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Abstract 

Land cover change has been identified as an important cause or driving force of global climate change and 

is a significant research topic. Over the past few decades, global land-cover mapping has progressed, however, 

long time-series global land-cover change monitoring data are still sparse, especially at 30-m resolution. In this 20 

study, GLC_FCS30D is described as the first global 30-m land-cover dynamic monitoring dataset, containing 

35 land-cover subcategories and covering the period of 1985–2022 with 26 time-steps (maps updated every five 

years before 2000 and annually after 2000). GLC_FCS30D has been developed using continuous change 

detection and all available Landsat imagery based on the Google Earth Engine platform. In specific, we first 

take advantage of the continuous change-detection model and full time-series Landsat observations to capture 25 

the time-points of changed pixels and identify the temporally stable areas. Then, we apply a spatiotemporal 

refinement method to derive the globally distributed and high-confidence training samples from these 

temporally stable areas. Next, locally adaptive classification models are used to update the land-cover 

information for the changed pixels, and a temporal-consistency optimization algorithm is adopted to improve 

their temporal stability and suppress some false changes. Further, the GLC_FCS30D product is validated using 30 

84,526 globally distributed validation samples in 2020 and achieves an overall accuracy of 80.88% (±0.27%) 

for the basic classification system (10 major land-cover types) and 73.24% (±0.30%) for the LCCS level-1 

validation system (17 LCCS land-cover types). Meanwhile, two third-party time-series validation datasets in 

the United States and Europe Union are also collected for analyzing accuracy variations, and the results show 

that the GLC_FCS30D offers significant stability for time-series accuracy variation and achieves the mean 35 

accuracies of 79.50% (±0.50%) and 81.91% (±0.09%) over the two regions. Last, we conclude the global land-

cover change information from GLC_FCS30D dataset, namely, the forest and cropland variations dominate 

global land cover change over past 37 years, and net loss of forests reaches about 2.5 million km2 and net gain 

in cropland area is approximately 1.3 million km2. Therefore, the novel GLC_FCS30D is an accurate time-series 

land-cover dynamic monitoring product benefiting from its diverse classification system, high spatial resolution 40 
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and the long time span of 1985–2022, thus, it will effectively support global climate change research and 

promote sustainable development analysis. The GLC_FCS30D datasets are available via 

https://doi.org/10.5281/zenodo.8239305 (Liu et al, 2023). 

Keywords: GLC_FCS30D, 1985-2022, Land-cover change, Landsat, change detection, Google Earth Engine 

1. Introduction 45 

Land cover data are important and necessary for supporting sustainable development goals, maintaining 

biodiversity, and monitoring natural resources (Liu et al., 2021b; Potapov et al., 2022). The land cover changes 

directly or indirectly influence the global climate patterns and the speed and magnitude of climate change (Song 

et al., 2018) and increasingly affects biogeochemical cycles, the carbon cycle, and Earth’s energy balance (Foley 

et al., 2005; Hong et al., 2021; Winkler et al., 2021). Since the industrial revolution, under the dual pressure of 50 

global climate change and human activities, global land cover has undergone drastic changes. According to a 

Global Carbon Project report in 2020, since the industrialization period, land cover and land use changes have 

contributed to approximately 25% of global greenhouse gas emissions (Friedlingstein et al., 2020), and this 

trend is exacerbated with the ongoing increase in population and per capita energy consumption (Xian et al., 

2022). Therefore, understanding and studying land cover changes are of vital significance for addressing global 55 

environmental changes, promoting sustainable development, and safeguarding the Earth’s ecological 

environment. 

Remote-sensing techniques, with periodic Earth observation capability and archived massive long-term 

observation data since 1972, provide the most cost-effective and practical solutions for long time-series large-

area land-cover change monitoring. In the past few decades, with the continuous improvement of remote sensing 60 

technology and storage and computing capabilities, global land-cover change monitoring (GLCCM) has 

transitioned from 1-km spatial resolution to fine resolution of 30-m or 10-m and from single-phase mapping to 

long-term monitoring (Ban et al., 2015; Friedl et al., 2010; Friedl et al., 2022; Giri et al., 2013). In the early 

stage, GLCCM mainly relied on the time-series MODIS, AVHRR, and Project for Onboard Autonomy 

(PROBA)-V imagery; for example, Sulla-Menashe et al. (2019) generated a global 500-m annual land-cover 65 

products (MCD12Q1) from 2001 to present using time-series MODIS imagery with an overall accuracy of 

73.6%. Defourny et al. (2018) integrated time-series PROBA-V and Medium Resolution Imaging Spectrometer 

(MERIS) observations to develop a global 300-m annual land-cover dynamic dataset (CCI_LC) from 1992 to 

2020 with an overall accuracy of 71.5%. These coarse land-cover change products comprehensively captured 

the spatial patterns of various land-cover types and quantified the global land-cover changes caused by human 70 

and natural activities. However, they still had major limitations especially in regions with intense human activity 

and high spatial heterogeneity because these broken and heterogeneous land-cover changes cannot be captured 

by coarse-resolution satellite observations (Hansen et al., 2013; Herold et al., 2008; Liu et al., 2021b; Zhang et 

al., 2021c).  

Recently, benefitting from the free access to fine-resolution satellite imagery and powerful computing and 75 

storage capabilities, especially after the rise of cloud computing [such as Google Earth Engine (Gorelick et al., 

2017) and Microsoft Planetary Computer], fine-resolution land-cover dynamic monitoring is experiencing rapid 

development. Correspondingly, numerous national and global 30-m land-cover dynamic products have been 

developed (Homer et al., 2020; Liu et al., 2021a; Potapov et al., 2022; Yang and Huang, 2021; Zhang et al., 

2022). For example, Yang and Huang (2021) used China’s land-use/cover datasets (CLUDs) as the prior dataset 80 
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and then combined multitemporal classification and spatiotemporal consistency post-processing method to 

develop an annual 30-m land cover dataset (CLCD) for China from 1990 to 2019. Similarly, Liu et al. (2021a) 

combined pixel-based classification and spatiotemporal post-processing method to generate the first global 30-

m land-cover change products. However, many studies have demonstrated that multiperiod independent 

classifications lead to significant classification error accumulation in time-series land-cover change monitoring 85 

(Sulla-Menashe et al., 2019; Zhu, 2017). For example, Xian et al. (2022) stated that the independent 

classification strategy suffered the constraints of post-processing requirements, for ensuring the temporal 

consistency of land-cover change maps. Therefore, although GLCCM has progressed significantly over the past 

few decades, an accurate global 30-m land-cover change-detection product generated by an efficient land-cover 

change method is still urgently required. 90 

One of the greatest challenges for large-area land-cover change detection is to select the optimal algorithm 

to capture the land-cover changes from time-series observations (Healey et al., 2018; Zhu, 2017). Over past few 

decades, a series of change-detection algorithms have been proposed for monitoring forest disturbance (Huang 

et al., 2009; Jin et al., 2023; Kennedy et al., 2007; Kennedy et al., 2010; Qin et al., 2021), urban expansion (Liu 

et al., 2019; Zhang et al., 2021a), cropland dynamics (Dong et al., 2015; Potapov et al., 2021), and land-cover 95 

changes (Bullock et al., 2019; Jin et al., 2017; Verbesselt et al., 2010; Zhu et al., 2019). However, most of them 

were only suitable for regional land-cover change monitoring and some of the algorithms needed prior 

knowledge (such as for urban expansion). Zhu (2017) systematically reviewed the performances and limitations 

of various change-detection methods based on multitemporal satellite data, and further explained that the high 

temporal frequency and multivariate change-detection algorithms are more suitable for large-area and long time-100 

series land-cover changes after solving a problem with a huge amount of computation. Similarly, Xian et al. 

(2022) and Liu et al. (2019) concluded that dense and continuous change-detection methods had higher accuracy 

and more robustness than traditional change-detection methods for capturing multiple, complicated changes.  

Continuous Change Detection and Classification (CCDC) algorithm, a classical change-detection method 

based on dense time-series observations proposed by (Zhu and Woodcock, 2014b), is widely used for regional 105 

and national land-cover monitoring (Xian et al., 2022; Xie et al., 2022). It used all available Landsat observations 

to build time-series regression models and then captured the outliers by analyzing the differences between the 

actual observations and model estimations. Zhu and Woodcock (2014b) demonstrated that the CCDC algorithm 

attained a general accuracy of 90% and temporal accuracy of 80% for capturing land-cover changes. Thus, it 

has been adopted by the United States Geological Survey (USGS) as the official algorithm for monitoring land-110 

cover changes over the United States (Pengra et al., 2016). For example, Xian et al. (2022) implemented the 

CCDC algorithm and all available Landsat data to develop annual land-cover change products over the 

contiguous United States (CONUS) for 1985–2017 with an overall accuracy of 82.5%. 

