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Abstract. Ground-based datasets of observed Snow Water Equivalent (SWE) are scarce, while gridded SWE estimates from

remote-sensing and climate reanalysis are unable to resolve the high spatial variability of snow on the ground. Long-term

ground observations of snow depth, in combination with models that can accurately convert snow depth to SWE, can fill

this observational gap. Here, we provide a new SWE dataset (NH-SWE) that encompasses 11,071 stations in the Northern

Hemisphere, and is available at doi.org/10.5281/zenodo.7515603 (Fontrodona-Bach et al., 2023). This new dataset provides5

daily time series of SWE, varying in length between one and seventy-three years, spanning the period 1950-2022 and covering a

wide range of snow climates including many mountainous regions. At each station, observed snow depth was converted to SWE

using an established snow-depth-to-SWE conversion model, with excellent model performance using regionalised parameters

based on climate variables. The accuracy of the model after parameter regionalisation is comparable to that of the calibrated

model. The key advantages and strengths of the regionalised model presented here are its transferability across climates and the10

high performance in modelling daily SWE dynamics in terms of peak SWE, total snowmelt and duration of the melt season,

as assessed here against a comparison model. This dataset is particularly useful for studies that require accurate time series of

SWE dynamics, timing of snowmelt onset, and snowmelt totals and duration. It can e.g. be used for climate change impact

analyses, water resources assessment and management, validation of remote sensing of snow, hydrological modelling and snow

data assimilation into climate models.15

1 Introduction

The modification of the cryosphere is one of the most visible effects of ongoing climate warming (Beniston et al., 2018). In

this context, snow cover is particularly important, as it provides an important seasonal hydrologic buffer over high latitudes

and high elevations, through storage over the accumulation season and a delayed release of water in the subsequent melt season

(Kuppel et al., 2017). Snow cover also plays an important role in the Earth’s climate through snow-albedo feedbacks (Déry20

and Brown, 2007). Studies showing the impact of global warming on snow are numerous: declining trends in snow depth have

been observed over the European Alps (Matiu et al., 2021a), the Pyrenees (López-Moreno et al., 2020), and all of Europe

except the coldest climates (Fontrodona Bach et al., 2018); decreasing snow cover duration and extent have been reported over
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the Northern Hemisphere (Bormann et al., 2018; Mudryk et al., 2020) and over 78% of global mountain regions (Notarnicola,

2020); and increasing snowmelt in winter has been observed in western North America (Musselman et al., 2021). Regions25

whose water resources strongly depend on snow water storage are at risk of large declines in spring and summer streamflow,

posing a potential future threat to human water used for ∼2 billion people (Mankin et al., 2015). There is therefore an ongoing

need for access to wide coverage and reliable snow data and research.

There are various ways to measure snow, which serve different scientific purposes. Snow depth is the thickness of snow

accumulated above ground level and can easily be measured manually with a ruler or automatically with an acoustic sensor30

that measures snow height. The depth of water that is actually stored in a snowpack is referred to as Snow Water Equivalent

(SWE) and corresponds to the depth of liquid water that would result from melting the entire snowpack.

Reliable estimates of SWE, rather than snow depth, are thus needed for water resources assessments across scales. However,

limitations arise when estimating SWE at regional, continental or global scales. Remote sensing estimates of SWE provided

by satellite measurements are in constant development but currently have low accuracy and are limited to shallow (<150 mm)35

snowpacks (Luojus et al., 2021). Estimates of SWE resulting from reanalysis and land surface modelling rely on snow models

forced with meteorological data and are also subject to biases and errors (Brun et al., 2013; Broxton et al., 2016; Muñoz-Sabater

et al., 2021). A common limitation of these gridded SWE estimates is that they cannot reproduce the high spatial variability

of snow on the ground, especially for mountain regions and complex terrain (Clark et al., 2011; López-Moreno et al., 2013),

although reliability and resolution can be improved by assimilating measurements of snow depth and SWE (Zeng et al., 2018).40

A review of global gridded datasets of SWE shows up to a 50% variability in peak snow accumulation between different

datasets (Mudryk et al., 2015).

Adding to the complexity of obtaining reliable SWE data, large scale estimates of SWE often have limited validation against

observed ground data, which is scarce in time and in space. In fact, both manual and remotely sensed measurement techniques

exist for SWE, but they are either complex, time consuming, or require specialised equipment (Jonas et al., 2009; Winkler45

et al., 2021). In contrast to complex SWE measurements, manual and automatic snow depth measurements are more straight-

forward and therefore more widespread. Many regional snow depth datasets exist or are emerging, with an increasing number

of National Hydrological and Meteorological Services making snow depth data publicly available and easily downloadable

through site portals and Application Programming Interfaces (API). However, an estimate of snow density is needed together

with a snow depth measurement to obtain the snow water equivalent.50

There is an increasing number of models that can accurately convert snow depth to SWE using simple empirical regressions

(Mizukami and Perica, 2008; Jonas et al., 2009; Sturm et al., 2010; Bormann et al., 2013; Mccreight and Small, 2014; Pis-

tocchi, 2016; Hill et al., 2019; Ntokas et al., 2021). These regression based methods require paired snow depth-SWE ground

measurements to calibrate parameters that later on are used to estimate SWE when only snow depth measurements are avail-

able. Some of the approaches generalize parameters regionally, based on elevation and on the day of the year (Jonas et al.,55

2009), or globally based on climatological variables (Sturm et al., 2010; Hill et al., 2019; Szeitz and Moore, 2023). Physics-

based snow models can also regionalise and cluster snow parameters based on climate variables (Dawson et al., 2017; Sun

et al., 2019, 2022), but the parameterization is more data intensive than for simple regression-based approaches. The common
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limitation of using regression based approaches is that a SWE value on a given time step is estimated independently for each

snow depth value, irrespective of snow depth values on preceding time steps. Therefore, conversion of time series of snow60

depth to SWE leads to an incorrect temporal evolution of SWE because the regression cannot account neither for the settling

of new snow and nor for the compaction of the snowpack (Jonas et al., 2009). This problem has been addressed by considering

the temporal evolution of snow depth in the conversion model (Mccreight and Small, 2014; Winkler et al., 2021), but, to date,

no approach has generalised this method for regional or global use.

Here we bring together the increasing number of available in-situ snow depth datasets and the increasing number of snow65

depth to SWE conversion models to produce a new, freely available SWE dataset: the NH-SWE dataset. This compilation

and analysis provides i) the first pan-Northern Hemisphere in-situ snow depth time series compilation and ii) a conversion

from depth to SWE using an established model (∆SNOW, Winkler et al. (2021)). This SWE dataset can be extremely useful

across a wide variety of applications such as validation of remote sensing products, hydrological and environmental modelling,

assimilating snow data into models, and general climate research.70

This paper is organized as follows: 1) data sources used to calibrate, regionalise and evaluate the model for snow depth to

SWE conversion (Section 2), 2) model development and implementation (Section 3), 3) performance of the model for across a

variety of variables (Section 4), 4) demonstration of some key features of the NH-SWE dataset (Section 5), including its usage

and limitations (Section 6).

2 Data sources75

The data used to compile NH-SWE from in-situ snow depth observations can be divided in two main groups: group HS-SWE

includes all stations that have both snow depth (Height of Snow, HS) and SWE data available; group HS includes all stations

that have only HS observations available.

Group HS-SWE data can be further split for the purposes of model implementation into a) data used for model regionalisation

and b) data used for independent evaluation. The HS data group then provides the input data to generate the new SWE estimates80

within the NH-SWE dataset (Section 5) but is not used in model implementation. We evaluate the model using independent

HS-SWE datasets, different from the one used to regionalise the ∆SNOW model from Winkler et al. (2021). This approach

enables us to evaluate SWE estimates for as wide range of snow climate conditions as possible combined with an independent

evaluation process to test the transferability of the model regionalisation to other independent datasets, such as our collection

of Northern Hemisphere snow depth time series. A summary chart of the workflow to produce the final SWE dataset is shown85

in Fig. 1. An overview of all the data used to derive the NH-SWE dataset is shown in Table 1, and the spatial distribution of

the data and sources is shown in Fig. 2.

