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1. Vegetation transpiration is simulated by the supplementary Eqn. 8. Did the authors set the 

same Rn-G to shaded and sunlit leaf? Obviously, there are large differences of latent heat 

for shaded and sunlit leaves. 

 

Thanks for the questions. In BEPS (Biosphere-atmosphere Ecosystem Productivity Simulator), 

the whole canopy was separated into four groups based on the location and the radiation 

characteristics of the leaves, including the sunlit leaves in the overstory, the shaded leaves in 

the overstory, the sunlit leaves in the overstory, and the shaded leaves in the understory (Chen 

et al., 1999; Liu et al., 2003). The net radiation (𝑅𝑛 ) on a leaf comprises three sources of 

radiation: 

𝑅𝑛 = 𝑅𝑑𝑖𝑟 + 𝑅𝑑𝑖𝑓𝑓 + 𝑅𝐿 

where 𝑅𝑑𝑖𝑟, 𝑅𝑑𝑖𝑓𝑓, and 𝑅𝐿 refer to the net direct incoming solar radiation, net diffuse solar 

radiation, and net longwave radiation on the leaf, respectively. For a shaded leaf, 𝑅𝑑𝑖𝑟 = 0. 

A semi-empirical equation is applied to separate the incoming solar radiation into direct and 

diffuse parts, expressed as: 

𝑆𝑑𝑖𝑓

𝑆𝑖𝑟𝑟
= {

0.943 + 0.734𝑟 − 4.9𝑟2 + 1.796𝑟3 + 2.058𝑟4, 𝑟 < 0.8
0.13, 𝑟 ≥ 0.8

 

𝑆𝑑𝑖𝑟 = 𝑆𝑖𝑟𝑟 − 𝑆𝑑𝑖𝑓 

where 𝑆𝑖𝑟𝑟 , 𝑆𝑑𝑖𝑓 , and 𝑆𝑑𝑖𝑟  refer to the incident solar irradiance, incoming diffuse solar 

radiation, and incoming direct solar radiation, respectively. 𝑟 is indicating the cloudiness of 

the sky: 

𝑟 =
𝑆𝑖𝑟𝑟

𝑆0𝑐𝑜𝑠𝜃
 

where 𝑆0 is the solar constant as 1362 W m-2 and 𝜃 is the solar zenith angle. 

Then the net direct solar radiation on the sunlit overstory or understory leaves is calculated as: 

𝑅𝑑𝑖𝑟_𝑜_𝑠𝑢𝑛𝑙𝑖𝑡 = 𝑅𝑑𝑖𝑟_𝑢_𝑠𝑢𝑛𝑙𝑖𝑡 = (1 − 𝛼𝐿)𝑆𝑑𝑖𝑟𝑐𝑜𝑠𝛼/𝑐𝑜𝑠𝜃  

where 𝛼𝐿 is the albedo of leaves, 𝛼 is the mean angle between leaf and sun which is set as 

60° assuming the canopy has a spherical leaf distribution. 

The net diffuse solar radiation of four individual leaf groups are calculated as: 

𝑅𝑑𝑖𝑓_𝑜_𝑠𝑢𝑛𝑙𝑖𝑡 = 𝑅𝑑𝑖𝑓_𝑜_𝑠ℎ𝑎𝑑𝑒𝑑 = (1 − 𝛼𝐿)(𝑆𝑑𝑖𝑓

1 − 𝑒−0.5Ω𝐿𝐴𝐼𝑜/𝑐𝑜𝑠𝜃𝑜
̅̅̅̅

𝐿𝐴𝐼𝑜
+ 𝐶𝑜) 



𝑅𝑑𝑖𝑓_𝑢_𝑠𝑢𝑛𝑙𝑖𝑡 = 𝑅𝑑𝑖𝑓_𝑢_𝑠ℎ𝑎𝑑𝑒𝑑 = (1 − 𝛼𝐿)(𝑆𝑑𝑖𝑓𝑒−0.5Ω𝐿𝐴𝐼𝑜/𝑐𝑜𝑠𝜃𝑜
̅̅̅̅ 1 − 𝑒−0.5Ω𝐿𝐴𝐼𝑢/𝑐𝑜𝑠𝜃𝑢

̅̅ ̅̅

𝐿𝐴𝐼𝑢
+ 𝐶𝑢) 

where Ω is the clumping index, 𝐿𝐴𝐼𝑜 and 𝐿𝐴𝐼𝑢 refer to overstory LAI and understory LAI. 

𝐶𝑜 and 𝐶𝑢 are parameters that quantify the multiple scattering of the direct solar radiation 

(Chen et al., 1999): 

𝐶𝑜 = 0.07Ω𝑆𝑑𝑖𝑟(1.1 − 0.1𝐿𝐴𝐼𝑜)𝑒−𝑐𝑜𝑠𝜃 

𝐶𝑢 = 0.07Ω𝑆𝑑𝑖𝑟𝑒−0.5Ω𝐿𝐴𝐼𝑜/𝑐𝑜𝑠𝜃(1.1 − 0.1𝐿𝐴𝐼𝑢)𝑒−𝑐𝑜𝑠𝜃 

�̅� is the representative zenith angle for diffuse radiation transmission calculated as (Liu et al., 

2003): 

𝑐𝑜𝑠�̅� = 0.537 + 0.025𝐿𝐴𝐼 

for sunlit and shade leaves. 

