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Abstract 

Land cover change has been identified as an important cause or driving force of global climate change and 

is a significant research topic. Over the past few decades, global land-cover mapping has progressed, however, 

long time-series global land-cover change monitoring data are still sparse, especially at 30-m resolution. In this 20 

study, GLC_FCS30D is described as the first global 30-m land-cover dynamic monitoring dataset, containing 

35 land-cover subcategories and covering the period of 1985–2022 with 26 time-steps (maps updated every five 

years before 2000 and annually after 2000). GLC_FCS30D has been developed using continuous change 

detection and all available Landsat imagery based on the Google Earth Engine platform. Specifically, we first 

take advantage of the continuous change-detection model and full time-series Landsat observations to capture 25 

the time-points of changed pixels and identify the temporally stable areas. Then, we apply a spatiotemporal 

refinement method to derive the globally distributed and high-confidence training samples from these 

temporally stable areas. Next, locally adaptive classification models are used to update the land-cover 

information for the changed pixels, and a temporal-consistency optimization algorithm is adopted to improve 

their temporal stability and suppress some false changes. Further, the GLC_FCS30D product is validated using 30 

84,526 globally distributed validation samples in 2020 and achieves an overall accuracy of 80.88% (±0.27%) 

for the basic classification system (10 major land-cover types) and 73.04% (±0.30%) for the LCCS level-1 

validation system (17 LCCS land-cover types). Meanwhile, two third-party time-series validation datasets in 

the United States and Europe Union are also collected for analyzing accuracy variations, and the results show 

that the GLC_FCS30D offers significant stability for time-series accuracy variation and achieves the mean 35 

accuracies of 79.50% (±0.50%) and 81.91% (±0.09%) over the two regions. Last, we conclude the global land-

cover change information from GLC_FCS30D dataset, namely, the forest and cropland variations dominate 

global land cover change over past 37 years, and net loss of forests reaches about 2.5 million km2 and net gain 

in cropland area is approximately 1.3 million km2. Therefore, the novel GLC_FCS30D is an accurate time-series 

land-cover dynamic monitoring product benefiting from its diverse classification system, high spatial resolution 40 
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and the long time span of 1985–2022, thus, it will effectively support global climate change research and 

promote sustainable development analysis. The GLC_FCS30D datasets are available via 

https://doi.org/10.5281/zenodo.8239305 (Liu et al., 2023). 
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1. Introduction 45 

Land cover data are important and necessary for supporting sustainable development goals, maintaining 

biodiversity, and monitoring natural resources (Liu et al., 2021b; Potapov et al., 2022). The land cover changes 

directly or indirectly influence the global climate patterns and the speed and magnitude of climate change (Song 

et al., 2018) and increasingly affects biogeochemical cycles, the carbon cycle, and Earth’s energy balance (Foley 

et al., 2005; Hong et al., 2021; Winkler et al., 2021). Since the industrial revolution, under the dual pressure of 50 

global climate change and human activities, global land cover has undergone drastic changes. According to a 

Global Carbon Project report in 2020, since the industrialization period, land cover and land use changes have 

contributed to approximately 25% of global greenhouse gas emissions (Friedlingstein et al., 2020), and this 

trend is exacerbated with the ongoing increase in population and per capita energy consumption (Xian et al., 

2022). Therefore, understanding and studying land cover changes are of vital significance for addressing global 55 

environmental changes, promoting sustainable development, and safeguarding the Earth’s ecological 

environment. 

Remote-sensing techniques, with periodic Earth observation capability and archived massive long-term 

observation data since 1972, provide the most cost-effective and practical solutions for long time-series large-

area land-cover change monitoring. In the past few decades, with the continuous improvement of remote sensing 60 

technology and storage and computing capabilities, global land-cover change monitoring (GLCCM) has 

transitioned from 1-km spatial resolution to fine resolution of 30-m or 10-m and from single-phase mapping to 

long-term monitoring (Ban et al., 2015; Friedl et al., 2010; Friedl et al., 2022; Giri et al., 2013). In the early 

stage, GLCCM mainly relied on the time-series MODIS, AVHRR, and Project for Onboard Autonomy 

(PROBA)-V imagery; for example, Sulla-Menashe et al. (2019) generated a global 500-m annual land-cover 65 

products (MCD12Q1) from 2001 to present using time-series MODIS imagery with an overall accuracy of 

73.6%. Defourny et al. (2018) integrated time-series PROBA-V and Medium Resolution Imaging Spectrometer 

(MERIS) observations to develop a global 300-m annual land-cover dynamic dataset (CCI_LC) from 1992 to 

2020 with an overall accuracy of 71.5%. These coarse land-cover change products comprehensively captured 

the spatial patterns of various land-cover types and quantified the global land-cover changes caused by human 70 

and natural activities. However, they still had major limitations especially in regions with intense human activity 

and high spatial heterogeneity because these broken and heterogeneous land-cover changes cannot be captured 

by coarse-resolution satellite observations (Hansen et al., 2013; Herold et al., 2008; Liu et al., 2021b; Zhang et 

al., 2021c).  

Recently, benefitting from the free access to fine-resolution satellite imagery and powerful computing and 75 

storage capabilities, especially after the rise of cloud computing [such as Google Earth Engine (Gorelick et al., 

2017) and Microsoft Planetary Computer], fine-resolution land-cover dynamic monitoring is experiencing rapid 

development. Correspondingly, numerous national and global 30-m land-cover dynamic products have been 

developed (Homer et al., 2020; Liu et al., 2021a; Potapov et al., 2022; Yang and Huang, 2021; Zhang et al., 

2022). For example, Yang and Huang (2021) used China’s land-use/cover datasets (CLUDs) as the prior dataset 80 

https://doi.org/10.5281/zenodo.3986872
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and then combined multitemporal classification and spatiotemporal consistency post-processing method to 

develop an annual 30-m land cover dataset (CLCD) for China from 1990 to 2019. Similarly, Liu et al. (2021a) 

combined pixel-based classification and spatiotemporal post-processing method to generate the first global 30-

m land-cover change products. However, many studies have demonstrated that multiperiod independent 

classifications lead to significant classification error accumulation in time-series land-cover change monitoring 85 

(Sulla-Menashe et al., 2019; Zhu, 2017). For example, Xian et al. (2022) stated that the independent 

classification strategy suffered the constraints of post-processing requirements, for ensuring the temporal 

consistency of land-cover change maps. Therefore, although GLCCM has progressed significantly over the past 

few decades, an accurate global 30-m land-cover change-detection product generated by an efficient land-cover 

change method is still urgently required. 90 

One of the greatest challenges for large-area land-cover change detection is to select the optimal algorithm 

to capture the land-cover changes from time-series observations (Healey et al., 2018; Zhu, 2017). Over past few 

decades, a series of change-detection algorithms have been proposed for monitoring forest disturbance (Huang 

et al., 2009; Jin et al., 2023; Kennedy et al., 2007; Kennedy et al., 2010; Qin et al., 2021), urban expansion (Liu 

et al., 2019; Zhang et al., 2021a), cropland dynamics (Dong et al., 2015; Potapov et al., 2021), and land-cover 95 

changes (Bullock et al., 2019; Jin et al., 2017; Verbesselt et al., 2010; Zhu et al., 2019). However, most of them 

were only suitable for regional land-cover change monitoring and some of the algorithms needed prior 

knowledge (such as for urban expansion). Zhu (2017) systematically reviewed the performances and limitations 

of various change-detection methods based on multitemporal satellite data, and further explained that the high 

temporal frequency and multivariate change-detection algorithms are more suitable for large-area and long time-100 

series land-cover changes after solving a problem with a huge amount of computation. Similarly, Xian et al. 

(2022) and Liu et al. (2019) concluded that dense and continuous change-detection methods had higher accuracy 

and more robustness than traditional change-detection methods for capturing multiple, complicated changes.  

Continuous Change Detection and Classification (CCDC) algorithm, a classical change-detection method 

based on dense time-series observations proposed by (Zhu and Woodcock, 2014b), is widely used for regional 105 

and national land-cover monitoring (Xian et al., 2022; Xie et al., 2022). It used all available Landsat observations 

to build time-series regression models and then captured the outliers by analyzing the differences between the 

actual observations and model estimations. Zhu and Woodcock (2014b) demonstrated that the CCDC algorithm 

attained a general accuracy of 90% and temporal accuracy of 80% for capturing land-cover changes. Thus, it 

has been adopted by the United States Geological Survey (USGS) as the official algorithm for monitoring land-110 

cover changes over the United States (Pengra et al., 2016). For example, Xian et al. (2022) implemented the 

CCDC algorithm and all available Landsat data to develop annual land-cover change products over the 

contiguous United States (CONUS) for 1985–2017 with an overall accuracy of 82.5%. 

In summary, over the past decades, land-cover mapping and monitoring has made significant progress; 

however, time-series global 30-m land-cover dynamic products derived from change-detection algorithms are 115 

still lacking. In this study, we had the following three aims: 1) use the continuous change-detection algorithm 

and full time-series Landsat observations to generate the first global 30-m land-cover dynamic products with 

fine classification system (GLC_FCS30D) from 1985 to 2022, which contains 35 fine land-cover subcategories 

with 26 time-steps (maps updating every five years before 2000 and annually after 2000); 2) quantify the land-

cover changes and analyze the spatiotemporal change patterns of various land-cover types based on the 120 
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developed GLC_FCS30D dataset; and 3) quantitatively analyze the performance of the GLC_FCS30D product 

using multisourced validation datasets. 

2. Datasets  

2.1 Continuous Landsat imagery from 1984 to 2022 

All available Landsat imagery from 1984 to 2022, covering Landsat 5 Thematic Mapper (TM), Landsat 7 125 

Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), and Landsat 9 OLI 

missions, was collected via the GEE cloud-computing platform. Specific measures were taken to build a high-

quality continuous time-series Landsat collection. First, all Landsat images underwent atmospheric correction 

to convert them to surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) and Land Surface Reflectance Code (LaSRC) methods (Vermote, 2007; Vermote and Kotchenova, 130 

2008). Then, although the Landsat 5, 7, 8, and 9 missions share similar spectral bands, the wavelength 

differences between the ETM+ and OLI cannot be ignored. Relative radiometric normalization was applied to 

the TM and ETM+ imagery using the transformation coefficients suggest by Roy et al. (2016).  

