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Abstract. Forest harvesting is one of the anthropogenic activities that most significantly affect the carbon 10 

budget of forests. However, the absence of explicit spatial information on harvested carbon poses a huge 

challenge in assessing forest harvesting impacts, as well as the forest carbon budget. This study utilized 

provincial-level statistical data on wood harvest, the tree cover loss (TCL) dataset, and a satellite-based 

vegetation index to develop a Long-term harvEst and Allocation of Forest Biomass (LEAF) dataset. The 

aim was to provide the spatial location of forest harvesting with a spatial resolution of 30 m and quantify 15 

the post-harvest carbon dynamics. The validations against the surveyed forest harvesting at 133 cities 

and counties indicated a good performance of the LEAF dataset in capturing the spatial variation of 

harvested carbon, with a coefficient of determination (R2) of 0.83 between the identified and surveyed 

harvested carbon. The linear regression slope was up to 0.99. Averaged from 2003 to 2018, forest 

harvesting removed 68.3±9.3 Mt C yr-1, of which more than 80% was from selective logging. Of the 20 

harvested carbon, 19.6±4.0%, 2.1±1.1%, 32.8±11.8%,35.5±12.6% 7.0±0.4%6.2±0.3%, 19.4±

0.4%17.5±0.9%, and 19.1±9.8% entered the fuelwood, paper and paperboard, wood-based panels, 

solid wooden furniture, structural constructions, and residues pools, respectively. Direct combustion of 

fuelwood was the primary source of carbon emissions after wood harvest. However, carbon can be stored 

in wood products for a long time, and by 2100, almost 40% of the harvested carbon during the study 25 

period will still be retained. This dataset is expected to provide a foundation and reference for estimating 

the forestry and national carbon budgets. The 30 m × 30 m harvested carbon dataset from forests in China 

can be downloaded at https://doi.org/10.6084/m9.figshare.23641164.v2 (Wang et al., 2023). 
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1. Introduction 

As a critical terrestrial ecosystem type, forests play a pivotal role in regulating the global carbon 30 

cycle (Dixon et al., 1994). Over the period 2001 to 2019, global forests sequestrated 2.07 Gt C yr-1 from 

the atmosphere (Harris et al., 2021), contributing more than 70% of the global terrestrial carbon sinks 

(Friedlingstein et al., 2022). Forests also provide numerous important ecosystem services to society 

(Costanza et al., 1997), which may substantially impact the forests carbon sink (Lal et al., 2013). One of 

the most important services is the provision of wood products (Deal and White, 2012), which results in 35 

the transference of carbon from forest ecosystems into the social system. The carbon harvested from 

forests is typically transferred into the pools of Harvested Wood Products (HWPs) (the full names and 

abbreviations of terminologies are listed in Table S1), through their usage of wood for constructions, 

furniture, and fine papers, among others. These products are eventually decomposed and emitted into the 

atmosphere with different turnover times (IPCC, 2014, 2019a). For example, when harvested wood is 40 

used to make paper, the carbon within the paper decomposes and returns to the atmosphere within several 

years (Brunet-Navarro et al., 2017). On the contrary, the harvested carbon entering the wood used for 

constructions has a slow turnover rate and can be stored for many years (Brunet-Navarro et al., 2017). 

Previous studies have highlighted the large uncertainties in estimating carbon emissions of wood post-

harvest due to a lack of information about the proportion of wood entering various wood pools (Skog et 45 

al., 2004).  

In China, forests are playing an increasingly important role in terrestrial carbon sinks benefiting 

from long-term afforestation projects (Liu et al., 2014). A recent study based on satellite data revealed 

that China is one of the few countries experiencing persistent greening over the past decades (Chen et al., 

2019; Yuan et al., 2019). Unlike India, where croplands dominate greening, nearly half of China's 50 

greening comes from forests (Chen et al., 2019). However, despite these positive trends, China ranks as 

the second-largest timber consumer and the largest wood importer globally (Research and Market, 2019). 

In 2017, the consumption of wood in China reached 192.5 million cubic meters, with 43.6% of that 

consumption being supplied by domestic harvests (Research and Market, 2019). A previous study has 

highlighted that harvesting is the primary cause of forest disturbance in China, accounting for 85% of the 55 

average annual forest loss (Curtis et al., 2018). However, the impacts of forest harvesting on the terrestrial 

carbon cycle has not been estimated yet due to a lack of available data on harvested carbon. Accurate 
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forest harvesting data are crucial for measuring the national carbon sink-source balance, an important 

component of national carbon budget analysis related to forest resources and wood utilization (Winjum, 

et al., 1997). 60 

Although some efforts have been made, there are still large uncertainties in estimating harvested 

carbon in forest ecosystems (Hurtt et al., 2011, 2020). For example, the Land-Use Harmonization 2 

(LUH2) dataset provides annual harvested biomass carbon data from primary and secondary forests 

(Hurtt et al., 2011, 2020). However, the spatial resolution of the LUH2 dataset (0.25× 0.25) is too 

coarse to analyze the dynamics of forest ecosystems at the regional or local scales, and its performance 65 

in assessing carbon harvest has not been examined in China. In addition, to our knowledge, no studies 

have been conducted to quantify the proportion of harvested wood or carbon entering various wood pools, 

which is crucial for estimating carbon emissions returning to the atmosphere (Skog et al., 2004; Johnston 

and Radeloff, 2019). Over the past decades, constructions, papermaking, and furniture manufacturing 

have shown substantial changes in China (Zhang et al., 2019; FAO, 2023), largely influencing the 70 

proportion of harvested carbon among various wood pools and the magnitude of emissions.  