2.1 HS-SWE data for model regionalisation

The SNOwpack TELemetry Network (SNOTEL) dataset contains a large network of automated sub-daily observations of

HS and SWE data over the western United States and is freely available (USDA NRCS, 2022). The dataset covers a wide90
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Figure 1. Workflow chart to obtain the NH-SWE dataset. The ∆SNOW model is from Winkler et al. (2021).

range of snow climates and characteristics such as the the wet and mild Pacific Northwest (including the maritime Cascades

mountain range), the continental cold and snowy Rockies, the Mediterranean climate from California, the arid climate from

the Southwest and even high latitude tundra/taiga in Alaska (Serreze et al., 1999; Sun et al., 2019). The SNOTEL dataset only

contains measurement stations where a minimum of 40 days of continuous snow cover is observed on average (since it has

been designed to monitor seasonal snowpacks). We use this dataset to calibrate and regionalise the ∆SNOW model (Winkler95

et al., 2021) over a wide range of hydroclimates, and we assess the transferabilty of the regionalisation by evaluating the model

over fully independent datasets from other climates. We apply the same data preprocessing to the SNOTEL dataset as Hill et al.

(2019), retaining only measurement stations with joint HS and SWE records, and removing outliers. The resulting dataset for

model regionalisation contains 812 sites with daily HS-SWE time series data ranging from 1 to 25 years in length (see Table 1

and Fig. 2a).100

2.2 HS-SWE data for model evaluation

We independently evaluate the ∆SNOW model using a SWE dataset from Canada (Vionnet et al., 2021), which contains 2,607

stations with historical HS and SWE measurements. Selecting only those stations with daily observations of HS and SWE, and

applying gap filling and quality control (see Appendix A), 68 stations distributed over Eastern and Western Canada are retained

for model evaluation (see Fig. 2a and Table 1).105

To assess the transferability of the model to outside North America, we compiled 20 additional HS and SWE datasets from

7 different sources: 8 stations from the Global Climate Observing System (GCOS) in Switzerland (Marty, 2020); 2 stations

from the All-Russia Research Institute of Hydrometeorological Information - World Data Center (RIHMI-WDC, 2022); 6

stations from the Norwegian Water Resources and Energy Directorate (NVE, 2022); and 4 single station observations from

different sources over the European Alps and Finland (Stähli, 2018; Krajči et al., 2017; Essery et al., 2016; Morin et al., 2012).110

The number of additional stations available for independent validation outside North America is low because 1) continuous

observation of both HS and SWE is much rarer and 2) if collected, is also rarely provided within open data repositories. Most

of this additional validation data contain daily observations of SWE, but some contain only weekly or biweekly measurements
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Table 1. Overview of datasets and sources used for model regionalisation, model evaluation and input for the final NH-SWE dataset. Model

regionalisation and model evaluation data refer to Sections 2.1 and 2.2, and input data refers to Section 2.3. SWEd for daily measurements,

SWEb for biweekly measurements. The number of sites is after quality control and selection. The minimum length is 1 year for all datasets.

Data Source Data Type Data Use
Number of

Sites

Length (years)

mean max
Reference

SNOTEL HS-SWEd Model regionalisation 812 14 25 USDA NRCS (2022)

CanSWE HS-SWEd Model evaluation 68 8 28 Vionnet et al. (2021, 2022)

GCOS-CH HS-SWEb Model evaluation 8 57 70 Marty (2020)

RIHMI-WDC HS-SWEb Model evaluation 2 30 34 RIHMI-WDC (2022)

NVE HS-SWEd Model evaluation 6 3 9 NVE (2022)

Kuhtai-AT* HS-SWEd Model evaluation 1 23 23 Krajči et al. (2017)

Sodankyla-FI* HS-SWEd Model evaluation 1 6 6 Essery et al. (2016)

Col-de-Porte-FR* HS-SWEb Model evaluation 1 18 18 Morin et al. (2012)

Alptal-CH* HS-SWEb Model evaluation 1 1 1 Stähli (2018)

ECA&D HS Input data for NH-SWE 3,050 40 70 Klein Tank et al. (2002)

FMI HS Input data for NH-SWE 204 36 63 FMI (2022)

Matiu20 HS Input data for NH-SWE 535 34 60 Matiu et al. (2021b, a)

RIHMI-WDC HS Input data for NH-SWE 543 61 69 RIHMI-WDC (2022)

GHCNd HS Input data for NH-SWE 6,478 23 71 Menne et al. (2012)

MeteoSwiss/SLF HS Input data for NH-SWE 261 33 70 MeteoSwiss (2022)

*Referred as "single sites" in Fig. 2a

(see Table 1). This change in temporal resolution in turn reduces the metrics that can be evaluated. For example, the timing of

snowmelt onset cannot be accurately determined without daily SWE measurements (see Section 3.6). Furthermore, the daily115

observations of SWE were obtained automatically and are typically co-located with the snow depth measurements. However,

the biweekly SWE measurements are usually acquired through manual profiles, a destructive method that may introduce spatial

variability in the measurements due to differences in the location of sampling relative to the HS data, which are typically

obtained from fixed installed stakes, snow courses, or automatic snow depth measurements.

2.3 HS data as model input for NH-SWE dataset120

We have gathered and compiled pan Northern Hemisphere datasets of in-situ daily HS observations from different sources.

This relies on the European Climate Assessment and Dataset (ECA&D), which has already been described (Klein Tank et al.,

2002) and analysed in previous studies (Fontrodona Bach et al., 2018), but with some important additions and updates. Gaps

in time series from Finland in the ECA&D have been filled where possible by downloading HS time series directly from

the Finnish Meteorological Insitute (FMI). The under-representation of alpine sites in the ECA&D has been reduced through125
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Figure 2. Spatial distribution of stations in the datasets used. (a) Paired HS-SWE datasets for model regionalisation and evaluation and (b)

HS data used as model input for the final modelled SWE dataset (NH-SWE). In (a), SNOTEL is used for model regionalisation, and the rest

are evaluation datasets. See Table 1 for more information on the sources.

data obtained from the MeteoSwiss data portal IDAWEB, which includes data from Meteoswiss, the SLF (WSL Institute

for Snow and Avalance Research), and the Autonomous Province of Bolzano - Sudtirol. We have also included alpine data

published by Matiu et al. (2021a, b). The ECA&D coverage over Russia has been completely replaced by data from the All-

Russia Research Institute of Hydrometeorological Information - World Data Center (RIHMI-WDC), which contains longer and

updated coverage of many sites. The western half of the Northern Hemisphere is well covered by data available from the Global130

Historical Climatology Network daily (GHCNd). In the case of multiple time series from the same location being available

across the compiled datasets, we selected the time series with the most updated record or the one with fewer gaps. Because

of the sharp increase in data availability and quality after 1950 (Fontrodona Bach et al., 2018; Matiu et al., 2021a) our data

compilation begins from 1 September 1949 to 31 August 2022. Most snow depth measurements are manual with a precision

of ± 1 cm, but automatic measurements with higher precision are also present. Due to the large amount of data gathered, we135

do not provide information on the type of measurements for each snow depth dataset.

Following this initial compilation, we obtain 21,502 individual time series of snow depth, upon which we apply further

selection criteria before further use. The ∆SNOW model (Winkler et al., 2021) requires a gap-free record of daily snow depth.

Therefore we use a robust gap-filling procedure to the HS time series (see Appendix A). We quality control the gap-filling based
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on confidence criteria and we select stations with at least one entire gap-free snow year between 1950 and 2022. We define140

a snow year from 1st of September to 31st of August, since this was the first day of the month with most snow free records

over the entire dataset. Furthermore, the ∆SNOW model can only be reliably applied over seasonal snowpacks (Winkler et al.,

2021), and the SNOTEL dataset (used here for model regionalisation) contains only sites with a minimum of 40 days of

continuous snow cover. Because of the uncertainty in model performance for shorter snow cover durations, we retain only

stations where the mean continuous snow cover duration is at least 40 days. The number of stations in the dataset after quality145

control and selection criteria is 11,071. An overview of the datasets and sources is available in Table 1 and the spatial coverage

is shown in Fig. 2b.