2.2 Global land-cover dataset at 30 m for the year of 2020 

The global 30-m land-cover product with fine classification system in 2020 (GLC_FCS30-2020), is the 135 

baseline for generating training samples and identifying land-cover information in the temporally stable regions 

in Section 3. The GLC_FCS30 dataset was developed using locally adaptive classifications and confident and 

globally distributed training samples in their developed global spatiotemporal spectra library, and then validated 

to reach an overall accuracy of 82.5% with the basic validation system (Zhang et al., 2021b). Cross-comparisons 

with other land-cover products showed obvious advantages for the GLC_FCS30 in mapping accuracy and 140 

diversity of land-cover types. The GLC_FCS30-2020 dataset is freely available at 

https://doi.org/10.5281/zenodo.4280923 (Liu et al., 2020).  

2.3 Global impervious surface dynamic dataset at 30 m from 1985 to 2022 

Many studies found that high spatiotemporal heterogeneity and broken constructs of impervious surface 

caused high uncertainty and difficulty in monitoring their dynamics (Gong et al., 2019; Zhang et al., 2022), and 145 

change detection methods also face issues of both missed detections and false alarms when applied to the 

dynamic monitoring of heterogeneous impervious surfaces. Thus, we independently produced a time-series 

global impervious surface dynamic dataset at 30 m (GISD30) during 1985–2022 and then overlaid this thematic 

dataset on the GLC_FCS30D dataset to ensure their high confidence in the impervious surface dynamics. The 

GISD30 dataset was developed by combining the sample migration, spectra generalization and local adaptive 150 

modeling methods, and then optimized by the spatiotemporal-consistency correction method (Zhang et al., 

2022). It was validated to attain the mean overall accuracy of 90.1% over the globe and to perform better than 

other similar products in capturing the changes in impervious surfaces over time and across different types of 

landscapes. At the same time, third-party validation also indicated that GISD30 exhibited superior performance 

among similar global 30-meter impervious surface products (Wang et al., 2022). 155 

2.4 Global 30-m wetland datasets from 1985 to 2022 

Like the impervious surface, the global wetland dynamic dataset is independently produced because the 

reflectance spectra of the wetland and phenological variations changed daily with the water levels. The 

https://doi.org/10.5281/zenodo.4280923
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continuous change-detection method would suffer serious commission and omission errors for wetland dynamic 

monitoring (Gallant, 2015). In this study, the GWL_FCS30 (global 30-m wetland map with a fine classification 160 

system) wetland dataset from 1985 to 2022, developed by integrating the automatic sample extraction method, 

a stratified classification strategy, and time-series Landsat observations (Zhang et al., 2023), would be 

superimposed on the GLC_FCS30D land-cover dynamic dataset. The GWL_FCS30 was quantitatively assessed 

to the mean overall accuracy of 86.44% using 25708 validation points, and demonstrated the highest level of 

performance among other wetland products when it came to capturing the spatial patterns of wetlands during 165 

cross-comparisons (Zhang et al., 2023). GWL_FCS30 further splits the wetland into seven wetland 

subcategories (four inland and three coastal subcategories), and would be overlaid directly onto the 

GLC_FCS30D dataset not only improves the monitoring accuracy of wetland but also riches the number of land 

cover types (in Table 1). 

2.5 Validation datasets 170 

To comprehensively analyze the accuracy metrics for the GLC_FCS30D dataset, two types of validation 

datasets were collected, including: an independent global validation dataset from 2020 and two third-party time-

series validation datasets for the United States and the European Union. 

2.5.1 Global validation dataset 

A total of 84,526 globally distributed validation samples are collected to analyze the accuracy metrics for 175 

the GLC_FCS30D dataset in 2020, and their spatial distributions are illustrated in Figure 1. Intuitively, the 

spatial patterns of the global validation dataset are consistent with the actual global land-cover situation. 

Specifically, to ensure the confidence and rationality of the validation datasets, several measures are taken, 

which were explained in detail in our previous work (Zhao et al. (2023). First, a stratified random sampling 

method is applied by combining the landscape heterogeneity, population density data and Köppen climate 180 

groups, which effectively increases the sample size in the heterogeneous landscapes and for these rare land-

cover types. Second, for each validation sample, the land-cover type is determined through independent 

interpretation by trained interpreters after combining high-resolution aerial photography, multitemporal Landsat 

images, and other relevant ancillary datasets (such as: vegetation coverage, tree height, phenological curves, , 

and terrain characteristics). Independent interpretation software has also been developed based on the GEE 185 

platform (https://eliza-ting.users.earthengine.app/view/crd-vit) for efficiently recognizing the land cover types 

of each sample. Third, a quality-controlled operation, based on duplicate interpretations, is further used to ensure 

the confidence level of each validation sample. Each sample is independently labeled by three junior interpreters 

and then double-checked by the senior experts, and validation samples with huge disparities would be discarded. 

In addition, because the impervious surface and wetland datasets have been independently produced and 190 

validated in our previous works (Zhang et al., 2023; Zhang et al., 2022), the corresponding high-quality 

validation samples of these two thematic types are also imported to the global validation datasets.  

https://eliza-ting.users.earthengine.app/view/crd-vit


6 

 

 

Figure 1. Spatial distribution of 84,526 global validation points containing 17 fine land-cover types in the 

normal year of 2020. 195 

2.5.2 Third-party regional time-series validation datasets 

Due to the great difficulty in the collection of long time-series global validation datasets, we used two third-

party regional datasets for the CONUS and the European Union. The first time-series validation dataset assessed 

the performance of the Land Cover Monitoring, Assessment, and Projection (LCMAP) Collection 1.0 annual 

land cover products (Stehman et al., 2021) (called LCMAP_Val, https://www.usgs.gov/special-200 

topics/lcmap/validation-data). The LCMAP_Val consisted of 24,971 validation samples with 30-m spatial 

resolution and covered time period of 1985 to 2017. It was developed by combining a simple random sampling 

method and visual interpretation from high-resolution aerial photography, multitemporal Landsat images, as 

well as other auxiliary datasets. Meanwhile, to guarantee the reliability of each validation sample, the TimeSync 

auxiliary tool was also adopted to capture the land-cover changes (Stehman et al., 2021). Quality control was 205 

implemented through duplicate interpretations (Xian et al., 2022). 

The second regional validation dataset was the Land Use/Cover Area frame Survey (LUCAS), which is the 

most comprehensive and largest land-cover validation dataset in the European Union and is freely available at 

https://land.copernicus.eu/imagery-in-situ/lucas. It contains 1,090,863 validation points based on a systematic 

2 km × 2 km grid and covers the period of 2006 to 2018 with an interval of 3 years (d’Andrimont et al., 2020). 210 

Five LUCAS surveys in 2006, 2009, 2012, 2015, and 2018 assessed the time-series accuracies of the 

GLC_FCS30D. The LUCAS is developed from a combination of field observations and photo interpretation 

(Büttner and Eiselt, 2013; Ballin et al., 2018); thus, it performs with high confidence and also attracts widespread 

attention in land-cover validations (Gao et al., 2020; Venter et al., 2022).  

3. Methods 215 

https://www.usgs.gov/special-topics/lcmap/validation-data
https://www.usgs.gov/special-topics/lcmap/validation-data
https://land.copernicus.eu/imagery-in-situ/lucas
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Figure 2 presents a detailed flowchart for monitoring land-cover changes by combining the Continuous 

Change Detection (CCD) algorithm, proposed by Zhu and Woodcock (2014b), and the local adaptive updating 

method. Specifically, the flowchart contains four main procedures including: (1) detecting the temporally stable 

pixels and the time-points of abrupt changes in these changed land-cover pixels from the continuous change-

detection model; (2) deriving the spatiotemporally stable training samples by using the spatiotemporal 220 

refinement method from GLC_FCS30 land-cover products and temporally stable masks; (3) building the local 

adaptive classification models for each local region and then updating the land-cover information in the changed 

pixels; and (4) using the spatiotemporal consistency optimization method to improve the quality of land-cover 

change maps and suppress these false changes. 

Before detecting the land-cover changed pixels, all ‘poor quality’ pixels (cloud, shadow and saturated pixels, 225 

as well as the Scan Line Corrector Off pixels in Landsat 7) in the continuous time-series Landsat imagery were 

firstly masked using the CFmask algorithm, which was demonstrated to achieve the overall accuracy of 96.4% 

and was adopted by the USGS as official cloud- and shadow detection algorithm (Zhu et al., 2015; Zhu and 

Woodcock, 2012). Then, in terms of these residual cloud pixels (light cloud and haze contaminated pixels), the 

Tmask (multiTemporal mask) algorithm, which used the temporal information from these clear-sky pixels to 230 

improve the cloud-detection capability (Zhu and Woodcock, 2014a), was used to mask the residual cloud pixels. 

It should be noted that the Tmask has been integrated into the CCD algorithm on the GEE platform as 

ee.Algorithms.TemporalSegmentation.Ccdc(), that is, the effect of ‘poor-quality’ pixels were minimized. 

 

Figure 2. The flowchart of the proposed method combining the continuous change-detection (CCD) algorithm 235 

and a local adaptive updating algorithm. 

3.1 The fine classification system used in the GLC_FCS30D 

Determining the classification system is usually a prerequisite for land-cover mapping and monitoring. In 

this study, as we used the GLC_FCS30-2020 as the baseline land-cover product, and further overlaid the 

GWL_FCS30 dataset on the GLC_FCS30D to ensure high accuracy in the wetland areas; thus, the fine 240 

classification system used in this study would inherit from that of the GLC_FCS30-2020 and GWL_FCS30. 

Table 1 lists the details of the fine classification system. It contains 35 fine land-cover types and has obvious 

advantages over identifying the forest and wetland subcategories.  
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Table 1. The details of the fine classification system in the GLC_FCS30D land-cover dynamic dataset. 

