
A 10 m resolution land cover map of the Tibetan Plateau 

with detailed vegetation types 

Anonymous Referee #1 

General comments: 

The authors introduced a new classification system and produced a detailed land 
cover map of the Tibet Plateau (TP) area in 2022, which is significant for climate 
change studies. The method and results are well-presented. However, there are 
some questions or issues. 

Response: We are grateful for your kind acknowledgment of the value of our dataset 
and thank you for providing insightful comments and detailed suggestions. Following 
your constructive feedback, we have revised the text to strengthen the clarity and 
accuracy of this manuscript.  

 

Specific comments: 

1. Lines 242–245 mentioned that the reason for not using time series is the dense 
cloud cover in southeastern TP. Could you provide a quantification of the 
cloud coverage in this region? 

Reply 1:  

Thank you for pointing this out. Lowering the threshold of cloud filtering results in 
the reduction of image pixels available for analysis, particularly in the southeastern 
TP, where has heavy cloud contamination (Tang et al., 2022). Conversely, raising this 
threshold to a higher level compromises the quality control of Sentinel-2 images while 
maintaining image integrity. We have added a quantification of filtered Sentinel-2 
imagery in the TP in the revised manuscript (Lines 273-278), which reads: 

For example, during the summer of 2022 (June-August), when setting the 

“CLOUDY_PIXEL_PERCENTAGE” parameter to 10%, 20%, 30%, and 40%, and 

applying QA band masking, we lost 13.59%, 5.81%, 2.44%, and 1.32% of the 

Sentinel-2 image area in the TP. The removed pixels are concentrated mainly in the 

cloudy southeastern TP (only shown for 10% threshold in Fig. A3) (Tang et al., 2022). 

This constraint can preclude the attainment of desired outcomes in regions where 

cloud-free image availability is low (Chu et al., 2021; Coluzzi et al., 2018). 



 

Figure A3. Number of available observations for the Sentinel-2 optical data in the Tibetan 

Plateau during summer in 2022 (June 1, 2022, to August 31, 2022) with cloud cover <10%. 

Reference: 

Chu, D., Shen, H., Guan, X., Chen, J. M., Li, X., Li, J., & Zhang, L. (2021). Long time-series 

NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. 

Remote Sensing of Environment, 264, 112632. 

https://doi.org/10.1016/j.rse.2021.112632 

Coluzzi, R., Imbrenda, V., Lanfredi, M., & Simoniello, T. (2018). A first assessment of the 

Sentinel-2 Level 1-C cloud mask product to support informed surface analyses. 

Remote Sensing of Environment, 217, 426–443. 

Tang, J., Guo, X., Chang, Y., Lu, G., & Qi, P. (2022). Long‐term variations of clouds and 

precipitation on the Tibetan Plateau and its subregions, and the associated 

mechanisms. International Journal of Climatology, 42(16), 9003–9022. 

https://doi.org/10.1002/joc.7792 
 

2. Lines 131–141. The Landsat NDVI time series from 2013 to 2022 was used to 
assist in selecting samples. I also noted that the study selected dense samples 
in the southeastern TP. Could the cloud cover in southeastern TP affect the 
Landsat time series from 2013 to 2022 and subsequently impact the accuracy 
of the sample selection? 

Reply 2:  

The dense cloud cover does not affect the accuracy of sample selection over the entire 
study area. However, cloud cover does reduce the number of available NDVI 
observations from Landsat images in the southeastern TP. To mitigate this impact on 
the cloudy regions, we implemented the following two steps:  

- Filtering out pixels with cloud coverage greater than 50% to eliminate 
severely contaminated pixels. 



- Using harmonic analysis of time series (HANTS) model for data interpolation 
and smoothing to remove outliers and reconstruct missing data. 

As a result of this process, only a small fraction of pixels remained severely 
contaminated, which were excluded from our sample selection. 

 

3. In Fig. 3, the NDVI time series for evergreen needle-leaved forest, evergreen 
broadleaved forest, and evergreen shrubland look very similar. Can the NDVI 
time series effectively distinguish between these land cover types? 

Reply 3:  

Thank you for pointing this out. It is difficult to distinguish certain land cover types 
only using the Landsat NDVI time series, such as evergreen needle-leaved forest, 
evergreen broadleaved forest, and evergreen shrubland, due to their similar vegetation 
characteristics. However, the decision was made not only based on NDVI but also  
on their distinct crown shapes and texture characteristics that are visible in Google 
Earth images (see Fig. 3 and the figure below). We have revised the text to make it 
clearer to understand (Lines 164-166), which reads:  

Evergreen needle-leaved forests, evergreen broadleaved forests, and evergreen 

shrublands exhibit similar trends and values in NDVI time series. However, they can 

be discerned in Google Earth images based on their distinctive crown shapes and 

textures (Fig. 3). 

 
Figure R1 (only for response). Selected examples of auxiliary data derived from Google 

Earth imagery, including evergreen needle-leaved forest, evergreen broadleaved forest, 

evergreen shrubland, and transition zone between evergreen needle-leaved forest (left half) 

and evergreen shrubland (right half). 



4. What is the proportion of samples that are directly visually interpreted from 
Google Earth images, samples using NDVI time series as auxiliary, and samples 
using only NDVI time series without Google Earth images? 

Reply 4:  

All samples were interpreted based on Google Earth images, with subsequent 
verification using NDVI time series as a supplementary measure to ensure stability 
and detect phenology. No samples are selected using only NDVI time series in our 
study. We apologize for the unclarity and have revised the text to make it clearer to 
understand (Lines 158-160), which reads:  

All samples were interpreted based on Google Earth images, with subsequent 

verification using NDVI time series as a supplementary measure to ensure stability 

and detect phenology. 

 

5. How can you eliminate the impact of land cover changes that may have 
occurred between 2013 and 2022 on the Landsat time series used in the sample 
selection? 