We are not allowed to republish the original HS data used as source to derive the SWE dataset because it is already freely

available (See references in Table 1). More information on the data sources and how to download the HS data can be found in

the data availability section.150

3 Method: Snow depth to water equivalent conversion

3.1 Definitions

We show in Fig. 3 the terms to describe the snow season. The day count of a snow year starts on 1st of September, which is

day 1. The annual snow season is the longest period of continuous snow cover (SWE > 0 mm) in a snow year. The maximum

snow water equivalent value in the annual snow season is the peak SWE. For biweekly SWE measurements, peak SWE is the155

highest observed SWE and is compared with the modelled SWE on the same date for the purpose of model evaluation. The

value of peak SWE can last for days while there is no more snow accumulation, until the snowpack starts to melt. Snowmelt is

defined as a decrease in SWE. The timing of snowmelt onset corresponds to the last day of peak SWE and dividies the annual

snow season into the accumulation season and the snowmelt season. Snow seasons can have more complicated accumulation

and melt patterns than the one in Fig. 3, for instance if peak SWE occurs very early in the season, followed by a long cold160

period without a decrease in SWE. However, for computing snowmelt volume and duration, we only use days with a decrease

in SWE and thus the results should not be heavily affected by our definitions.
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Figure 3. Snow season terms and definitions. SWEpeak is the highest snow water equivalent value. Snowmelt onset is the last day of peak

SWE and divides the snow season into accumulation season and snowmelt season.

3.2 Model choice and brief description

We use the ∆SNOW model of Winkler et al. (2021) to convert snow depth (HS) to snow water equivalent (SWE) time series.

We use the ∆SNOW model because of its low complexity and little input data required, given that most snow depth time series165

do not contain other meteorological data (see Section 2). Furthermore, the ∆SNOW model shows a high accuracy compared

to other conversion models (Winkler et al., 2021), especially because of its ability to integrate the temporal evolution of snow

depth into the model. Here, we further test its ability to accurately model the temporal dynamics of SWE by evaluating the

model performance on other variables (see Section 3.6) than simulated daily SWE and simulated peak SWE, which were the

main evaluated variables in previous studies (Hill et al., 2019; Winkler et al., 2021). In addition, the low number of required170

parameters makes it possible to regionalise the model and to transfer it to different types of snowpacks and climates, as shown

in Section 3.4.

The model estimates total snowpack SWE by accumulating, compacting and drenching a series of snow layers, based on the

temporal evolution of snow depth and 7 parameters that need to be calibrated. The model has four modules for HS computation,

which are activated according to the value of ∆HS(t) (the change in depth of the entire snow pack between t− 1 and t), the175

density of the snow layers (ρl, which can reach a maximum density of ρmax), and a threshold deviation parameter (τ ). The four

modules are:

(i) New snow and overburden module, activated if ∆HS(t)> τ ;

(ii) Dry compaction module, activated at every time step if ρlj < ρmax for at least one snow layer j;

(iii) Drenching module if ∆HS(t)<−τ and runoff submodule when ρl = ρmax for all snow layers;180

(iv) Scaling module when |∆HS(t)|< |τ |.
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Each increase in snow depth activates the new snow module and creates a new layer in the snowpack. The parameter

new snow density (ρ0) determines the density of the new layer. In case the snowpack already contains one or more layers,

the overburden submodule is activated, which increases the density in underlying snow layers due to the weight of the new

snow. The overburden parameters (kov , cov) control this submodule. There is no maximum number of snow layers, and their185

thicknesses are determined by the temporal evolution of snow depth.

A snow accumulation event is generally followed by a decrease in snow depth due to snow metamorphism. This process

densifies the snowpack but does not imply a decrease of SWE. This densification of snow layers is computed by the dry

compaction module and occurs at every time step until all layers in the snowpack reach the maximum snow density (ρmax). The

densification is controlled by the viscosity parameters (η0 , k).190

A decrease in snow depth also activates the drenching module, which simulates wet metamorphism and snowpack water

percolation from the top to the bottom layers, further densifying the snowpack layers until all layers have reached ρmax. During

dry compaction and drenching, SWE does not decrease even though snow depth does. When all layers have reached the

maximum snow density, the runoff submodule is activated and a decrease in snow depth leads to a decrease in SWE (i.e.

snowmelt).195

The scaling module intervenes when |∆HS(t)|< |τ | and avoids excessive mass loss or mass gain from uncertainties in

manual and automatic snow depth measurements. When |∆HS(t)|< |τ |, the model reevaluates dry compaction and makes

small adjustments to HS within threshold deviation τ . For further details on the model we refer the reader to Winkler et al.

(2021).

3.3 ∆SNOW model calibration200

The ∆SNOW model (Winkler et al., 2021) contains seven parameters that might be site-specific, or depend on local conditions.

The model was originally developed and calibrated over 15 alpine sites in the Swiss and Austrian Alps with continuous

measurements of snow depth (HS) and biweekly measurements of SWE. One unique set of optimized parameters was obtained

by Winkler et al. (2021) for the European Alps only (Table 2). Here we use continuous time series of daily HS and SWE from

812 sites from the SNOTEL dataset (see Section 2.1) to calibrate the model, and we obtain one set of optimized parameters per205

site.

The new snow density (ρ0) is the most sensitive model parameter, largely controlling the bias in daily SWE and peak SWE

(Winkler et al., 2021). Our initial tests showed that the maximum snow density (ρmax) has a stronger impact on the timing of

modelled peak SWE than on the modelled daily SWE, a sensitivity which was not explicitly tested in the work of Winkler et al.

(2021). This sensitivity is not surprising because the maximum snow density determines the maximum densification of the210

snowpack, after which any decrease in snow depth will lead to a decrease in SWE. However, the magnitude of modelled peak

SWE is still mostly controlled by the new snow density parameter. Even though Winkler et al. (2021) suggest calibration of all

seven parameters of the model, our tests showed that ρ0 and ρmax are the only two parameters that exhibit some relationship with

the climate variables that we used (see Section 3.4). Therefore, we focus here on the calibration of these two key parameters,

9



ρ0 and ρmax, and retain the values determined in the analysis of Winkler et al. (2021) (see Table 2) for the remaining five (η0,215

k, cov , kov , τ ).

To identify the optimum values for ρ0 and ρmax, we search within the original calibration ranges provided by Winkler et al.

(2021), which are ρ0 ∈ [50,200] kg m−3 and ρmax ∈ [300,600] kg m−3. We use latin hypercube sampling (McKay et al., 1979)

to obtain 1000 parameter sets with ρ0 and ρmax.

The performance of each model run is evaluated using the root mean square error of: daily SWE (Rdaily), peak SWE (Rpeak)220

and day of the year of peak SWE (Rpeakdoy). See Section 3.1 for the definition of peak SWE and day of peak SWE. We normalise

each metric by the mean of the 1000 simulations to sum the three metrics into one single value to be minimised (Rmin). We

also test different weighed sums of Rdaily, Rpeak and Rpeakdoy to minimise also the bias for the same three quantities. These tests

lead to the following final objective function to minimise:

Rmin = 0.13 ·Rdaily +0.45 ·Rpeak +0.43 ·Rpeakdoy (1)225

Which ensures peak SWE and day of peak SWE have the largest weight on the overall model performance. This is because

the model is unlikely to reach an optimal fit for peak SWE and day of peak SWE without a correspondingly good fit for daily

SWE during the snow accumulation season.

For each of the 812 SNOTEL sites, the parameter set with the minimum Rmin according to Equation 1 is retained.

3.4 Regionalisation of ∆SNOW model parameters230

In order to make the modelled SWE estimates as transferable as possible to different types of snowpacks and climates where

calibration is not possible, we used regional climate variables to estimate key model parameters. For each of the 812 SNOTEL

sites, we compared the optimised parameter sets for ρ0 and ρmax against selected monthly climate variables from the World-

Clim2 global dataset (Fick and Hijmans, 2017) which was used because of its high spatial resolution (∼1 km) and global

extent. Appendix B provides details on all the variables tested.235

We further complement this analysis with the dimensionless climate index parameters proposed by Woods (2009) to ana-

lytically describe snow cover dynamics. These index parameters namely include T
∗
, which is defined by Woods (2009) as the

ratio between mean annual temperature and the amplitude of the annual temperature cycle.