Basic classification system Level-1 validation system Fine classification system Id 

Cropland CRP 
Rainfed cropland RCP 

Rainfed cropland 10 

Herbaceous cover cropland 11 

Tree or shrub cover cropland 12 

Irrigated cropland ICP Irrigated cropland 20 

Forest FST 

Evergreen broadleaved 

forest 
EBF 

Closed evergreen broadleaved forest 51 

Open evergreen broadleaved forest 52 

Deciduous broadleaved 

forest 
BDF 

Closed deciduous broadleaved forest 61 

Open deciduous broadleaved forest 62 

Evergreen needleleaved 

forest 
ENF 

Closed evergreen needleleaved forest 71 

Open evergreen needleleaved forest 72 

Deciduous needleleaved 

forest 
DNF 

Closed deciduous needleleaved forest 81 

Open deciduous needleleaved forest 82 

Mixed-leaf forest MFT 
Closed mixed-leaf forest 91 

Open mixed-leaf forest 92 

Shrubland SHR Shrubland SHR 

Shrubland 120 

Evergreen shrubland 121 

Deciduous shrubland 122 

Grassland GRS Grassland GRS Grassland 130 

Tundra TUD Lichens and mosses LMS Lichens and mosses 140 

Wetland WET 

Inland wetland IWL 

Swamp 181 

Marsh 182 

Flooded flat 183 

Saline 184 

Coastal wetland CWL 

Mangrove 185 

Salt marsh 186 

Tidal flat 187 

Impervious surface IMP Impervious surface IMP Impervious surface 190 

Bare areas BAL 

Sparse vegetation SVG 

Sparse vegetation 150 

Sparse shrubland 152 

Sparse herbaceous cover 153 

Bare areas BAL 

Bare areas 200 

Consolidated bare areas 201 

Unconsolidated bare areas 202 

Water body WTR Water body WTR Water body 210 

Permanent snow and ice PSI Permanent snow and ice PSI Permanent snow and ice 220 

3.2 Detecting changes using the CCD algorithm and continuous Landsat imagery 245 

In general, land-cover changes can be grouped into three categories including: periodic changes caused by 

the phenological variability, trend changes driven by natural behavior (such as vegetation growth), and abrupt 
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changes caused by natural or human disturbances (such as deforestation, urban expansion). Thus, capturing 

these abrupt changes and simultaneously suppressing the periodic and trend changes are the key to land-cover 

monitoring. In this study, the CCD algorithm (Zhu and Woodcock (2014b) captured these abrupt changes. The 250 

algorithm uses Fourier transformation to fit the time-series observations with the trend term (estimating the 

trend changes) and harmonic terms (describing the periodic changes) in Eq. (1).  

�̂�(𝑖, 𝑡) = 𝑎0,𝑖 + 𝑐1,𝑖 × 𝑡 + ∑ (𝑎𝑘,𝑖 × 𝑐𝑜𝑠 (
2𝑘𝜋

𝑇
𝑡) + 𝑏𝑘,𝑖 × 𝑠𝑖𝑛 (

2𝑘𝜋

𝑇
𝑡))𝑛

𝑘=1   (1) 

where �̂�(𝑖, 𝑡) represents the predicted value of the 𝑖th band at the 𝑡th Julian day, 𝑐1,𝑖  and 𝑎0,𝑖  are the 

regression slope and intercept of the 𝑖th band, 𝑎𝑘,𝑖  and 𝑏𝑘,𝑖  represent the coefficients of the 𝑘th order 

harmonic term for the 𝑖th band, 𝑛 denotes the number of harmonic terms, and 𝑇 is the day number of the 255 

year (usually defined as 365). As for how to determine value of 𝑛, Zhu and Woodcock (2014b) explained that 

higher order harmonic terms have better performance for capturing the periodic variability, but caused 

overfitting in the time-series model and needed more clear-sky observations to initialize the coefficients of 𝑎𝑘,𝑖 

and 𝑏𝑘,𝑖. After balancing the advantages and disadvantages of the higher order harmonic terms, we finally chose 

𝑛 as 3, as suggested by other studies (Xian et al., 2022; Xie et al., 2022).  260 

Then, as the CCD is a multivariate change-detection algorithm for capturing the changes of various land-

cover types Zhu (2017), five Landsat spectral bands (excluding the blue band for minimizing the effects of the 

atmosphere and clouds), and three spectral indexes [including: NDVI, NDWI, and NBR as given in Eq. (2)] 

were combined to detect many kind of changes in the Landsat time-series.  

𝑁𝐷𝑉𝐼 =
𝜌𝑛𝑖𝑟−𝜌𝑟

𝜌𝑛𝑖𝑟+𝜌𝑟
,   𝑁𝐷𝑊𝐼 =

𝜌𝑔𝑟𝑒𝑒𝑛−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑔𝑟𝑒𝑒𝑛+𝜌𝑠𝑤𝑖𝑟1
,    𝑁𝐵𝑅 =

𝜌𝑛𝑖𝑟−𝜌𝑠𝑤𝑖𝑟1

𝜌𝑛𝑖𝑟+𝜌𝑠𝑤𝑖𝑟1
  (2) 

where 𝜌𝑔𝑟𝑒𝑒𝑛, 𝜌𝑟, 𝜌𝑛𝑖𝑟 and 𝜌𝑠𝑤𝑖𝑟1 are the green, red, NIR, SWIR1 and SWIR2 spectral bands in the Landsat 265 

imagery. Next, to determine the fitted coefficients of the kth order harmonic term in Eq. (1), the Least Absolute 

Shrinkage and Selection Operator (LASSO) regression algorithm was applied, which demonstrated better 

performance than the traditional Ordinary Least Squares method in reducing the overfitting problem and dealing 

with unevenly distributed and sparse Landsat observations (Zhu and Woodcock (2014b). 

Next, the CCD was also a multi-parameter change detection model and demonstrated to be sensitive to the 270 

parameter settings (Xiao et al., 2023; Zhu and Woodcock, 2014b). The CCDC algorithm on the Google Earth 

Engine platform (ee.Algorithms.TemporalSegmentation.Ccdc) contained three key adjustable parameters: 

minObservations, chiSquareProbability and minNumOfYearScaler. Zhu et al. (2019) analyzed the relationships 

between the omission error and commission error of land-cover changes with the variability of three parameters 

in the United States, and found their values affected the change detection accuracy. In this study, we also 275 

investigated the sensitivity between parameter settings with the change detection accuracies in Figure S1 (seen 

the Supplement material) using the time-series points from LCMAP_Val and LUCAS datasets after partly 

sampling. Notably, the sensitivity analysis was implemented in two large-areas for ensure the feasibility of 

optimal parameters, that is, which will be suitable for other areas in land-cover change detection. The results 

also showed the CCD is a parameter-sensitive algorithm and the optimal parameter values were 5, 0.95 and 2-280 

year for minObservations, chiSquareProbability and minNumOfYearScaler.  
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After modeling the time-series observations using the CCD algorithm, we can analyze the land-cover 

changes from the differences between actual observations and predicted values in the time-series fitting models. 

Figure 3 shows three typical scenarios in which land-cover dynamics were modeled by the CCD algorithm. 

Specifically, Figure 3a illustrates that there was no abrupt break in the whole period and thus only the single 285 

time-series model was built, and the pixel was usually labeled as temporally stable. Figure 3b indicates that the 

pixel underwent an abrupt change and the time-series observations were split into two segments. The time point 

of the abrupt change occurred around 1996. Figure 3c gives a complicated time-series disturbance example, in 

which multiple abrupt changes were detected and the time-series observations were split into four segments. 

The time-series models for segments 1, 2, and 4 showed obvious trend changes. 290 

 

Figure 3. Three typical land-cover changes using the continuous change detection (CCD) algorithm and 

continuous Landsat observations; a) time-series stable land-cover condition; b) one single abrupt change; c) 

multiple abrupt changes. 

3.3 Updating changed areas using local adaptive classifications  295 

Using the CCD algorithm and continuous Landsat imagery, we identified the temporally stable pixels and 

the time points of abrupt changes for the land-cover change pixels. Accurately determining land-cover labels of 

the changed pixels (or understanding the change process ‘from-to’) is another key procedure for time-series 

land-cover monitoring. To achieve this goal, we derived spatiotemporally stable training samples (see Section 
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3.3.1), then updated the changed pixels using multitemporal classifications, and finally minimized the 300 

cumulative error caused by independent classifications.  

3.3.1 Deriving spatiotemporally stable training samples 

Numerous studies demonstrated that the accurateness of the training samples plays a critical role in accurate 

mapping (Foody and Arora, 2010; Zhang et al., 2020). Visual interpretation can ensure high-confidence samples 

at the expense of a large quantity of manual participations, so it was not suitable for collecting large-area training 305 

samples. An alternative option involved generating training samples by refining existing land-cover products 

through a series of improvement measures (Zhang et al., 2021b; Zhang et al., 2023). Inspired by the latter option, 

we combined the GLC_FCS30-2020 prior dataset and a change-detection mask (derived from the CCD 

algorithm described in Section 3.2) to obtain the spatiotemporally stable training samples. Specifically, 

temporally stable areas are known to have higher mapping accuracy (Yang and Huang, 2021; Zhang and Roy, 310 

2017; Zhang et al., 2023); thus, we first used the CCD mask to retain these temporally stable areas in the 

GLC_FCS30-2020 maps. Radoux et al. (2014) emphasized that land-cover transition areas usually were subject 

to more serious misclassification problems and that the homogeneous land-cover pixels had a higher probability 

of achieving acceptable accuracy. Therefore, we used the morphological erosion filter of 3 pixels × 3 pixels to 

refine the GLC_FCS30-2020 maps into spatially homogeneous areas. After identifying the intersection of 315 

temporally stable and spatially homogenous areas, we retained these as the spatiotemporally stable training 

sample candidates. 

Numerous studies have highlighted the importance of training sample balance and distribution, as they 

significantly influence the mapping performance (Foody, 2009; Jin et al., 2014; Millard and Richardson, 2015). 

First, in term of the sample distribution, there are two options for training sample distribution including areal-320 

proportional or equal allocation, and former was demonstrate to achieve higher accuracy than the latter option 

in land-cover mapping especially in complicated land-cover conditions (Jin et al., 2014). However, when using 

the areal-proportional sampling strategy, the rare land-cover types usually had small sample sizes and would be 

sacrificed because the aim of land-cover mapping was to achieve a global optimum rather than a local optimum. 