Reply 5:  

As described in Lines 148-150, we utilized Landsat time series to identify changes in 
land cover, including deforestation, during our stability verification process. The 
figures provided below illustrate examples of this verification process. Fig. A2(b) 
depicts a typical NDVI time series of deciduous needle-leaved forest derived from 
Landsat 7 and Landsat 8, while Fig. A2(a) shows a site where deforestation occurred. 
Through the stability verification process, sample sites that changed in selected years 
(2013-2022) are excluded. We have clarified this in our revised manuscript (Lines 
155-156), which reads: 

By following the steps outlined above, we detected land cover changes during 2013-

2022 using Landsat NDVI time series (Fig. A2). This approach helps to avoid 

selecting sites where land cover change has occurred. 



 

Figure A2. Landsat NDVI time series and HANTS filtered NDVI time series for stability 

verification. (a) depicts a deciduous needle-leaved forest, (b) shows a transition from forest to 

farmland at the edge of the deciduous broadleaved forest in 2015, where it was annually 

cultivated following deforestation. 

 

6. According to Table A2, impervious surfaces or built-up areas are considered 
as bareland in the classification system. However, I noticed that built-up areas in 
cities such as Xining and Lhasa are incorrectly classified as cultivated vegetation 
and other land cover types in your product. I also noticed that the barelands in 
your training samples do not seem to include built-up area samples. 

Reply 6: 

Thank you for pointing out the misclassification of built-up areas in some cities as 
other land cover types in our product. We have added descriptions about why we 
merged built-up areas and bare land in our classification system (Lines 132-136), 
which reads: 

In this study, we did not specifically select samples of built-up areas and instead 

categorized bare land together with built-up areas for two primary reasons. Firstly, 

built-up areas account for only 0.092% of the total area in ESA WorldCover2021, 

highlighting their relatively small extent compared to other land cover types (Zanaga 

et al., 2022). Secondly, bare land in our product exhibits spectral characteristics 

similar to those of built-up areas, resulting in the classification of most built-up areas 

as bare land (H. Li et al., 2017). 



Furthermore, we discussed this issue in our revised manuscript (Lines 266-268), 
which reads: 

In addition , the spectral variations within urban areas have also resulted in 

substantial uncertainties. Our approach of categorizing built-up areas and bare land 

may lead to misclassification of urban pixels. To minimize the uncertainties in urban 

areas on our final map, we applied the ESRI land cover map in 2022 to mask off 

urban pixels (Karra et al., 2021). 

Reference: 

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. 

(2021). Global land use / land cover with Sentinel 2 and deep learning. 2021 IEEE 

International Geoscience and Remote Sensing Symposium IGARSS, 4704–4707. 

https://doi.org/10.1109/IGARSS47720.2021.9553499 

Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J., & Liu, J. (2017). Mapping Urban 

Bare Land Automatically from Landsat Imagery with a Simple Index. Remote 

Sensing, 9(3), 249. https://doi.org/10.3390/rs9030249 

Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., 

Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., Lesiv, M., Herold, M., 

Tsendbazar, N.-E., Xu, P., Ramoino, F., and Arino, O.: ESA WorldCover 10 m 2021 

v200, Zenodo [data set], https://doi.org/10.5281/zenodo.5571936, 2022 
 

7. Lines 159–161. "Interannual" refers to two or more years, but you have only 
selected images from one year. Did you mean "Annual"? 

Reply 7:  

Thank you for pointing out this mistake. We have rectified it in our revised 
manuscript (Line 78).  

 

8. You used almost all bands from Sentinel-2 with four additional indices. The 
information provided by some of the bands may be duplicated. For example, the 
wavelengths of B8 and B8A are close. Is it sufficient to use only one of them? 

Reply 8:  

Thank you for this comment! Using either B8 or B8A alone is adequate to achieve 
high overall accuracy. However, incorporating B8A brings a minor improvement in 
the overall accuracy, despite its relatively lower importance in the Random Forest 
model used in this study. For instance, employing only the B8 band yields an overall 
accuracy of 86.1%, while incorporating B8A improves it to 86.5%. We have added 
the explanation of band selection in our revised manuscript (Lines 181-186), which 
reads: 

The selected input bands for Sentinel-2 included B2-B8, B8A, B9, B11, and B12. 

Among these bands, B2-B8, B11, and B12 have been demonstrated to be effective in 



classifying deciduous and coniferous tree species (Immitzer et al., 2016; C. Li et al., 

2021). Additionally, B8A is suitable for boreal landscape classification (Abdi, 2020), 

while B9 values demonstrate differences between bare soil and vegetation-covered 

areas (Zhao et al., 2023), making them useful for classification purposes. For 

Sentinel-1 images, utilizing both VV and VH can enhance classification accuracy, 

leading to their selection as input features (Jacob et al., 2020; Steinhausen et al., 

2018). 

Reference: 

Abdi, A. M. (2020). Land cover and land use classification performance of machine learning 

algorithms in a boreal landscape using Sentinel-2 data. Giscience & Remote Sensing, 

57(1), 1–20. https://doi.org/10.1080/15481603.2019.1650447 

Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for 

Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3), 166. 

https://doi.org/10.3390/rs8030166 

Jacob, A. W., Vicente-Guijalba, F., Lopez-Martinez, C., Lopez-Sanchez, J. M., Litzinger, M., 

Kristen, H., Mestre-Quereda, A., Ziolkowski, D., Lavalle, M., Notarnicola, C., 

Suresh, G., Antropov, O., Ge, S., Praks, J., Ban, Y., Pottier, E., Mallorqui Franquet, J. 

J., Duro, J., & Engdahl, M. E. (2020). Sentinel-1 InSAR Coherence for Land Cover 

Mapping: A Comparison of Multiple Feature-Based Classifiers. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 13, 535–552. 

https://doi.org/10.1109/JSTARS.2019.2958847 

Li, C., Ma, Z., Wang, L., Yu, W., Tan, D., Gao, B., Feng, Q., Guo, H., & Zhao, Y. (2021). 

Improving the Accuracy of Land Cover Mapping by Distributing Training Samples. 