In this study, we developed a Long-term harvEst and Allocation of Forest Biomass (LEAF) dataset 

to provide: (1) the spatial location of harvested carbon with a high resolution of 30 m; (2) the proportion 

of harvested carbon allocated into various wood pools; and (3) the lagged carbon emissions of harvested 

carbon from the aforementioned wood pools. The tree cover loss (TCL) dataset developed by Hansen et 75 

al. (2013) and the interannual variation of a satellite-based vegetation index were used to determine the 

location of harvested carbon, and the provincial statistical biomass storage provided by the China 

Forestry and Grassland Statistical Yearbook was used to quantify the magnitude of harvested carbon. 

Post-harvest carbon dynamics were estimated based on a first-order decay (FOD) function according to 

the post-harvest wood use provided by the statistical data (IPCC, 2014, 2019a).  80 

2. Methods and Materials 

This study aimed to generate a Long-term harvEst and Allocation of Forest Biomass (LEAF) dataset, 

which is a component of the Terrestrial Ecosystem Disturbance (TED) dataset, named as TED-LEAF. 

The LEAF dataset includes the location and magnitude of forest harvesting and the estimates of post-

harvest carbon dynamics. The identification of forest harvesting was based on the detection of changes 85 
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in multi-temporal vegetation indices. Combined with statistical harvest data, the forest harvesting and 

other disturbances causing such changes could be separated. Utilizing the classification of HWPs 

provided by statistical data, we estimated the delayed carbon emissions by 2100 from HWPs based on 

IPCC methodologies with China-specific activity data. 

2.1 Method of calculating harvested carbon 90 

We aimed to identify two types of forest harvesting: clear-cutting and selective logging (Fig. 1). In 

this study, clear-cutting is the harvesting of an entire stand at once on a scale of 30 m × 30 m, while 

selective logging is the harvesting of a portion of the stand within that area that is suitable and should be 

harvested.  

For clear-cutting, the location was determined using the TCL dataset produced by Hansen et al. 95 

(2013). The TCL dataset indicates stand replacement disturbance or the complete removal of tree cover 

canopy at a scale of 30 m × 30 m. It has been widely used to identify deforestation globally or in multiple 

regions (Hansen et al., 2013; Curtis et al., 2018). To calculate the harvested carbon from clear-cutting, it 

was necessary to determine the above-ground biomass carbon (AGB, t C) storage for each pixel. Only 

the 9th National Forest Inventory (NFI) provided both provincial forest AGB density (CD, t C ha-1) and 100 

forest area (S, ha). Then, we calculated pixel-level (30 m × 30 m) AGB storage for 2014 to 2018 as: 

���� = �� × � ×
�����

�����
  (1) 

where AGBj indicates the AGB of the jth forest pixel in a given province and year; NDVIj denotes the 

Normalized Difference Vegetation Index (NDVI) of the jth forest pixel in that province for that year; 

SNDVI is the sum of NDVI of all forest pixels in that province for that year. According to the province-105 

level biomass storage (V, m3) provided by the 6th to 8th NFIs covering 1998 to 2013 at 5-year intervals, 

this study used the following method to calculate pixel-level (30 m × 30 m) AGB storage for 2003 to 

2013: 

���� = � ×
�����

�����
× ����  (2) 

where Coef (t C m-3) is the coefficient that converts biomass storage (V) to biomass carbon (AGB). 110 

Combining the provincial forest biomass storage (V9, m3) from the 9th NFI, we calculated the provincial 

Coef (Table S2) as: 

���� =
��×�

��
  (3) 
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Then, the harvested carbon was calculated for all pixels corresponding to clear-cutting derived from the 

TCL dataset. The total harvested carbon from clear-cutting (HCC, t C) in a given province can be 115 

calculated by aggregating all pixels occurring tree cover loss. 

For selective logging, we developed a satellite-based method to identify the location and magnitude 

of selective logging. The method was based on the principle of multitemporal satellite-based vegetation 

index analysis and detected the changes of NDVI between two adjacent years. This approach relied on 

two fundamental assumptions. First, we assumed that NDVI values decreased resulting from selective 120 

logging. Therefore, we calculated the NDVI difference (NDVIdiff) between the current year (NDVIt) and 

subsequent year (NDVIt+1) at all pixels (Eq. (4)) and determined the possible logging locations with 

decreased NDVIdiff, where NDVIdiff < 0 indicated potential selective logging.  

�������� = ������� − �����  (4) 

Second, we assumed that the reductions in NDVI values resulting from selective logging would be 125 

more significant compared to the decreases caused by other factors such as droughts, heatwaves, ice 

storms, and insect outbreaks (Yuan et al., 2014), without considering fires due to their low frequency in 

China (Curtis et al., 2018). Changes in vegetation coverage caused by logging activities were expected 

to have a drastic and rapid impact on ecosystems compared to other environmental changes and 

disturbances. Therefore, the decreased magnitude of NDVI values due to selective logging was assumed 130 

to be the largest. Based on this assumption, we can identify selective logging areas by focusing on pixels 

exhibiting larger NDVIdiff. For a specific province, all pixels with negative NDVIdiff values were sorted by 

ascending order in NDVIdiff. The pixels at the front of the sorted list had more negative NDVIdiff values 

and a larger likelihood of being logging locations. Thereby, a threshold of NDVIdiff (NDVITh) was needed 

to distinguish selective logging from other disturbed pixels. Selective logging was considered to have 135 

occurred only when NDVIdiff < NDVITh. Then, the harvested carbon (HCS, tC) was calculated in all pixels 

corresponding to selective logging according to Eq. (5): 

��� � =
�������� �

����� 
× ����   (5) 

Therefore, the province-level statistical harvested carbon (SHC) was used to determine the NDVITh of 

each province, which made the sum of HCc and HCs equal to SHC. Theoretically, the determined NDVITh 140 

should be less than 0. However, in several provinces, when NDVITh was set to 0, the sum of HCC and 

HCS (identified harvested carbon) was still lower than SHC (e.g., Anhui), implying that the identified 
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harvested carbon was underestimated. Then we assigned the unidentified harvested carbon (SHC-HCC-

HCS) to pixels where selective logging occurred. 