In summary, over the past decades, land-cover mapping and monitoring has made significant progress; 

however, time-series global 30-m land-cover dynamic products derived from change-detection algorithms are 115 

still lacking. In this study, we had the following three aims: 1) use the continuous change-detection algorithm 

and full time-series Landsat observations to generate the first global 30-m land-cover dynamic products with 

fine classification system (GLC_FCS30D) from 1985 to 2022, which contains 35 fine land-cover subcategories 

with 26 time-steps (maps updating every five years before 2000 and annually after 2000); 2) quantify the land-

cover changes and analyze the spatiotemporal change patterns of various land-cover types based on the 120 
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developed GLC_FCS30D dataset; and 3) quantitatively analyze the performance of the GLC_FCS30D product 

using multisourced validation datasets. 

2. Datasets  

2.1 Continuous Landsat imagery from 1984 to 2022 

All available Landsat imagery from 1984 to 2022, covering Landsat 5 Thematic Mapper (TM), Landsat 7 125 

Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), and Landsat 9 OLI 

missions, was collected via the GEE cloud-computing platform. Specific measures were taken to build a high-

quality continuous time-series Landsat collection. First, all Landsat images underwent atmospheric correction 

to convert them to surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) and Land Surface Reflectance Code (LaSRC) methods (Vermote, 2007; Vermote and Kotchenova, 130 

2008). Then, the CFmask algorithm, which and has high accuracy and good robustness in cloud and shadow 

detection and is also the official cloud- and shadow detection algorithm of the USGS, was applied to mask poor-

quality observations, including cloud, shadow, and saturated pixels. (Zhu et al., 2015; Zhu and Woodcock, 

2014a). Last, although the Landsat 5, 7, 8, and 9 missions share similar spectral bands, the wavelength 

differences between the ETM+ and OLI cannot be ignored. Relative radiometric normalization was applied to 135 

the TM and ETM+ imagery using the transformation coefficients suggest by Roy et al. (2016).  

2.2 Global land-cover dataset at 30 m for the year of 2020 

The global 30-m land-cover product with fine classification system in 2020 (GLC_FCS30-2020), is the 

baseline for generating training samples and identifying land-cover information in the temporally stable regions 

in Section 3. The GLC_FCS30 dataset was developed using locally adaptive classifications and confident and 140 

globally distributed training samples in their developed global spatiotemporal spectra library, and then validated 

to reach an overall accuracy of 82.5% with the basic validation system (Zhang et al., 2021b). Cross-comparisons 

with other land-cover products showed obvious advantages for the GLC_FCS30 in mapping accuracy and 

diversity of land-cover types. The GLC_FCS30-2020 dataset is freely available at 

https://doi.org/10.5281/zenodo.4280923 (Liu et al., 2020).  145 

2.3 Global impervious surface dynamic dataset at 30 m from 1985 to 2022 

Many studies found that high spatiotemporal heterogeneity and broken constructs of impervious surface 

caused high uncertainty and difficulty in monitoring their dynamics (Gong et al., 2019; Zhang et al., 2022), and 

change detection methods also face issues of both missed detections and false alarms when applied to the 

dynamic monitoring of heterogeneous impervious surfaces. Thus, we independently produced a time-series 150 

global impervious surface dynamic dataset at 30 m (GISD30) during 1985–2022 and then overlaid this thematic 

dataset on the GLC_FCS30D dataset to ensure their high confidence in the impervious surface dynamics. The 

GISD30 dataset was developed by combining the sample migration, spectra generalization and local adaptive 

modeling methods, and then optimized by the spatiotemporal-consistency correction method (Zhang et al., 

2022). It was validated to attain the mean accuracy of 90.1% over the globe and to perform better than other 155 

similar products in capturing the changes in impervious surfaces over time and across different types of 

landscapes. At the same time, third-party validation also indicated that GISD30 exhibited superior performance 

among similar global 30-meter impervious surface products (Wang et al., 2022). 

2.4 Global 30-m wetland datasets from 1985 to 2022 
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Like the impervious surface, the global wetland dynamic dataset is independently produced because the 160 

reflectance spectra of the wetland and phenological variations changed daily with the water levels. The 

continuous change-detection method would suffer serious commission and omission errors for wetland dynamic 

monitoring (Gallant, 2015). In this study, the GWL_FCS30 (global 30-m wetland map with a fine classification 

system) wetland dataset from 1985 to 2022, developed by integrating the automatic sample extraction method, 

a stratified classification strategy, and time-series Landsat observations (Zhang et al., 2023), would be 165 

superimposed on the GLC_FCS30D land-cover dynamic dataset. The GWL_FCS30 was quantitatively assessed 

to the mean accuracy of 86.44% using 25708 validation points, and demonstrated the highest level of 

performance among other wetland products when it came to capturing the spatial patterns of wetlands during 

cross-comparisons (Zhang et al., 2023). GWL_FCS30 further splits the wetland into seven wetland 

subcategories (four inland and three coastal subcategories), and would be overlaid directly onto the 170 

GLC_FCS30D dataset not only improves the monitoring accuracy of wetland but also riches the number of land 

cover types (in Table 1). 

2.5 Validation datasets 

To comprehensively analyze the accuracy metrics for the GLC_FCS30D dataset, two types of validation 

datasets were collected, including: an independent global validation dataset from 2020 and two third-party time-175 

series validation datasets for the United States and the European Union. 

2.5.1 Global validation dataset 

A total of 84,526 globally distributed validation samples are collected to analyze the accuracy metrics for 

the GLC_FCS30D dataset in 2020, and their spatial distributions are illustrated in Figure 1. Intuitively, the 

spatial patterns of the global validation dataset are consistent with the actual global land-cover situation. 180 

Specifically, to ensure the confidence and rationality of the validation datasets, several measures are taken, 

which were explained in detail in our previous work (Zhao et al. (2023). First, a stratified random sampling 

method is applied by combining the landscape heterogeneity, population density data and Köppen climate 

groups, which effectively increases the sample size in the heterogeneous landscapes and for these rare land-

cover types. Second, for each validation sample, the land-cover type is determined through independent 185 

interpretation by trained interpreters after combining high-resolution aerial photography, multitemporal Landsat 

images, and other relevant ancillary datasets (such as: vegetation coverage, tree height, phenological curves, , 

and terrain characteristics). Independent interpretation software has also been developed based on the GEE 

platform (https://eliza-ting.users.earthengine.app/view/crd-vit) for efficiently recognizing the land cover types 

of each sample. Third, a quality-controlled operation, based on duplicate interpretations, is further used to ensure 190 

the confidence level of each validation sample. Each sample is independently labeled by three junior interpreters 

and then double-checked by the senior experts, and validation samples with huge disparities would be discarded. 

In addition, because the impervious surface and wetland datasets have been independently produced and 

validated in our previous works (Zhang et al., 2023; Zhang et al., 2022), the corresponding high-quality 

validation samples of these two thematic types are also imported to the global validation datasets.  195 
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Figure 1. Spatial distribution of 84,526 global validation points containing 17 fine land-cover types in the 

normal year of 2020. 

2.5.2 Third-party regional time-series validation datasets 

Due to the great difficulty in the collection of long time-series global validation datasets, we used two third-200 

party regional datasets for the CONUS and the European Union. The first time-series validation dataset was 

assessed the performance of the Land Cover Monitoring, Assessment, and Projection (LCMAP) Collection 1.0 

annual land cover products (Stehman et al., 2021) (called LCMAP_Val, https://www.usgs.gov/special-

topics/lcmap/validation-data). The LCMAP_Val consisted of 24,971 validation samples with 30-m spatial 

resolution and covered time period of 1985 to 2017. It developed by combining a simple random sampling 205 

method and visual interpretation from high-resolution aerial photography, multitemporal Landsat images, as 

well as other auxiliary datasets. Meanwhile, to guarantee the reliability of each validation sample, the TimeSync 

auxiliary tool was also adopted to capture the land-cover changes (Stehman et al., 2021). Quality control was 

implemented through duplicate interpretations (Xian et al., 2022). 