We then use a stepwise linear regression to determine which variables best account for the variation in the ∆SNOW op-

timized model parameters ρ0 and ρmax. This is similar to the approach used by Hill et al. (2019) to find explanatory climate240

variables for the snow density parameters in their SWE estimation model. The stepwise linear regression finds the best ex-

planatory variable and includes additional variables if the adjusted R2 improves by 0.02 or greater compared to its exclusion.

The final regression model for ρ0 reads as (see also Fig. 4a):

ρ0 = 206.71 ·PV +51.547, (2)

The final regression model for ρmax reads as (see also Fig. 4b):245

ρmax = 42.82 ·Hmax +85.82 ·T ∗
+324.76, (3)
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Vapour Pressure (PV ) from WorldClim2 dataset. (b) maximum snow density (ρmax) against maximum snow depth (Hmax) and dimensionless

temperature index (T
∗
). Equation 2 is shown in (a) together with the simple linear regression line. Equation 3 is shown in (b) together with

regression lines for four values of T
∗
= [−0.5,0,0.5,1]. Adjusted r-squared displayed in each panel.

Table 2. The ∆SNOW model parameters as originally calibrated by Winkler et al. (2021) and with our regionalised approach (Section 3.4).

Model version ρ0 (kg m−3) ρmax (kg m−3) η0 (Pa s) k (m3kg−1) kov (−) cov (Pa−1) τ (cm)

∆SNOWOriginal 81 401
8.5 · 106 0.030 5.1 0.38 · 10−4 2.4

∆SNOWRegionalised Equation 2 Equation 3

where PV is the mean December-January-February water vapour pressure in the atmosphere, which was taken from the

WorldClim2 dataset (Fick and Hijmans, 2017), Hmax is the average maximum snow depth in meters; and T
∗

is a dimensionless

climate index defined by Woods (2009) and calculated based on WorldClim2 (Fick and Hijmans, 2017). See Appendix B for

further description of the climate variables. We set a minimum of 54 and a maximum of 197 kg m−3 for ρ0 and a minimum of250

309 and maximum of 580 kg m−3 for ρmax, as these were the minimum and maximum calibrated values (See Section 3.3).

The new snow density parameter ρ0 is best explained (R2 = 0.49) by the mean November-December-January (DJF) at-

mospheric vapour pressure. This influence is consistent with observed climatic controls for snow density, where more humid

climates and maritime climates will typically have higher snow densities than drier climates, such as tundra and taiga (Bormann

et al., 2013). The maximum snow density parameter ρmax is best explained (R2 = 0.42) by a combination of the the average255

annual maximum snow depth and T
∗
. This conforms to broad expectations from snowpack dynamics, whereby the greater
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mass of a deeper snowpack contributes to higher densification. An estimated value for average annual maximum snow depth

should always be available since the model needs continuous time series of snow depth. The dependence on T
∗

(ratio between

mean and amplitude of annual temperature) reveals an additional link between ρmax and the regional climate, whereby close to

zero T
∗

arises for high temperature amplitudes (typically continental climates) or for marginal snow areas with mean annual260

temperatures close to zero. In contrast, high positive or negative T
∗

values correspond to low temperature amplitudes (typically

maritime climates) or highly negative or positive mean annual temperatures. This relationship can be observed in Fig. 4 if we

consider the hypothetical scenario of two sites with equal maximum snow depth. In this case, the site located in a warmer

climate is likely to have a higher maximum snow density, which is consistent with previous literature (Bormann et al., 2013).

Based on the two linear regression models, we estimate the new snow density and maximum snow density parameters for all265

the sites in the regionalisation, evaluation, and model input datasets (see Section 2) and run the ∆SNOW model for all of the

snow depth time series. The performance of the model using these regionalised parameters (∆SNOWRegionalised) is analysed in

Section 4.

The final modelled NH-SWE dataset presented in Section 5 is based on the parameters estimated using this approach.

Furthermore, we provide code for the user to extract the ∆SNOWRegionalised model parameters for any point in the Northern270

Hemisphere. Latitude-longitude coordinates and a value for maximum snow depth need to be provided by the user (see code

and data availability section).

3.5 Comparison with an alternative SWE estimation approach

In order to provide broader context for our Northern Hemisphere SWE estimates, we compare these results with a previously

published statistical SWE estimation model (Hill et al., 2019) (from now on Hill model). The Hill model also estimates SWE275

using snow depth data and climatological variables, but does not need a complete time series of snow depth and can instead

estimate single values based on an estimate of snow density. There is some similarity in the climatological variables found by

Hill et al. (2019) that best estimate snow density variation and those used in the present paper (see Section 3.4). The Hill model

estimates higher snow density for locations with a higher mean winter precipitation (humid climates), and a lower snow density

for locations with a high temperature difference between warmest and coldest month (continental climates). In addition, in the280

Hill model, the day of the hydrological year contributes to estimating snow density, with higher densities towards the end of

the snow season, when the snowpack is deeper and more compact.

We use the WorldClim2 global dataset of monthly climate variables (Fick and Hijmans, 2017) to obtain the Hill model

parameters, namely mean winter precipitation (PPTWT) and the temperature difference between the warmest and coldest

month (TD). The reader is referred to the work of Hill et al. (2019) for more details on the model. We run the Hill model for285

all the sites in the regionalisation and evaluation datasets (see Section 2). The performance of the Hill model is analysed in

Section 4 as comparison along with the regionalised ∆SNOW model (∆SNOWRegionalised).
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3.6 Extended model performance assessment

Previous snow depth to SWE conversion models have evaluated model performance based on root-mean-square-error and bias

of daily SWE and of peak SWE, which we also employ to enable comparisons. This is mostly due to a lack of data to evaluate290

more metrics. For example, continuous measurements of SWE are required to assess the model performance on timing of

snowmelt onset, but these are rarely available. In order to assist with potential applications in water resources management and

modelling, here we use our extensive HS-SWE data compilation (see Section 2) to assess additional aspects of the SWE model

performance, namely: the relative bias of peak SWE, the daily SWE time-series variability, the timing of snowmelt onset, the

total snowmelt and the snowmelt duration.295

Table 3. Summary of model performance assessment variables and metrics. All performance variables are computed for each annual snow

season. Snow seasons with non-daily SWE observations or with gaps do not allow the computation of snowmelt onset and snowmelt total.

All the biases are computed as modelled minus observed.

Performance
variable

Performance
metric

Description

SWE daily
RMSE (mm),

Bias (mm)

The root-mean-square-error of all modelled daily SWE values. The mean

difference (bias) between all modelled and observed daily SWE values.

SWE peak
RMSE (mm),

Bias (mm), Bias (%)

The root-mean-square-error of modelled peak SWE values. The difference (bias)

between modelled and observed peak SWE (see Fig. 3), also in percentage.

SWE time-series NSE (-)
The Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) of daily SWE time series

(see Eq. 4). One NSE value for each modelled annual snow season.

Snowmelt onset Bias (days)
The difference (bias) between modelled and observed timing of onset of the

snowmelt season (see Fig. 3).

Snowmelt total Bias (mm)
The difference (bias) between modelled and observed cumulative total snowmelt

for the annual snow season and for the melt season (see Fig. 3).

Snowmelt duration Bias (days)
The difference (bias) between modelled and observed number of snowmelt days

during the annual snow season and during the melt season (see Fig. 3).

The performance variables and metrics together with their description are shown in Table 3. The reproduction of the daily

SWE time series dynamics is assessed based on the well-known Nash-Sutcliffe criterion (Nash and Sutcliffe, 1970), widely

used in streamflow model assessment:

RNASH = 1−
∑N

t=1(xobs(t)−xmod(t))
2∑N

t=1(xobs(t)−xobs)2
, (4)

where xobs is the observed quantity (here daily SWE) at time step t, xmod is the corresponding modelled quantity and xobs is300

the mean of all N observed values.
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4 Model performance and evaluation

Here we give a summary of the ∆SNOW regionalised (see Section 3.6) model performance using both the regionalisation and

evaluation datasets.