Thus, the maximum and minimum sample size for abundant and rare land-cover types were suggested as 8000 325 

and 600, came from the study in Zhu et al. (2016), for avoiding the extremes of sample sizes. Next, the 

GLC_FCS30-2020 products were split into 961 5° × 5° geographical tiles, and we used the areal-proportional 

sampling strategy and sample balancing parameters to allocate the training samples from the spatiotemporally 

stable areas in each 5° × 5° geographical tile. Last, the impervious surface and wetland samples were excluded 

because both have been independently developed as the thematic datasets in Section 2.3 and 2.4. 330 

3.3.2 Updating changed areas using local adaptive classifications 

Before building the local adaptive classification models, we must extract useful spectral features from the 

time-series Landsat observations. In this study, we used multitemporal phenological, texture, and topographical 

features. Specifically, the multitemporal phenological features were extracted by using the percentile-

compositing method, which has fewer constraints than other compositing algorithms (such as the seasonal-based 335 

compositing method) while achieving similar mapping accuracy (Azzari and Lobell, 2017). The time-series 

Landsat spectral bands (five optical bands after excluding atmospherically sensitive blue band) and 

corresponding spectral indexes [NDVI, NDWI, and NBR in Eq. (2)] were composited into five percentiles (10th, 

25th, 50th, 75th, and 90th). Next, in terms of the texture features, our previous study explained that the texture 
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features had positive contribution on land-cover mapping (Zhang et al. (2021b), so the gray-level co-occurrence 340 

matrix method was used for the 50th-percentile–composited NIR band to extract the homogeneity, entropy, 

dissimilarity, variance, contrast, and correlation. Last, since the land-cover distribution was usually related to 

the topographical environment, for example, croplands and water bodies are mainly distributed in flat areas, 

three topographical variables (elevation, slope, and aspect), calculated from a global 30 m DEM dataset (named 

as: ASTER_GDEM) (Tachikawa et al., 2011), were also imported. In total, there were 49 multisource features, 345 

including 40 phenological spectra features, 6 texture features, and 3 topographical variables. 

There are two options for global land-cover mapping and updating: global modeling and local adaptive 

modeling, and our previous studies have explained that local adaptive modeling yields superior results compared 

to global modeling. This is primarily due to the former's capability to take regional characteristics into account 

more effectively, leading to increased sensitivity in training samples and higher accuracy in land-cover 350 

classification (Zhang et al., 2021b; Zhang et al., 2023; Zhang et al., 2022). Thus, we first inherited the regional 

gridding style in the GLC_FCS30 (Zhang et al., 2021b), namely, the global land was divided into 961 5° × 5° 

geographical tiles. Afterward, the local classification models were independently built for updating the land 

cover in each tile using the corresponding training samples in the neighboring eight surrounding tiles at 3 × 3 

window. The adjacent training samples were imported to increase the continuity of the adjacent land-cover maps. 355 

Last, in the selection of the suitable classification algorithm, random forest (RF) classifier has significant 

advantages, including: accommodating high-dimensional training features, better ability to deal with the 

overfitting problem, and higher classification accuracy than other widely used classifiers (Belgiu and Drăguţ, 

2016; Gislason et al., 2006). Meanwhile, the RF algorithm was also integrated into the internal function library 

of the GEE cloud platform as ee.Classifier.smileRandomForest(). Thus, the RF algorithm was used to combine 360 

the training samples and multisourced features for updating the changed pixels. The RF algorithm allows for 

adjusting two key parameters (the number of decision tree (Ntree) and predicted variables (Mtry)), and previous 

studies have quantitatively analyzed the relationships between classification accuracy with the value of these 

two parameters. Both theoretical and experimental results indicated that the selection of Mtry and Ntree had 

little influence on the classification accuracy (Belgiu and Drăguţ, 2016; Du et al., 2015). Thus, the default 365 

recommended values of 500 for Ntree and the square of the total number of input features for Mtry were used 

based on previous studies (Belgiu and Drăguţ, 2016; Zhang et al., 2019). 

3.3.3 Temporal-consistency optimization 

To ensure the rationality and consistency of land-cover changes for long time-series, the CCD algorithm 

was applied to capture the time points of land-cover changes, and then the changed pixels were updated using 370 

the local adaptive classifications. In this study, despite our best efforts, it was difficult to completely eliminate 

classification errors, particularly when dealing with changes over time. To address this issue and enhance 

accuracy in areas with temporal variations, we employed the temporal consistency optimization method 

described in Eq. (3). This approach incorporates both temporal and spatial neighboring information to assess 

homogeneity, thereby reducing potential misclassifications in time-series changed areas. 375 

𝑃𝑥,𝑦,𝑡 =
1

𝑁
[∑ ∑ ∑ 𝐼(𝐿𝑥′,𝑦′,𝑡′ = 𝐿𝑥,𝑦,𝑡)𝑡′=𝑡+1

𝑡′=𝑡−1
𝑦′=𝑦+1
𝑦′=𝑦−1

𝑥′=𝑥+1
𝑥′=𝑥−1 ]  (3) 

Where 𝑃𝑥,𝑦,𝑡 is the homogeneity probability of the pixel in spatial location (𝑥, 𝑦) and time point 𝑡; usually, the 

higher the value of 𝑃𝑥,𝑦,𝑡, the less the classification error effect. 𝐿𝑥,𝑦,𝑡 and 𝐿𝑥′,𝑦′,𝑡′ are the land-cover labels 

of the central pixel and the corresponding spatiotemporal neighboring pixels with a local window of 3 × 3 × 3, 
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and the 𝐼() denotes the indicator function for the equation of the status between two pixels. Namely, if 𝐿𝑥′,𝑦′,𝑡′ 

was equal to the 𝐿𝑥,𝑦,𝑡, then the value of indicator function was 1, otherwise it was equal to 0 (Kenny, 2003). 380 

In this study, the homogeneity probability was calculated for each changed pixel, and used the threshold of 0.5 

(as suggested by and used in the studies of (Li et al., 2015; Zhang et al., 2022) to judge the rationality of land-

cover changes. Namely, if the 𝑃𝑥,𝑦,𝑡 was less than the threshold, the 𝐿𝑥,𝑦,𝑡 would be modified according to 

the spatiotemporal pixels. 

3.4 Accuracy assessment  385 

The validation process for the GLC_FCS30D dataset follows the recommended guidelines proposed by 

Pontus Olofsson (2014). These guidelines encompass two key components: area estimation (nonsite-specific 

accuracy) and accuracy assessment (site-specific accuracy). The site-specific accuracy assessment mainly 

focuses on estimating the confusion matrix and calculating some accuracy metrics including overall accuracy 

(O.A.), producer’s accuracy (P.A.), user’s accuracy (U.A.) and the corresponding standard errors using a 390 

poststratified estimator (Pontus Olofsson, 2014).  

𝑃. 𝐴.𝑘  =
𝑝𝑘𝑘

∑ 𝑝𝑘.
, 𝑈. 𝐴.𝑘  =

𝑝𝑘𝑘

∑ 𝑝.𝑘
, 𝑂. 𝐴. = ∑ 𝑝𝑘𝑘

𝑚
𝑘=1   (4) 

Where 𝑝𝑘𝑘 was the proportion of the area mapped as class 𝑘 that had reference class 𝑘, ∑ 𝑝𝑘. and ∑ 𝑝.𝑘 

were the proportion of the area mapped as class 𝑘 and the proportion of the reference area as class 𝑘, and the 

𝑚 denoted the number of land-cover types. Afterwards, because there is currently no global long-time series 

validation dataset, we used 84526 global validation points to assess the accuracy metrics of the GLC_FCS30D 395 

dataset in 2020 and used two third-party datasets to analyze the time-series accuracy variations. The 

GLC_FCS30D adopts a fine classification system containing 35 subcategories, for which we applied an analysis 

protocol into two validation systems (the level-0 classification system containing 10 major land-cover types and 

the LCCS level-1 validation system containing 17 land-cover types) to comprehensively understand the 

GLC_FCS30D dataset quality. The relationship between Level-0 and LCCS level-1 validation systems is 400 

explained in Table 1. Lastly, to quality the performance of land-cover changed pixels, we followed the proposal 

of Stehman et al. (2021) in assessing the LCMAP annual land-cover products 1985-2017, that is, the validation 

pixels were grouped into “changed” and “unchanged” categories and the corresponding confusion matrix were 

calculated. Meanwhile, to minimize the imbalance in the sample size of “change” and “no-change” 

samples, the metrics of F1 score was supplemented as: 405 

𝐹1 =  
𝑃.𝐴.×𝑈.𝐴.

𝑃.𝐴.+𝑈.𝐴.
× 2 × 100%  (5) 

4. Results and discussion 

4.1 Overview of GLC_FCS30D maps and their changes 

Figure 4 provides an overview of the GLC_FCS30D dataset in 2022; overall, it aligns with the real-world 

land-cover patterns on a global scale. Forest, cropland, barren land, and grassland are the dominant land-cover 

types, and each of them is distributed in the corresponding ecology subregions. For example, needle-leaved 410 

forest is mainly concentrated in the high-latitude cold regions while broad-leaved forests are mainly distributed 

in tropical regions; permanent ice and snow is mainly located in Greenland and high-altitude montains. The 

GLC_FCS30D has significant advantages over other global land-cover datasets in terms of land-cover type 
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diversity; it contains 35 discrete land-cover types, among which forest and wetland are subdivided into 10 and 

7 land-cover subcategories, respectively. 415 

 

Figure 4. Overview of the GLC_FCS30D in 2022 with a color-coded legend derived from the European Space 

Agency (ESA) Climate Change Initiative land-cover dataset (Defourny et al., 2018). 

Figure 5a illustrates the spatial distribution of land-cover change intensity (measuring the proportions of 

changed pixels in the 0.05° grid) in the GLC_FCS30D from 1985 to 2022 after upscaling to a resolution of 420 

0.05°. Obviously, global land-cover has experienced significant changes over the past 37 years, mainly in the 

following three typical areas: 1) tropical rainforest peripheral areas in South America and Southeast Asia, in 

which deforestation is the dominant cause; 2) wetland and water-body intermingling areas, such as North 

America and northern Asia, in which water bodies and wetland were transformed into one another due to 

different annual water levels. In the GLC_FCS30D the water body land-cover type represents permanent water 425 

during the year (it may be wetland in other years). 3) The semi-arid areas in Australia, Central Asia, and western 

Africa, where land cover (such as sparse vegetation or bare land) is directly affected by precipitation and 

temperature. For example, if there is sufficient precipitation in the year, the sparse vegetation and some bare 

land would be covered by grass in semi-arid areas. Similarly, the work of Winkler et al. (2021) revealed that 

these semi-arid areas experienced serious and frequent land-cover changes. Figure 5b quantitatively counts the 430 

changed areas of 10 major land-cover types from 1985 to 2022. Forest and cropland variations dominated global 

land-cover change. The net loss of forests over the past 37 years reached approximately 2.5 million km2, and 

the decline is steady over time. Conversely, cropland showed a stable increase and the net gain in cropland area 

is approximately 1.3 million km2. Shrubland, wetland, and impervious surface had increased areas of 0.45 

million km2, 0.40 million km2, and 0.37 million km2, respectively. The increased shrubland resulted from the 435 
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recovery of deforested land, and the wetland gains are due to increases in seasonal water bodies. The work of 

Pekel et al. (2016) emphasized that the global seasonal water bodies, labeled as inland wetland in the 

GLC_FCS30D, showed an overall increase.  