The second regional validation dataset was the Land Use/Cover Area frame Survey (LUCAS), which is the 210 

most comprehensive and largest land-cover validation dataset in the European Union and is freely available at 

https://land.copernicus.eu/imagery-in-situ/lucas. It contains 1,090,863 validation points based on a systematic 

2 km × 2 km grid and covers the period of 2006 to 2018 with an interval of 3 years (d’Andrimont et al., 2020). 

Five LUCAS surveys in 2006, 2009, 2012, 2015, and 2018 assessed the time-series accuracies of the 

GLC_FCS30D. The LUCAS is developed from a combination of field observations and photo interpretation 215 

(Büttner and Eiselt, 2013; Ballin et al., 2018); thus, it performs with high confidence and also attracts widespread 

attention in land-cover validations (Gao et al., 2020; Venter et al., 2022).  

3. Methods 
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Figure 2 presents a detailed flowchart for monitoring land-cover changes by combining the Continuous 

Change Detection (CCD) algorithm, proposed by Zhu and Woodcock (2014b), and the local adaptive updating 220 

method. Specifically, the flowchart contains four main procedures including: (1) detecting the temporally stable 

pixels and the time-points of abrupt changes in these changed land-cover pixels from the continuous change-

detection model; (2) deriving the spatiotemporally stable training samples by using the spatiotemporal 

refinement method from GLC_FCS30 land-cover products and temporally stable masks; (3) building the local 

adaptive classification models for each local region and then updating the land-cover information in the changed 225 

pixels; and (4) using the spatiotemporal consistency optimization method to improve the quality of land-cover 

change maps and suppress these false changes. 

 

Figure 2. The flowchart of the proposed method combining the continuous change-detection (CCD) algorithm 

and a local adaptive updating algorithm. 230 

3.1 The fine classification system used in the GLC_FCS30D 

Determining the classification system is usually a prerequisite for land-cover mapping and monitoring. In 

this study, as we used the GLC_FCS30-2020 as the baseline land-cover product, and further overlaid the 

GWL_FCS30 dataset on the GLC_FCS30D to ensure high accuracy in the wetland areas; thus, the fine 

classification system used in this study would inherit from that of the GLC_FCS30-2020 and GWL_FCS30. 235 

Table 1 lists the details of the fine classification system. It contains 35 fine land-cover types and has obvious 

advantages over identifying the forest and wetland subcategories.  

Table 1. The details of the fine classification system in the GLC_FCS30D land-cover dynamic dataset. 

Basic classification system Level-1 validation system Fine classification system Id 

Cropland 
Rainfed cropland 

Rainfed cropland 10 

Herbaceous cover cropland 11 

Tree or shrub cover cropland 12 

Irrigated cropland Irrigated cropland 20 

Forest Evergreen broadleaved forest 
Closed evergreen broadleaved forest 51 

Open evergreen broadleaved forest 52 
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Deciduous broadleaved forest 
Closed deciduous broadleaved forest 61 

Open deciduous broadleaved forest 62 

Evergreen needleleaved forest 
Closed evergreen needleleaved forest 71 

Open evergreen needleleaved forest 72 

Deciduous needleleaved forest 
Closed deciduous needleleaved forest 81 

Open deciduous needleleaved forest 82 

Mixed-leaf forest 
Closed mixed-leaf forest 91 

Open mixed-leaf forest 92 

Shrubland Shrubland 

Shrubland 120 

Evergreen shrubland 121 

Deciduous shrubland 122 

Grassland Grassland Grassland 130 

Tundra Lichens and mosses Lichens and mosses 140 

Wetland 

Inland wetland 

Swamp 181 

Marsh 182 

Flooded flat 183 

Saline 184 

Coastal wetland 

Mangrove 185 

Salt marsh 186 

Tidal flat 187 

Impervious surface Impervious surface Impervious surface 190 

Bare areas 

Sparse vegetation 

Sparse vegetation 150 

Sparse shrubland 152 

Sparse herbaceous cover 153 

Bare areas 

Bare areas 200 

Consolidated bare areas 201 

Unconsolidated bare areas 202 

Water body Water body Water body 210 

Permanent snow and ice Permanent snow and ice Permanent snow and ice 220 

3.2 Detecting changes using the CCD algorithm and continuous Landsat imagery 

In general, land-cover changes can be grouped into three categories including: periodic changes caused by 240 

the phenological variability, trend changes driven by natural behavior (such as vegetation growth), and abrupt 

changes caused by natural or human disturbances (such as deforestation, urban expansion). Thus, capturing 

these abrupt changes and simultaneously suppressing the periodic and trend changes are the key to land-cover 

monitoring. In this study, the CCD algorithm (Zhu and Woodcock (2014b) captured these abrupt changes. The 

algorithm uses Fourier transformation to fit the time-series observations with the trend term (estimating the 245 

trend changes) and harmonic terms (describing the periodic changes) in Eq. (1).  

𝜌̂(𝑖, 𝑡) = 𝑎0,𝑖 + 𝑐1,𝑖 × 𝑡 + ∑ (𝑎𝑘,𝑖 × 𝑐𝑜𝑠 (
2𝑘𝜋

𝑇
𝑡) + 𝑏𝑘,𝑖 × 𝑠𝑖𝑛 (

2𝑘𝜋

𝑇
𝑡))𝑛

𝑘=1   (1) 

where 𝜌̂(𝑖, 𝑡) represents the predicted value of the 𝑖th band at the 𝑡th Julian day, 𝑐1,𝑖  and 𝑎0,𝑖  are the 

regression slope and intercept of the 𝑖th band, 𝑎𝑘,𝑖  and 𝑏𝑘,𝑖  represent the coefficients of the 𝑘th order 
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harmonic term for the 𝑖th band, 𝑛 denotes the number of harmonic terms, and 𝑇 is the day number of the 

year (usually defined as 365). As for how to determine value of 𝑛, Zhu and Woodcock (2014b) explained that 250 

higher order harmonic terms have better performance for capturing the periodic variability, but caused 

overfitting in the time-series model and needed more clear-sky observations to initialize the coefficients of 𝑎𝑘,𝑖 

and 𝑏𝑘,𝑖. After balancing the advantages and disadvantages of the higher order harmonic terms, we finally chose 

𝑛 as 3, as suggested by other studies (Xian et al., 2022; Xie et al., 2022).  

Then, as the CCD is a multivariate change-detection algorithm for capturing the changes of various land-255 

cover types Zhu (2017), five Landsat spectral bands (excluding the blue band for minimizing the effects of the 

atmosphere and clouds), and three spectral indexes [including: NDVI, NDWI, and NBR as given in Eq. (2)] 

were combined to detect many kind of changes in the Landsat time-series.  

𝑁𝐷𝑉𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑟

𝜌𝑛𝑖𝑟+𝜌𝑟
,   𝑁𝐷𝑊𝐼 =

𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟1
,    𝑁𝐵𝑅 =

𝜌𝑛𝑖𝑟−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑛𝑖𝑟+𝜌𝑠𝑤𝑖𝑟1
  (2) 

where 𝜌𝑔𝑟𝑒𝑒𝑛, 𝜌𝑟, 𝜌𝑛𝑖𝑟 and 𝜌𝑠𝑤𝑖𝑟1 are the green, red, NIR, SWIR1 and SWIR2 spectral bands in the Landsat 

imagery. Next, to determine the fitted coefficients of the kth order harmonic term in Eq. (1), the Least Absolute 260 

Shrinkage and Selection Operator (LASSO) regression algorithm was applied, which demonstrated better 

performance than the traditional Ordinary Least Squares method in reducing the overfitting problem and dealing 

with unevenly distributed and sparse Landsat observations (Zhu and Woodcock (2014b). 

After modeling the time-series observations using the CCD algorithm, we can analyze the land-cover 

changes from the differences between actual observations and predicted values in the time-series fitting models. 265 

Figure 3 shows three typical scenarios in which land-cover dynamics were modeled by the CCD algorithm. 

Specifically, Figure 3a illustrates that there was no abrupt break in the whole period and thus only the single 

time-series model was built, and the pixel was usually labeled as temporally stable. Figure 3b indicates that the 

pixel underwent an abrupt change and the time-series observations were split into two segments. The time point 

of the abrupt change occurred around 1996. Figure 3c gives a complicated time-series disturbance example, in 270 

which multiple abrupt changes were detected and the time-series observations were split into four segments. 