The net longwave radiation reaching the four leave groups is calculated as: 

𝑅𝐿_𝑜_𝑠𝑢𝑛𝑙𝑖𝑡 = 𝑅𝐿_𝑜_𝑠ℎ𝑎𝑑𝑒𝑑

=
1

𝐿𝐴𝐼𝑜
{{𝜀𝑜[𝜀𝛼𝜎𝑇𝛼

4 + 𝜀𝑢𝑇𝑢
4(1 − 𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅

) + 𝜀𝑔𝜎𝑇𝑔
4𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅

]

− 2𝜀𝑜𝜎𝑇𝑜
4}(1 − 𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅

)

+ 𝜀𝑜(1 − 𝜀𝑢)(1 − 𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅
)[𝜀𝛼𝜎𝑇𝛼

4𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅

+ 𝜀𝑜𝜎𝑇𝑜
4(1 − 𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅

)]} 

𝑅𝐿_𝑢_𝑠𝑢𝑛𝑙𝑖𝑡 = 𝑅𝐿_𝑢_𝑠ℎ𝑎𝑑𝑒𝑑

=
1

𝐿𝐴𝐼𝑢
{{𝜀𝑢[𝜀𝑎𝜎𝑇𝛼

4𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅
+ 𝜀𝑜𝜎𝑇𝑜

4(1 − 𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅
)

+ 𝜀𝑔𝜎𝑇𝑔
4] − 2𝜀𝑢𝜎𝑇𝑢

4}(1 − 𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅
)

+ 𝜀𝑢(1

− 𝜀𝑔){[𝜀𝛼𝜎𝑇𝛼
4𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅

+ 𝜀𝑜𝜎𝑇𝑜
4(1 − 𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅

)]𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅

+ 𝜀𝑢𝜎𝑇𝑢
4(1 − 𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅

)}

+ 𝜀𝑢(1 − 𝜀𝑜)[𝜀𝑢𝜎𝑇𝑢
4(1 − 𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅

) + 𝜀𝑔𝜎𝑇𝑔
4𝑒−0.5𝐿𝐴𝐼𝑢Ω/𝑐𝑜𝑠𝜃𝑢 ̅̅ ̅̅

](1

− 𝑒−0.5𝐿𝐴𝐼𝑜Ω/𝑐𝑜𝑠𝜃𝑜 ̅̅ ̅̅
)}   

where 𝜎 is the Stephen-Boltzmann constant as 5.67 ×  10−8 W m-2 K-4. 𝜀𝛼, 𝜀𝑜, 𝜀𝑢, and 𝜀𝑔 

are the emissivity of the atmosphere, overstory, understory, and ground surface, respectively. 

Therefore, the transpiration in BEPS is simulated separately the sunlit and shaded leaves, 

considering the different net radiation reaching the sunlit and shaded leave groups. The 𝑅𝑛 −



𝐺 in the Penman-Monteith equation will be different for sunlit and shaded leave groups in the 

simulation process. 
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2. Line 115: why did you use GLOBMAP LAI data? The spatial resolution of GLOBMAP is 

quite coarse. 

 

Thanks for the question. The aim of this study is to generate reliable hourly GPP and ET 

estimates from 2001-2020 at a spatial resolution of 0.25°. Although the GLOBMAP LAI only 

has a spatial resolution of 0.0727°, the timeseries and the trend of LAI are more important than 

the spatial resolution regarding to the upscaling from the original spatial resolution to 0.25°.  

 

We used the GLOBMAP LAI data for the following two reasons: 1) The GLOBMAP LAI 

dataset considered the three-dimensional canopy, which was characterized by the clumping 

index in the retrieval algorithms (Chen, 2017). For accurate estimations of sunlit and shaded 

components of GPP and ET, LAI and clumping index are needed, in which the LAI datasets 

considering the clumping effect is essential (Chen et al., 2012). 2) The GLOBMAP LAI in 

2001-2020 used in this study was derived from the MOD09A1C6 land surface reflectance 

product and the associated illumination and view angles based on the GLOBCARBON LAI 

algorithm (Chen et al., 2019; Deng et al., 2006; Liu et al., 2012). The algorithm based on the 

4-Scale geometric optical model (Chen and Leblanc, 1997) explicitly considered the 

bidirectional reflectance distribution function on reflectance over the canopy, which was the 

signals measured by the sensor onboard satellites (Deng et al., 2006). BEPS and the 

GLOBMAP LAI adopted the same algorithm for separating sunlit and shaded leaves so that it 

could be reliable to use the GLOBMAP LAI to separate the GPP and ET components in sunlit 

and shaded leaf groups. 

 

Therefore, the spatial distribution and trends of GLOBMAP LAI are reliable to use for 

generating the global GPP and ET datasets, especially for the sunlit and shaded components of 

the simulated carbon and water fluxes. 
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3. Line 150: it is very important to know the details of optimization algorithm. It seems the 

parameterization method has not been published. Although the authors mentioned the 

supplementary materials, but I still did not get how the authors optimize the model 

parameters. Especially, you mentioned the parameters were optimized for each month at 

each site-year. 

 

Thanks for the question. The parameters in the coupled photosynthesis-stomata models, 𝑚 

and 𝑉𝑐𝑚𝑎𝑥
25  , were optimized with an effective global optimization algorithm, the Bayesian 

Optimization. Bayesian optimization works by constructing a posterior distribution of 

functions (Gaussian Process) that best describes the simulation to be optimized, described as 

(Snoek et al., 2012): 

 

Algorithm: Bayesian Optimization, 𝑋 = [𝑚, 𝑉𝑐𝑚𝑎𝑥] 

1: for step = 1, 2, …, do 

2:   Find 𝑋𝑠𝑡𝑒𝑝  by optimizing the acquisition function (Gaussian Process): 

        𝑋𝑠𝑡𝑒𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑢(𝑋|𝐷1:𝑠𝑡𝑒𝑝−1). 