���� �  = (��� − ��� − ���) ×
�������� �

���������
   (6) 145 

where HCS1 j is the harvested carbon added by the jth pixel where selective logging occurred; NDVIdiff j 

indicates the NDVIdiff of the jth pixel, and SNDVIdiff is the sum of NDVIdiff of all pixels where selective 

logging occurred in that province. This approach increased the harvested carbon for all pixels where 

selective logging occurred, so we also examined whether the harvested carbon exceed their AGB at the 

pixel scale. If so, we counted these pixels as clear-cutting. To assess the accuracy and validity of the 150 

dataset, we additionally quantified the proportion of pixels with harvested carbon exceeding their AGB 

compared to the total number of harvested pixels at the province level. 

In addition, this study assumed that forest harvesting did not occur in the National Nature Reserves 

and high-altitude regions because of high transport costs and harvesting expenses. For the Tibetan Plateau 

and Yunnan Province, we assumed no harvesting at elevations higher than 2,500 m. In the other provinces, 155 

harvesting was assumed to be absent at elevations higher than 1,500 m, according to Nabuurs et al., 

(2019).   

 
Figure 1: Flowchart for mapping forest carbon harvesting. 
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2.2 Annual carbon changes from HWPs in-use and end-use 160 

The harvested wood was allocated into six wood pools (Fig. 2). (1) Fuelwood pool, the sum of 

commercial fuelwood and non-commercial fuelwood (i.e., farmers’ fuelwood), where the wood is burned 

as fuel, resulting in immediate carbon emissions through combustion; (2) paper and paperboard pool, 

including household paper, printing paper, packaging paper, etc.; (3) wood-based panels pool, including 

plywood, fiberboard, and particle board, and other wood-based panels, made from roundwood, wood 165 

residues (such as barks, branches, sawdust) or small stems bonded with adhesives, are commonly used 

as decorative panels for various applications like wall cladding and ceiling finishes; (4) solid wooden 

furniture pool, referring to solid wooden household items such as tables, chairs, wood beds, etc.; (5) 

structural constructions pool, referring to the structural components used to support buildings, such as 

beams, columns, and trusses; and (6) residues pool, including leaves, killed understory vegetation, and 170 

unutilized wood residues, which are typically left on the logging site or treated as fuel (Lippke et al., 

2011; Stockmann et al., 2012), and were assumed as fuel in this study. The wood pools of (2), (3), (4), 

and (5) belong to HWPs pool, where the carbon will remain stored until the products are either retired 

from use or reach the end of their service life (Table S4S3) and are consequently discarded. Subsequently, 

these discarded products are then sent directly to landfill, where they decompose (Stockmann et al., 2012; 175 

IPCC, 2019a). 
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Figure 2: The allocation of post-harvest wood to the six wood pools. The green boxes indicate the 

variables are available from the China Forestry and Grassland Statistics Yearbook. R is wood output rate 180 

of commercial wood, and Coef (t C m-3) the coefficient that converts harvested wood (m3) to harvested 

carbon (t C) (i.e., biomass carbon of trunks, branches, leaves and understory vegetation). 

In this study, the volume (m3) of fuelwood, pulpwood (wood for paper and paperboard), wood-based 

panels, and the sum volume (m3) of wood for solid wooden furniture and structural constructions can be 

obtained directly from the China Forestry Statistical Yearbook. The structural constructions and solid 185 

wooden furniture pools were allocated as the percentage of 74.6±6.2% and 25.4±6.2% from their sum, 

respectively, according to China Timber and Wood Products Distribution Industry Yearbook. The wood 

in pools (1) to (5) was converted into carbon, with conversion factor of 0.229 for fuelwood and 

roundwood, and 0.269 for wood-based-panels listed in Table S3. Then, the carbon entering the residues 

pool (ResidueC) can be calculated by subtracting the carbon in pools (1) to (5) from the total harvested 190 

carbon (SHC in Eq. (21) of Sec. 2.3.2) as Eq. (7): 

�������� = ��� − �������� + ����� × 0.229 − ����_����� ������ × 0.269 (7) 

where SHC (Eq. (21) is the total harvested carbon for a given province, Woutput represents the volume of 

commercial wood output, and Flog represents the volume of non-commercial wood. Unlike commercial 

wood, the actual logging volume of non-commercial wood can be used effectively by farmers (Sec. 2.3.2). 195 

The sum of Woutput and Flog is the total volume of pools (1) to (4), and wood-based panels here do not 

include plywood (Fig. 2). 
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2.2.1 Annual carbon changes in “HWPs in use” 

Carbon stocks and decays from in-use HWPs were calculated using the methodologies for 

estimating carbon removal from HWPs described in the “2006 IPCC Guidelines for National Greenhouse 200 

Gas Inventories” (IPCC, 2006a) and the “2013 Revised Supplementary Methods and Good Practice 

Guidance Arising from the Kyoto Protocol” ( IPCC, 2014). “Decay” in this paper refers to the discarding 

of HWPs from end uses (and sent to landfill), not biological decay. Moreover, here we focused on the 

carbon fate of wood harvested in China, the imports and exports were not considered. The FOD method 

(Pingoud and Wagner, 2006) was used to estimate the carbon change in the HWPs pool as: 205 

�(� + 1) = ��� × �(�) + �
�������

�
� × ������(�)  (78) 

∆�(�) = �(� + 1) − �(�)  (89) 

where i denotes the year; C(i) is the carbon stock in the HWPs pool at the beginning of year i; and k (k = 

ln(2)/HL) is the decay constant (yr-1). HL is the number of years it takes to lose half of the existing 

material in the pool, which is a function of the country-specific service life of particular HWPs 210 

(HL=service life  ln (2)) (IPCC, 2019b). k for paper and paperboard, wood-based panels, solid wooden 

furniture, and structural constructions were calculated as 0.333, 0.125, 0.067, and 0.025, respectively. 