The time-series models for segments 1, 2, and 4 showed obvious trend changes. 
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Figure 3. Three typical land-cover changes using the continuous change detection (CCD) algorithm and 

continuous Landsat observations; a) time-series stable land-cover condition; b) one single abrupt change; c) 275 

multiple abrupt changes. 

3.3 Updating changed areas using local adaptive classifications  

Using the CCD algorithm and continuous Landsat imagery, we identified the temporally stable pixels and 

the time points of abrupt changes for the land-cover change pixels. Accurately determining land-cover labels of 

the changed pixels (or understanding the change process ‘from-to’) is another key procedure for time-series 280 

land-cover monitoring. To achieve this goal, we derived spatiotemporally stable training samples (see Section 

3.3.1), then updated the changed pixels using multitemporal classifications, and finally minimized the 

cumulative error caused by independent classifications.  

3.3.1 Deriving spatiotemporally stable training samples 

Numerous studies demonstrated that the accurateness of the training samples plays a critical role in accurate 285 

mapping (Foody and Arora, 2010; Zhang et al., 2020). Visual interpretation can ensure high-confidence samples 

at the expense of a large quantity of manual participations, so it was not suitable for collecting large-area training 

samples. An alternative option involved generating training samples by refining existing land-cover products 

through a series of improvement measures (Zhang et al., 2021b; Zhang et al., 2023). Inspired by the latter option, 

we combined the GLC_FCS30-2020 prior dataset and a change-detection mask (derived from the CCD 290 

algorithm described in Section 3.2) to obtain the spatiotemporally stable training samples. Specifically, 

temporally stable areas are known to have higher mapping accuracy (Yang and Huang, 2021; Zhang and Roy, 
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2017; Zhang et al., 2023); thus, we first used the CCD mask to retain these temporally stable areas in the 

GLC_FCS30-2020 maps. Radoux et al. (2014) emphasized that land-cover transition areas usually were subject 

to more serious misclassification problems and that the homogeneous land-cover pixels had a higher probability 295 

of achieving acceptable accuracy. Therefore, we used the morphological erosion filter of 3 pixels × 3 pixels to 

refine the GLC_FCS30-2020 maps into spatially homogeneous areas. After identifying the intersection of 

temporally stable and spatially homogenous areas, we retained these as the spatiotemporally stable training 

sample candidates. 

Numerous studies have highlighted the importance of training sample balance and distribution, as they 300 

significantly influence the mapping performance (Foody, 2009; Jin et al., 2014; Millard and Richardson, 2015). 

First, in term of the sample distribution, there are two options for training sample distribution including areal-

proportional or equal allocation, and former was demonstrate to achieve higher accuracy than the latter option 

in land-cover mapping especially in complicated land-cover conditions (Jin et al., 2014). However, when using 

the areal-proportional sampling strategy, the rare land-cover types usually had small sample sizes and would be 305 

sacrificed because the aim of land-cover mapping was to achieve a global optimum rather than a local optimum. 

Thus, the maximum and minimum sample size for abundant and rare land-cover types were suggested as 8000 

and 600, came from the study in Zhu et al. (2016), for avoiding the extremes of sample sizes. Next, the 

GLC_FCS30-2020 products were split into 961 5° × 5° geographical tiles, and we used the areal-proportional 

sampling strategy and sample balancing parameters to allocate the training samples from the spatiotemporally 310 

stable areas in each 5° × 5° geographical tile. Last, the impervious surface and wetland samples were excluded 

because both have been independently developed as the thematic datasets in Section 2.3 and 2.4. 

3.3.2 Updating changed areas using local adaptive classifications 

Before building the local adaptive classification models, we must extract useful spectral features from the 

time-series Landsat observations. In this study, we used multitemporal phenological, texture, and topographical 315 

features. Specifically, the multitemporal phenological features were extracted by using the percentile-

compositing method, which has fewer constraints than other compositing algorithms (such as the seasonal-based 

compositing method) while achieving similar mapping accuracy (Azzari and Lobell, 2017). The time-series 

Landsat spectral bands (five optical bands after excluding atmospherically sensitive blue band) and 

corresponding spectral indexes [NDVI, NDWI, and NBR in Eq. (2)] were composited into five percentiles (10th, 320 

25th, 50th, 75th, and 90th). Next, in terms of the texture features, our previous study explained that the texture 

features had positive contribution on land-cover mapping (Zhang et al. (2021b), so the gray-level co-occurrence 

matrix method was used for the 50th-percentile–composited NIR band to extract the homogeneity, entropy, 

dissimilarity, variance, contrast, and correlation. Last, since the land-cover distribution was usually related to 

the topographical environment, for example, croplands and water bodies are mainly distributed in flat areas, 325 

three topographical variables (elevation, slope, and aspect), calculated from a global 30 m DEM dataset (named 

as: ASTER_GDEM) (Tachikawa et al., 2011), were also imported. In total, there were 49 multisource features, 

including 40 phenological spectra features, 6 texture features, and 3 topographical variables. 

There are two options for global land-cover mapping and updating: global modeling and local adaptive 

modeling, and our previous studies have explained that local adaptive modeling yields superior results compared 330 

to global modeling. This is primarily due to the former's capability to take regional characteristics into account 

more effectively, leading to increased sensitivity in training samples and higher accuracy in land-cover 

classification (Zhang et al., 2021b; Zhang et al., 2023; Zhang et al., 2022). Thus, we first inherited the regional 
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gridding style in the GLC_FCS30 (Zhang et al., 2021b), namely, the global land was divided into 961 5° × 5° 

geographical tiles. Afterward, the local classification models were independently built for updating the land 335 

cover in each tile using the corresponding training samples in the neighboring eight surrounding tiles at 3 × 3 

window. The adjacent training samples were imported to increase the continuity of the adjacent land-cover maps. 

Last, in the selection of the suitable classification algorithm, random forest (RF) classifier has significant 

advantages, including: accommodating high-dimensional training features, better ability to deal with the 

overfitting problem, and higher classification accuracy than other widely used classifiers (Belgiu and Drăguţ, 340 

2016; Gislason et al., 2006). Meanwhile, the RF algorithm was also integrated into the internal function library 

of the GEE cloud platform as ee.Classifier.smileRandomForest(). Thus, the RF algorithm was used to combine 

the training samples and multisourced features for updating the changed pixels. The RF algorithm allows for 

adjusting two key parameters, for which the default recommended values were used based on previous studies 

(Belgiu and Drăguţ, 2016; Zhang et al., 2019). 345 

3.3.3 Temporal-consistency optimization 

To ensure the rationality and consistency of land-cover changes for long time-series, the CCD algorithm 

was applied to capture the time points of land-cover changes, and then the changed pixels were updated using 

the local adaptive classifications. In this study, despite our best efforts, it was difficult to completely eliminate 

classification errors, particularly when dealing with changes over time. To address this issue and enhance 350 

accuracy in areas with temporal variations, we employed the temporal consistency optimization method 

described in Eq. (3). This approach incorporates both temporal and spatial neighboring information to assess 

homogeneity, thereby reducing potential misclassifications in time-series changed areas. 

𝑃𝑥,𝑦,𝑡 =
1

𝑁
[∑ ∑ ∑ 𝐼(𝐿𝑥′,𝑦′,𝑡′ = 𝐿𝑥,𝑦,𝑡)𝑡′=𝑡+1

𝑡′=𝑡−1
𝑦′=𝑦+1
𝑦′=𝑦−1

𝑥′=𝑥+1
𝑥′=𝑥−1 ]  (3) 

Where 𝑃𝑥,𝑦,𝑡 is the homogeneity probability of the pixel in spatial location (𝑥, 𝑦) and time point 𝑡; usually, the 

higher the value of 𝑃𝑥,𝑦,𝑡, the less the classification error effect. 𝐿𝑥,𝑦,𝑡 and 𝐿𝑥′,𝑦′,𝑡′ are the land-cover labels 355 

of the central pixel and the corresponding spatiotemporal neighboring pixels with a local window of 3 × 3 × 3, 

and the 𝐼() denotes the indicator function for the equation of the status between two pixels. In this study, the 

homogeneity probability was calculated for each changed pixel, and used the threshold of 0.5 (as suggested by 

and used in the studies of (Li et al., 2015; Zhang et al., 2022) to judge the rationality of land-cover changes. 