3:    Update the objective function: 𝑦𝑠𝑡𝑒𝑝 = 𝑓(𝑋𝑠𝑡𝑒𝑝) + 𝜖𝑠𝑡𝑒𝑝 . 

4:    Augment data: 𝐷1:𝑠𝑡𝑒𝑝 = {𝐷1:𝑠𝑡𝑒𝑝−1, (𝑋𝑠𝑡𝑒𝑝, 𝑦𝑠𝑡𝑒𝑝)}, update Gaussian Process. 

5: for end 

 

where 𝑎𝑟𝑔𝑚𝑖𝑛 is an operation that finds the argument that gives the minimum value from a 

target function, 𝑢 is the conditional probability, and 𝜖𝑠𝑡𝑒𝑝 is the noise following a normal 

distribution. 

The objective function, 𝑓(𝑋) , to be optimized in this study is cost functions between the 

simulated variables in BEPS and the measured target values. The Bayesian framework requires 

a likelihood function combining model and observational errors. In this study, the observation 

error is regarded as Gaussian white noise, so the likelihood function is treated as the cost 

function that captures the errors of model simulations. By minimizing the cost functions, the 

accuracy of the model is optimized and the optimal parameters, 𝑚  and 𝑉𝑐𝑚𝑎𝑥
25  , can be 

estimated. 

The best objective function tested in the under reviewed paper is modified mean squared error 

(MMSE) between modeled and measured fluxes, expressed as (Leng et al., under review): 



𝑓(𝑋) = |1 − 𝑎𝐺𝑃𝑃𝑜𝑏𝑠

𝐺𝑃𝑃𝑚𝑜𝑑| ×
1

𝑁
∑ (

𝐺𝑃𝑃𝑚𝑜𝑑 − 𝐺𝑃𝑃𝑜𝑏𝑠

𝐺𝑃𝑃𝑜𝑏𝑠
)

2

+

|1 − 𝑎𝐸𝑇𝑜𝑏𝑠

𝐸𝑇𝑚𝑜𝑑| ×
1

𝑁
∑ (

𝐸𝑇𝑚𝑜𝑑 − 𝐸𝑇𝑜𝑏𝑠

𝐸𝑇𝑜𝑏𝑠
)

2  

where 𝑁  is the total number of hourly simulations in a parameter optimization interval, 

𝑎𝐺𝑃𝑃𝑜𝑏𝑠

𝐺𝑃𝑃𝑚𝑜𝑑 is the ordinal least square regression (OLS) slope between 𝐺𝑃𝑃𝑚𝑜𝑑 and 𝐺𝑃𝑃𝑜𝑏𝑠, 

𝑎𝐸𝑇𝑜𝑏𝑠

𝐸𝑇𝑚𝑜𝑑 is the OLS slope between 𝐸𝑇𝑚𝑜𝑑 and 𝐸𝑇𝑜𝑏𝑠 . The MMSE in cost functions combines 

the mean squared error and the deviation of OLS slopes between modeled and observed 

variables from the identity line. By minimizing MMSE, modeled variables and observed 

variables can better fit the identity line, which yields the two optimal parameters, 𝑚  and 

𝑉𝑐𝑚𝑎𝑥
25 , that can generate a model of higher accuracy. 

 

In each round of optimizations, BEPS was run for 500 times to get the 𝑚 and 𝑉𝑐𝑚𝑎𝑥
25  of each 

month at each site. The monthly approximation is a tradeoff between the stability of the 

Bayesian parameter optimization and the temporal resolution of the two parameters. Therefore, 

after the calculation, we can obtain the monthly 𝑚 and 𝑉𝑐𝑚𝑎𝑥
25  for all available sites in the 

FLUXNET2015 dataset. 
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4. From 2.3.1 and 2.3.2, I assumed the authors first inversed two model parameters m and 

Vcmax at eddy covariance sites, and then used machine-learning method to generate global 

gridded dataset of m and Vcmax, and finally, BEPS model was run based on the gridded m 

and Vcmax to estimate global GPP? if it is so, why the authors did not just upscale GPP 

from towers to global scale, just like Jung et al. 2009.  

 

Thanks for the question. We first inversed monthly 𝑚  and 𝑉𝑐𝑚𝑎𝑥
25   based on the measured 

carbon and water fluxes, then upscaled the gridded 𝑚 and 𝑉𝑐𝑚𝑎𝑥
25  using the Random Forest 

Regressors, and then ran the BEPS model again using the optimized 𝑚 and 𝑉𝑐𝑚𝑎𝑥
25 . There are 

two reasons to explain why we chose this scheme to generate the hourly GPP and ET dataset.  

 

First, the available measured fluxes and meteorological conditions in the FLUXNET2015 

dataset only includes data before 2014. If using machine learning method to train the model 

with measured fluxes and meteorological conditions, there could be biases in data of the 

extrapolated years after 2015. Besides, the statistical models cannot consider the CO2 



fertilization effect in the simulation of carbon and water fluxes, inducing no trends in the long-

term GPP and ET (Jung et al., 2019; Jung et al., 2020; Liang et al., 2021), as shown in Figure 

9 in the manuscript.  