Inflow(i) is the inflow to the HWPs pool during year i, and ∆C(i) represents the carbon stock change of 

the HWPs pool during year i. Next, the amount of discarded organic carbon (DOC) deposited in the 

landfill, as the HWPs go out of use in year i, was calculated using Eq. (910):  215 

���� = ������(�) − ∆��  (910) 

2.2.2 Annual carbon changes in landfill 

The DOC deposited in landfill was divided into three parts, (1) DOC for aerobic decomposition 

(DOCar), producing CO2 until all available oxygen has been used up; (2) DOC for anaerobic 

decomposition (DOCan), producing both CH4 and CO2; (3) DOC that will not be decomposed but stored 220 

long-term in the landfill (DOCls).  

The DOCar was calculated as: 

������  
= ���� × ���  (1011) 

where far denotes the proportion of DOC undergoing aerobic decomposition. Based on the landfill 

situation in China, the far was assumed to be 0.28±0.15 (Table S5S4). The DOCari
 undergoes aerobic 225 
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decomposition and releases as CO2 in year i:  

��� ���
= ������

×
��

��
   (1112) 

The DOCan is calculated with Eq. (1213), as: 

������
= ���� × (1 − ���) × ����   (1213) 

where ����  indicates the fraction of DOC that can be decomposed under anaerobic conditions (Table 230 

S6S5). The annual carbon change of DOCan in the landfill was calculated according to the FOD method 

(Pingoud and Wagner, 2006). 

����� ��
= ������

+ ����� ����
× ���  (1314)  

����� �������
= ����� ����

× (1 − ���)   (1415) 

where DOCan ai
 represents the DOCan accumulated in the landfill at the end of year i; DOCan decompi denotes 235 

DOCan decomposed in the landfill in year i; the anaerobic decomposition generally occurs in the 

following year of deposition. k is the decay constant (yr-1), estimated based on the environmental 

conditions of landfill in China (Table S6S5). Then, the potentials to generate CH4 and CO2 from the 

anaerobic decomposition of DOCan were: 

����
= ����� �������

× � ×
��

��
× (1 − ��) × (1 − ���)   (1516) 240 

��� ���
= ������ �������

× (1 − �)� ×
��

��
   (1617) 

where CH4i 
and CO2 ani

 are CH4 and CO2 produced by anaerobic decomposition in landfill in year i. F 

denotes the volume fraction of CH4 in the generated landfill gas, with a value of 0.5±0.1 (Cai et al., 

2018). RT and OXT are the recovery rate and oxidation rate of CH4 in China (Table S5S4). The total CO2 

decomposed from DOC in year i was the sum of CO2 ari
 and CO2 ani

. The CH4 emissions were transformed 245 

to CO2 equivalents (CO2e) to harmonize calculations of the overall global warming potential (IPCC, 

2023). 

The DOCls can be calculated as: 

������
= ���� − ������

− ������
  (1718) 

Then, the carbon stock in the landfill at the end of year i was calculated as: 250 

�����
= ∑ ������

�
� + ����� ��

  (1819) 
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2.3 Datasets 

2.3.1 National Forest Inventories 

The NFIs provided nine periods of provincial biomass storage for 1973-1976, 1977-1981, 1984-

1988, 1989-1993, 1994-1998, 1999-2003, 2004-2008, 2009-2013, and 2014-2018 (National Forestry and 255 

Grassland Administration, 2019). We used the biomass storage data during the 6th-9th NFIs to generate 

the distribution of AGB for 2003-2018. 

2.3.2 Statistical forest harvesting data 

The annual provincial wood output (m3), extracted from the China Forestry and Grassland Statistical 

Yearbook, was categorized into two main types: commercial and non-commercial wood. Commercial 260 

wood includes fuelwood and roundwood, and roundwood was further divided into pulpwood, wood for 

plywood, and other roundwood (roundwood for directly use, internally processed roundwood, etc.). Non-

commercial wood included farmers’ self-use wood (i.e., the volume of wood logged (Flog) by farmers for 

burning) and farmers’ self-use wood (i.e., the volume of wood logged by farmers for their personal 

consumption). Non-commercial wood refers to the actual logged volume, which can be totally used by 265 

farmers. Commercial wood refers to wood output (Woutput) volume of peeled wood that meets the national 

wood standards, not the actual logging volume (Wlog). Wlog refers to the total volume of wood cut from 

the forest, regardless of whether it was further processed into commercial wood. Woutput refers to the 

volume of wood that can be used for further production and sale after preliminary processing (such as 

peeling, sawing, etc.). Meanwhile, this process may eliminate some unusable or poor-quality wood, After 270 

wood logged, preliminary processing (such as peeling, sawing, etc.) is carried out and some unusable or 

poor-quality wood is eliminated. Therefore, the commercial wood output Woutput is generally less than 

the actual logged woodWlog (National Forestry Administration, 2000). Based on the provincial wood 

output rate (R, i.e., the ratio of commercial wood output to wood logged Woutput to Wlog) provided by 

China's timber production plan from the National Bureau of Statistics (Table S2), we calculated the actual 275 

annual wood loggedWlog of commercial wood  for each province as:  

���� =
�������

�
   (1920)  

where Wlog is the actual annual wood logged for producing commercial wood, Woutput is the volume of 

commercial wood output. Then, the total harvested carbon (i.e., the SHC in Sect. 2.1) for a given province 



12 
 

was calculated as: 280 

��� = ����� + ����� × ����  (2021)  

where Flog is the volume of non-commercial wood, and Coef (t C m-3) is the coefficient that converts 

harvested wood (m3) to harvested carbon (t C) (i.e., biomass carbon of trunks, branches, leaves and 

understory vegetation) (Table S2). 