Remote Sensing, 13(22), 4594. https://doi.org/10.3390/rs13224594 

Steinhausen, M. J., Wagner, P. D., Narasimhan, B., & Waske, B. (2018). Combining Sentinel-

1 and Sentinel-2 data for improved land use and land cover mapping of monsoon 

regions. International Journal of Applied Earth Observation and Geoinformation, 73, 

595–604. https://doi.org/10.1016/j.jag.2018.08.011 

Zhao, Y., Lei, S., Zhu, G., Shi, Y., Wang, C., Li, Y., Su, Z., & Wang, W. (2023). An Algorithm 

to Retrieve Precipitable Water Vapor from Sentinel-2 Data. Remote Sensing, 15(5), 

1201. https://doi.org/10.3390/rs15051201 
 

9. In the comparison with other products, these products are from different 
years. Due to land cover changes, comparison across years will introduce some 
error. Using validation samples in 2022 is also unfair to products of other years. 
These issues need to be discussed. 

Reply 9:  

Thank you. Our samples remain stable from 2013 to 2022, as explained in Reply 5. 
These consistent validation samples can be utilized to assess the accuracy of various 
land cover products spanning the years from 2013 to 2022. We have added additional 
description in revised text (Lines 294-297), which reads: 



The land cover samples selected remained stable encompassing the years from 2013 

to 2022 for all the other 4 land cover products, thus making them comparable to our 

TP_LC10-2022 map. Therefore, we validated the aggregation of samples into 8 

categories and assessed the performance of TP_LC10-2022 and the 4 other land 

cover products in the TP region, as depicted in Table 5. 

 

10. Are there plans to update the product annually or any other future research 
plans? 

Reply 10:  

Yes, we have been producing land cover maps of the TP using Sentinel-2 imagery 
over the past few years, and we are updating the available samples in 2023, which 
will be available online soon. Please keep an eye on our data portal, where we are 
currently hosting TP_LC10-2022 product: https://doi.org/10.5281/zenodo.8214981 

 

11. Table 1, VV and VH are backscatter coefficients, not reflectivities. And it 
needs to be clarified with the direction of transmission and reception. 

Reply 11:  

Thank you for the correction. We have revised the mistake and clarified the direction 
and transmission in the revision. To be clearer, we also added the orbit parameter of 
the Sentinel-1 satellite in Table 2. 

 

12. Typo in table 2, "DNSI" -> "NDSI". 

Reply 12:  

Thank you for the correction, we have updated the table in our revised manuscript. 



A 10 m resolution land cover map of the Tibetan Plateau 

with detailed vegetation types 

Anonymous Referee #2 

General comments: 

This manuscript ‘A 10 m resolution land cover map of the Tibetan Plateau with 
detailed vegetation types’ produced a 10 m resolution TP land cover map to 
address the issue of low spatial resolution and incomplete vegetation type 
coverage in the existing TP land cover dataset. The generated TP_LC10-2022 
product will be a valuable data for the study of this region, but the method 
employed in the manuscript lacks innovation. In addition, there are still many 
areas that need improvement. 

Response: We are grateful for your kind acknowledgment of the value of our dataset 
and thank you for providing insightful comments and detailed suggestions. Following 
your constructive feedback, we have revised the text to strengthen the clarity and 
accuracy of this manuscript.  

It is very true that the classification methods used in this study are widely used but 
also well recognized in the research community. We believe that in the current stage, 
with the rapid advance of machine learning algorithms and computing power, the size, 
accuracy, and separability of the training samples are more important than the 
classification algorithms employed. Therefore, in this study, we emphasize more on 
bridging the gaps between existing land cover products and the requirements of 
ecologically meaningful applications in TP, that is, the new classification system. Yet, 
we also tested several machine-learning algorithms and selected the best one to 
achieve high classification accuracy. 

 

Specific comments: 

1. First, it is recommended to separate the data and methods sections. The 
current structure is somewhat confusing. It is suggested to merge sections 2.1 
to 2.2 under the main heading "2. Study Area and Data." Also, starting from 
section 2.3 to 2.3.5, it is suggested to be included in Section 3 as "3. 
Methodology." 

Reply 1: 

Thank you for the insightful suggestion. We have incorporated your feedback by 
consolidating sections 2.1 to 2.2 into the main heading "2. Study Area and Data." 
Furthermore, sections 2.3 to 2.3.5 have been integrated into section 3, resulting in a 
clearer and more cohesive structure. Please refer to our revised manuscript. 



2. Secondly, in section 2.3.1, why did the authors state "The advantages of our 
classification system are as follows"? Here, the authors should introduce the 
basis for constructing this classification system, rather than directly 
discussing its advantages. Moreover, the content of this section seems more 
like it is introducing the basis for constructing the classification system. 
Moreover, what exactly is the content "Discriminability in Remote Sensing 
Imagery" trying to state? Is this part related to the classification system? 
Furthermore, didn't the authors developed their product using Sentinel 
data? How come 0.3m of Google Earth imagery was involved here? 

Reply 2:  

Thanks for this detailed and constructive comment. We agree that section 2.3.1 is a 
description of the basis of our classification system. We have revised the text in this 
section accordingly (Lines 116-117). 

The section titled "Discriminability in Remote Sensing Imagery" did relate to the 
classification system. To make it clearer, we have rephrased the sentence to 
“Discriminability of different vegetation functional types in remote sensing imagery”. 
Here, we aimed to demonstrate the effectiveness of our classification system during 
the image interpretation stage. Google Earth imagery serves as a valuable resource for 
distinguishing various land cover types due to its high resolution. Obtaining a 
substantial number of land cover samples, particularly in remote areas of the TP, 
would be nearly impossible without access to such high-resolution remote sensing 
images.  