Namely, if the 𝑃𝑥,𝑦,𝑡 was less than the threshold, the 𝐿𝑥,𝑦,𝑡 would be modified according to the spatiotemporal 360 

pixels. 

3.4 Accuracy assessment  

The validation process for the GLC_FCS30D dataset follows the recommended guidelines proposed by 

Pontus Olofsson (2014). These guidelines encompass two key components: area estimation (nonsite-specific 

accuracy) and accuracy assessment (site-specific accuracy). The site-specific accuracy assessment mainly 365 

focuses on estimating the confusion matrix and calculating some accuracy metrics including overall accuracy 

(O.A.), producer’s accuracy (P.A.), and user’s accuracy (U.A.) and the corresponding standard errors using a 

poststratified estimator (Pontus Olofsson, 2014). Specifically, because there is currently no global long-time 

series validation dataset, we used 84526 global validation points to assess the accuracy metrics of the 

GLC_FCS30D dataset in 2020 and used two third-party datasets to analyze the time-series accuracy variations. 370 

The GLC_FCS30D adopts a fine classification system containing 35 subcategories, for which we applied an 
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analysis protocol into two validation systems (the level-0 classification system containing 10 major land-cover 

types and the LCCS level-1 validation system containing 17 land-cover types) to comprehensively understand 

the GLC_FCS30D dataset quality. The correspondence relationship between Level-0 and LCCS level-1 

validation systems is explained in Table 1. 375 

4. Results and discussion 

4.1 Overview of GLC_FCS30D maps and their changes 

Figure 4 provides an overview of the GLC_FCS30D dataset in 2022; overall, it aligns with the real-world 

land-cover patterns on a global scale. Forest, cropland, barren land, and grassland are the dominant land-cover 

types, and each of them is distributed in the corresponding ecology subregions. For example, needle-leaved 380 

forest is mainly concentrated in the high-latitude cold regions while broad-leaved forests are mainly distributed 

in tropical regions; permanent ice and snow is mainly located in Greenland and high-altitude montains. The 

GLC_FCS30D has significant advantages over other global land-cover datasets in terms of land-cover type 

diversity; it contains 35 discrete land-cover types, among which forest and wetland are subdivided into 10 and 

7 land-cover subcategories, respectively. 385 

 

Figure 4. Overview of the GLC_FCS30D in 2022 with a color-coded legend derived from the European Space 

Agency (ESA) Climate Change Initiative land-cover dataset (Defourny et al., 2018). 

Figure 5a illustrates the spatial distribution of land-cover change intensity (measuring the proportions of 

changed pixels in the 0.05° grid) in the GLC_FCS30D from 1985 to 2022 after upscaling to a resolution of 390 

0.05°. Obviously, global land-cover has experienced significant changes over the past 37 years, mainly in the 

following three typical areas: 1) tropical rainforest peripheral areas in South America and Southeast Asia, in 
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which deforestation is the dominant cause; 2) wetland and water-body intermingling areas, such as North 

America and northern Asia, in which water bodies and wetland were transformed into one another due to 

different annual water levels. In the GLC_FCS30D the water body land-cover type represents permanent water 395 

during the year (it may be wetland in other years). 3) The semi-arid areas in Australia, Central Asia, and western 

Africa, where land cover (such as sparse vegetation or bare land) is directly affected by precipitation and 

temperature. For example, if there is sufficient precipitation in the year, the sparse vegetation and some bare 

land would be covered by grass in semi-arid areas. Similarly, the work of Winkler et al. (2021) revealed that 

these semi-arid areas experienced serious and frequent land-cover changes. Figure 5b quantitatively counts the 400 

changed areas of 10 major land-cover types from 1985 to 2022. Forest and cropland variations dominated global 

land-cover change. The net loss of forests over the past 37 years reached approximately 2.5 million km2, and 

the decline is steady over time. Conversely, cropland showed a stable increase and the net gain in cropland area 

is approximately 1.3 million km2. Shrubland, wetland, and impervious surface had increased areas of 0.45 

million km2, 0.40 million km2, and 0.37 million km2, respectively. The increased shrubland resulted from the 405 

recovery of deforested land, and the wetland gains are due to increases in seasonal water bodies. The work of 

Pekel et al. (2016) emphasized that the global seasonal water bodies, labeled as inland wetland in the 

GLC_FCS30D, showed an overall increase.  

 

Figure 5. (a) The spatial distribution of global land-cover change intensity from 1985 to 2022 after aggregating 410 

to a resolution of 0.05°. (b) The net areas of 10 major land-cover types in GLC_FCS30D from 1985 to 2022. 
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Figure 6 further analyzes the net area variations of 10 major land-cover types on six continents. The six 

continents exhibit various land-cover change characteristics, for example, steady forest loss and cropland gain 

dominate land-cover change in South America, while the net area variations of most land-cover types fluctuate 

in Australia. North America experiences obvious deforestation, and the forest loss area reaches approximately 415 

4.5 × 105 km2. In contrast, shrubland, grassland, and impervious surface land-cover types show an overall 

increasing trend, with increases of 1.4 × 105 km2, 0.8 × 105 km2, and 0.72 × 105 km2, respectively. Similarly, 

Xian et al. (2022) reported that forest losses and shrubland, grassland, and impervious surface gains are the 

dominant characteristics of the CONUS from 1985 to 2017. In Europe, the forest area continues to decrease, 

and the cropland area first decreased and then increased because of the collapse of the Soviet Union in 1990s. 420 

Abandoned croplands were transformed into pasture (which also belongs to the cropland land-cover type in the 

GLC_FCS30D). In Asia, the increase in impervious surface is the most significant across the six continents with 

a net increase of 1.9 × 105 km2; wetland also shows a large increase of 1.1×105 km2. The increased wetland 

coverage comes from the increase in seasonal water bodies. South America and Africa experience similar land-

cover change characteristics, with the most intense deforestation rates and the most significant increases in 425 

cropland. According to our statistics, the forest loss on these two continents amounts to 16.9 × 105 km2 and the 

corresponding increase of cropland is approximately 11.1 × 105 km2. Last, because Oceania is more sensitive 

to climate change, especially in terms of precipitation, the fluctuations of shrubland, grassland, and bare land 

are evident because the conversion relationship between the three land-cover types is related to annual 

precipitation. 430 

 

Figure 6. The net area variations of 10 major land-cover types on six continents from 1985 to 2022. 

Figure 7 displays the land-cover transformation relationships from 1985 to 2022 in the GLC_FCS30D 

dataset using Sankey diagrams. Global cropland and forest have obvious area changes and area proportions have 

changed from 12.08% and 38.26% in 1985 to 12.86% and 36.48% in 2022. Shrubland changed from 8.70% in 435 

1985 to 9.03% in 2022. We mainly focus on forest, cropland, shrubland and impervious surface changes, which 

dominate the land-cover changes in Figure 5. There are three main causes of forest loss over the past 37 years: 
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1) 37.58% of deforested land was converted to cropland, which was more significant in tropical rainforest areas 

(Figure 8a); 2) 26.92% of the lost forest was regrown as shrubland, which is more common in mountainous 

areas affected by wildfires; and 3) 13.49% of deforested land was converted to grassland. Cropland is converted 440 

to forest, grassland, and impervious surface. A total of 26.29% of lost cropland is converted to grassland due to 

abandonment, 25.88% of lost cropland is covered by forests, and 21.01% of lost cropland resulted from 

urbanization. Lastly, regarding impervious surface, our primary focus was on identifying the sources 

contributing to its expansion. Our findings indicate that approximately 36.24% of the impervious surface 

increase can be attributed to the conversion of cropland, while 13.49% of the increase is a result of deforestation. 445 

 

Figure 7. Sankey diagrams of the global land-cover changes during 1985-2022 in the GLC_FCS30D dataset. 