 

Second, BEPS follows the two-leaf enzyme kinetic scheme, which can simulate reliable GPP 

and ET with appropriate parameters. Only with meteorological conditions, LAI, and basic 

parameters, BEPS can generate estimates of GPP and ET per hour in any years, which is not 

limited by the time range of the measured flux data. The process model also possesses the 

capability to simulate the details of terrestrial ecosystems, such as the leaf energy balance, 

stomatal conductance (Chen et al., 1999; Liu et al., 2003; Luo et al., 2018), which cannot be 

explained by the machine learning upscaling methods. Assimilating the FLUXNET, satellite, 

and leaf traits (i.e., LAI) data into the process-based models can lead to improved GPP and ET 

estimates (Ryu et al., 2019). Therefore, the BEPS with dynamic parameterizations can provide 

reliable estimates of hourly carbon and water fluxes in both sunlit and shaded leaf groups. 
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5. Besides, the authors did not show the global patterns of m and Vcmax at all, and we cannot 

judge if their distributions are reliable. 

 

Thanks for the suggestion. We feel sorry that there are several problems that need to be 

addressed in the original manuscript. This manuscript focuses on generating and sharing the 

reliable GPP and ET dataset. We included the global distributions of 𝑚 and 𝑉𝑐𝑚𝑎𝑥 in another 

paper which focuses on discussing the trend and spatial patterns of 𝑚 and 𝑉𝑐𝑚𝑎𝑥 (Leng et al., 

under review). However, we would add one chapter to include the spatial distributions, species 



distributions, and validations of 𝑚  and 𝑉𝑐𝑚𝑎𝑥  in this dataset manuscript to convince the 

readers on the accuracy and reliability of the dataset by Leng et al. (under review). 

 

The global distributions of retrieved 𝑚 and 𝑉𝑐𝑚𝑎𝑥 are shown in Figure 1a and Figure 2a, and 

PFT-dependent patterns of 𝑚 and 𝑉𝑐𝑚𝑎𝑥 are observed in Figure 1b and Figure 2b. We also 

included the monthly spatial patterns of global 𝑚 and 𝑉𝑐𝑚𝑎𝑥 during 2001-2020 in Figure 3 

and Figure 4, respectively. Strong seasonal variations in 𝑚 and 𝑉𝑐𝑚𝑎𝑥 are observed in boreal 

regions while 𝑚 and 𝑉𝑐𝑚𝑎𝑥 in subtropical and tropical regions are fairly constant within a 

year. 

 

 

Figure 1. The spatial pattern of global 𝑚 (a) and the averaged 𝑚 in each PFT (b) during 

2001-2020. Courtesy of Leng et al. (under review). 

 

 

Figure 2. The spatial pattern of global 𝑉𝑐𝑚𝑎𝑥 (a) and the averaged 𝑉𝑐𝑚𝑎𝑥 in each PFT (b) 

during 2001-2020. Courtesy of Leng et al. (under review). 

 



 

Figure 3. Monthly spatial patterns of global 𝑚 during 2001-2020. (a) – (l) averaged 𝑚 from 

January to December, respectively. Courtesy of Leng et al. (under review). 

 

 

 

Figure 4. Monthly spatial patterns of global 𝑚 during 2001-2020. (a) – (l) averaged 𝑚 from 

January to December, respectively. Courtesy of Leng et al. (under review). 

 

To further validate the gridded global 𝑚 and 𝑉𝑐𝑚𝑎𝑥, we compared the global retrievals of 𝑚 



and 𝑉𝑐𝑚𝑎𝑥 in this study with the 𝑚 census for various biomes from the review by Miner et 

al. (2017) and the 𝑉𝑐𝑚𝑎𝑥 field measurements collected from Smith et al. (2019), as shown in 

Figure 5. 𝑚 estimates in this study were compared with the mean and standard deviation in 

Miner et al. (2017) while 𝑉𝑐𝑚𝑎𝑥  observations with the timestamp of measurement were 

compared with the estimated 𝑉𝑐𝑚𝑎𝑥 in the corresponding time period in 2001-2020. Only 0.25° 

pixels with more than three 𝑉𝑐𝑚𝑎𝑥  measurements were selected in the comparison. The 

estimated 𝑚 in the global retrievals agrees well with the measured 𝑚, with R2 = 0.62 (P = 

0.06) and the estimated 𝑉𝑐𝑚𝑎𝑥 in the global retrievals agrees well with the measured 𝑉𝑐𝑚𝑎𝑥, 

with R2 = 0.59 (P < 0.001). 

 

 

Figure 5. Left: Comparison between the PFT-scale mean values of estimated 𝑚  from the 

Random Forest regressor and the measured 𝑚 values reported in the review by Miner et al. 

(2017). Each horizontal and vertical bar represents the mean 𝑚 ± 1 standard deviation in 

the literature values and the estimated values, respectively. The sample sizes of measured 𝑚 

for each PFT are 𝑛 = 23 (ENF), 𝑛 = 23 (EBF), 𝑛 = 54 (DBF), 𝑛 = 11 (SH), 𝑛 = 5 (GRA), 

and 𝑛  = 53 (CRO). Right: Comparison between the PFT-scale mean values of predicted 

𝑉𝑐𝑚𝑎𝑥  from the Random Forest regressor and the measured 𝑉𝑐𝑚𝑎𝑥  values reported in the 

review by Smith et al. (2019). Courtesy of Leng et al. (under review). 