2.3.3 Surveyed forest harvesting data 285 

The surveyed forest harvesting data, i.e., the harvested volume at the city and county-level, was 

retrieved from the official website of each provincial Forestry Bureau. To ensure the effective 

implementation of the forest harvesting quota system, the provincial Forestry Bureau randomly selects 

several cities and/or counties, conducting comprehensive field inspections of the annual forest harvesting. 

The actual annual harvest volume of a specific city or county is determined through comprehensive cross-290 

validation of multiple methods, including declaration and approval records reviewing, on-site 

measurements, and remote sensing monitoring, etc. These techniques are employed to ensure the 

accuracy and reliability of the obtained harvest data. There were 133 records nationwide available from 

2006 to 2018, concentrated in the provinces of Guizhou, Yunnan, Zhejiang, and Sichuan (Fig. S1).  

2.3.4 Forest cover map  295 

The Chinese Forest Cover Dataset, reconstructed by fusing the NFIs and twenty Land Use and Land 

Cover datasets, was used as the forest cover base map. This forest cover accurately depicts the historical 

changes in China’s forest cover in the period of 1980-2015, with overall accuracy from 76.9% to 99.4% 

(Xia et al., 2023). 

2.3.5 Satellite-based vegetation index 300 

The NDVI dataset from 2000 to 2020 calculated by Dong et al (2021) was applied to allocate AGB 

and identify selective logging. This NDVI dataset was calculated using all Landsat5/7/8 remote sensing 

data for the whole year, the NDVI maxima in each image year were obtained by data pre-processing and 

data smoothing (Dong et al., 2021). 

2.3.6 Mask data 305 

This study used the elevation and National Nature Reserves to exclude the regions where rarely 
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occur harvesting. The elevation dataset was obtained from the Resource and Environment Science and 

Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/) and the distribution of National 

Nature Reserves was provided by the National Earth System Science Data Center, National Science & 

Technology Infrastructure of China (http://www.geodata.cn). 310 

2.4 Accuracy assessment 

The surveyed forest harvesting data at city and county-level were employed to validate the accuracy 

of the LEAF dataset by conducting a comparison with the estimated harvested carbon. The relationships 

between the estimated harvested carbon and the corresponding surveyed harvested carbon were assessed 

by linear regression. Then the coefficient of determination (R2) and slope of linear regression can be 315 

calculated, and the closer these two values are to 1, the better the estimates.  

3. Results 

3.1 Accuracy evaluation of LEAF dataset 

Accuracy evaluation of the LEAF dataset generated from this study showed good performance in 

indicating spatial variations of harvested carbon in China. This study used province-level statistical 320 

harvested carbon to determine the threshold for identifying selective logging and used city and county-

level surveyed harvested carbon ranging from 2006 to 2018 to examine the performance. The estimated 

harvested carbon showed high consistency with surveyed harvested carbon, with R2 of 0.83 and a linear 

regression slope of 0.99 (Fig. 3).  

 325 

Figure 3: Comparison of estimated and surveyed harvested carbon from the official website of each 
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provincial forestry bureau at the city and county levels across all investigated provinces. The solid line 

indicates the regression lines, and the red dashed line indicates the 1:1 line. 

The validation also showed the performance of the LEAF dataset across various provinces and 

periods. The dataset exhibited excellent skill in simulating the spatial variation of harvested carbon across 330 

all surveyed provinces, with R2 between estimates and surveyed data ranging from 0.24 to 0.96 (Fig. S2). 

Zhejiang performed the best (Fig. S2e), while Sichuan's performance was relatively low, with R2 less 

than 0.5 (Fig. S2c). The LEAF dataset also effectively reproduced the spatial variations of harvested 

carbon across different periods, with R2 values ranging from 0.31 to 0.99 (Fig. S3). The estimates for 

2013 and 2017 demonstrated superior performance, with both linear regression slopes approximating 1 335 

(Fig. S3c and g). However, except for 2016, estimates from other periods displayed varying degrees of 

underestimation or overestimation (Fig. S3). 

3.2 Spatial and temporal patterns of harvested carbon in China 

There was a large heterogeneity in harvested carbon over the regional scale. Harvesting mainly 

occurred in Eastern and Southern China, and rarely in Northwest China (Fig. 4a and b). Guangxi Province 340 

recorded the highest harvested carbon, constituting approximately 30% of China's annual total harvested 

carbon. This volume is 2.5 times larger than that of Fujian, the province with the second highest harvested 

carbon (Fig. 4c). In terms of harvesting ways, over 80% of the nationwide clear-cutting harvested carbon 

originated from Guangxi, Guangdong, Fujian, Yunnan, and Jiangxi (Fig. 4c). Forest harvesting in Jiangxi, 

Guangdong, Yunnan, and Hainan was dominated by clear-cutting, in these provinces, harvested carbon 345 

from clear-cutting comprised more than 50% of the total harvested carbon (Fig. 4c, Fig. 5a). For other 

provinces, selective logging was the main way of forest harvesting (Fig. 5b).  
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Figure 4: Map of forest harvested carbon for China in 2016 at (a) 30 m and (b) 0.1°resolution and the 

zoomed-in view of the example areas of (a) (a1, a2, and a3), the map at 0.1° was derived from a 30 m 350 

data upscaling, and (c) shows the harvested carbon from clear-cutting and selective logging by province 

in 2016. 
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Figure 5: Map of forest harvested carbon from (a) clear-cutting and (b) selective logging for China in 

2016 at 0.1°resolution. 355 

China experienced an overall upward trend in forest carbon harvesting, with average harvesting of 