It is important to emphasize the significance of Sentinel-2 data, particularly in 
discriminating land cover types during the image classification stage. The 
multispectral bands provided by Sentinel-2 are crucial for accurately classifying 
diverse land cover types within the TP. To address this concern, we have incorporated 
additional information regarding Sentinel-2 data in the revised text (Lines 126-131), 
which reads: 

During the classification stage, we can effectively differentiate various land cover 

types, including diverse vegetation, utilizing the discriminative capabilities of the 

multispectral bands of Sentinel-2 (Liu et al., 2023). Moreover, the incorporation of 

high-resolution Google Earth imagery, with a spatial resolution of up to 0.3 meters, 

enhances the discernibility of land cover types during the sample selection phase. 

This ensures the feasibility of visually interpreting large-scale samples from remote 

sensing imagery and obtaining reliable and up-to-date information (Gong et al., 

2013). 

Reference: 

Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., 

Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L., Yao, W., … Chen, 

J. (2013). Finer resolution observation and monitoring of global land cover: First 



mapping results with Landsat TM and ETM+ data. International Journal of Remote 

Sensing, 34(7), 2607–2654. https://doi.org/10.1080/01431161.2012.748992 

Liu, X., Frey, J., Munteanu, C., Still, N., & Koch, B. (2023). Mapping tree species diversity in 

temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography 

data. Remote Sensing of Environment, 292, 113576. 

https://doi.org/10.1016/j.rse.2023.113576 
 

3. Thirdly, why were the training and validation sets configured as 4:1? 
Typically, they are set to 7:3. 

Reply 3:  

Considering that we derived 22 features for the classification and the land cover in the 
TP is highly heterogeneous, the machine learning model needs to learn the complex 
distribution of different data features. Compared to the case of a 7:3 ratio, 80% of the 
data is used to train the model, which allows the model to better learn the features and 
patterns of the data and improve the model's fitting ability (Ramezan et al., 2021). We 
have added an explanation of the ratio of training and validation sets (Lines 177-179), 
which reads: 

We adjusted the ratio of training to validation samples to 4:1 instead of the commonly 

used 7:3 to enhance the model's fitting capability to handle the complex distribution 

of features (Ramezan et al., 2021). 

Reference: 

Ramezan, C. A., Warner, T. A., Maxwell, A. E., & Price, B. S. (2021). Effects of Training Set 

Size on Supervised Machine-Learning Land-Cover Classification of Large-Area 

High-Resolution Remotely Sensed Data. Remote Sensing, 13(3), 368. 

https://doi.org/10.3390/rs13030368 
 

4. Fourth, the content within Section 2.3.3, from "Interannual remote sensing" 
to "The median compositing method in GEE was applied to process all bands 
of Sentinel-1 and Sentinel-2," is suggested to be included in Section 2.2.1. The 
corresponding preprocessing is suggested to describe in the presentation of 
the Sentinel-2 data. 

Reply 4:  

Thank you for this constructive suggestion. The corresponding content has been 
included in Section 2.2.1 and the detailed preprocessing has been described in the 
presentation of Sentinel data (Lines 74-88), which reads: 

We used both the optical imagery from Copernicus Sentinel-2 and radar imagery from 

Copernicus Sentinel-1 for the classification. Sentinel-2 comprises two high-resolution 

multispectral imaging satellites, each equipped with a multispectral imager. It 

consists of 13 bands, with spatial resolutions of 10 m for 4 bands, 20 m for 6 bands, 

and 60 m for 3 bands. The study utilized Level-2A products from the year 2022, which 



had undergone processing via the Sen2Cor tool at the Copernicus Scientific Data Hub 

(Doxani et al., 2018). Annual remote sensing images have proven to accurately 

capture phenological changes in specific vegetation cover and have been successfully 

utilized in various large-scale land cover classification studies (Verde et al., 2020). 

Hence, in this study, the Sentinel-2 remote sensing images from the entire year of 2022 

were selected for band feature extraction. In this study, the initial step involved 

retaining the images with a cloud cover of less than 10%. Subsequently, the quality 

assessment information (QA band) was utilized to exclude pixels with inadequate 

quality through cloud masking. 

Sentinel-1 comprises two polar-orbiting satellites positioned in the same orbital 

plane. For this research, the Ground Range Detected (GRD) data obtained in wide 

swath (IW) mode was chosen. The GRD data consists of single polarization (VV) and 

dual polarization (VV, VH) interferometric wave modes, offering a 10 m resolution 

(Prats-Iraola et al., 2015). It enables the provision of radar images suitable for land 

and maritime services, regardless of weather conditions and time of day. The median 

compositing method in GEE (Souza Jr et al., 2020; Phan et al., 2020) was applied to 

process all bands of Sentinel-1 and Sentinel-2. 

Reference: 

Doxani, G., Vermote, E., Roger, J.-C., Gascon, F., Adriaensen, S., Frantz, D., Hagolle, O., 

Hollstein, A., Kirches, G., Li, F., Louis, J., Mangin, A., Pahlevan, N., Pflug, B., & 

Vanhellemont, Q. (2018). Atmospheric Correction Inter-Comparison Exercise. 

Remote Sensing, 10(3), 352. https://doi.org/10.3390/rs10020352 

Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land Cover Classification using Google Earth 

Engine and Random Forest Classifier-The Role of Image Composition. Remote 

Sensing, 12(15), 2411. https://doi.org/10.3390/rs12152411 

Prats-Iraola, P., Nannini, M., Scheiber, R., De Zan, F., Wollstadt, S., Minati, F., Vecchioli, F., 

Costantini, M., Borgstrom, S., De Martino, P., Siniscalchi, V., Walter, T., Foumelis, 

M., & Desnos, Y.-L. (2015). Sentinel-1 assessment of the interferometric wide-swath 

mode. 2015 IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS), 5247–5251. https://doi.org/10.1109/IGARSS.2015.7327018 

Souza Jr, C. M., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., 

Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-Filho, P. W. M., de Oliveira, S. 