 

References: 

Leng, J., Chen, J.M., Li, W., Luo, X., Xu, M., Rogers, C., Yan, Y.: Declining global sensitivity of stomatal 

conductance to photosynthesis. Submitted to Global Change Biology (under review) 

Miner, G.L., Bauerle, W.L., & B4aldocchi, D.D. (2017). Estimating the sensitivity of stomatal conductance to 

photosynthesis: a review. Plant, Cell & Environment, 40, 1214-1238 

Smith, N.G., Keenan, T.F., Colin Prentice, I., Wang, H., Wright, I.J., Niinemets, U., Crous, K.Y., Domingues, T.F., 

Guerrieri, R., Yoko Ishida, F., Kattge, J., Kruger, E.L., Maire, V., Rogers, A., Serbin, S.P., Tarvainen, L., Togashi, 

H.F., Townsend, P.A., Wang, M., Weerasinghe, L.K., & Zhou, S.X. (2019). Global photosynthetic capacity is 

optimized to the environment. Ecological Letter, 22, 506-517 

 

 



6. And it is also necessary to show the performance of machine learning method to simulate 

m and Vcmax at eddy covariance towers, which is quite important than GPP. In addition, I 

am curious that if the authors did not use gridded parameters, and just used site-based 

inversed parameters to simulate global GPP, how is the performance? 

 

Thanks for the suggestion. We included the validations of the Random Forest regressor for 𝑚 

and 𝑉𝑐𝑚𝑎𝑥 estimations by courtesy of Leng et al. (under review), as shown in Figure 6. The 

Random Forest regressor estimates 𝑚 and 𝑉𝑐𝑚𝑎𝑥 with good agreements to the optimized 𝑚 

and 𝑉𝑐𝑚𝑎𝑥 from measured fluxes in both the training sets and the validation set. The Random 

Forest regressor can estimate 𝑚 with R2 = 0.95 and RMSE = 1.414 in the training set (Figure 

6a), and R2 = 0.59 and RMSE = 3.663 in the independent validation set (Figure 6b). The 

Random Forest regressor can estimate 𝑉𝑐𝑚𝑎𝑥 with R2 = 0.98 and RMSE = 4.191 µmol m-2 s-1 

(Figure 6c), and R2 = 0.84 and RMSE = 10.598 µmol m-2 s-1 in the independent validation set 

(Figure 6d). Most of the scatter points locate beside the 1:1 line in both the training and 

validation set, showing the good accuracy of the Random Forest regressor for 𝑚 and 𝑉𝑐𝑚𝑎𝑥 

estimation. The Random Forest regressors build the bridge that links 𝑚 and 𝑉𝑐𝑚𝑎𝑥 derived 

from measured fluxes to the gridded data that can be expanded to global coverage and long 

timeseries. 

 

 

Figure 6. Comparisons of estimated 𝑚 and 𝑉𝑐𝑚𝑎𝑥25 from the Random Forest regressor and 

optimized 𝑚  and 𝑉𝑐𝑚𝑎𝑥25  from measured fluxes in the training set (a), (c) and in the 

independent validation set (b), (d) of the Random Forest Regressor, respectively. The color 

indicates the scatter density in each plot and the dotted lines indicate the 1:1 line in each plot. 

Courtesy of Leng et al. (under review). 

 

For the other question, in the global GPP and ET simulations by BEPS, the input data (i.e., 

hourly meteorological variables, basic geospatial information, model parameterizations) are 

independent pixel by pixel. Therefore, we could not only use site-based inversed parameters to 

simulate global GPP. We can only utilize the site-based inversed parameters to simulate the 

GPP at the sites to evaluate the performance of dynamic parameterizations. As shown in Figure 

7, after adopting dynamic parameterizations, the accuracy of GPP and ET estimates by BEPS 

significantly improves. 

 



 

Figure 7. Comparisons of modeled hourly fluxes and measured hourly EC fluxes at 136 sites 

(809 site years). a) GPP modeled with prescribed parameters, b) GPP modeled with optimized 

parameters, c) ET modeled with prescribed parameters, d) ET modeled with optimized 

parameters. R2 and RMSE were calculated between modeled hourly fluxes and measured 

hourly fluxes at all sites. Courtesy of Leng et al. (under review) 
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7. Fig. 4 showed the better performance of hourly simulations than daily simulations. Is it 

possible? I am curious how the authors examine the performance of hourly simulations, 

and if the authors included all simulations of night and daytime together, which will result 

in a false high correlation. As this study aimed to produce an hourly GPP and ET, if there 

are large difference of parameters diurnal scale. 

 

Thanks for the question. The higher performance of hourly simulations can be explained with 

the following two reasons. First, since the hourly simulations track the diurnal patterns of 

meteorological conditions, such as air temperature and solar radiation, thus possessing large 

variances than the daily simulations. Second, the parameter optimization was conducted based 

on the cost function using the hourly fluxes, in which only the measured fluxes with the quality 

control flag smaller than two were selected. When we examined the performance of hourly 

simulations, except for applying the quality control flags to hourly fluxes, we also dropped the 

extremely small values so as to accurately assess the performance of hourly simulations with 

BEPS-DP. Therefore, it is reasonable to achieve higher R2 in hourly than daily simulations.  