 

Figure 5. (a) The spatial distribution of global land-cover change intensity from 1985 to 2022 after aggregating 440 

to a resolution of 0.05°. (b) The net areas of 10 major land-cover types in GLC_FCS30D from 1985 to 2022. 

Figure 6 further analyzes the net area variations of 10 major land-cover types on six continents. The six 

continents exhibit various land-cover change characteristics, for example, steady forest loss and cropland gain 

dominate land-cover change in South America, while the net area variations of most land-cover types fluctuate 

in Australia. North America experiences obvious deforestation, and the forest loss area reaches approximately 445 

4.5 × 105 km2. In contrast, shrubland, grassland, and impervious surface land-cover types show an overall 

increasing trend, with increases of 1.4 × 105 km2, 0.8 × 105 km2, and 0.72 × 105 km2, respectively. Similarly, 

Xian et al. (2022) reported that forest losses and shrubland, grassland, and impervious surface gains are the 

dominant characteristics of the CONUS from 1985 to 2017. In Europe, the forest area continues to decrease, 

and the cropland area first decreased and then increased because of the collapse of the Soviet Union in 1990s. 450 

Abandoned croplands were transformed into pasture (which also belongs to the cropland land-cover type in the 

GLC_FCS30D). In Asia, the increase in impervious surface is the most significant across the six continents with 

a net increase of 1.9 × 105 km2; wetland also shows a large increase of 1.1×105 km2. The increased wetland 



16 

 

coverage comes from the increase in seasonal water bodies. South America and Africa experience similar land-

cover change characteristics, with the most intense deforestation rates and the most significant increases in 455 

cropland. According to our statistics, the forest loss on these two continents amounts to 16.9 × 105 km2 and the 

corresponding increase of cropland is approximately 11.1 × 105 km2. Last, because Oceania is more sensitive 

to climate change, especially in terms of precipitation, the fluctuations of shrubland, grassland, and bare land 

are evident because the conversion relationship between the three land-cover types is related to annual 

precipitation. 460 

 

Figure 6. The net area variations of 10 major land-cover types on six continents from 1985 to 2022. 

Figure 7 displays the land-cover transformation relationships from 1985 to 2022 in the GLC_FCS30D 

dataset using Sankey diagrams. Global cropland and forest have obvious area changes and area proportions have 

changed from 12.08% and 38.26% in 1985 to 12.86% and 36.48% in 2022. Shrubland changed from 8.70% in 465 

1985 to 9.03% in 2022. We mainly focus on forest, cropland, shrubland and impervious surface changes, which 

dominate the land-cover changes in Figure 5. There are three main causes of forest loss over the past 37 years: 

1) 37.58% of deforested land was converted to cropland, which was more significant in tropical rainforest areas 

(Figure 8a); 2) 26.92% of the lost forest was regrown as shrubland, which is more common in mountainous 

areas affected by wildfires; and 3) 13.49% of deforested land was converted to grassland. Cropland is converted 470 

to forest, grassland, and impervious surface. A total of 26.29% of lost cropland is converted to grassland due to 

abandonment, 25.88% of lost cropland is covered by forests, and 21.01% of lost cropland resulted from 

urbanization. Lastly, regarding impervious surface, our primary focus was on identifying the sources 

contributing to its expansion. Our findings indicate that approximately 36.24% of the impervious surface 

increase can be attributed to the conversion of cropland, while 13.49% of the increase is a result of deforestation. 475 
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Figure 7. Sankey diagrams of the global land-cover changes during 1985-2022 in the GLC_FCS30D dataset. 

To visually understand the land-cover change process captured by the GLC_FCS30D dataset over past 37 

years, Figure 8 displays three typical enlargements (spatial location illustrated as two black rectangles in Figure 

5a) of the Amazon rainforest (which experienced significant deforestation) and China’s Yangtze River Delta 480 

(which underwent rapid urbanization) and Yellow River Delta (evident land-cover changes over coastal regions). 

These three typical areas experienced drastic land-cover changes and the GLC_FCS30D accurately captures the 

spatiotemporal changes. Specifically, the deforestation in South America is widely recognized, and the 

GLC_FCS30D clearly reflects this trend. Namely, the early deforestation showed a grid distribution, and then 

each grid gradually extended outward and finally connected into patches. The GLC_FCS30D also shows that 485 

deforestation has not stopped in the region in terms of the rate of forest loss, and these findings are in line with 

the results of earlier researches (Harris et al., 2021; Potapov et al., 2022). In the Yangtze River Delta, 

GLC_FCS30D depicts that the dominant land-cover change over the enlargement is urbanization, and a large 

quantity of irrigated cropland has been converted to impervious surfaces. Meanwhile, urban expansion was 

significantly faster before 2010 than after 2010 with the GLC_FCS30D. Lastly, the Yellow River Delta, as one 490 

of the typical coastal region, was selected to understand the GLC_FCS30D for capturing these coastal land-

cover changes. Obviously, the land-cover changes in the GLC_FCS30D can be concluded into three aspects: 1) 

a large amount of flooded flats and flat flats were reclaimed as the aquaculture ponds, especially after 2000; 2) 

the mouth of the Yellow River turned from south to north (black rectangle), that is, there were large land-cover 

changes between tidal/flooded flats, water bodies and salt marshes; 3) a lot of impervious surfaces encroached 495 

the coastal water-bodies and flats. In short, if we combine real time-series remote-sensing observation data, the 

GLC_FCS30D effectively captures the spatiotemporal changes of the land surface. 
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Figure 8. Three typical enlargements of land-cover changes in the GLC_FCS30D from 1985 to 2022 in (a) the 

Amazon rainforest, (b) the Yangtze River Delta in China, and (c) the Yellow River Delta in China. The color-500 

coded legend is like the global map in Figure 4. In each case, the natural-color imagery from 1985 to 2022 is a 

composite taken from Landsat imagery. 

4.2 Accuracy assessment of the GLC_FCS30D in 2020 

Table 2 provides the error matrix and accuracy metrics for the GLC_FCS30D dataset in the level-0 

classification system containing 10 major land-cover types. The novel GLC_FCS30D dataset attained an O.A. 505 

of 80.88% (±0.27%). The cropland, forest, impervious surface, water body, as well as permanent snow and ice 

perform better in terms of the P.A. and U.A. than the remaining land-cover types, with corresponding accuracies 

exceeding 85%. The impervious surface and wetland datasets are independently generated and then overlaid on 

the GLC_FCS30D, helping these complicated land-cover types achieve high accuracy metrics. Conversely, 

grassland, shrubland, and tundra have lower accuracies; for example, grassland had the lowest P.A. of 54.41% 510 
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and shrubland had the lowest U.A. of 57.63%. The two reasons that they performed poorly were as follows: 1) 

these land-cover types usually reflected heterogeneous and varied spectral and spatial characteristics, such as 

the grassland shared similar spectra with cropland and sparse shrubland in the growing season and mimicked 

bare-land features in harvest season; 2) all of them were distributed in climate-transition areas with complicated 

climate variations and landscapes.  515 

Table 2. Error matrix of the GLC_FCS30D dataset in 2020 based on the level-0 basic classification system. 

The reported Producer's Accuracy (P.A.) and User's Accuracy (U.A.) come with their corresponding standard 

errors (SE) shown in parentheses. 

 Map O.A. = 80.88% (±0.27%) 

Reference CRP FST GRS SHR WET WTR TUD IMP BAL PSI Total P.A.(SE) 

CRP 15.442 0.792 0.679 0.388 0.086 0.027 0 0.174 0.117 0 17.704 87.22(0.54) 

FST 0.513 28.712 0.315 0.811 0.371 0.021 0.008 0.063 0.113 0.002 30.93 92.83(0.31) 

GRS 1.035 1.166 5.906 1.181 0.231 0.011 0.084 0.051 1.181 0.01 10.855 54.41(1.02) 

SHR 0.555 1.798 0.863 5.392 0.161 0.013 0.019 0.05 0.502 0.002 9.356 57.63(1.09) 

WET 0.068 0.465 0.156 0.157 4.047 0.347 0.031 0.021 0.222 0.001 5.516 73.37(1.27) 

WTR 0.04 0.086 0.019 0.017 0.302 3.305 0.008 0.012 0.039 0.002 3.831 86.28(1.12) 

TUD 0.01 0.123 0.168 0.167 0.018 0.03 2.444 0.002 0.473 0.02 3.454 70.76(1.65) 

IMP 0.084 0.058 0.024 0.04 0.001 0.006 0.002 5.043 0.024 0 5.283 95.45(0.61) 

BAL 0.13 0.049 0.783 0.585 0.043 0.045 0.577 0.048 9.239 0.131 11.628 79.45(0.8) 

PSI 0 0.004 0.03 0.005 0 0.023 0.001 0 0.03 1.351 1.443 93.63(1.38) 

Total 17.877 33.251 8.943 8.743 5.259 3.828 3.176 5.464 11.94 1.52   

U.A.(SE) 
86.38 

(0.55) 

86.35 

(0.4) 

66.05 

(1.07) 

61.68 

(1.11) 

76.96 

(1.2) 

86.33 

(1.35) 

76.97 

(1.6) 

92.29 

(0.77) 

77.38 

(0.82) 

88.89 

(1.72) 
  

Note: The abbreviations correspond to the 10 categories of the basic classification system in Table 1. 