4.1 Daily SWE, peak SWE and snowmelt onset305

The daily SWE values (Fig. 5a,b) and the peak SWE values (Fig. 5c,d) reproduce the observed values well and show a com-

parable performance to previous efforts to convert snow depth to snow water equivalent (Jonas et al., 2009; Sturm et al., 2010;

Hill et al., 2019; Winkler et al., 2021). The regionalisation dataset is generally unbiased for daily SWE and peak SWE, while

the evaluation datasets show a slight but spatially consistent negative bias (Fig.C1). This negative bias is largely driven by the

Canadian SWE dataset because it contains a large amount of data and very deep snowpacks, but the median relative bias across310

the entire dataset is only −11.3% (Table 4), and the spatially consistent negative bias is smaller for European sites and for

relative bias of peak SWE (Fig.C1). The mean relative bias across all datasets given equal weight is −1.7%, and the largest

relative bias is 17% (Table 4). For the GCOS-CH and Kuhtai-AT datasets, the regionalisation of parameters yields a lower

model performance for daily SWE and peak SWE than using the original ∆SNOW model parameters (see Table C1) obtained

for the European Alps. This is because these two datasets were among others used by Winkler et al. (2021) to calibrate the315

model. It should also be noted that the model from Hill et al. (2019) had a better performance than the ∆SNOW regionalised

model for 5 of the 9 datasets used, showing that the Hill model is also an excellent option for estimating daily SWE. The timing

of snowmelt onset is well reproduced by the ∆SNOWRegio model, with a 1.45 day bias for the regionalisation dataset and a

1.34 day bias for the evaluation datasets (Fig. 5e,f). The spatial distribution of the bias in snowmelt onset timing shows the

dominance of small positive biases except for some sites with a larger positive bias in Eastern Canada (Fig.C1). The positive320

bias in the timing snowmelt onset may indicate a very small model delay in the densification of all the snowpack layers to

ρmax. Nonetheless, the model performance is excellent considering no information on daily temperature or any other variable

is used to model the start of the snowmelt season. For comparison, the regression model from Hill et al. (2019) has a negative

bias of 15 days for the SNOTEL dataset and 17 days for the CanSWE dataset (see Table C1). This very premature onset of

the snowmelt season occurs in the regression model because the day of peak SWE corresponds to the day of maximum snow325

depth, which is not realistic as snowpack compaction and ripening can still occur prior to melt loss. A period of snow depth

decline but no change in SWE can last for many days. This can be observed in Fig. 6a. Thus, the improved capacity to capture

accurate timing is a key advantage of using the ∆SNOW model.

4.2 Daily SWE time-series

In terms of daily SWE dynamics, Fig. 6b shows that the ∆SNOWRegio model can reach very high Nash-Sutcliffe Efficiencies330

as the bias in daily SWE approaches zero, all data considered. This is shown by the high density of points close to a NSE

of 1 in Fig. 6b. In contrast, the regression model from Hill et al. (2019) shows lower NSE values in general for an unbiased

daily SWE performance (Fig. 6d), shown by a lower density of points close to a NSE of 1. Only the regionalisation dataset is

14



Figure 5. Model performance of ∆SNOWRegio. For the regionalisation (left column) and evaluation (right column) datasets: performance of

all modelled daily SWE (a,b), modelled peak SWE (c,d) and day of snowmelt onset (e,f). Colours in left column show scatter density. dosy:

day of snow year starting on 1st of September.

analysed here, because many time-series in the evaluation datasets are not continuous daily measurements and thus do not allow

NSE estimates for the entire snow season. The better performance of the ∆SNOWRegio model is explained by the inclusion of335

snowpack metamorphism processes which are not included in regression models (e.g. compaction and ripening, see Section

3.2). An example can be seen in Fig. 6a and 6c, where similar unbiased performances for both models show a higher NSE

(0.94) for the ∆SNOWRegio compared to the regression model (0.89). The NSE of modelled daily SWE in Fig. 6a are closer

to 1, while the NSE of the regression model in Fig. 6c are lower and clearly show that the model has difficulty accurately

capturing snowpack changes due to daily snow accumulation and settling processes.340

4.3 Snowmelt duration and total snowmelt

The general daily SWE dynamics are well reproduced by the ∆SNOWRegio model. However, a negative bias in total snowmelt

and snowmelt duration is observed when the full annual snow season is considered (Fig. 7a). This negative bias occurs because

small snowmelt events (< 5 mm) during the accumulation season are not well captured by the ∆SNOWRegio model. The model
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Table 4. Performance across datasets for daily SWE, peak SWE and timing of snowmelt onset. For each dataset, the mean performance of

all stations is shown. SNOTEL is the regionalisation dataset, and the others are evaluation datasets (see Section 2).

SWE daily

Bias (mm)

SWE peak

Bias (mm),

Bias (%)

Snowmelt

onset

Bias (days)

SNOTEL 1.0
3.4

(−1.0%)
1.6

CanSWE −34.0
−56.4

(−11.3%)
3.0

GCOS-CH −0.6
50.9

(17.2%)
-

RIHMI-WDC −16.9
−16.2

(−14.6%)
-

NVE −15.3
−32.5

(−5.9%)
−1.3

Kuhtai-AT 7.5
47.7

(12.7%)
−7.3

Sodankyla-FI −15.4
−29.8

(−15.0%)
-

Col-de-Porte-FR −28.8
9.7

(2.5%)
-

Mean −12.8
−2.9

(−1.7%)
−1.0

snow layers do not reach the maximum snow densification for a short period of snowmelt, and the 1 centimeter precision345

of snow depth measurements that drive the ∆SNOW model make the minimum modelled melt 3-5 mm (depending on the

snow density). During the snowmelt season, the total snowmelt exhibits little to no bias, and the snowmelt duration has a

slight negative bias. The negative bias in the duration of the snowmelt season is largely due to the positive bias in the timing

of snowmelt onset (2.5 days on average), resulting in a shorter modelled total snowmelt season. Despite the slight negative

biases shown for snowmelt duration and total snowmelt, the overall performance is very good and enables confidence in the350

application of modelled SWE using the ∆SNOWRegio model. This confidence is not possible for regression model estimates of

SWE, especially for cumulative variables such as snowmelt duration and total snowmelt, which can be greatly overestimated

(although peak SWE magnitudes can be equally well estimated).
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Figure 6. Model performance for daily time series. Nash and Sutcliffe Efficiency (NSE) vs Bias of daily SWE for (b) the ∆SNOWRegio and

(d) the comparison (Hill) model. Colours show scatter point density. One example time series of observed daily SWE and modelled daily

SWE for (a) the ∆SNOWRegio and (c) the regression model (Hill model) for comparison. Time series from the 2017-2020 water years of

SNOTEL station ID 371; Buck Flat, Utah, United States; Latitude: 39.1300; Longitude: −111.44; Elevation: 2,868 m.a.s.l.

4.4 Performance summary

The previous evaluation sections show model performance inclusive of all daily data from the regionalisation and evaluation355

datasets. In order to provide a more general overview, in Fig. 8 we display a summary comparing three model scenarios,
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Figure 7. Bias in snowmelt duration vs bias in snowmelt depth for ∆SNOWRegio. (a) annual snow season bias and (b) snowmelt season bias

only. See Section 3.6 for definitions of snowmelt season and biases.

regionalisation and evaluation datasets, and the six different performance metrics (see Table 3). The three model scenarios are

the ∆SNOW model with its original parameters from Winkler et al. (2021), the ∆SNOWRegio with our regionalised approach,

and the Hill model (Hill et al., 2019). Mean performance values for each station are used for forming a boxplot in Fig. 8.