68.3±9.3 Mt C yr-1 from 2003 to 2018 (Fig. 6). The most substantial growth in harvested carbon was 

observed from 2003 to 2008, increasing approximately 1.6 times from 49.8 Mt C yr-1 in 2003 to 79.5 Mt 

C yr-1 in 2008 (Fig. 6). Among all surveyed years, the harvested carbon peaked in 2008, primarily driven 

by an uptick in fuelwood harvest (Fig. 7). In subsequent years, the harvested carbon generally plateaued, 360 

with minor fluctuations. Selective logging was the main way of forest harvesting (Fig. 6). Averaged from 

2003 to 2018, there was 55.6±7.2 Mt C yr-1 from selective logging, accounting for around 82% of the 

total harvested carbon (Fig. 6). Nevertheless, the proportion of harvested carbon from clear-cutting was 

overall on the rise, reaching its peak in 2012 when it constituted 30% of the total harvested carbon for 

that year (Fig. 6). 365 
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Figure 6: Long-term changes of harvested carbon in China between 2003 and 2018 from statistical, 

LUH2, FAO, and LEAF datasets. 

3.3 Allocation of harvested carbon into the various wood pools 

This study also provides the allocation of harvested carbon into the various wood pools with 370 

different lifetimes, including fuelwood pool, paper and paperboard pool, wood-based panels pool, solid 

wooden furniture pool, structural constructions pool, and residues pool (Sect. 2.2). Averaged from 2003 

to 2018, over the entire China, harvested carbon was allocated into six pools with 19.6±4.0%, 2.1±

1.1%, 32.8±11.8%35.5±12.6%, 7.0±0.4%6.2±0.3%, 19.4±0.4%17.5±0.9%, and 19.1±9.8%, 

respectively (Fig. 7). Wood for HWPs mainly came from Southern China, with Guangxi contributing 375 

more than 20% of the national wood for HWPs annually, followed by Fujian (7.5%). Meanwhile, 

Guangxi also contributed up to 45.5% of the wood used for paper production (Fig. 8). Over 50% of the 

wood in Fujian was used for fuelwood, contributing nearly 30% of the national fuelwood. Similar to 

Fujian, more than 50% of the wood in Yunnan was used for fuelwood, making Yunnan the second-largest 

province in terms of wood supply for fuelwood (Fig. 8). From 2003 to 2018, wood harvesting has been 380 

increasing, while wood for fuel has been decreasing, with its share decreasing from 29% to 13%. More 

wood was used for HWPs production. The wood residues decreased from 2003 to 2018 (Fig. 7). 
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 385 

Figure 7: Long-term changes of different pools of harvested carbon from 2003 to 2018 in China. 
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Figure 8: Pools of provincial harvested carbon averaged from 2003 to 2018.   

We further quantified the delayed emissions of harvested carbon in various pools. Combustion of 390 

fuelwood resulted in major carbon emissions, and wood-based panels contributed a major share of carbon 

stock (Fig. 9). Fuelwood was typically burned for a short period of time (1 year), resulting in average 

emissions of 48.1±7.4 Mt CO2e yr-1 from 2003-2018 (Fig. 9c). Additionally, discarded HWPs that enter 

landfill undergo gradual decomposition, releasing an average of 3.1±3.0 Mt CO2e yr-1, 13.3±11.214.4

±12.2 Mt CO2e yr-1, 2.9±2.02.5±1.8 Mt CO2e yr-1, and  7.3±3.66.5±3.3 Mt CO2e yr-1 for paper 395 

and paperboard, wood-based panels, solid wooden furniture, and structural constructions, respectively, 

from 2003 to 2100 (Fig. 9d). The total carbon stock sustained an upward trend, peaking at 2141.3±

195.72126.9±244.9 Mt CO2e in 2018 (Fig. 9a, b). As products were discarded and/or retired, the carbon 

stock in currently used products persistently declines without ongoing wood inputs (Fig. 9a). Furthermore, 

most of the waste products that enter landfill do not decompose and become a permanent carbon sink 400 

(Fig. 9b). About 39.2%±10.30% of harvested carbon during 2003-2018 will still be stored in the HWPs 
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by 2100 (Fig. 9b). 
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Figure 9: The post-harvest carbon dynamics: (a) the accumulated carbon stock of HWPs in-use; (b) 405 

the accumulated carbon stock in landfill; (c) annual carbon emissions of fuelwood and residues, since 

the burning of residues is not a definite fact, we represented it using dashed lines; (d) annual carbon 

emissions in landfill. The black dashed line indicates the year of 2018, when there is no new wood inflow 

in the HWPs, the other dashed lines in (b) and (d) indicate the year when the corresponding products 

were all discarded, and the purple solid line indicates the year when the first construction wood reached 410 

its service life. Since paper and paperboard, wood-based panels, and solid wooden furniture have a 

service life of less than 16 years, carbon stock of emissions has no sharp changes before and after the 

year reached service life. The shaded area represents the variation range. 

4. Discussion 

4.1 Implications for simulating the carbon sink in China 415 

Forest harvesting is one of the most important human activities determining the terrestrial ecosystem 

carbon budget (Liu et al., 2011; Pan et al., 2011). Forest harvesting largely decreases the leaf area index, 

increases litter biomass, and alters stand temperature and moisture, strongly impacting the structure and 

function of ecosystems (Nepstad et al., 1999; Liu et al., 2011; Jian et al., 2022). Harvesting causes damage 
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to the forest canopy and soils, leading to temporary increases in litter carbon stock. It ultimately results 420 

in a net loss of soil carbon due to the damages inflicted on the forest canopy and soil. Following a 

disturbance, soil carbon loss can exceed carbon gain in above-ground biomass (Kowalski et al., 2004). 