W., Rocha, W. F., Fonseca, A., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., 

Rosa, E. R., Velez-Martin, E., … Azevedo, T. (2020). Reconstructing Three Decades 

of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and 

Earth Engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/rs12172735 

Verde, N., Kokkoris, I. P., Georgiadis, C., Kaimaris, D., Dimopoulos, P., Mitsopoulos, I., & 

Mallinis, G. (2020). National Scale Land Cover Classification for Ecosystem Services 

Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google 

Earth Engine. Remote Sensing, 12(20), 3303. https://doi.org/10.3390/rs12203303 



5. Fifth, Table 2 requires an explanation for the choice of features, particularly 
why all bands of Sentinel-2 are utilized. For example, Band 9 is more 
commonly used for atmospheric monitoring applications and has a resolution 
of only 60 meters, so why is it included? Additionally, is it truly beneficial to 
resample coarse-resolution data (kilometer-scale) like CHIRPS and ERA5 to 
10 meters and include them as classification features? Such coarse-resolution 
data may increase the "mosaic effect" of the classification results. But the 
most surprising thing is that the authors have clearly indicated that the 
temporal and phenological features can significantly help to distinguish 
different categories! However, it is surprising that the authors only used the 
median composited bands as input features instead of using temporal 
features. Especially for the distinction between deciduous and evergreen 
vegetation, is it really possible to do it by median composits alone? 
Furthermore, as can be seen in Figure 3, the distinction between shrubs and 
woodlands is quite difficult, even when relying on temporal features. 
Therefore, I am skeptical about the classification accuracy of these last 
features. 

Reply 5.1:  

We value the reviewer's insightful suggestion to explain the selection of features. 
Sentinel-2's Band 9 yields varying values across different land cover regions, 
including bare soil and vegetation-covered areas (Y. Zhao et al., 2023), thereby 
offering additional spectral information in classification. We have added a more 
detailed explanation for clarification in the revised manuscript (Lines 181-186), which 
reads: 

The selected input bands for Sentinel-2 included B2-B8, B8A, B9, B11, and B12. 

Among these bands, B2-B8, B11, and B12 have been demonstrated to be effective in 

classifying deciduous and coniferous tree species (Immitzer et al., 2016; C. Li et al., 

2021). Additionally, B8A is suitable for boreal landscape classification (Abdi, 2020), 

while B9 values demonstrate differences between bare soil and vegetation-covered 

areas (Zhao et al., 2023), making them useful for classification purposes. For 

Sentinel-1 images, utilizing both VV and VH can enhance classification accuracy, 

leading to their selection as input features (Jacob et al., 2020; Steinhausen et al., 

2018). 

Reference: 

Abdi, A. M. (2020). Land cover and land use classification performance of machine learning 

algorithms in a boreal landscape using Sentinel-2 data. Giscience & Remote Sensing, 

57(1), 1–20. https://doi.org/10.1080/15481603.2019.1650447 

Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for 

Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3), 166. 

https://doi.org/10.3390/rs8030166 

Jacob, A. W., Vicente-Guijalba, F., Lopez-Martinez, C., Lopez-Sanchez, J. M., Litzinger, M., 



Kristen, H., Mestre-Quereda, A., Ziolkowski, D., Lavalle, M., Notarnicola, C., 

Suresh, G., Antropov, O., Ge, S., Praks, J., Ban, Y., Pottier, E., Mallorqui Franquet, J. 

J., Duro, J., & Engdahl, M. E. (2020). Sentinel-1 InSAR Coherence for Land Cover 

Mapping: A Comparison of Multiple Feature-Based Classifiers. IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 13, 535–552. 
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Reply 5.2:  

We did not observe “mosaic effect” in our final land cover map. Climate data 
contributes to the classification process mainly at the regional scale, for example, 
southeast TP is more humid than the middle and east parts of TP. At the local scale, 
satellite imagery and topography data play a dominant role in the classification 
process, while the contribution from climate data to classification is minimal. Besides, 
our product shows consistent finer spatial patterns at 10m resolution. For clarification, 
we have elaborated on this issue in the revised manuscript (Lines 255-258), which 
reads: 

The TP exhibits significant variations in annual rainfall and land surface temperature 

across its diverse regions, resulting in distinct hot and cold spots (Rao et al., 2019; 

Wu et al., 2019). Leveraging climate data can thus prove beneficial in categorizing 

alpine meadows in the southeastern TP and alpine grasslands in the northwestern TP 

at regional climatic scales, given their high sensitivity to changes in annual 

precipitation and land surface temperature (Su et al., 2020; Y. Wang et al., 2021). 
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Reply 5.3:  

Indeed, it sounds counterintuitive that we used a single median value to represent 
phenological patterns of different vegetation types. Evergreen and deciduous 
vegetation are difficult to be divided using a single remote sensing image, which 
highlights the significance of the utilization of multisource datasets, including satellite 
imagery and topographic datasets. We have explained in more detail to clarify this 
issue in the revised manuscript (Lines 279-292), which reads: 

The blue, red-edge, and shortwave infrared (SWIR) bands of mono-temporal median 

Sentinel-2 imagery have proven effective for vegetation classification, distinguishing 

between crop types and tree species (Immitzer et al., 2016). As shown in Fig. A4, both 

evergreen and deciduous vegetation exhibit similar trends in Sentinel-2 multispectral 

bands, yet they display significant differences in spectral reflectance values. This 

indicates that median composited bands of Sentinel-2, along with constructed spectral 

indices, can be used to distinguish between evergreen and deciduous vegetation. The 

integration of multiple satellite images over time helps capture the phenology of 

different vegetation types while mitigating the influence of outliers (Carrasco et al., 

2019; Pizarro et al., 2022; Tu et al., 2020; Verde et al., 2020; Xie et al., 2019). 