This avoids over-weighting performance interpretations due to e.g. stations with very long time-series or outliers in model360

performance. An important highlight from this comparison is the clear benefit in estimating ρ0 and ρ0 from regional climate

data (∆SNOWRegio), which is apparent in the better performance across all 6 metrics compared to using the original values

(∆SNOWOriginal) obtained by Winkler et al. (2021) for the European Alps only. The full results for all these comparisons are

also available in Table C1. The regionalised ∆SNOW model performs better than the original ∆SNOW model for 77% of all

performance metrics and datasets, and better than the Hill model for 60% (see Table C1).365

5 Final product: NH-SWE dataset

5.1 Snow climatologies and data characteristics

We present an overview of some of the key features of the final NH-SWE dataset in Fig. 9. The dataset contains 11,071 time

series of daily SWE and estimated snow density at the point scale. The climatic range is broad, which can be seen in the

large variability of peak SWE and of snow cover duration across the sites (Fig. 9a,b). The deepest snowpacks (largest peak370

SWE) are generally located in high latitudes and mountainous areas, such as western North America, the European Alps,

and Scandinavia, but deep snowpacks can also occur at high elevation stations surrounded by lower elevation stations with

shallow snowpacks, such as the isolated high peak SWE stations that stand out in Poland in Fig. 9a. Snowpacks are generally

shallower in relatively warmer locations where higher temperatures limit snowfall (e.g. southern parts of Canada, Germany,

and Sweden). Shallow snowpacks are also found in very cold climates, where precipitation is limiting due to low water vapour375

in the atmosphere (e.g. Siberia and northern Canada). Regarding snow cover duration, the spatial patterns are well linked to

mean energy availability, with the higher latitudes and higher elevations having the longest snow cover duration.
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Figure 8. Model performance summary. Each subplot is split in two sides: the performance for the regionalisation dataset (left, blue lines)

and the performance for the evaluation datasets (right, red lines). Boxes are built from mean values for all stations in each dataset, instead

of considering all data points (i.e. a box for the regionalisation dataset is built from the mean performance for that model at each of the 812

SNOTEL sites).

In Figure 9c, we compare the links between peak SWE, snow cover duration, and T
∗
. This demonstrates the large variation in

the interplay between precipitation and temperature in determining snowpack dynamics. All temperature regimes can produce

a low peak-SWE if snow input (i.e. snowfall) is limited. For regimes with low peak-SWE, all snow cover durations are possible,380

depending on the temperature regime. In very cold climates (e.g. Siberia, Alaska), peak-SWE conditions can last for several

months; in warmer climates (e.g. south Scandinavia), the snow will melt quickly.

On the contrary, there is a very clear link between snow cover duration and peak-SWE for temperature regimes that lead to

high peak-SWE. In fact, if peak SWE increases, snow cover duration also increase. Peak-SWE convergences to highest values

towards intermediate T
∗
, i.e. neither too cold nor too warm for large amounts of snow to occur and stay for long on the ground.385

The median time series length in the dataset is 15 years, however the distribution is slightly bimodal with the overall average

being 35 years, and a second peak in the availability of very long time series (up to 73 years) (Figure 9d). The distribution

of site elevations reflects the large number of time series at low lying parts of coastal Norway, of Canada, and of Siberia.

However, more than 1,000 sites are located above 1,000 meters a.s.l., providing good representation of snow dynamics from

higher elevations (Figure 9e).390
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Figure 9. Features of the NH-SWE dataset. (a) Mean yearly peak SWE at each station; (b) Mean continuous snow cover duration at each

station; (c) Correlation between peak SWE, snow cover duration and T
∗
. (d) Distribution of time series lengths in years; and (e) Distribution

of station elevations.
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5.2 Quality control and uncertainty

We provide quality control and uncertainty flags for the SWE time series to signal the values that should be handled with care.

We flag the effect of the τ parameter (see Section 3.2) on the ∆SNOW model when an increase in snow depth is smaller than

τ (2.4 cm). This means that sometimes there is a small increase in snow depth without an increase in SWE, leading to an

artificial decrease in snow density. We correct this decrease in snow density and flag the value. Even though this is good for395

uncertain measurements, care should be taken for snow climates where small snow depth increments are normal. We also flag

days when the computed snow density would fall below the fresh snow density parameter value. These are flagged as 1 in the

quality control flag in the dataset.

We also flag all the values that result from gap-filling of snow depth. The gap-filling algorithm performs well overall (see

Appendix A), however, we cannot guarantee that all gap-filled records are realistic. Special care is required if the data is filled400

across gaps longer than 15 days, because of the reduction in gap-filling performance (see Appendix A). We flag days that are

gap-filled with the neural network algorithm with an "N", and we flag linearly interpolated gaps with an "L".

6 Usage and limitations

6.1 Potential applications

The SWE dataset presented here can be used freely and has a variety of potential applications. This data may be especially405

useful for applications where an accurate reproduction of the SWE dynamics in terms of timing of snow accumulation and melt

is required. Additional uses include data assimilation into hydrological and climate models or validation of remote sensing

products. A key strength of the dataset is accuracy in the timing of peak SWE and of snowmelt onset, which makes it valuable

for water resources assessment and management. The spatial extent of the dataset offers opportunities for snow climate research

and in particular to assess Norther-Hemispheric scale climate change impacts on snow water resources. We note, however, that410

some key snow regions are not yet included due to lack of long term data or a lack of data access (e.g. Himalaya, Central Asia,

Tibetan Plateau).

The presented NH-SWE dataset is model-based, but based on actual measurements of snow depth, making this the only point

scale Northern Hemisphere SWE dataset based on in-situ snow data. Main advantages compared to other recently published

Northern Hemisphere gridded SWE datasets (Luojus et al., 2021; Shao et al., 2022) are: i) NH-SWE includes mountains across415

the Northern Hemisphere, ii) it includes deep snowpacks exceeding 200 mm, iii) it has along temporal coverage, dating back

to 1950s for some locations, iv) it uses actual point-scale observations of snow depth.

It is noteworthy that we do not only publish the NH-SWE dataset but also the underlying ∆SNOW model parameterization,

which can be used to estimate the model parameters for any point in the Northern Hemisphere. In addition, we provide code

for this purpose along with the publication of the dataset on zenodo (see Code and Data availability), which enables any user to420

obtain the model parameters to run the ∆SNOW model of Winkler et al. (2021) for any given daily time series of snow depth.
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6.2 Limitations

A few limitations should be considered before using the data or our regionalised parameterization of the ∆SNOW model of

Winkler et al. (2021).

Although our analysis applied quality control measures to the daily SNOTEL data used for calibration, potential errors425

or biases in the data may still exist. As described in the literature, SNOTEL measurements can suffer from over-/under-

measurement, and these errors are often challenging to detect (Avanzi et al., 2014; Hill et al., 2019). The ∆SNOW model

considers the uncertainty associated with snow depth measurements through the threshold deviation parameter (τ = 2.4 cm),

but larger measurement errors may still be present. Nevertheless, it should be noted that our calibration is based on a sufficiently

large sample of data, which likely reduces the impact of potential errors on both the calibration and regionalisation of the model.430

Uncertainty in the evaluation datasets should be noted too. Although the evaluation of the SWE estimates for datasets with

biweekly measurements (see Table 1) may be somewhat biased due to spatial variability between SWE and HS measurements,

the error range for all datasets is similar, indicating that this did not significantly affect the overall model evaluation. The

evaluation of the estimated peak SWE provides valid bias measures in terms of SWE magnitude estimates, but not in terms of

timing, which we do not consider for these bi-weekly estimates. The peak SWE biases for the datasets with biweekly SWE435

measurements are also similar to the ones found in the datasets with daily SWE measurements (see Table 1).

The ∆SNOW model requires good quality time series of snow depth (e.g. gap free, low measurement uncertainty). Mea-

surement errors can accumulate and bias the SWE simulations for an entire season, especially if snow depth data is erroneous

for a significant number of days. If the quality of the snow depth observations is poor or not continuous, we recommend using

the regression model of Hill et al. (2019) to convert snow depth to SWE.440

Our quality control flags capture gap-filled records and unrealistic snow densities, but the amount of data limits our capacity

of exhaustive quality checks; unrealistic time series could exist in the dataset. We show that our regional parameterization

performs well especially in terms of snow cover dynamics and timings, but some SWE time series might nevertheless be

slightly biased, resulting e.g. from an over or underestimation of model parameters. It is worth noting that while two parameters

were calibrated in the regional parameterization of the ∆SNOW model of Winkler et al. (2021), five other parameters were not445

calibrated due to data limitations and their lack of clear link with climate variables. However, adding five additional calibration

parameters would significantly increase parameter uncertainty, and a thorough sensitivity analysis of the model parameters is

provided by Winkler et al. (2021), who highlight the importance of the snow density parameters. Our approach is a prudent one

in terms of being able to track assumptions and uncertainty. Despite the lack of calibration of the other parameters, our model

evaluation demonstrates that the regionalisation of the density parameters still results in acceptable model performance.450

The user should also be cautious with any snow cover duration period of less than 40 days, or with snowpacks shallower

than 50 mm of SWE. Even though we selected stations with an average of 40 days of snow cover, interannual variability could

mean some years are shorter, making the model performance uncertain (see Section 2.3). Snow sublimation and snow drift are

also processes that are not captured by the ∆SNOW model.
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Furthermore, the user should be aware of the spatial and temporal inhomogeneity of NH-SWE; the dataset covers most of455

the Northern Hemisphere, but some areas have a high station density (e.g. Scandinavia), while others show a rather low density

(e.g. Siberia and Alaska). The time series lengths also vary from 1 to 73 years. Finally, NH-SWE does not include the original

snow depth data, which has to be directly downloaded from the data source, but we provide modelled snow density along with

the SWE time series.