Table 3 provides the error matrix of the GLC_FCS30D in 2020 in the LCCS level-1 validation system with 520 

17 land-cover types. The GLC_FCS30D-2020 dataset achieves an O.A. of 73.04% (±0.30%), which is lower 

than that in the level-0 classification system, because these similar land-cover subcategories more easily suffer 

from misclassifications. For example, forest has a P.A. of 92.83% (±0.31%) and the P.A. rapidly decreases to 

the range of 58.29% (±1.53%) to 82.39% (±0.98%) when split into five fine subcategories. Cropland, forest, 

and bare land, which are further divided into multiple subcategories, show obvious decreases in accuracy over 525 

their subcategories in terms of P.A. and U.A. Taking cropland and forest as examples, approximately 31.7% of 

irrigated cropland (ICP) is misclassified as rainfed cropland (RCP) and so the U.A. of ICP is only 59.92%. More 

than 53.8% of mixture forests (MFT) are wrongly labeled as the other four forest subcategories and so the 

mixture forests have the lowest U.A. of 39.34% (±1.38%). Meanwhile, sparse vegetation has the second lowest 

U.A. of 50.63% (±1.47%) because of the confusion among sparse vegetation, grassland, and bare land. In the 530 

level-0 basic classification system (Table 1), sparse vegetation is grouped in with bare land. A previous study 

in Europe Union proposed grouping it as grassland (Gao et al., 2020). Wetland is further divided into coastal 

wetland (CWL) and inland wetland (IWL) in Table 3, and the CWL has higher U.A. than that of wetland in 

Table 2, primarily attributed to its significantly more accurate classification in the CWL (Zhang et al., 2023). 

 535 
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Table 3. Error matrix of the GLC_FCS30D dataset in 2020 based on the LCCS level-1 validation system. The reported Producer's Accuracy (P.A.) and User's 

Accuracy (U.A.) come with their corresponding standard errors (SE) shown in parentheses. 

Note: The abbreviations correspond to the 17 categories of the LCCS validation system in Table 1. 

 

Reference RCP ICP EBF DBF ENF DNF MFT SHR GRS LMS SVG IWL CWL IMP BAL WTR PSI Total P.A. (SE) 

RCP 12.225 1.023 0.239 0.358 0.102 0.016 0.009 0.382 0.66 0 0.078 0.056 0.005 0.124 0.028 0.001 0 15.332 79.7(0.7) 

ICP 0.397 1.932 0.026 0.016 0.005 0 0 0.01 0.025 0 0.012 0.029 0.005 0.052 0 0.018 0 2.527 76.45(1.81) 

EBF 0.2 0.048 9.091 1.098 0.262 0.103 0.151 0.371 0.084 0 0.012 0.136 0.028 0.029 0.001 0.004 0 11.514 78.96(0.82) 

DBF 0.187 0.016 0.632 6.838 0.537 0.294 0.396 0.235 0.144 0.002 0.019 0.077 0.002 0.025 0.005 0.004 0.002 9.054 75.53(0.97) 

ENF 0.046 0.004 0.174 0.316 5.681 0.328 0.439 0.128 0.034 0.006 0.043 0.094 0 0.008 0.01 0.01 0 6.895 82.39(0.98) 

DNF 0.008 0 0.002 0.13 0.245 1.854 0.073 0.071 0.053 0 0.011 0.025 0 0.001 0.007 0.002 0 2.414 76.79(1.85) 

MFT 0.004 0 0.019 0.176 0.234 0.013 0.828 0.014 0.004 0 0 0.010 0.05 0 0.001 0 0 1.308 58.29(1.53) 

SHR 0.518 0.042 0.299 0.9 0.328 0.131 0.034 5.44 0.871 0.019 0.441 0.157 0.005 0.05 0.065 0.013 0.002 9.438 57.63(1.09) 

GRS 0.947 0.097 0.167 0.582 0.209 0.154 0.024 1.191 5.958 0.085 0.974 0.229 0.006 0.052 0.217 0.008 0.01 10.95 54.41(1.02) 

LMS 0.006 0.004 0.001 0.022 0.044 0.053 0.001 0.168 0.169 2.465 0.379 0.02 0.001 0.002 0.098 0.026 0.02 3.484 70.76(1.65) 

SVG 0.064 0.01 0.008 0.006 0.007 0.01 0.001 0.397 0.462 0.025 2.71 0.012 0 0.013 0.643 0.002 0.024 4.399 61.6(1.57) 

IWL 0.01 0.002 0.044 0.029 0.103 0.022 0.002 0.048 0.017 0.008 0.042 2.673 0.024 0.001 0.012 0.224 0 3.263 81.91(1.45) 

CWL 0.004 0.002 0.008 0.002 0.004 0.002 0.004 0.008 0.006 0 0.008 0.188 1.476 0.007 0.007 0.059 0 1.783 82.77(1.92) 

IMP 0.074 0.011 0.008 0.008 0.037 0.002 0 0.041 0.024 0.002 0.014 0.004 0 5.087 0.01 0.004 0 5.329 95.45(0.61) 

BAL 0.048 0.01 0.002 0.004 0.002 0.001 0 0.193 0.328 0.557 0.582 0.043 0.002 0.035 5.384 0.029 0.108 7.33 73.45(1.11) 

WTR 0.014 0.024 0.014 0.014 0.019 0.008 0.006 0.011 0.016 0.007 0.011 0.168 0.114 0.011 0.019 3.054 0.002 3.509 87.04(1.22) 

PSI 0 0 0 0.001 0.002 0 0 0.005 0.03 0.001 0.011 0 0 0 0.019 0.023 1.363 1.455 93.65(1.37) 

Total 14.757 3.224 10.753 10.56 7.833 3.724 1.97 8.711 8.883 3.179 5.353 3.927 1.668 5.497 6.526 3.482 1.532   

U.A. (SE) 
82.85 

(0.67) 

59.92 

(1.85) 

84.55 

(1.75) 

64.76 

(1) 

72.52 

(1.08) 

49.77 

(1.76) 

39.34 

(1.38) 

62.44 

(1.11) 

67.07 

(1.07) 

77.55 

(1.59) 

50.63 

(1.47) 

68.07 

(1.6) 

88.49 

(1.68) 

92.54 

(0.76) 

82.5 

(1.01) 

87.73 

(1.19) 

88.96 

(1.72) 
  

O.A. 73.04% (±0.30%) 
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4.3 Accuracy assessment based on two third-party regional validation datasets 500 

4.3.1 Time-series accuracy metrics of GLC_FCS30D from LCMAP_Val dataset 

Figure 9 displays time-series variations of the overall accuracy of the GLC_FCS30D dataset using the 

LCMAP_Val annual validation dataset from 1985 to 2018 over the CONUS. The GLC_FCS30D achieves a 

mean O.A. of 79.50% (±0.50%) and varies from a high value of 80.04% (±0.49%) in 2015 to a low value of 

78.91% (±0.51%) in 2000. The overall accuracy of GLC_FCS30D is slightly lower at the early stage, which 505 

might be related to the density of Landsat observations. The early Landsat missions had weaker satellite-to-

ground transmission and onboard recording capabilities (Roy et al., 2014a), so phenological variability and land-

cover changes were more difficult to capture in the early stage.  

 

Figure 9. The time-series overall accuracy of the GLC_FCS30D dataset using the LCMAP_Val annual 510 

reference dataset across the contiguous United States (CONUS) from 1985 to 2018. The error bars on the graph 

show the uncertainty of each data point. 

Figure 10 further illustrates the time-series variations of P.A. and U.A. for the GLC_FCS30D dataset in 

the CONUS. Visually, the P.A. and U.A. of 10 major land-cover types range from 45% to 100% and 35% to 

100%, respectively, and the time-series variations are stable. Among them, the water body land-cover type has 515 

the highest accuracy metrics, achieving mean P.A. and U.A. values of 95.31% (±1.14%) and 98.53% (±

0.66%), respectively, which benefit from its unique spectral characteristics. Cropland follows with mean P.A. 

and U.A. values of 93.37% (±0.74%) and 87.70% (±0.94%), respectively. Forest ranks third with a high P.A. 

of 97.75% (±0.35%) but relatively low U.A. of 82.42% (±0.82%); the unbalanced metrics are because 

GLC_FCS30D and LCMAP_Val have different definitions for forest. GLC_FCS30D defines the tree cover of 520 

the forest as greater than 15% and the threshold setting of LCMAP_Val is 10%, so many shrublands in the 

GLC_FCS30D are labeled as forest in the LCMAP_Val. Wetland has a U.A. value of 90.47% (±2.05%) but a 
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P.A. value of 57.07% (±2.75%), which is also caused by a discrepancy in the definition of wetland. 

GLC_FCS30D identifies seasonal water bodies as wetland while the LCMAP_Val classifies them as water body. 

Impervious surface has a P.A. lower than 60% mainly because the GLC_FCS30D and LCMAP_Val datasets 525 

have different definitions of impervious surface. LCMAP_Val defines buildings and the surrounding green areas 

as developed, while GLC_FCS30D only includes the artificial buildings (houses, roads, squares, and so on). 

Bare land and shrubland have the lowest U.A. values of 35.58% (±4.39%) and 47.29% (±1.56%), respectively, 

mainly because both of them are easily confused with grassland due to the complicated spectral characteristics 

and coexist in climate-sensitive semi-arid regions (e.g., the Midwestern United States). Xian et al. (2022) 530 

emphasized that long-term monitoring of shrubs and grasslands presents significant challenges in the CONUS. 

Permanent snow and ice, which is sparsely distributed in high-elevation mountainous areas of the United States, 

has unique and specific spectral characteristics, so it achieves 100% P.A. in the GLC_FCS30D. The large 

fluctuations in U.A. are because the LCMAP_Val dataset has a small sample size for ice and snow and the 

commission error of other land-cover types causes large variations. 535 

 

Figure 10. The time-series producer’s accuracy and user’s accuracy of GLC_FCS30D based on the 

LCMAP_Val dataset from 1985 to 2018 in the contiguous United States (CONUS). The error band represents 

±1 standard errors. 