However, relying solely on median composited bands of Sentinel-2 and constructed 

spectral indices may not be sufficient to achieve high classification accuracy, 

emphasizing the importance of multisource data. Notably, elevation is the most 

important feature among all ancillary ones (Fig. A1), reflecting the natural 

distribution of vegetation types, which are predominantly shaped by latitudinal 

zonation in the mountainous TP (Sherman et al., 2008) (Fig. A5 and Fig. 7). Thus, 

leveraging features derived from multisource data allows us to amplify and capture 

differences between evergreen and deciduous vegetation, as well as between shrubs 

and woodlands, ultimately leading to a high classification accuracy (Xu et al., 2018; 

J. Yan et al., 2023). 



Figure A4. Sentinel-2 spectral curves for forest and shrubland types. The spectral curve for 

each type was derived by calculating the average and standard deviation of surface 

reflectance across all samples for the processed cloud-free Sentinel-2 median composite for 

2022 in the Tibetan Plateau. ENF: evergreen needle-leaved forest; DNF: deciduous needle-

leaved forest; EBF: evergreen broadleaved forest; DBF: deciduous broadleaved forest; MF: 

mixed forest; ES: evergreen shrubland; DS: deciduous shrubland. 

 

Figure A5. Box plot derived from SRTM for the distribution of sample elevation across 

different land cover types in the Tibetan Plateau. BL: bare land; AS: alpine scree; AG: alpine 

grassland; AM: alpine meadow; ENF: evergreen needle-leaved forest; DNF: deciduous 

needle-leaved forest; EBF: evergreen broadleaved forest; DBF: deciduous broadleaved 

forest; MF: mixed forest; ES: evergreen shrubland; DS: deciduous shrubland; WB: water 

body; WL: wetland; CV: cultivated vegetation; PIS: permanent ice and snow. 
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6. Finally, does this paper introduce any methodological innovations? Please 
endeavor to highlight the novel aspects of this study. 

Reply 6:  

Indeed, the classification methods we used to generate the land cover map are widely 
used but also well recognized in the research community. We believe that in the 
current stage, with the rapid advance of machine learning algorithms and computing 
power, the size, accuracy, and separability of the training samples are more important 



than the classification algorithms employed. Therefore, in this study, we emphasize 
more on bridging the gaps between existing land cover products and the requirements 
of ecologically meaningful applications in TP, that is, the new classification system. 
Yet, we also tested several machine-learning algorithms and selected the best one to 
achieve high classification accuracy. Furthermore, our methodology is meticulously 
crafted, comprehensive, and resilient.  

Land cover mapping research holds paramount importance in Earth science, and our 
datasets, encompassing the land cover map and samples for the TP, can serve as a 
robust foundation for further research endeavors in this pivotal region. For this, we 
strengthened our discussion in terms of its implications for the sustainable use of 
available resources in practice, for policy making, and for further research (Lines 312-
340), which reads: 

1. For sustainable use of available resources in practice: 

Lakes and glaciers are the sentinels of global climate change and constitute the 

foundation of the TP as a crucial water source for surrounding regions (G. Zhang et 

al., 2017; G. Zhang & Duan, 2021). Precisely extracting the boundaries of lakes and 

glaciers is imperative for quantitatively monitoring lake expansion and glacier 

melting, as well as understanding the dynamic relationship between them and 

precipitation (Tong et al., 2016; J. Zhang et al., 2021; R. Zhao et al., 2022). Our land 

cover data, samples, and mapping methodology can serve as a baseline support for 

these endeavors (Korzeniowska & Korup, 2017; Yan et al., 2020), which facilitates 

the effective utilization of available water resources and promotes the sustainable 

development of the economy and society in the Greater Tibetan Plateau area and 

downstream regions of rivers originating from the TP (Ding et al., 2019). 

2. For policy making: 

Alpine forests play a crucial role in carbon storage and sequestration, thereby 

enhancing ecosystem services in the TP (Lin et al., 2023; Z. Wang et al., 2022; H. 

Zhao et al., 2023). Our study revealed that TP_LC10-2022 identified the smallest 

forested area (8.60%), while GLC_FCS30-2020 and FROM_GLC30-2015 classified 

the largest and second-largest areas of alpine forest, respectively (12.86% and 

11.89%) (Table A4). Conversely, the area of shrubland exhibits nearly the opposite 

trend (Table A4). Confusion also arises between alpine grassland and bare land, 

potentially leading to variations in carbon storage estimation within each vegetation 

type. These discrepancies could impact efforts related to forest resource protection 

and grassland management for animal husbandry (J. Li et al., 2020; C. Yu et al., 

2022). 

3. For further research: 

Alpine screes are extensively distributed across the TP, yet they are frequently 

disregarded from other products. Our product presents the initial description of alpine 



scree vegetation locations, which will contribute to environmental monitoring and 

biodiversity research in the periglacial zone of the TP (X.-H. Li et al., 2014). 

Shrublands play a vital role as carbon sinks in ecosystems and hold substantial 

implications for biomass estimation and global carbon cycling (Ma et al., 2021; Nie 

et al., 2018). TP_LC10-2022 accurately predicts the spatial distribution of 

shrublands, which holds considerable importance in forecasting the impact of future 

changes in the biomass and carbon cycle on global-scale ecosystems (Chang et al., 

2022). 

High-resolution and accurate land cover data encompassing diverse vegetation types 

are crucial for monitoring large-scale alpine vegetation dynamics (F. Wang et al., 

2023; Z. Wang et al., 2020, 2022). For instance, relying on land cover maps such as 

ESA WorldCover as the foundation to examine tree lines and vegetation lines in the 

TP may lead to the underestimation of tree lines due to misclassifications of 

grasslands and shrublands (Fig. 7) (Zou et al., 2023). Additionally, the vegetation line 

may also be underestimated because of the absence of alpine scree (Fig. 7). In our 

future work, we aim to leverage the Sentinel-2, Sentinel-1, and other multisource data 

to annually generate TP_LC10 products. This approach will facilitate alpine 

vegetation monitoring and change detection, thereby enriching our comprehension of 

the dynamic TP amidst intensifying global climate change (Y. Wang et al., 2022). 
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A 10 m resolution land cover map of the Tibetan Plateau 

with detailed vegetation types 

Community Referee #1 

General comments: 

This study proposes a 10 m resolution land cover map of the Tibetan Plateau 
with detailed vegetation types. The experimental design is thorough. However, I 
have some concerns. 