7 Conclusions460

This paper presents NH-SWE, a dataset of Snow Water Equivalent (SWE) time series based on in-situ observations of snow

depth that are freely available across the Northern Hemisphere. The dataset is based on an established model for continuous

snow depth-to-SWE conversion (Winkler et al., 2021), for which we regionalized the model parameters for application at the

Northern Hemisphere scale. The dataset contains 11,071 time series covering most areas of the Northern Hemisphere with a

seasonal snow cover and spans the period 1950-2022.465

The modelled daily SWE values and seasonal dynamics of SWE are generally well reproduced over the wide range of

climates in the regionalisation and evaluation datasets (SNOTEL, CanSWE, GCOS-Switzerland, RIHMI-WDC, NVE, and

other). The model has a slight delay towards a later start of snowmelt after the peak of snow accummulation, leading to a small

negative bias in the duration of the melt season, but peak SWE and total snowmelt are generally unbiased.

Compared to SWE datasets based on remote sensing or climate reanalysis data, with a typical resolution of ∼10 km, NH-470

SWE is based on in-situ observations of snow depth on the ground and therefore provides a higher confidence in the magnitude

and dynamics of snow accumulation and melt at the point scale.

This dataset can be used for a variety of applications that require reliable SWE estimates rather than snow depth, in particular

in the fields of water resources and snow climate research, environmental and hydrological modelling, validation of remote

sensing products or climate change impact research.475

8 Code and data availability

The NH-SWE dataset is free to access and available at https://zenodo.org/record/7515603 (Fontrodona-Bach et al., 2023). The

dataset is provided in two different formats (matrices and vectors) and contains modelled daily SWE, estimated snow density,

and the quality control and gap-filling flags. An extensive metadata file includes information on station coordinates, elevation,

length of time series, model parameters and the climate variables used to estimate them, and average snow climatology such480

as average maximum snow depth, average peak SWE and average maximum snow cover duration. The code used to estimate

∆SNOW regionalised model parameters can be found together with the NH-SWE dataset at https://zenodo.org/record/7515603

(Fontrodona-Bach et al., 2023).
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Appendix A: Snow depth data gap filling and quality control

The ∆SNOW model (Winkler et al., 2021) requires a continuous record of daily observations of snow depth to estimate daily485

SWE. Our compilation of snow depth time series contains a large variability in time series length, number and size of gaps (Fig.

A1). Many time series have missing data during the summer period when there is no snow (e.g. most MeteoSwiss stations).

This is easy to visually identify and manually fill with zeros, but it is complicated to fill all the series in an automated way with

high confidence. Gaps also occur often in the middle of the snow season. Over 90% of the gaps in the dataset are less than 50

days long, and 80% of the gaps are less than 10 days long (Fig. A2).490
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Figure A1. Final modelled NH-SWE dataset matrix. Each row corresponds to one of the 11,071 time series in the dataset at daily resolution.

Colours indicate data sources, gaps, and filled gaps.

The high autocorrelation of daily snow depth time series (i.e. the correlation of snow depth at time t to snow depth at time

t-i) motivates us to use a non linear autoregressive neural network with external input (NARX) technique to fill the time series

of snow depth. Neural networks have been used by Silva et al. (2018) and Vieira et al. (2020) to fill environmental time series

of sea surface wind speeds and ocean waves, but have to date not been applied to snow depth time series. We use the narxnet

function from the MATLAB Deep Learning Toolbox (MATLAB R2021a). The NARX neural network uses snow depth at time495

steps up to i days before time t as input to estimate snow depth at time t. The delay parameter i must be estimated. We found

i= 4 days to be the best estimation of the delay parameter. This means that the snow depth at time t is mostly influenced by

snow depth at 1, 2, 3 and 4 days before time t.
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Figure A2. Cumulative distribution of dataset gap length before and after gap-filling. n is the total number of data gaps.

External inputs are used to help the NARX simulation. We tested a few NARX network architectures and inputs and found

that including precipitation and temperature data as input to the NARX network showed promising results for filling the snow500

depth time series. We obtain daily precipitation and temperature data from DAYMET (Thornton et al., 2020) for the stations

in North America and from E-OBS (Cornes et al., 2018) for the European stations. For the stations in Eurasia not covered by

E-OBS we use temperature and precipitation station data from RIHMI-WDC (2022) stations. For stations where precipitation

and temperature data cannot be obtained (i.e. locations not covered by gridded data and no station data available) we do not

gap fill the snow depth data with NARX. For stations that were not gap-filled, we only modelled SWE for those years with505

continuous (gap-free) daily measurements of snow depth.

Neural network models require enough data to be trained. We train one model for each snow depth station in the dataset

because the training of the network could differ per site. During training, the data is divided into a training, a validation, and

a testing set. The division is made by blocks with a ratio of 60/20/20, meaning that for every 5 years, 3 are used for training,

1 for validation, and 1 for testing. For snow depth stations with more than 20 years of data where the trained model yields an510

r-squared performance higher than 0.9, we further test the performance of the NARX network gap filling technique by creating

synthetic gaps of 1, 3, 7, 15, 30 and 50 days in the time series, at different times of the year. We then run the NARX network

gap filling and compute the absolute error (in centimeters) of the filled snow depth compared to the real observed snow depth.

We also compute the percentage error dividing by the observed snow depth value. For each site we repeat this procedure 50

times so that the gaps are randomly tested at different times of the year, for various years and for various gap lengths. The515

overall performance of the gap filling can be visualised in Fig. A3, where the mean absolute error and mean percentage error

of the 50 simulations is plotted for each time of the year and gap length. At the beginning of the year (September-October)
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Figure A3. Mean performance of NARX gap-filling routine. Left panel shows absolute error in centimeters of the snow depth filled gaps

at different times of the year and for different gap lengths. Right panel shows the same but in percentage error. A cross is displayed if the

absolute error is higher than 5 cm and the percentage error higher than 20%.

and at the end (June to August), the mean absolute error is zero, indicating that the NARX neural network performs very well

during the summer periods when there is no snow. This allows filling the gaps in summer with high confidence. During the

snow season (November to May), the errors are higher the longer the gap. In percentage terms, the error also becomes larger520

the longer the gap. We consider an acceptable error to be less than 5 cm or less than 20%. For gaps equal to or under 15 days

the error of the NARX network gap filling is consistently under those thresholds. Figure A3 shows the mean over all sites

where the performance is tested, but the procedure is applied to each site independently because the training of the network

could differ per site.