Pennock and van Kessel (1997) found that soil carbon decreased by 5 to 20 t C ha-1 over a 20-year period 

following clear-cutting, a significant loss compared to the carbon accumulated in a maturing forest's 

biomass (Pennock and Van Kessel, 1997).   425 

Forest harvesting is a type of human activity that cannot be simulated by ecosystem modeling. 

Therefore, the development of regional and global datasets is necessary for quantifying the impacts of 

forest harvesting. The LUH2 dataset is an important source of data for indicating global forest harvesting 

and has been widely used to simulate the impacts of forest harvesting on the terrestrial carbon sink 

(Harper et al., 2018; Hurtt et al., 2020; Friedlingstein et al., 2022). However, our results showed that the 430 

LUH2 dataset underestimated harvested carbon by about 38.5% on average for China, compared with 

the statistical data (Fig. 5, Fig. S4). The LUH2 dataset used national wood volume harvest data from the 

Food and Agriculture Organization (FAO, 2020). Across all of China, the harvested carbon data from the 

FAO were approximately 40% higher compared to the statistical data averaged from 2003 to 2018, caused 

by the different statistical methodologies and data sources used in FAO and the China’s statistical data. 435 

Nevertheless, in LUH2, the wood from agricultural expansion has been subtracted, the remaining 

national wood was then explicitly harvested (Hurtt et al., 2020). However, according to LUH2, the 

cropland area has increased by 41 million hectares since 1980 in China, which significantly deviates from 

the actual situation (i.e., decreased by 14 million hectares) (Yu et al., 2022). Therefore, LUH2 has 

overestimated wood harvests due to agricultural expansion, leading underestimated of wood from forest 440 

harvesting. And after 2000, the spatial pattern of forest harvesting was constrained using the Landsat 

forest loss data (i.e., TCL) (Hansen et al., 2013) by verifying if the annualized gridded forest loss derived 

from the Landsat data matched the forest harvesting information in the LUH2 dataset. However, the TCL 

dataset only indicates clear-cutting and does not include selective logging. Our result showed that there 

was a large proportion of selective logging (Fig. 6), indicating that the LUH2 dataset largely 445 

underestimates the harvest area.  

This study not only represents the temporal and spatial patterns of harvested carbon, but also 

provides the allocation of harvested carbon among the pools. Unlike harvested crop carbon, which will 

emit into the atmosphere at a faster rate, harvested forest carbon is stored in various HWPs pools, and 
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emits back into the atmosphere with different lifetimes (Skog, 2008; IPCC, 2019a). As an extension of 450 

forest resources, the carbon dynamics of HWPs in use and after use have multiple impacts on national 

greenhouse gas (GHG) inventories (Johnston and Radeloff, 2019). Clarifying the proportion of post-

harvest carbon allocated to different pools is the key to accurately assessing carbon dynamics. In addition, 

previous studies focused more on the carbon stored in HWPs (Stockmann et al., 2012; Matsumoto et al., 

2022; Wei et al., 2023). However, the assessment of the global potential of HWPs as a carbon sink is 455 

subject to the balance between carbon inflows and outflows (Johnston and Radeloff, 2019). In particular, 

waste products emit non-CO2 GHG such as CH4, contributing to climate change (Cai et al., 2018). 

Moreover, the carbon emissions from harvested wood exhibit delayed and long-term effects. Tracking 

the long-term dynamics of carbon and assessing the future climate mitigation potential can provide a 

better foundation for GHG management in the forestry sector.  460 

4.2 Spatio-temporal changes of harvested carbon and allocation in China 

The spatial heterogeneity of forest harvesting is influenced by the distribution of forest resources in 

China (Fig. 4). Intensive harvesting in Southern China (e.g., Guangxi and Fujian) indicates a demand for 

specific tree species, such as Eucalyptus and Cunninghamia lanceolata (Yu et al., 2020). As the total 

harvesting increased, both clear-cutting and selective logging exhibited a general upward trend (Fig. 6), 465 

mirroring the dynamic equilibrium in the allocation of harvesting ways across China's forests. The rate 

of increase in clear-cutting significantly outpaced that of selective logging (Fig. 6). A growing demand 

for wood is driving an upward in large-scale forest harvesting. Nevertheless, selective logging has 

remained the principal way of forest harvesting in China. For entire China, the pixels occurred selective 

logging is about 50 folds of that occurred clear-cutting (Fig. S5), and the mean harvested biomass in a 470 

pixel from selective logging is 8% of that from clear-cutting (Fig. S5, Fig. 6). The occurrence of such a 

small percentage of biomass removal at pixel level suggests the ability of the LEAF dataset to capture 

minor disturbances. Moreover, selective logging is a widely employed silvicultural practice that plays a 

central role in forest management worldwide (Liu et al., 2011). In the United States, the area covered by 

selective logging is approximately 61% of that occupied by clear-cutting (Masek et al., 2011). In Brazil, 475 

selective logging doubles the previous estimates of the total forest degraded by human activities (Asner 

et al., 2005). Selective logging is a more diffuse disturbance than forest clearance (Fisher et al., 2014) 

and is mostly invisible to satellites (Asner et al., 2005; Matricardi et al., 2010; Hethcoat et al., 2019). 
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Despite many efforts to address the challenge of estimating selective logging using satellite data through 

image classification, it is still difficult to monitor low-intensity selective logging due to the coarse 480 

resolution of satellite imagery (Asner et al., 2005; Matricardi et al., 2010; Hethcoat et al., 2019). 

Objective spatially explicit reporting on selective logging is the basis for model-based assessment of the 

impact of forest harvesting on the carbon budget.  

Forest harvesting in China continued to increase during the study period. However, the wood for 

fuel declined by nearly 23%, especially the harvesting for burning from farmers, contributing an average 485 

of nearly 70% of burned timber annually, decreased by nearly 35% (Fig. S5S6). This rapid decline in 

rural areas indicates that China is successful in the rural energy transition, benefiting the mitigation of 

air pollution and climate change (Chen et al., 2016; Tao et al., 2018). Production of wood and paper 

products in China was on the rise (Fig. 7), constituting a carbon pool that delays carbon release (Fig. 9). 