To visually understand the land-cover change process captured by the GLC_FCS30D dataset over past 37 

years, Figure 8 displays two typical enlargements (spatial location illustrated as two black rectangles in Figure 

5a) of the Amazon rainforest (which experienced significant deforestation) and China’s Yangtze River Delta 450 

(which underwent rapid urbanization). These two typical areas experienced drastic land-cover changes and the 

GLC_FCS30D accurately captures the spatiotemporal changes. In specific, the deforestation in South America 

is widely recognized, and the GLC_FCS30D clearly reflects this trend. Namely, the early deforestation showed 

a grid distribution, and then each grid gradually extended outward and finally connected into patches. The 

GLC_FCS30D also shows that deforestation has not stopped in the region in terms of the rate of forest loss,  455 

and these findings are in line with the results of earlier researches (Harris et al., 2021; Potapov et al., 2022). In 

the Yangtze River Delta, GLC_FCS30D depicts that the dominant land-cover change over the enlargement is 

urbanization, and a large quantity of irrigated cropland has been converted to impervious surface. Meanwhile, 

urban expansion was significantly faster before 2010 than after 2010 with the GLC_FCS30D. In short, if we 

combine real time-series remote-sensing observation data, the GLC_FCS30D effectively captures the 460 

spatiotemporal changes of the land surface. 
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Figure 8. Two typical enlargements of land-cover changes in the GLC_FCS30D from 1985 to 2022 in (a) the 

Amazon rainforest and (b) the Yangtze River Delta in China. The color-coded legend is like the global map in 

Figure 4. In each case, the natural-color imagery from 1985 to 2022 is a composite taken from Landsat imagery. 465 

4.2 Accuracy assessment of the GLC_FCS30D in 2020 

Table 2 provides the error matrix and accuracy metrics for the GLC_FCS30D dataset in the level-0 

classification system containing 10 major land-cover types. The novel GLC_FCS30D dataset attained an overall 

accuracy of 80.88% (±0.27%). The cropland, forest, impervious surface, water body, as well as permanent 

snow and ice perform better in terms of the P.A. and U.A. than the remaining land-cover types, with 470 

corresponding accuracies exceeding 85%. The impervious surface and wetland datasets are independently 

generated and then overlaid on the GLC_FCS30D, helping these complicated land-cover types achieve high 

accuracy metrics. Conversely, grassland, shrubland, and tundra have lower accuracies; for example, grassland 

had the lowest P.A. of 54.41% and shrubland had the lowest U.A. of 57.63%. The two reasons that they 

performed poorly were as follows: 1) these land-cover types usually reflected heterogeneous and varied spectral 475 

and spatial characteristics, such as the grassland shared similar spectra with cropland and sparse shrubland in 

the growing season and mimicked bare-land features in harvest season; 2) all of them were distributed in 

climate-transition areas with complicated climate variations and landscapes.  

Table 2. Error matrix of the GLC_FCS30D dataset in 2020 based on the level-0 basic classification system. 

The reported Producer's Accuracy (P.A.) and User's Accuracy (U.A.) come with their corresponding standard 480 

errors (SE) shown in parentheses. 

 Map O.A. = 80.88% (±0.27%) 

Reference CRP FST GRS SHR WET WTR TUD IMP BAL PSI Total P.A.(SE) 

CRP 15.442 0.792 0.679 0.388 0.086 0.027 0 0.174 0.117 0 17.704 87.22(0.54) 
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FST 0.513 28.712 0.315 0.811 0.371 0.021 0.008 0.063 0.113 0.002 30.93 92.83(0.31) 

GRS 1.035 1.166 5.906 1.181 0.231 0.011 0.084 0.051 1.181 0.01 10.855 54.41(1.02) 

SHR 0.555 1.798 0.863 5.392 0.161 0.013 0.019 0.05 0.502 0.002 9.356 57.63(1.09) 

WET 0.068 0.465 0.156 0.157 4.047 0.347 0.031 0.021 0.222 0.001 5.516 73.37(1.27) 

WTR 0.04 0.086 0.019 0.017 0.302 3.305 0.008 0.012 0.039 0.002 3.831 86.28(1.12) 

TUD 0.01 0.123 0.168 0.167 0.018 0.03 2.444 0.002 0.473 0.02 3.454 70.76(1.65) 

IMP 0.084 0.058 0.024 0.04 0.001 0.006 0.002 5.043 0.024 0 5.283 95.45(0.61) 

BAL 0.13 0.049 0.783 0.585 0.043 0.045 0.577 0.048 9.239 0.131 11.628 79.45(0.8) 

PSI 0 0.004 0.03 0.005 0 0.023 0.001 0 0.03 1.351 1.443 93.63(1.38) 

Total 17.877 33.251 8.943 8.743 5.259 3.828 3.176 5.464 11.94 1.52   

U.A.(SE) 
86.38 

(0.55) 

86.35 

(0.4) 

66.05 

(1.07) 

61.68 

(1.11) 

76.96 

(1.2) 

86.33 

(1.35) 

76.97 

(1.6) 

92.29 

(0.77) 

77.38 

(0.82) 

88.89 

(1.72) 
  

Note: The abbreviations correspond to the 10 categories of the basic classification system in Table 1. 

Table 3 provides the error matrix of the GLC_FCS30D in 2020 in the LCCS level-1 validation system with 

17 land-cover types. The GLC_FCS30D-2020 dataset achieves an overall accuracy of 73.24% (±0.30%), which 

is lower than that in the level-0 classification system, because these similar land-cover subcategories more easily 485 

suffer from misclassifications. For example, forest has a P.A. of 92.83% (±0.31%) and the P.A. rapidly decreases 

to the range of 58.29% (±1.53%) to 82.39% (±0.98%) when split into five fine subcategories. Cropland, forest, 

and bare land, which are further divided into multiple subcategories, show obvious decreases in accuracy over 

their subcategories in terms of P.A. and U.A. Taking cropland and forest as examples, approximately 31.7% of 

irrigated cropland (ICP) is misclassified as rainfed cropland (RCP) and so the U.A. of ICP is only 59.92%. More 490 

than 53.8% of mixture forests (MFT) are wrongly labeled as the other four forest subcategories and so the 

mixture forests have the lowest U.A. of 39.34% (±1.38%). Meanwhile, sparse vegetation has the second lowest 

U.A. of 50.63% (±1.47%) because of the confusion among sparse vegetation, grassland, and bare land. In the 

level-0 basic classification system (Table 1), sparse vegetation is grouped in with bare land. A previous study 

in Europe Union proposed grouping it as grassland (Gao et al., 2020). Wetland is further divided into coastal 495 

wetland (CWL) and inland wetland (IWL) in Table 3, and the CWL has higher U.A. than that of wetland in 

Table 2, primarily attributed to its significantly more accurate classification in the CWL (Zhang et al., 2023). 
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4.3 Accuracy assessment based on two third-party regional validation datasets 500 

4.3.1 Time-series accuracy metrics of GLC_FCS30D from LCMAP_Val dataset 

Figure 9 displays time-series variations of the overall accuracy of the GLC_FCS30D dataset using the 

LCMAP_Val annual validation dataset from 1985 to 2018 over the CONUS. The GLC_FCS30D achieves a 

mean overall accuracy of 79.50% (±0.50%) and varies from a high value of 80.04% (±0.49%) in 2015 to a low 

value of 78.91% (±0.51%) in 2000. The overall accuracy of GLC_FCS30D is slightly lower at the early stage, 505 

which might be related to the density of Landsat observations. The early Landsat missions had weaker satellite-

to-ground transmission and onboard recording capabilities (Roy et al., 2014a), so phenological variability and 

land-cover changes were more difficult to capture in the early stage.  

 

Figure 9. The time-series overall accuracy of the GLC_FCS30D dataset using the LCMAP_Val annual 510 

reference dataset across the contiguous United States (CONUS) from 1985 to 2018. The error bars on the graph 

show the uncertainty of each data point. 

Figure 10 further illustrates the time-series variations of P.A. and U.A. for the GLC_FCS30D dataset in 

the CONUS. Visually, the P.A. and U.A. of 10 major land-cover types range from 45% to 100% and 35% to 

100%, respectively, and the time-series variations are stable. Among them, the water body land-cover type has 515 

the highest accuracy metrics, achieving mean P.A. and U.A. values of 95.31% (±1.14%) and 98.53% (±

0.66%), respectively, which benefit from its unique spectral characteristics. Cropland follows with mean P.A. 

and U.A. values of 93.37% (±0.74%) and 87.70% (±0.94%), respectively. Forest ranks third with a high P.A. 

of 97.75% (±0.35%) but relatively low U.A. of 82.42% (±0.82%); the unbalanced metrics are because 

GLC_FCS30D and LCMAP_Val have different definitions for forest. GLC_FCS30D defines the tree cover of 520 

the forest as greater than 15% and the threshold setting of LCMAP_Val is 10%, so many shrublands in the 

GLC_FCS30D are labeled as forest in the LCMAP_Val. Wetland has a U.A. value of 90.47% (±2.05%) but a 
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P.A. value of 57.07% (±2.75%), which is also caused by a discrepancy in the definition of wetland. 