Response: We are grateful for your kind acknowledgment of the experimental design 
of our study and thank you for providing insightful comments and detailed 
suggestions. Following your constructive feedback, we have revised the text to 
strengthen the clarity and accuracy of this manuscript. 

 

Specific comments: 

1. Line 89: Precipitation data is 0.05degree resolution, can the resampled 10m 
data maintain the quality? 

Reply 1:  

The quality of resampled climate data is sufficient for the classification. Climate data 
contributes to the classification process mainly at the regional scale, for example, 
southeast TP is more humid than the middle and east parts of TP. At the local scale, 
satellite imagery and topography data play a dominant role in the classification 
process, while the contribution from climate data to classification is minimal. Besides, 
our product shows consistent finer spatial patterns at 10m resolution. For clarification, 
we have elaborated on this issue in the revised manuscript (Lines 255-258), which 
reads: 

The TP exhibits significant variations in annual rainfall and land surface temperature 

across its diverse regions, resulting in distinct hot and cold spots (Rao et al., 2019; 

Wu et al., 2019). Leveraging climate data can thus prove beneficial in categorizing 

alpine meadows in the southeastern TP and alpine grasslands in the northwestern TP 

at regional climatic scales, given their high sensitivity to changes in annual 

precipitation and land surface temperature (Su et al., 2020; Y. Wang et al., 2021). 
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temperature and top-of-atmosphere radiation products over the Tibetan Plateau. 
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2. Line 90: What is the spatial resolution of temperature data? 

Reply 2:  

The spatial resolution of temperature data is 0.1degree. We also added this 
information to our revised manuscript (Line 103). 

 

3. Line 116-117: Why combine bare land and impervious area? Because other 
land cover products usually separate these two classes. 

Reply 3:  

Thanks for pointing this out. We have added an explanation and discussed this issue 
in our revised manuscript (Lines 132-136 and 266-268). 

Line 132-136: 

In this study, we did not specifically select samples of built-up areas and instead 

categorized bare land together with built-up areas for two primary reasons. Firstly, 

built-up areas account for only 0.092% of the total area in ESA WorldCover2021, 

highlighting their relatively small extent compared to other land cover types (Zanaga 

et al., 2022). Secondly, bare land in our product exhibits spectral characteristics 

similar to those of built-up areas, resulting in the classification of most built-up areas 

as bare land (H. Li et al., 2017). 

Lines 266-270: 

In addition , the spectral variations within urban areas have also resulted in 

substantial uncertainties. Our approach of categorizing built-up areas and bare land 

may lead to misclassification of urban pixels. To minimize the uncertainties in urban 

areas on our final map, we applied the ESRI land cover map in 2022 to mask off 

urban pixels (Karra et al., 2021). 
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4. Line 165: As the vegetation will be affected by seasons, have you considered 
getting the median composites of Sentinel data for each season, and then 
combining all seasons as the input? 

Reply 4:  

We considered combining the four seasons as the input. However, generating seasonal 
composites requires acquiring high-quality Sentinel-2 time series images, which is 
challenging in the TP. For instance, lowering the threshold of cloud filtering results in 
the reduction of image pixels available for analysis, particularly in the southeastern TP, 
where has heavy cloud contamination (Tang et al., 2022). Conversely, raising this 
threshold to a higher level compromises the quality control of Sentinel-2 images while 
maintaining image integrity. We have included a quantitative discussion on this matter 
in the revised manuscript (Lines 273-278), which reads: 

 

Figure A3. Number of available observations for the Sentinel-2 optical data in the Tibetan 

Plateau during summer in 2022 (June 1, 2022, to August 31, 2022) with cloud cover <10%. 

For example, during the summer of 2022 (June-August), when setting the 
“CLOUDY_PIXEL_PERCENTAGE” parameter to 10%, 20%, 30%, and 40%, and 
applying QA band masking, we lost 13.59%, 5.81%, 2.44%, and 1.32% of the 
Sentinel-2 image area in the TP. The removed pixels are concentrated mainly in the 



cloudy southeastern TP (only shown for 10% threshold in Fig. A3) (Tang et al., 
2022). This constraint can preclude the attainment of desired outcomes in regions 
where cloud-free image availability is low (Chu et al., 2021; Coluzzi et al., 2018). 
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5. Line 180: This study is based on pixel-based machine learning classification 
models. The pixel-based approach tends to produce classification with a salt-
pepper effect, did you do any post-classification to remove the noise? 

Reply 5:  

Thank you for raising this concern. We did not perform any post-classification noise 
removal methods. The TP exhibits highly heterogeneous vegetation landscapes. 
Applying image smoothing techniques to eliminate noise may not accurately represent 
the diverse distribution of vegetation types and could lead to a loss of detailed edge 
information. 

 

6. Line 185: Why not use the major voting results of all models as the final 
results? 

Reply 6:  

We selected the model with best performance to ensure consistency in our final map 
across the entire TP, while different model exhibit variations in the classification 
performance for different land cover types, choosing appropriate weights for each 
model might be challenging. 

 

7. Line 245: Have you considered comparing the area in each land cover 
between your classification and other land cover products? 

Reply 7:  

Thank you for this valuable suggestion. We have included a new table in the revised 
manuscript to address this aspect. 



Line 246-247: 

Table A4 presents the statistical results of 5 land cover products in the TP, 
highlighting significant discrepancies among them. 

 

BL: bare land; AG: alpine grassland; AM: alpine meadow; ENF: evergreen needle-leaved 

forest; DNF: deciduous needle-leaved forest; EBF: evergreen broadleaved forest; DBF: 

deciduous broadleaved forest; MF: mixed forest; ES: evergreen shrubland; DS: deciduous 

shrubland; WB: water body; WL: wetland; CV: cultivated vegetation; PIS: permanent ice and 

snow; AS: alpine scree  

• The unit of area is ten thousand square kilometers, and the unit of proportion is percent.  
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• Please refer to Table A3 for the merging rules of land cover for FROM_GLC30-2015 and 

GLC_FCS30-2020.  