 

Although this study aimed to generate hourly GPP and ET, 𝑚  and 𝑉𝑐𝑚𝑎𝑥
25  , controlled by 

vegetation physiological status, tend to change seasonally and not significantly change 

diurnally according to the field measurements (Croft et al., 2017; Luo et al., 2018; Miner and 

Bauerle, 2017; Smith et al., 2019). Therefore, in this study, we optimized 𝑚 and 𝑉𝑐𝑚𝑎𝑥
25  at the 

monthly timestep. 
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8. Figure 9: the comparison does not make sense as the products used different LAI datasets, 

and the different trends basically depends on the trend of LAI datasets. 

 

Thanks for the question. This manuscript mainly focuses on the generation of a reliable, correct, 

and accurate global hourly two-leaf GPP and ET dataset using the BEPS model with dynamic 

parameterizations. The product-to-product comparison aims to present the ranges of current 

GPP and ET dataset, from the comparisons of magnitudes to spatial distributions. Different 

products were generated based on various algorithms, including machine learning, process-

based models, and empirical or semi-empirical relationships. However, we were focusing on 

the comparison of the current products but not focusing on the discussions on the different LAI 

datasets which were used in the retrievals of GPP and ET. Besides, the product-to-product 

comparison was also conducted in other dataset description papers, i.e., Zheng et al. (2020), to 

show validate the reliability of the product, so we adopted this dataset comparison method in 

the discussion part in this manuscript. 

 

Although the different trends basically depend on the trend of LAI datasets, the structure of 

model and the meteorological driving forces also exert impacts on the trends of simulated long-

term carbon and water fluxes. If using the correct LAI dataset generated by the algorithm that 

considers the complex canopy structure (Liu et al., 2012), the reliable process-based model that 

couples the Farquhar and Ball-Berry model at the leaf level and upscales the leaf-level fluxes 

to the canopy level (Luo et al., 2018), and the dynamic parametrizations that originates from 

the global flux network (Leng et al., under review), we could generate the reliable and accurate 

global GPP and ET product as described in this manuscript. 
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9. Dataset links update 

Besides, we updated the link of dataset, thanks to the National Ecosystem Data Bank for 

providing the platform for sharing the dataset. The updated links include the hourly two-leaf 

GPP and ET dataset (3.3 TB) and the accumulated daily two-leaf GPP and ET dataset (197 GB) 

in 2001-2020. The corresponding paragraphs (Abstract, Code and Data Availability) in the 

manuscript were also updated. 

 

Abstract 

… The hourly and accumulated daily GPP and ET estimates are available at 

https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng et al., 2023a) and 

https://doi.org/10.57760/sciencedb.ecodb.00165 (Leng et al., 2023b). 

 

Code and Data Availability 

The 0.25°× 0.25° global hourly two-leaf GPP and ET datasets for 2001-2020 are available at 

https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng et al., 2023a). The datasets are 

provided in NetCDF4 format. The GPP datasets include two components, the hourly GPP of 

sunlit and shaded leaves. The ET datasets include three components, the hourly 

evapotranspiration, transpiration of sunlit and shaded leaves. Each hourly NetCDF4 file 

represents the GPP/ET in a year at an hourly scale (g C m-2 h-1/mm h-1). The accumulated daily 

GPP and ET datasets for 2001-2020 are available at 

https://doi.org/10.57760/sciencedb.ecodb.00165 (Leng et al., 2023b). Each daily NetCDF4 file 

represents the GPP/ET in a year at a daily scale (g C m-2 d-1/mm d-1) ... 
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Global datasets of hourly carbon and water fluxes simulated using a satellite-

based process model with dynamic parameterizations 

 

Responses to the comments on essd-2023-328 by Anonymous Referee #2 

Jiye Leng et al. 

The paragraphs in blue Italic indicate the corresponding revised paragraphs in the manuscript. 
The under-reviewed papers will be preprinted in the final manuscript before the publication. 
 
1. Need particular explanation on the newly revised BEPS regarding how exactly the hourly 

GPP and ET were simulated but not from the previous version. If BEPS was designed to 
simulate the hourly products, were if just because the hourly inputs were not available 
before? 
 

Thanks for the question. The newly revised BEPS v4.10 keeps the original structure and 
algorithms but with new standardized framework using the Doxygen format and Git version 
control. The name for BEPS was also revised from the former ‘Boreal Ecosystem Productivity 
Simulator’ to ‘Biosphere-atmosphere Exchange Process Simulator’. We also open-sourced the 
BEPS model after the code standardization. BEPS adopts hourly meteorological variables to 
simulate carbon and water fluxes using the same algorithms in Chen et al. (2012). Besides, 
BEPS has been comprehensively evaluated in several site-level, showing its capacity to 
simulate gross primary productivity (GPP) and evapotranspiration (ET) comparable to the eddy 
covariance measurements (Gonsamo et al., 2013; Luo et al., 2018; Luo et al., 2019).  

 
Due to the computational capacity and data volume, the global hourly GPP and ET dataset 
based on BEPS has not yet been published before. In this study, compared to the previous 
research papers on BEPS, we adopted dynamic parameterizations to improve the accuracy of 
simulated carbon and water fluxes, and presented and analyzed the global GPP and ET in 2001-
2020 at the hourly timescale for the first time. 
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2. Need a better presentation and validation on the newly optimized key photosynthesis and 
stomatal conductance model parameters (i.e., 𝑉!"#$ and 𝑚). Was it only revised for the 
flux sites (as presented in Figure 2)? How were they interpolated into the global scales and 
what are their uncertainties? How about the spatial and temporal variations of these 
parameters globally? Also, what will be the differences in the simulated GPP and ET 
between the new dynamic parameters and original fixed parameters in terms of accuracy 
and spatial pattern? 
 

