saw an 

increase in their SIF, suggesting an overall increase in vegetation SIF and photosynthesis during the growing season. 485 

Compared with NDVI, the results obtained by TCSIF are closer to the GPP, indicating that the TCSIF product is a reliable 

proxy of vegetation activity. 

We conclude that the TCSIF product developed in this study represents a significant advancement in our ability to 

accurately assess long-term changes in the SIF of vegetation on a global scale. This product can thus serve as a valuable 

reference for past and future studies of long-term SIF products and may provide important insights into the impact of climate 490 

change on vegetation photosynthesis. 

7 Data availability 

The global monthly GOME-2A SIF dataset (2007–2021) with correction of temporal degradation is openly available at 

https://doi.org/10.5281/zenodo.8242928 (See Table S1 for access to other related datasets). The corrected global GOME-2 

SIF dataset can be obtained in two forms. The daily level 2 dataset is provided in hdf5 format. The name of these files is 495 

given as SIF_daily_YYYYMMDD.h5, in which YYYY, MM, and DD denote the year, month, and date, respectively. The 

level 3 datasets, which were aggregated monthly from the level 2 dataset, have a spatial resolution of 0.5° and are saved in 

TIFF format in chronological order, from 2007 to 2021. The name of these files is given as SIFpar_evi_monthly 

_YYYYMM.tif, in which SIF is the product type, par, and evi represent upscaled parameters, monthly denotes the temporal 

scale, and YYYY and MM are the year and month, respectively. The SIF output is stored in the hdf5 files along with other 500 

variables of interest for further processing and visualization. See the Appendix B for the structure of the hdf5 file. 

Appendix A. Supplementary material 

Table S1. Access to the dataset used to generate and compare TCSIF products. 
Dataset Name Description Access 
GOME-2A/C 
Radiance 

Level-1B product of GOME-2A and GOME-
2C. 

https://data.eumetsat.int/data/map/EO:EUM:DAT:M
ETOP:GOMEL1 

Merra-2 PAR Merra-2 meteorological assimilation reanalysis 
data (photosynthetically active radiation). 

https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MER
RA2/M2T1NXRAD.5.12.4/ 
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MODIS MOD13C1 MODIS Vegetation Indices 16-Day (Version 
6.1). 

https://lpdaac.usgs.gov/products/mod13c1v061/ 

MODIS MOD43C4 The MODIS Version 6.1 Nadir Bidirectional 
reflectance distribution Adjusted Reflectance 
(NBAR) product. 

https://lpdaac.usgs.gov/products/mcd43c4v006/ 

LT_SIFc* Temporally corrected, global 0.05° level-3 SIF 
product. 

https://doi.org/10.6084/m9.figshare.21546066.v1 

SIFTER Level-2 daily GOME-2A SIF product accounts 
for biases. 

https://www.temis.nl/surface/sif.php 

NASA SIF Level-2 daily SIF (at 740 nm) dataset from 
GOME-2A.  

https://daac.ornl.gov/SIF-
ESDR/guides/MetOpA_GOME2_SIF 

GOSIF A global, 0.05-degree product of solar-induced 
chlorophyll fluorescence derived from OCO-2, 
MODIS, and reanalysis data. 

https://globalecology.unh.edu/data/GOSIF.html 

OCO-2 SIF Level-2 daily SIF (at 740 nm) dataset from 
OCO-2.  

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_
SIF_10r/summary 

TROPOMI SIF Level-2 daily SIF (at 740 nm) dataset from 
TROPOMI.  

ftp://fluo.gps.caltech.edu/data/tropomi/ 

Trendy GPP Global monthly 0.5° GPP based on the Dynamic 
Global Vegetation Model. 

https://blogs.exeter.ac.uk/trendy/ 

Pmodel GPP Global daily 0.5° GPP based on a LUE model 
(P-model). 

https://zenodo.org/records/1423484 

MODIS GPP  8-day composite, 500 m GPP product product 
based on the radiation use efficiency concept. 

https://lpdaac.usgs.gov/products/mod17a2hv061/ 

Appendix B. Level 2 file description 

The fields of the level 2 products include: 505 

(1) SIF retrievals: including the instance SIF retrieved using the data-driven algorithm (SIF_740), the day-length corrected 
SIF (SIF_daily), and the relative error estimations (the 1-σ error (sigma_1), χ� and the quality assurance field(QA)). 
(2) Geo Locations, fields that describe the location: including the latitude and longitude of the center and the boundary of 

each footprint,  the solar and viewing angles. 

(3) Ancillary data: including the reflectance at red (ps_red) and far-red bands(ps_NIR), cloud fraction, the mean radiance 510 
in the 735–758 nm fitting window (Rad_NIR), and NDVI calculated from GOME-2 reflectance. 
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