For each gap in each time series we decide whether or not to fill the gap based on a series of conditions. For stations with525

a minimum of 20 years of data where the performance is tested as explained above, we fill all the gaps under 16 days long

because of the high confidence on filling them (Fig. A3). For gaps longer than 15 days and shorther than 70, we decide based

on the performance according to the decision matrix (as in A3, where an acceptable error is less than 5 cm or less than 20%)

for that specific station. For long gaps between 70 and 365 days, we fill the gaps if the performance for gaps of 50 days is

acceptable and at least 80% of the filled values are under 2 cm of snow depth, which means snow cover free periods are being530

filled. For stations with less than 20 but more than 5 years of data where the training of the NARX model yields an r-squared

performance of at least 0.95, we also fill all gaps under 16 days long. For those stations, we also fill longer gaps if at least 80%

of the filled values are under 2 cm, indicating that snow cover free summer is being filled. For stations where less than 5 years
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of daily snow depth data are available but where the NARX model still yields an r-squared performance higher than 0.95, we

fill all gaps shorter than 7 days and only fill gaps longer than 7 days if 90% of the filled values are under 2 cm.535

After the NARX neural network gap filling, we also fill all gaps in the dataset that are equal to or shorter than 3 days by

linear interpolation. If a station has more than 20 years of data but the NARX neural network model does not perform well,

or no precipitation and temperature data are available, we compute the average main snow cover season and we fill with zeros

any gaps outside the average snow cover season. If after all the gap filling routine, one snow year at any station has only a gap

of 7 days or shorter, we also fill the gap by linear interpolation. We do not fill gaps if any of the conditions above are not met.540

Overall, 94.8% of the filled gaps are filled by the NARX neural network models, while only 5.2% are linearly interpolated

or filled with zeros.

Finally, we apply an extra quality control to the gap-filled time series of snow depth before running the ∆SNOW model. We

remove those years where the annual snow season (see Fig. 3) contains more than 75% of filled gaps. We remove any snow

cover period of less than 8 days that is fully gap-filled. We remove those years that are fully snow cover free, given that it is545

an unlikely event after our selection based on a minimum of 40 days of snow cover on average (see Section 2.3). We remove

unrealistic daily snow depth increases of more than 150 cm in one day or decreases of more than 45 cm in one day. These

values are based on the 99.99 percentile of all observed daily snow depth increases and snow depth decreases of the entire

SNOTEL dataset (see Section 2.1). We remove years with perennial snow cover, since the ∆SNOW model is developed over

seasonal snowpacks. We remove all snow depth values that are higher than four times the median absolute deviation of the550

average yearly peak of snow depth.

Figure A4 shows example time series where the gap-filling is successfully filling the summer zeroes and small gaps during

the snow season.
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Appendix B: Climate variables for parameter regionalisation

We test a few climate variables to regionalise the ∆SNOW model parameters in Section 3.4. All the climate variables are555

obtained from the WorldClim2 dataset of monthly climate variables (Fick and Hijmans, 2017). We complete the set of climate

variables with snow climatology variables (i.e. climate variables based on snow depth data). The variables that were computed

and tested are the following:

– TY : Mean yearly temperature

– TDJF : Mean December-January-February temperature560

– TNDJFM : Mean November-December-January-February-March temperature

– PDJF : Mean December-January-February cumulative precipitation

– PNDJFM : Mean November-December-January-February-March cumulative precipitation

– P snow: Precipitation as snow computed as the sum of monthly precipitation when temperature is below zero.

– T
∗
: Dimensionless temperature index from Woods (2009) defined as the ratio between mean annual temperature and the565

amplitude of the annual temperature cycle.

– P
∗
: Dimensionless precipitation index from Woods (2009) comparing the average precipitation rate and melt rate for a

site.

– PV,DJF : Mean December-January-February Vapour Pressure in the atmosphere.

– PV,NDJFM : Mean December-January-February Vapour Pressure in the atmosphere.570

– SR,DJF : Mean December-January-February Shortwave Radiation.

– PR,NDJFM : Mean December-January-February Shortwave Radiation.

– H: Mean snow depth

– Hmax: Mean maximum snow depth (i.e. peak of snow accumulation)

Appendix C: Extended model performance and evaluation575

This extends the model performance summary of Section 4, showing the mean model performance for each of the datasets

separately, for three model scenarios (∆SNOW original, ∆SNOW regionalised, and Hill model), and for the six evaluation

metrics from Table 3.
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Table C1. Extended model performance and evaluation. Here the performances are shown for all the datasets separately. ∆SNOWOrig refers

to the original model parameters by Winkler et al. (2021), ∆SNOWRegio refers to our regional parameterization (see Section 3.4), Hill model

refers to the regression model from Winkler et al. (2021). Where a value is not shown, it means that performance variable is not possible

to compute for that dataset due to a lack of appropriate observed SWE records to compute that metric. The ∆SNOWRegio is better than

∆SNOWOrig on 77% of all datasets and metrics, and better than the Hill model on 61% of all datasets and metrics.

SWEdaily

RMSE (mm) Bias (mm)

∆SNOWOrig ∆SNOWRegio Hill model ∆SNOWOrig ∆SNOWRegio Hill model

SNOTEL 26.0 25.0 35.9 −11.6 1.0 2.5

CanSWE 58.5 52.8 51.9 −41.6 −34.0 −11.2

GCOS-CH 38.3 53.4 44.0 −28.5 −0.6 −15.0

RIHMI-WDC 16.1 14.5 11.1 −18.9 −16.9 −7.8

NVE 44.5 39.4 38.4 −27.5 −15.3 3.5

Kuhtai-AT 23.2 37.3 42.8 −8.3 7.5 8.9

Sodankyla-FI 19.1 16.8 21.9 −15.1 −15.4 7.5

Col-de-Porte-FR 66.1 34.7 48.8 −79.4 −28.8 −49.4

Alptal-CH 39.9 33.3 41.7 −49.8 −33.0 −33.1

SWEpeak

RMSE (mm) Bias (mm), Rel. Bias (%)

∆SNOWOrig ∆SNOWRegio Hill model ∆SNOWOrig ∆SNOWRegio Hill model

SNOTEL 42.3 36.5 60.9 −22.4 (−6.7%) 3.4 (1.0%) 33.3 (9.4%)

CanSWE 86.3 73.0 59.4 −68.6 (−16.1%) −56.4 (−11.3%) 3.9 (1.0%)

GCOS-CH 56.0 76.9 89.7 −3.0 (−0.6%) 50.9 (17.2%) 48.8 (15.4%)

RIHMI-WDC 26.6 23.0 17.7 −21.4 (−26.7%) −16.2 (−14.6%) 7.1 (13.7%)

NVE 60.6 68.3 61.2 −53.3 (−10.0%) −32.5 (−5.9%) 45.0 (13.1%)

Kuhtai-AT 36.9 58.5 86.9 19.2 (5.1%) 47.7 (12.7%) 73.3 (19.5%)

Sodankyla-FI 30.8 30.5 29.0 −29.6 (−14.9%) −29.8 (−15.0%) 26.6 (13.4%)

Col-de-Porte-FR 88.2 40.6 61.5 −81.4 (−20.8%) 9.7 (2.5%) 30.8 (7.9%)

Alptal-CH - - - - - -

Snowmelt onset bias (days) SWE time-series NSE (-)

∆SNOWOrig ∆SNOWRegio Hill model ∆SNOWOrig ∆SNOWRegio Hill model

SNOTEL 6.1 1.6 −14.7 0.93 0.94 0.89

CanSWE 6.0 3.0 −17.1 0.85 0.91 0.88

GCOS-CH - - - - - -

RIHMI-WDC - - - - - -

NVE 9.1 −1.3 −12.9 0.81 0.84 0.85

Kuhtai-AT 2.2 −7.3 −22.5 0.94 0.89 0.84

Sodankyla-FI - - - - - -

Col-de-Porte-FR - - - - - -

Alptal-CH - - - - - -

Snowmelt total bias (mm) Snowmelt duration bias (days)

∆SNOWOrig ∆SNOWRegio Hill model ∆SNOWOrig ∆SNOWRegio Hill model

SNOTEL −37.4 −4.0 138.0 −7.6 −5.1 8.0

CanSWE −125.4 −83.6 62.8 −5.5 −4.0 11.5

GCOS-CH - - - - - -

RIHMI-WDC - - - - - -

NVE −116.2 −63.5 31.8 −8.5 −2.5 10.0

Kuhtai-AT - - - - - -

Sodankyla-FI - - - - - -

Col-de-Porte-FR - - - - - -

Alptal-CH - - - - - -
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Figure C1. Spatial distribution of model performance. The variables shown are the same as in Table 4: (a) and (b) for bias of daily SWE, (c)

and (d) for relative bias of peak SWE, (e) and (f) for bias of snowmelt onset timing. All sites displayed from regionalisation and evaluation

datasets.
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