Figure 11 indicates the area-bias percentage of eight land-cover types estimated by GLC_FCS30D and 540 

LCMAP_Val across the CONUS. Intuitively, the GLC_FCS30D and LCMAP_Val share similar total areas for 

estimation of cropland, bare land, and water body, and show evident area deviations for estimating forest, 

shrubland, and grassland. The deviations in shrubland and grassland are mainly because these land-cover types 

coexist in the semi-arid regions of the central United States and share similar spectral characteristics and 

temporal variability; thus, some grasslands in the LCMAP_Val are considered as shrubland in the 545 

GLC_FCS30D. Xian et al. (2022) also failed to distinguish grassland and shrubland and combined them as a 

group in generating the LCMAP annual maps. The LCMAP_Val has a broader definition of impervious surface 

and resulting negative bias, so the impervious surface area estimated in LCMAP_Val is larger than the 

assessment in GLC_FCS30D dataset. 
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 550 

Figure 11. The area-bias percentage of eight land-cover types in the GLC_FCS30D and LCMAP_Val datasets 

from 1985 to 2017 in the contiguous United States (CONUS).  

Table 4 further analyzed the confusion matrix of land-cover changed and unchanged pixels in 

GLC_FCS30D using LCMAP_Val dataset. It should be noted that the land-cover changed samples in the 

LCMAP_Val was still sparse, that is, the size of changed samples cannot support the land-cover change analysis 555 

over specific land-cover changes. Similarly, Stehman et al. (2021) also grouped the land-cover types into ‘No 

change’ and ‘change’ types for analyzing the land-cover changes. In this study, using the ‘changed’ and 

‘unchanged’ validation points in LCMAP_Val, the O.A. of the GLC_FCS30D reached the 90.49±0.45%. In 

particular, the unchanged land-cover pixels played a dominant role and reached the high P.A. of 92.84% and 

U.A. of 96.28%. In contrast, the P.A. and U.A. of concerned land-cover changed pixels were 72.26±2.04% and 560 

56.62±2.00%, and its F1 score was 63.49%.  

Table 4. The confusion matrix of changed and unchanged pixels in GLC_FCS30D using LCMAP_Val datasets. 

 Unchanged Changed Total P.A. (SE) F1 

Unchanged 82.21 6.34 88.55 92.84(0.42) 94.53 

Changed 3.18 8.27 11.45 72.26(2.04) 63.49 

Total 85.39 14.61    

U.A. (SE) 96.28(0.32) 56.62(2.00)    

O.A. (SE) 90.49(0.45) 

4.3.2 Time-series accuracy metrics of GLC_FCS30D from the LUCAS dataset 

Table 5 lists the time-series accuracy metrics of the GLC_FCS30D dataset across the European Union (EU) 

from 2006 to 2018 using the LUCAS dataset. The GLC_FCS30D dataset has a mean O.A. of 81.91% (±0.09%) 565 

ranging from 81.64% (0.09%) to 82.11% (0.09%) in EU. The two dominant land-cover types (cropland and 

forest) that cover almost 70% of the entire EU area (Gao et al., 2020)) have higher P.A. and U.A. values than 
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other land-cover types. The P.A. and U.A. of cropland exceed 85% and 93%, respectively. Forest has 

unbalanced P.A. (approximately 95%) and U.A. values (approximately 76%) because the LUCAS dataset 

defines forest more broadly than the GLC_FCS30D dataset. In particular, sparse vegetation associated with 570 

forest is grouped as forest in LUCAS but as bare land in GLC_FCS30D. Gao et al. (2020) explained the 

discrepancy in the forest definition between LUCAS and GLC_FCS30. Shrubland, grassland, and bare land 

showed inferior performance in both P.A. and U.A. because of their complicated spectral variability and spatial 

heterogeneity. Gao et al. (2020) also found that three global 30-m land-cover products (GlobeLand30, 

FROM_GLC, and GLC_FCS30) exhibited poor performance for these three land-cover types. Urban green 575 

space and discontinuous urban fabric, excluding from the GLC_FCS30D, are grouped as impervious surface in 

the LUCAS. Thus, the impervious surface also has a low P.A. of approximately 59%. Last, we further 

investigate the temporal variability of P.A. and U.A. and find that permanent ice and snow and wetland show 

greater variability and that both are closely related to annual temperature and precipitation; namely, their spatial 

distributions are affected by the natural environment. 580 

Table 5. Time-series accuracy metrics of the GLC_FCS30D dataset using the LUCAS validation dataset across 

the European Union.  

 2006 2009 2012 2015 2018 

 P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) 

CRP 85.49(0.11) 93.37(0.08) 85.40(0.11) 93.31(0.08) 85.50(0.11) 93.17(0.08) 85.47(0.11) 93.05(0.08) 85.52(0.11) 92.82(0.08) 

FST 95.22(0.08) 76.71(0.15) 94.97(0.08) 76.71(0.15) 94.79(0.09) 76.82(0.15) 94.36(0.09) 76.82(0.15) 93.71(0.09) 76.85(0.15) 

GRS 6.13(0.26) 21.31(0.83) 6.10(0.26) 21.13(0.83) 6.05(0.26) 20.98(0.83) 6.08(0.26) 20.71(0.82) 5.99(0.26) 20.74(0.82) 

SHR 8.13(0.42) 8.93(0.46) 8.25(0.43) 8.92(0.46) 8.02(0.42) 8.77(0.46) 7.84(0.42) 8.60(0.45) 8.35(0.43) 8.96(0.46) 

WET 63.10(0.81) 66.55 (0.81) 61.40(0.81) 65.55(0.82) 61.86(0.81) 66.21(0.82) 62.64(0.81) 66.60(0.81) 62.94(0.81) 65.34 (0.81) 

WTR 89.73(0.40) 92.44(0.36) 90.09(0.40) 92.53(0.35) 90.28(0.39) 92.36(0.36) 90.83(0.38) 91.63(0.37) 90.10(0.40) 91.56(0.37) 

IMP 58.55(0.56) 72.69(0.56) 59.21(0.55) 72.06(0.56) 59.06(0.55) 71.72(0.56) 58.65(0.55) 70.85(0.56) 59.01(0.55) 70.29(0.56) 

BAL 52.77(1.12) 39.62(0.95) 52.90(1.12) 38.44(0.93) 52.19(1.13) 37.70(0.93) 52.07(1.13) 36.16(0.90) 52.33(1.13) 34.69(0.87) 

PSI 86.02(5.00) 35.01(4.38) 91.40(4.04) 36.56(4.38) 89.25(4.46) 31.86(4.00) 96.24(2.74) 31.40(3.81) 96.24(2.74) 31.35(3.81) 

O.A.(SE) 82.11(0.09) 81.99(0.09) 81.97(0.09) 81.82(0.09) 81.64(0.09) 

Table 6 shows the area proportions of 10 major land-cover types from the GLC_FCS30D dataset (Map) 

and LUCAS validation dataset (Ref), respectively. The area bias (AB) measures the area deviations of the two 

different datasets for the same land-cover type. Overall, the GLC_FCS30D overestimates the total area 585 

assessments of forest, bare land, and ice and snow, and underestimates the remaining land-cover types in 

comparison to the LUCAS estimations. In particular, the AB of forest is the most significant overestimation of 

+7.356%, and the underestimated MB of cropland is −4.086%. Cropland and forest cover together account for 

approximately 70% of the total EU area (Gao et al., 2020)), as a result, the area bias (AB) values for these two 

land-cover types are more noticeable or pronounced compared to the AB values of the other land-cover types.  590 

Table 6. The area proportions and area bias (AB) values of 10 major land-cover types from the GLC_FCS30D 

dataset (Map) and the LUCAS validation dataset (Ref). 

 
2006 2009 2012 2015 2018 

Map Ref AB Map Ref AB Map Ref AB Map Ref AB Map Ref AB 

CRP 46.48 50.62 -4.14 46.46 50.64 -4.18 46.59 50.67 -4.08 46.63 50.69 -4.06 46.77 50.74 -3.97 
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FST 41.39 33.76 7.63 41.28 33.75 7.53 41.14 33.73 7.41 40.96 33.73 7.23 40.66 33.68 6.98 

GRS 1.21 4.15 -2.94 1.21 4.15 -2.94 1.21 4.15 -2.94 1.23 4.15 -2.92 1.21 4.15 -2.94 

SHR 1.91 2.08 -0.17 1.94 2.08 -0.14 1.92 2.08 -0.16 1.91 2.07 -0.16 1.95 2.06 -0.11 

WET 1.70 1.75 -0.05 1.68 1.74 -0.06 1.68 1.73 -0.05 1.69 1.71 -0.02 1.73 1.72 0.01 

WTR 2.75 2.85 -0.1 2.76 2.85 -0.09 2.77 2.85 -0.08 2.81 2.85 -0.04 2.79 2.86 -0.07 

IMP 3.18 3.82 -0.64 3.25 3.83 -0.58 3.25 3.82 -0.57 3.27 3.82 -0.55 3.32 3.82 -0.5 

BAL 1.32 0.95 0.37 1.36 0.95 0.41 1.37 0.95 0.42 1.42 0.95 0.47 1.49 0.95 0.54 

PSI 0.06 0.02 0.04 0.06 0.02 0.04 0.07 0.02 0.05 0.07 0.02 0.05 0.07 0.02 0.05 

Table 7 presented the confusion matrix of changed and unchanged pixels using the LUCAS validation 

datasets. The O.A. of the GLC_FCS30D reached 90.36±0.38%, the P.A. and U.A. of the changed pixels were 

52.86±2.04% and 73.31±2.00%, and the corresponding F1 score was 61.43%. In contrast, the unchanged 595 

land-cover pixels reached the high P.A. and U.A., and both two metrics exceeded 90%. Thus, the changed land-

cover pixels were more difficult to capture comparing with these unchanged pixels. Similarly, Stehman et al. 

(2021) also found that the accuracy metrics of changed pixels were greatly lower than that of unchanged pixel, 

the producer’s accuracy of changed pixels and unchanged pixels were 16% and 99%, respectively. 

Table 7. The confusion matrix of changed and unchanged pixels in GLC_FCS30D using time-series LUCAS 600 

datasets across the Europe Union. 

 Unchanged Changed Total P.A. (SE) F1 

Unchanged 82.69 2.79 85.48 96.73 94.49 

Changed 6.84 7.68 14.52 52.86 61.43 

Total 89.53 10.47    

U.A. (SE) 92.36(0.36) 73.31(1.74)    

O.A. (SE) 90.36(0.38) 

4.4 The comparisons with other global land-cover dynamic products 

Figure 12 gave the qualitative comparisons between our GLC_FCS30D and two widely used land-cover 

dynamic datasets (CCI_LC and MCD12Q1) during 2001-2020 in the Indo-China Peninsula, in which 

experienced evident land-cover changes in forest deforestation and urban expansion. In terms of the urban 605 

expansion, three datasets revealed the quick urbanization in the mega-city of Bangkok, and the CCI_LC under-

estimated the impervious surface areas in 2001 comparing with two other datasets. Meanwhile, the 

GLC_FCS30D also captured more spatial details (such as: rural building and road networks) than CCI_LC and 

MCD12Q1 because of its high spatial resolution of 30 m.  