GLC_FCS30D identifies seasonal water bodies as wetland while the LCMAP_Val classifies them as water body. 

Impervious surface has a P.A. lower than 60% mainly because the GLC_FCS30D and LCMAP_Val datasets 525 

have different definitions of impervious surface. LCMAP_Val defines buildings and the surrounding green areas 

as developed, while GLC_FCS30D only includes the artificial buildings (houses, roads, squares, and so on). 

Bare land and shrubland have the lowest U.A. values of 35.58% (±4.39%) and 47.29% (±1.56%), respectively, 

mainly because both of them are easily confused with grassland due to the complicated spectral characteristics 

and coexist in climate-sensitive semi-arid regions (e.g., the Midwestern United States). Xian et al. (2022) 530 

emphasized that long-term monitoring of shrubs and grasslands presents significant challenges in the CONUS. 

Permanent snow and ice, which is sparsely distributed in high-elevation mountainous areas of the United States, 

has unique and specific spectral characteristics, so it achieves 100% P.A. in the GLC_FCS30D. The large 

fluctuations in U.A. are because the LCMAP_Val dataset has a small sample size for ice and snow and the 

commission error of other land-cover types causes large variations. 535 

 

Figure 10. The time-series producer’s accuracy and user’s accuracy of GLC_FCS30D based on the 

LCMAP_Val dataset from 1985 to 2018 in the contiguous United States (CONUS). The error band represents 

±1 standard errors. 

Figure 11 indicates the area-bias percentage of eight land-cover types estimated by GLC_FCS30D and 540 

LCMAP_Val across the CONUS. Intuitively, the GLC_FCS30D and LCMAP_Val share similar total areas for 

estimation of cropland, bare land, and water body, and show evident area deviations for estimating forest, 

shrubland, and grassland. The deviations in shrubland and grassland are mainly because these land-cover types 

coexist in the semi-arid regions of the central United States and share similar spectral characteristics and 

temporal variability; thus, some grasslands in the LCMAP_Val are considered as shrubland in the 545 

GLC_FCS30D. Xian et al. (2022) also failed to distinguish grassland and shrubland and combined them as a 

group in generating the LCMAP annual maps. The LCMAP_Val has a broader definition of impervious surface 

and resulting negative bias, so the impervious surface area estimated in LCMAP_Val is larger than the 

assessment in GLC_FCS30D dataset. 
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 550 

Figure 11. The area-bias percentage of eight land-cover types in the GLC_FCS30D and LCMAP_Val datasets 

from 1985 to 2017 in the contiguous United States (CONUS).  

4.3.2 Time-series accuracy metrics of GLC_FCS30D from the LUCAS dataset 

Table 4 lists the time-series accuracy metrics of the GLC_FCS30D dataset across the European Union (EU) 

from 2006 to 2018 using the LUCAS dataset. The GLC_FCS30D dataset has a mean overall accuracy of 81.91% 555 

(±0.09%) ranging from 81.64% (0.09%) to 82.11% (0.09%) in EU. The two dominant land-cover types 

(cropland and forest) that cover almost 70% of the entire EU area (Gao et al., 2020)) have higher P.A. and U.A. 

values than other land-cover types. The P.A. and U.A. of cropland exceed 85% and 93%, respectively. Forest 

has unbalanced P.A. (approximately 95%) and U.A. values (approximately 76%) because the LUCAS dataset 

defines forest more broadly than the GLC_FCS30D dataset. In specific, sparse vegetation associated with forest 560 

is grouped as forest in LUCAS but as bare land in GLC_FCS30D. Gao et al. (2020) explained the discrepancy 

in the forest definition between LUCAS and GLC_FCS30. Shrubland, grassland, and bare land showed inferior 

performance in both P.A. and U.A. because of their complicated spectral variability and spatial heterogeneity. 

Gao et al. (2020) also found that three global 30-m land-cover products (GlobeLand30, FROM_GLC, and 

GLC_FCS30) exhibited poor performance for these three land-cover types. Urban green space and 565 

discontinuous urban fabric, excluding from the GLC_FCS30D, are grouped as impervious surface in the 

LUCAS. Thus, the impervious surface also has a low P.A. of approximately 59%. Last, we further investigate 

the temporal variability of P.A. and U.A. and find that permanent ice and snow and wetland show greater 

variability and that both are closely related to annual temperature and precipitation; namely, their spatial 

distributions are affected by the natural environment. 570 

Table 4. Time-series accuracy metrics of the GLC_FCS30D dataset using the LUCAS validation dataset across 

the European Union.  

 2006 2009 2012 2015 2018 

 P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) 
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CRP 85.49(0.11) 93.37(0.08) 85.40(0.11) 93.31(0.08) 85.50(0.11) 93.17(0.08) 85.47(0.11) 93.05(0.08) 85.52(0.11) 92.82(0.08) 

FST 95.22(0.08) 76.71(0.15) 94.97(0.08) 76.71(0.15) 94.79(0.09) 76.82(0.15) 94.36(0.09) 76.82(0.15) 93.71(0.09) 76.85(0.15) 

GRS 6.13(0.26) 21.31(0.83) 6.10(0.26) 21.13(0.83) 6.05(0.26) 20.98(0.83) 6.08(0.26) 20.71(0.82) 5.99(0.26) 20.74(0.82) 

SHR 8.13(0.42) 8.93(0.46) 8.25(0.43) 8.92(0.46) 8.02(0.42) 8.77(0.46) 7.84(0.42) 8.60(0.45) 8.35(0.43) 8.96(0.46) 

WET 63.10(0.81) 66.55 (0.81) 61.40(0.81) 65.55(0.82) 61.86(0.81) 66.21(0.82) 62.64(0.81) 66.60(0.81) 62.94(0.81) 65.34 (0.81) 

WTR 89.73(0.40) 92.44(0.36) 90.09(0.40) 92.53(0.35) 90.28(0.39) 92.36(0.36) 90.83(0.38) 91.63(0.37) 90.10(0.40) 91.56(0.37) 

IMP 58.55(0.56) 72.69(0.56) 59.21(0.55) 72.06(0.56) 59.06(0.55) 71.72(0.56) 58.65(0.55) 70.85(0.56) 59.01(0.55) 70.29(0.56) 

BAL 52.77(1.12) 39.62(0.95) 52.90(1.12) 38.44(0.93) 52.19(1.13) 37.70(0.93) 52.07(1.13) 36.16(0.90) 52.33(1.13) 34.69(0.87) 

PSI 86.02(5.00) 35.01(4.38) 91.40(4.04) 36.56(4.38) 89.25(4.46) 31.86(4.00) 96.24(2.74) 31.40(3.81) 96.24(2.74) 31.35(3.81) 

O.A.(SE) 82.11(0.09) 81.99(0.09) 81.97(0.09) 81.82(0.09) 81.64(0.09) 

Table 5 shows the area proportions of 10 major land-cover types from the GLC_FCS30D dataset (Map) 

and LUCAS validation dataset (Ref), respectively. The area bias (AB) measures the area deviations of the two 

different datasets for the same land-cover type. Overall, the GLC_FCS30D overestimates the total area 575 

assessments of forest, bare land, and ice and snow, and underestimates the remaining land-cover types in 

comparison to the LUCAS estimations. In particular, the AB of forest is the most significant overestimation of 

+7.356%, and the underestimated MB of cropland is −4.086%. Cropland and forest cover together account for 

approximately 70% of the total EU area (Gao et al., 2020)), as a result, the area bias (AB) values for these two 

land-cover types are more noticeable or pronounced compared to the AB values of the other land-cover types.  580 

Table 5. The area proportions and area bias (AB) values of 10 major land-cover types from the GLC_FCS30D 

dataset (Map) and the LUCAS validation dataset (Ref). 