Thanks for the suggestion. As you are concerned, there are several problems that need to be 
addressed. This manuscript focuses on generating and sharing the reliable GPP and ET dataset. 
We included the global distributions of 𝑚	and 𝑉!"#$  in another paper which focuses on 
discussing the trend and spatial patterns of 𝑚  and 𝑉!"#$  (Leng et al., under review). 
However, we would add one chapter to include the spatial distributions, species distributions, 
and validations of 𝑚	and 𝑉!"#$  in this dataset manuscript to convince the readers on the 
accuracy and reliability of the dataset by Leng et al. (under review). 
 
We included the validations of the Random Forest regressor for 𝑚 and 𝑉!"#$ estimations by 
courtesy of Leng et al. (under review), as shown in Figure 1. The Random Forest regressor 
estimates 𝑚  and 𝑉!"#$  with good agreements to the optimized 𝑚  and 𝑉!"#$  from 
measured fluxes in both the training sets and the validation set. The Random Forest regressor 
can estimate 𝑚 with R2 = 0.95 and RMSE = 1.414 in the training set (Figure 1a), and R2 = 
0.59 and RMSE = 3.663 in the independent validation set (Figure 1b). The Random Forest 
regressor can estimate 𝑉!"#$ with R2 = 0.98 and RMSE = 4.191 µmol m-2 s-1 (Figure 1c), and 
R2 = 0.84 and RMSE = 10.598 µmol m-2 s-1 in the independent validation set (Figure 1d). Most 
of the scatter points locate beside the 1:1 line in both the training and validation set, showing 
the good accuracy of the Random Forest regressor for 𝑚 and 𝑉!"#$ estimation. The Random 
Forest regressors build the bridge that links 𝑚 and 𝑉!"#$ derived from measured fluxes to 
the gridded data that can be expanded to global coverage and long timeseries. 
 

 
Figure 1. Comparisons of estimated 𝑚 and 𝑉!"#$%& from the Random Forest regressor and 
optimized 𝑚  and 𝑉!"#$%&  from measured fluxes in the training set (a), (c) and in the 
independent validation set (b), (d) of the Random Forest Regressor, respectively. The color 
indicates the scatter density in each plot and the dotted lines indicate the 1:1 line in each plot. 



Courtesy of Leng et al. (under review). 
 
The global distributions of retrieved m and V'()* are shown in Figure 2a and Figure 3a, and 
PFT-dependent patterns of m and V'()* are observed in Figure 2b and Figure 3b. We also 
included the monthly spatial patterns of global m and V'()* during 2001-2020 in Figure 4 
and Figure 5, respectively. Strong seasonal variations in m and V'()*	are observed in boreal 
regions while m and V'()* in subtropical and tropical regions are fairly constant within a 
year. 
 

 

Figure 2. The spatial pattern of global 𝑚 (a) and the averaged 𝑚 in each PFT (b) during 
2001-2020. Courtesy of Leng et al. (under review). 
 

 

Figure 3. The spatial pattern of global 𝑉!"#$ (a) and the averaged 𝑉!"#$ in each PFT (b) 
during 2001-2020. Courtesy of Leng et al. (under review). 
 



 
Figure 4. Monthly spatial patterns of global 𝑚 during 2001-2020. (a) – (l) averaged 𝑚 from 
January to December, respectively. Courtesy of Leng et al. (under review). 
 
 

 
Figure 5. Monthly spatial patterns of global 𝑚 during 2001-2020. (a) – (l) averaged 𝑚 from 
January to December, respectively. Courtesy of Leng et al. (under review). 
 
To further validate the gridded global 𝑚 and 𝑉!"#$, we compared the global retrievals of 𝑚 



and 𝑉!"#$ in this study with the 𝑚 census for various biomes from the review by Miner et 
al. (2017) and the 𝑉!"#$ field measurements collected from Smith et al. (2019), as shown in 
Figure 6. 𝑚 estimates in this study were compared with the mean and standard deviation in 
Miner et al. (2017) while 𝑉!"#$  observations with the timestamp of measurement were 
compared with the estimated 𝑉!"#$ in the corresponding time period in 2001-2020. Only 0.25° 
pixels with more than three 𝑉!"#$  measurements were selected in the comparison. The 
estimated 𝑚 in the global retrievals agrees well with the measured 𝑚, with R2 = 0.62 (P = 
0.06) and the estimated 𝑉!"#$ in the global retrievals agrees well with the measured 𝑉!"#$, 
with R2 = 0.59 (P < 0.001). 
 

 
Figure 6. Left: Comparison between the PFT-scale mean values of estimated 𝑚 from the 
Random Forest regressor and the measured 𝑚 values reported in the review by Miner et al. 
(2017). Each horizontal and vertical bar represents the mean 𝑚 ± 1 standard deviation in 
the literature values and the estimated values, respectively. The sample sizes of measured 𝑚 
for each PFT are 𝑛 = 23 (ENF), 𝑛 = 23 (EBF), 𝑛 = 54 (DBF), 𝑛 = 11 (SH), 𝑛 = 5 (GRA), 
and 𝑛 = 53 (CRO). Right: Comparison between the PFT-scale mean values of predicted 
𝑉!"#$  from the Random Forest regressor and the measured 𝑉!"#$  values reported in the 
review by Smith et al. (2019). Courtesy of Leng et al. (under review). 
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3. Figure 1. The bottom-up order is quite counter-intuitive to readers. Suggest using top-down 
order. 