In terms of the most significant deforestation, the CCI_LC showed the worst performance because 1) it 610 

under-estimated the forest covers in the 2001 (the rectangle region 1, R1), that is, some forests were wrongly 

labeled as the croplands; 2) some deforested forests cannot be captured during the period of 2001-2020 in 

rectangle region 2 (R2), so their deforested forest area was less than that of GLC_FCS30D and MCD12Q1; and 

3) there was obvious misclassification problem between forest and wetland in 2001 (the rectangle region 3, R3). 

Then, the MCD12Q1 also suffered the omission error for forest in R1, namely, the captured forest area in 2001 615 

was lower than their actual areas based on the natural-color imagery. As for the evident deforestation in the R2, 

we can find that almost all forest pixels changed to the other land-cover types (savanna and grassland) in 

MCD12Q1, which was obviously deviated from the actual situation, thus, MCD12Q1 over-estimated the forest 
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deforestation. Meanwhile, the time-series MCD12Q1 showed various land-cover distributions in the R3, which 

indicated that the MCD12Q1 performed lower mapping accuracy and temporal stability for these wetland areas. 620 

In comparison, the GLC_FCS30D achieved the best performance in capturing the spatial distribution of forest 

in 2001, forest deforestation during 2001-2020, and wetland stability. 

 
Figure 12. The comparisons between GLC_FCS30D with CCI_LC and MCD12Q1 land-cover dynamic 

products in Indo-China Peninsula during 2001-2020. The natural-color imagery are composited from the time-625 

series Landsat imagery. 

Figure 13 showed another comparison example about three datasets in Paraguay, South America, and the 

most evident land-cover change was the deforestation and cropland incensement according to the time-series 

natural-color Landsat imagery. In terms of the spatial distribution, the consistency between GLC_FCS30D and 

CCI_LC was higher, while the MCD12Q1 was obviously different from the other two datasets. A large amount 630 

of deciduous broadleaved forests were labeled as the savanna and woody savanna, and most croplands were 
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identified as the grasslands in the MCD12Q1, which mainly because of the difference of classification system. 

Then, as for the land-cover change areas, the GLC_FCS30D performed the highest accuracy and captured the 

richer spatial details. For example, the deforestation intensity during 2010-2020 was significantly greater than 

that during 2001-2010, and the GLC_FCS30D also revealed the regular deforestation caused by human factors. 635 

In contrast, the CCI_LC and MCD12Q1 failed to capture the deforestation during 2010-2020, and the small and 

fragmented changes (caused by human activities) also cannot be captured. 

 

Figure 13. The comparisons between GLC_FCS30D with two time-series land-cover dynamic datasets in 

Paraguay, South America, during 2001-2020. 640 

4.5 Limitations and perspectives of the GLC_FCS30D dataset 

To achieve the goal of accurate and robust monitoring of global land-cover change, four steps are adopted: 

1) combining the advantages of the CCD model and full time-series Landsat observations to capture the land-
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cover change time-points for any changed pixels; 2) using the temporally stable areas as prior knowledge to 

ensure the quality of training samples and adopting local adaptive modeling to update the land-cover transitions 645 

of these changed pixels; 3) independently developing global thematic products for two complicated land-cover 

types (impervious surface and wetland) to improve the reliability of the GLC_FCS30D; and 4) applying the 

‘spatiotemporal consistency checking’ optimization in Section 3.3.3 to further guarantee the stability and 

accuracy of the GLC_FCS30D. The accuracy assessments, using the developed global validation dataset and 

two third-party datasets, demonstrate that the GLC_FCS30D fulfills accuracy requirements at a baseline year 650 

and for time-series variability over global or national scales. Comparisons with other land-cover products also 

highlight the superiority of the GLC_FCS30D in terms of classification system diversity and monitoring 

accuracy of these changed-areas. However, long time-series monitoring of global land-cover change is an 

extremely complex and difficult task (Hansen and Loveland, 2012; Song et al., 2018; Winkler et al., 2021; Xian 

et al., 2022). Although this study takes a series of measurements and methods to achieve global 30-m land cover 655 

change monitoring over past 37 years, there are still some uncertainties and limitations that need to be resolved 

in further work. 

The CCD algorithm makes full use of dense satellite observations to capture land-cover changes robustly 

and accurately (Zhu and Woodcock, 2014b; Zhu et al., 2012). However, previous studies have demonstrated 

that their reliability is highly correlated to the density of valid satellite observations (Bullock et al., 2022; Ye et 660 

al., 2021; Zhu et al., 2019). Cloudy and snowy areas have greater uncertainty for capturing the time points of 

land-cover change (DeVries et al., 2015; Xian et al., 2022). Additionally, due to the limited storage capacity 

and satellite–ground data-transmission capacity of early satellites, the density of Landsat imagery is sparse 

before 2000 (only Landsat 5 single-satellite acquired data) (Roy et al., 2014b). In this study, we combine the 

satellite observations from two years before and after the nominal center year from 1985 to 1995; for example, 665 

we update the land-cover maps in 1995 using all available imagery from 1993 to 1997. However, a previous 

study found that northeastern Asia did not have any valid Landsat observations before 2000 (Zhang et al., 2022), 

which means some land-cover changes could not be captured in the GLC_FCS30D in these areas before 2000. 

To solve the problem of missing and sparse observations, a useful solution is to fuse multisourced remote-

sensing imagery. For example, Zhang et al. (2021c) combined Landsat and Sentinel-2 imagery to track tropical 670 

forest disturbances with overall accuracy of more than 87%. Therefore, further work will investigate the 

feasibility of integrating Sentinel 1/2, MODIS, and AVHRR imagery as auxiliary datasets. 

GLC_FCS30D reveals a large number of land-cover changes in the semi-arid regions illustrated in Figure 

5a, in which the land-cover changes are more influenced by climate factors. For example, the central region of 

Australia is a typical semi-arid region, and the dominant land-cover types are grassland, sparse vegetation, 675 

shrubland, and bare land. In general, if there is sufficient annual precipitation, the distributions of shrubland and 

grassland in the area will be more extensive; otherwise the area will be dominated by bare land and sparse 

vegetation (Dong et al., 2020; Ge et al., 2022). Recently, some studies suggested suppressing these changes; for 

example, Bastos et al. (2022) chose to suppress these land-cover changes by fusing these four land-cover types 

into the single grassland land-cover type in Australia, and Xian et al. (2022) combined grassland and shrubland 680 

together in the CONUS. Whether these frequent and climate-sensitive land-cover changes should be suppressed 

will be considered in our further work. 

Although we used a global validation dataset to assess the capability of GLC_FCS30D in the baseline year 

of 2020 and two third-party regional datasets to assess its time-series accuracy variability in the European Union 
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and the CONUS, the accuracy assessment work should be strengthened. In particular, the classification system 685 

differences among GLC_FCS30D, LUCAS, and LCMAP_Val cannot be ignored. For example, the impervious 

surface land-cover type in the LUCAS and LCMAP_Val contains artificial surfaces and their surroundings (such 

as city greenery) (Stehman et al., 2021; Xian et al., 2022), while the GLC_FCS30D only includes artificial 

structures (Zhang et al., 2022), so the impervious surface in GLC_FCS30D has low P.A. when validating with 

the LUCAS and LCMAP_Val datasets in Section 4.3. The time-series accuracy variability is only analyzed in 690 

two regions, so its performance in more complex areas (such as Africa and Asia) needs to be further investigated. 

Thus, our future work would be paid on long-term time-series validation data sets for more regions and on 

building a long time-series global validation dataset based on the existing works in Section 2.5.1, and then 

analyzed the accuracy metrics of the land-cover changed pixels for all land-cover type and their intra-annual 

variability. 695 

5. Data availability 

The developed GLC_FCS30D dataset can be freely accessible via https://doi.org/10.5281/zenodo.8239305 

(Liu et al., 2023). To allow users to better select this dataset, it is saved as 961 5° × 5° independent tiles. Each 

tile is named as ‘GLC_FCS30D_yyyyYYYY_E/W**N/S**.tif’, in which ‘E/W**N/S**’ represents the 

longitude and latitude coordinates of the top-left corner, and yyyy and YYYY are the start and end years of the 700 

land-cover change monitoring. The GLC_FCS30D contains 26 time-step maps from 1985 to 2022, updated 

every five years before 2000 and annually from 2000 to 2022The first three time steps are saved together and 

the following 23 time steps are saved separately. For example, GLC_FCS30D_19851995_E115N15.tif and 

GLC_FCS30D_20002022_E115N15.tif are the first three time-steps and the following 23 annual time-steps 

data from 1985 to 2022 for the region of 115°–120°E, 10°–15°N, respectively.  705 

6. Conclusion 

Land cover change is the main cause or driving force of global climate change and has attracted increasing 

attention over the past decades. Long time-series global land-cover dynamic monitoring is still a challenging 

task. In this study, the first global 30-m land-cover dynamic dataset with fine classification system 

(GLC_FCS30D), containing 35 fine land-cover sub-categories and covering the period of 1985 to 2022 with 26 710 

time-steps, is generated on the GEE platform. In specific, we take advantage of the full time-series Landsat 

observations and the CCD algorithm to capture the time-points of changed areas, and then update and optimize 

the land-cover changed areas based on the local adaptive modeling strategy and a temporal-consistency 

algorithm. The accuracy assessments indicate that the proposed method can achieve accurate and 

spatiotemporally consistent land-cover change monitoring, and the GLC_FCS30D achieves an overall accuracy 715 

in 2020 of 80.88% (±0.27%) for the basic classification system 10 major land-cover types) and 73.24% (±

0.30%) for the LCCS level-1 validation system (17 LCCS land-cover types). Therefore, the GLC_FCS30D is 

the first global land-cover dynamic monitoring product with a 37-year time span and the most diverse 

classification system. It will be essential for sustainable development, environmental protection, and informed 

decision-making to address the challenges of a rapidly changing world. 720 
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