 
2006 2009 2012 2015 2018 

Map Ref AB Map Ref AB Map Ref AB Map Ref AB Map Ref AB 

CRP 46.48 50.62 -4.14 46.46 50.64 -4.18 46.59 50.67 -4.08 46.63 50.69 -4.06 46.77 50.74 -3.97 

FST 41.39 33.76 7.63 41.28 33.75 7.53 41.14 33.73 7.41 40.96 33.73 7.23 40.66 33.68 6.98 

GRS 1.21 4.15 -2.94 1.21 4.15 -2.94 1.21 4.15 -2.94 1.23 4.15 -2.92 1.21 4.15 -2.94 

SHR 1.91 2.08 -0.17 1.94 2.08 -0.14 1.92 2.08 -0.16 1.91 2.07 -0.16 1.95 2.06 -0.11 

WET 1.70 1.75 -0.05 1.68 1.74 -0.06 1.68 1.73 -0.05 1.69 1.71 -0.02 1.73 1.72 0.01 

WTR 2.75 2.85 -0.1 2.76 2.85 -0.09 2.77 2.85 -0.08 2.81 2.85 -0.04 2.79 2.86 -0.07 

IMP 3.18 3.82 -0.64 3.25 3.83 -0.58 3.25 3.82 -0.57 3.27 3.82 -0.55 3.32 3.82 -0.5 

BAL 1.32 0.95 0.37 1.36 0.95 0.41 1.37 0.95 0.42 1.42 0.95 0.47 1.49 0.95 0.54 

PSI 0.06 0.02 0.04 0.06 0.02 0.04 0.07 0.02 0.05 0.07 0.02 0.05 0.07 0.02 0.05 

4.4 Limitations and perspectives of the GLC_FCS30D dataset 

To achieve the goal of accurate and robust monitoring of global land-cover change, four steps are adopted: 

1) combining the advantages of the CCD model and full time-series Landsat observations to capture the land-585 

cover change time-points for any changed pixels; 2) using the temporally stable areas as prior knowledge to 

ensure the quality of training samples and adopting local adaptive modeling to update the land-cover transitions 

of these changed pixels; 3) independently developing global thematic products for two complicated land-cover 

types (impervious surface and wetland) to improve the reliability of the GLC_FCS30D; and 4) applying the 

‘spatiotemporal consistency checking’ optimization in Section 3.3.3 to further guarantee the stability and 590 

accuracy of the GLC_FCS30D. The accuracy assessments, using the developed global validation dataset and 

https://doi.org/10.5194/essd-2023-320
Preprint. Discussion started: 31 August 2023
c© Author(s) 2023. CC BY 4.0 License.



24 

 

two third-party datasets, demonstrate that the GLC_FCS30D fulfills accuracy requirements at a baseline year 

and for time-series variability over global or national scales. Comparisons with other land-cover products also 

highlight the superiority of the GLC_FCS30D in terms of classification system diversity and monitoring 

accuracy of these changed-areas. However, long time-series monitoring of global land-cover change is an 595 

extremely complex and difficult task (Hansen and Loveland, 2012; Song et al., 2018; Winkler et al., 2021; Xian 

et al., 2022). Although this study takes a series of measurements and methods to achieve global 30-m land cover 

change monitoring over past 37 years, there are still some uncertainties and limitations that need to be resolved 

in further work. 

The CCD algorithm makes full use of dense satellite observations to capture land-cover changes robustly 600 

and accurately (Zhu and Woodcock, 2014b; Zhu et al., 2012). However, previous studies have demonstrated 

that their reliability is highly correlated to the density of valid satellite observations (Bullock et al., 2022; Ye et 

al., 2021; Zhu et al., 2019). Cloudy and snowy areas have greater uncertainty for capturing the time points of 

land-cover change (DeVries et al., 2015; Xian et al., 2022). Additionally, due to the limited storage capacity 

and satellite–ground data-transmission capacity of early satellites, the density of Landsat imagery is sparse 605 

before 2000 (only Landsat 5 single-satellite acquired data) (Roy et al., 2014b). In this study, we combine the 

satellite observations from two years before and after the nominal center year from 1985 to 1995; for example, 

we update the land-cover maps in 1995 using all available imagery from 1993 to 1997. However, a previous 

study found that northeastern Asia did not have any valid Landsat observations before 2000 (Zhang et al., 2022), 

which means some land-cover changes could not be captured in the GLC_FCS30D in these areas before 2000. 610 

To solve the problem of missing and sparse observations, a useful solution is to fuse multisourced remote-

sensing imagery. For example, Zhang et al. (2021c) combined Landsat and Sentinel-2 imagery to track tropical 

forest disturbances with overall accuracy of more than 87%. Therefore, further work will investigate the 

feasibility of integrating Sentinel 1/2, MODIS, and AVHRR imagery as auxiliary datasets. 

GLC_FCS30D reveals a large number of land-cover changes in the semi-arid regions illustrated in Figure 615 

5a, in which the land-cover changes are more influenced by climate factors. For example, the central region of 

Australia is a typical semi-arid region, and the dominant land-cover types are grassland, sparse vegetation, 

shrubland, and bare land. In general, if there is sufficient annual precipitation, the distributions of shrubland and 

grassland in the area will be more extensive; otherwise the area will be dominated by bare land and sparse 

vegetation (Dong et al., 2020; Ge et al., 2022). Recently, some studies suggested suppressing these changes; for 620 

example, Bastos et al. (2022) chose to suppress these land-cover changes by fusing these four land-cover types 

into the single grassland land-cover type in Australia, and Xian et al. (2022) combined grassland and shrubland 

together in the CONUS. Whether these frequent and climate-sensitive land-cover changes should be suppressed 

will be considered in our further work. 

Although we used a global validation dataset to assess the capability of GLC_FCS30D in the baseline year 625 

of 2020 and two third-party regional datasets to assess its time-series accuracy variability in the European Union 

and the CONUS, the accuracy assessment work should be strengthened. In specific, the classification system 

differences among GLC_FCS30D, LUCAS, and LCMAP_Val cannot be ignored. For example, the impervious 

surface land-cover type in the LUCAS and LCMAP_Val contains artificial surfaces and their surroundings (such 

as city greenery) (Stehman et al., 2021; Xian et al., 2022), while the GLC_FCS30D only includes artificial 630 

structures (Zhang et al., 2022), so the impervious surface in GLC_FCS30D has low P.A. when validating with 

the LUCAS and LCMAP_Val datasets in Section 4.3. The time-series accuracy variability is only analyzed in 
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two regions, so its performance in more complex areas (such as Africa) needs to be further studied. Thus, our 

future work would collect long-term time-series validation data sets for more regions and build a long time-

series global validation dataset based on the existing works in Section 2.5.1. 635 

5. Data availability 

The developed GLC_FCS30D dataset can be freely accessible via https://doi.org/10.5281/zenodo.8239305 

(Liu et al, 2023). To allow users to better select this dataset, it is saved as 961 5° × 5° independent tiles. Each 

tile is named as ‘GLC_FCS30D_yyyyYYYY_E/W**N/S**.tif’, in which ‘E/W**N/S**’ represents the 

longitude and latitude coordinates of the top-left corner, and yyyy and YYYY are the start and end years of the 640 

land-cover change monitoring. The GLC_FCS30D contains 26 time-step maps from 1985 to 2022, updated 

every five years before 2000 and annually from 2000 to 2022The first three time steps are saved together and 

the following 23 time steps are saved separately. For example, GLC_FCS30D_19851995_E115N15.tif and 

GLC_FCS30D_20002022_E115N15.tif are the first three time-steps and the following 23 annual time-steps 

data from 1985 to 2022 for the region of 115°–120°E, 10°–15°N, respectively.  645 

6. Conclusion 

Land cover change is the main cause or driving force of global climate change and has attracted increasing 

attention over the past decades. Long time-series global land-cover dynamic monitoring is still a challenging 

task. In this study, the first global 30-m land-cover dynamic dataset with fine classification system 

(GLC_FCS30D), containing 35 fine land-cover sub-categories and covering the period of 1985 to 2022 with 26 650 

time-steps, is generated on the GEE platform. In specific, we take advantage of the full time-series Landsat 

observations and the CCD algorithm to capture the time-points of changed areas, and then update and optimize 

the land-cover changed areas based on the local adaptive modeling strategy and a temporal-consistency 

algorithm. The accuracy assessments indicate that the proposed method can achieve accurate and 

spatiotemporally consistent land-cover change monitoring, and the GLC_FCS30D achieves an overall accuracy 655 

in 2020 of 80.88% (±0.27%) for the basic classification system 10 major land-cover types) and 73.24% (±

0.30%) for the LCCS level-1 validation system (17 LCCS land-cover types). Therefore, the GLC_FCS30D is 

the first global land-cover dynamic monitoring product with a 37-year time span and the most diverse 

classification system. It will be essential for sustainable development, environmental protection, and informed 

decision-making to address the challenges of a rapidly changing world. 660 
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