 
Thanks for the suggestion. We have revised the Figure 7 as the top-down order. 

 

Figure 7. Schematic overview of the methodology and data products of the BEPS model with 
dynamic parameterizations (BEPS-DP). The flow diagrams show the methodological steps (left) 
and the details (right) for the BEPS-DP datasets of global hourly two-leaf carbon and water 
fluxes. SW (shortwave radiation, W m-2), TA (air temperature, °C), RH (relative humidity, %), 
P (precipitation, mm h-1), WS (wind speed, m s-1), GPP (gross primary productivity, g C m-2 h-
1), LE (latent heat, W m-2). 

 
4. Figure 4, suggest adding the label of 1 in the slope subplots as a reference of good fitting. 
 
Thanks for the suggestion. We have added the label of 1 in the slope and R2 subplots as a 
reference of good fitting, as shown in Figure 8. 
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Figure 8. Evaluation of modeled hourly and daily fluxes against the eddy covariance data in 
the independent validation set: site-year percentage of R2 in (a) hourly GPP; (c) hourly ET; (i) 
daily GPP; (k) daily ET; site-year percentage of regression slopes in (b) hourly GPP; (d) hourly 
ET; (j) daily GPP; (l) daily ET; the mean and standard deviation (SD) of R2 in each PFT in (e) 
hourly GPP; (g) hourly ET; (m) daily GPP; (o) daily ET; the mean and standard deviation of 
regression slopes in each PFT in (f) hourly GPP; (h) hourly ET; (n) daily GPP; (p) daily ET. 
The grey lines indicate 1.0 in R2 and regression slopes as a reference of good fitting. The dashed 
grey lines in (e) – (h) and (m) – (p) indicate the mean of R2 and regression slopes for all PFTs 
in GPP and ET. 

 
5. Need better presentations on the diurnal patterns of GPP and ET for different vegetation 

function types. For example, providing hourly curves for different vegetation function types 
and validated against flux site observations. It is still unclear whether these products can 
capture the diurnal variations of GPP and ET. 
 

Thanks for your suggestions. Since there are 20% of all the sites (809 site years) in the 



independent validation set for the comparisons of modeled and measured GPP and ET, it would 
be too redundant to show all the diurnal patterns (i.e., the hourly curves) for different vegetation 
functional types in the manuscript. However, for better presentations of our GPP and ET 
product simulated based on BEPS with dynamic parameterizations, we randomly selected one 
site-year per each PFT and showed the simulated GPP and ET against flux site observations in 
three different stages (i.e., day of year 115-125, 195-205, and 275-285). The sites and site-year 
we selected in the presentations of diurnal curves were shown in the table below. 
 

Site Name IGBP Year Lat Lon 
CH-Oe2 CRO 2013 47.2863 7.7343 
US-KS2 SH 2004 28.6086 -80.6715 
DE-Hai DBF 2004 51.0792 10.4530 
IT-Cpz EBF 2003 41.7053 12.3761 
DE-Tha ENF 2004 50.9624 13.5652 
NL-Hor GRA 2008 52.2404 5.0713 
JP-SMF MF 2005 35.2617 137.0788 
AU-Dry SAV 2010 -15.2588 132.3706 
CN-Ha2 WET 2003 37.6086 101.3269 
US-Ton WSA 2011 38.4316 -120.9660 

 
The diurnal variations of simulated GPP and ET against flux observations were shown below, 
in three different stages per each site year (the beginning, peak, and ending of the growing 
seasons). The R2 for GPP and ET in different stages per each site year were shown on the left-
top in each subplot. 
 

 



 

 

 



 

 

 



 

 

 
 
 
6. Dataset links update 
Besides, we updated the link of dataset thanks to the National Ecosystem Data Bank for 
providing the platform for sharing the dataset. The updated links include the hourly two-leaf 



GPP and ET dataset (3.3 TB) and the accumulated daily two-leaf GPP and ET dataset (197 GB) 
in 2001-2020. The corresponding paragraphs (Abstract, Code and Data Availability) in the 
manuscript was also updated. 
 
“Abstract 
… The hourly and accumulated daily GPP and ET estimates are available at 
https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng et al., 2023a) and 
https://doi.org/10.57760/sciencedb.ecodb.00165 (Leng et al., 2023b).” 
 
“Code and Data Availability 
The 0.25°× 0.25° global hourly two-leaf GPP and ET datasets for 2001-2020 are available at 
https://doi.org/10.57760/sciencedb.ecodb.00163 (Leng et al., 2023a). The datasets are 
provided in NetCDF4 format. The GPP datasets include two components, the hourly GPP of 
sunlit and shaded leaves. The ET datasets include three components, the hourly 
evapotranspiration, transpiration of sunlit and shaded leaves. Each hourly NetCDF4 file 
represents the GPP/ET in a year at an hourly scale (g C m-2 h-1/mm h-1). The accumulated daily 
GPP and ET datasets for 2001-2020 are available at 
https://doi.org/10.57760/sciencedb.ecodb.00165 (Leng et al., 2023b). Each daily NetCDF4 file 
represents the GPP/ET in a year at a daily scale (g C m-2 d-1/mm d-1) ...” 
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