• The ‘cloud’ class in the FROM_GLC30-2015 and ‘shrubland’ class in the GLC_FCS30-

2020 product have been omitted from the table due to their small area.  

• All built-up pixels are merged with bare land. 

Also, we have strengthened the discussion using this table in the revised manuscript 
(Lines 251-254 and 322-328) 

Lines 251-254: 

GLC_FCS30-2020 exhibits the highest consistency with TP_LC10-2022 regarding 

bare land (Table A4 and Fig. 5), but it classified more areas as grasslands while 

failing to differentiate between grasslands and meadows. According to Fig. 5b, ESA 

WorldCover2021, FROM_GLC10-2017, and FROM_GLC30-2015 products 

overestimate the area of bare land in the TP, similar to the issues observed in 

FROM_GLC-agg and ESA CCI land cover products (Liu et al., 2021; L. Yu et al., 

2014). This may be due to the misclassification of alpine grassland as bare land 

because these products captured less spectral information during the growing season 

of alpine grasslands. GLC_FCS30-2020 exhibits the highest consistency with 

TP_LC10-2022 regarding bare land (Table A4 and Fig. 5) and it classified more 

grasslands while failed to differentiate between grasslands and meadows. 

Additionally, GLC_FCS30-2020 assigns 61.44% of the total TP area as grassland, 

indicating an overestimation of grassland extent (Table A4). 

Lines 320-326: 

Alpine forests play a crucial role in carbon storage and sequestration, thereby 

enhancing ecosystem services in the TP (Lin et al., 2023; Z. Wang et al., 2022; H. 

Zhao et al., 2023). Our study revealed that TP_LC10-2022 identified the smallest 

forested area (8.60%), while GLC_FCS30-2020 and FROM_GLC30-2015 classified 

the largest and second-largest areas of alpine forest, respectively (12.86% and 

11.89%) (Table A4). Conversely, the area of shrubland exhibits nearly the opposite 

trend (Table A4). Confusion also arises between alpine grassland and bare land, 

potentially leading to variations in carbon storage estimation within each vegetation 

type. These discrepancies could impact efforts related to forest resource protection 

and grassland management for animal husbandry (J. Li et al., 2020; C. Yu et al., 

2022). 
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8. Authors need to elaborate on the discussion section using more references 
and describe the implications of your product for the sustainable use of 
available resources in practice, for policy, and research. 

Reply 8:  

Thank you for your constructive advice. We have elaborated our discussion in terms 
of its implications for policy, research, and the sustainable use of available resources 
in practice (Lines 312-340). 

1. For sustainable use of available resources in practice: 

Lakes and glaciers are the sentinels of global climate change and constitute the 

foundation of the TP as a crucial water source for surrounding regions (G. Zhang et 

al., 2017; G. Zhang & Duan, 2021). Precisely extracting the boundaries of lakes and 

glaciers is imperative for quantitatively monitoring lake expansion and glacier 

melting, as well as understanding the dynamic relationship between them and 

precipitation (Tong et al., 2016; J. Zhang et al., 2021; R. Zhao et al., 2022). Our land 

cover data, samples, and mapping methodology can serve as a baseline support for 

these endeavors (Korzeniowska & Korup, 2017; Yan et al., 2020), which facilitates 

the effective utilization of available water resources and promotes the sustainable 

development of the economy and society in the Greater Tibetan Plateau area and 

downstream regions of rivers originating from the TP (Ding et al., 2019). 

2. For policy making: 



Alpine forests play a crucial role in carbon storage and sequestration, thereby 

enhancing ecosystem services in the TP (Lin et al., 2023; Z. Wang et al., 2022; H. 

Zhao et al., 2023). Our study revealed that TP_LC10-2022 identified the smallest 

forested area (8.60%), while GLC_FCS30-2020 and FROM_GLC30-2015 classified 

the largest and second-largest areas of alpine forest, respectively (12.86% and 

11.89%) (Table A4). Conversely, the area of shrubland exhibits nearly the opposite 

trend (Table A4). Confusion also arises between alpine grassland and bare land, 

potentially leading to variations in carbon storage estimation within each vegetation 

type. These discrepancies could impact efforts related to forest resource protection 

and grassland management for animal husbandry (J. Li et al., 2020; C. Yu et al., 

2022). 

3. For further research: 

Alpine screes are extensively distributed across the TP, yet they are frequently 

disregarded from other products. Our product presents the initial description of alpine 

scree vegetation locations, which will contribute to environmental monitoring and 

biodiversity research in the periglacial zone of the TP (X.-H. Li et al., 2014). 

Shrublands play a vital role as carbon sinks in ecosystems and hold substantial 

implications for biomass estimation and global carbon cycling (Ma et al., 2021; Nie 

et al., 2018). TP_LC10-2022 accurately predicts the spatial distribution of 

shrublands, which holds considerable importance in forecasting the impact of future 

changes in the biomass and carbon cycle on global-scale ecosystems (Chang et al., 

2022). 

High-resolution and accurate land cover data encompassing diverse vegetation types 

are crucial for monitoring large-scale alpine vegetation dynamics (F. Wang et al., 

2023; Z. Wang et al., 2020, 2022). For instance, relying on land cover maps such as 

ESA WorldCover as the foundation to examine tree lines and vegetation lines in the 

TP may lead to the underestimation of tree lines due to misclassifications of 

grasslands and shrublands (Fig. 7) (Zou et al., 2023). Additionally, the vegetation line 

may also be underestimated because of the absence of alpine scree (Fig. 7). In our 

future work, we aim to leverage the Sentinel-2, Sentinel-1, and other multisource data 

to annually generate TP_LC10 products. This approach will facilitate alpine 

vegetation monitoring and change detection, thereby enriching our comprehension of 

the dynamic TP amidst intensifying global climate change (Y. Wang et al., 2022). 
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