HWPs in use rarely emit carbon if there was no decay or combustion (e.g., building fire), being a stable 490 

carbon sink during their lifespan, especially wood used for constructions (Profft et al., 2009; Churkina et 

al., 2020). Although the CO2 emitted in landfill is considered carbon neutral (Van Ewijk et al., 2020), 

CH4 emissions from landfill are detrimental to climate due to their higher global warming potential (IPCC, 

2023). Promoting an increase in carbon storage and a reduction of carbon emissions can be achieved by 

extending the lifespan and improving the recycling rate of HWPs (Brunet-Navarro et al., 2017). However, 495 

this approach may not be as effective for paper products, as they often have low or even negative 

recycling benefits (Van Ewijk et al., 2020). Therefore, recommendations in the wood sector prioritize 

allocating harvested wood to long-lasting products (Fortin et al., 2012; Smyth et al., 2014) and products 

with high recycling rates (Brunet‐Navarro et al., 2016; Werner et al., 2010). Improving the efficiency of 

wood harvesting and processing processes, as well as enhancing forest ecological management, is also 500 

necessary for the reduction of carbon emissions. 

4.3 Uncertainties of the LEAF dataset 

Although the LEAF dataset demonstrated a good performance in capturing the spatial variability of 

harvested carbon in China, several potential uncertainties exist. First, currently, the use of forest wood 

was majorly extracted from the aboveground components. Typically, roots of logged trees will be 505 

disposed by several ways, including decay stimulation, sprout regeneration, combustion, and the 

production of small boards (Li et al., 2012). There are no detailed information regarding to roots due to 
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large differences over the regions and species. Therefore, this study did not include the root biomass in 

the entire estimate, which may result in underestimation of HWPs and its subsequent emissions.  

Second, the harvested carbon was found to be underestimated in several provinces over several 510 

years. Among the estimates covering a span of 16 years across 31 provinces, approximately 28% of them 

were underestimated, with the highest frequency of underestimation occurring in southern provinces (Fig. 

10a). Compared to statistical values, the harvested carbon was underestimated by an average of 0.4-60.4% 

from 2003 to 2018 across these investigated provinces (Fig. 10b). Anhui Province had the highest degree 

of underestimation, with underestimation occurring in all years (Fig. 10). To avoid this underestimation, 515 

we assigned the unidentified harvested carbon to the pixels where selective logging occurred, increasing 

the harvested carbon of these pixels (Sect. 2.1, Eq. (6)), resulting in an estimation of more harvested 

carbon than the actual AGB at several pixels. We examined the number of pixels where the harvested 

carbon exceeded its AGB at the province level. The results showed that the number of pixels where 

harvested carbon exceeded its AGB was less than 2% of the number of pixels where harvesting occurred 520 

for each province annually (Fig, S6S7). 

 
Figure 10: (a) Annual NDVIdiff thresholds (NDVITh) for each province. An NDVITh of 0 indicates that the 

province's harvested carbon was underestimated that year and a blank NDVITh denotes that there was no 

harvesting in that province that year according to the statistics. (b) Average percentage of underestimated 525 

harvested carbon in the provinces where underestimation occurred from 2003 to 2018. 

The underestimation of harvested carbon is closely related to the accuracy of identifying both 

selective logging and clear-cutting. (1) Wood output rate (R) is a key parameter for calculating the total 

wood harvest at provincial level. Its value varies depending on factors such as tree species, wood quality, 

and processing ways (Jiang et al., 2022). Even within the same province, R can vary significantly. 530 
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However, due to the lack of R data at the sub-provincial level, this study utilized the provincial R values 

for 2009 obtained from the official website of National Bureau of Statistics (Table S2). Using provincial-

level R for a single year overlooked the intra-provincial and inter-annual variations in R, potentially 

leading to bias in estimating the total wood harvest. (2) AGB is an another important potential cause. 

After forest harvesting, trees regeneration would form new biomass. This study used the national forest 535 

inventory datasets to estimate AGB, which were conducted at a five-year interval. With this five-year 

period, the forest inventory can’t include the increased biomass due to trees regeneration, which will lead 

to an underestimation of AGB. (3) The conversion of biomass storage to AGB (Coef) exhibited 

significant variations among provinces, possibly due to different dominant vegetation types and growing 

stock levels across provinces. The default biomass conversion and expansion factors (BCEF, equivalent 540 

to Coef in this study) provided by IPCC also confirmed the significant differences in Coef across 

vegetation types and growing stock levels (IPCC, 2006b). However, compared to IPCC's coarse regional 

classification, the provincial-level Coef we utilized in this study is more detailed. (4) The quality of 

selective logging identification largely depends on the quality and performance of NDVI. The accuracy 

is largely impacted by low data quality in cloudy and rainy southern areas. In addition, NDVI is sensitive 545 

to green vegetation cover but not dense vegetation (Huete et al., 2002), and begins to saturate over dense 

vegetation with AGB values higher than 25 t C ha-1 (Chang et al., 2023), contributing to the 

underestimation of AGB. Overlooking the continued growth after harvesting within a pixel and the 

regional-scale climate impacts led to an underestimation of NDVIdiff. Consequently, the harvested carbon 

may be underestimated at regional scales, particularly in provinces with substantial forest coverage (e.g., 550 

Guangxi). (5) The estimation of clear-cutting was primarily limited by the performance of the TCL 

dataset generated by Hansen et al. (2013). In subtropical and temperate regions, the producer’s accuracy 

and user’s accuracy of TCL are both approximately 80%, indicating that the dataset can identify tree 

cover loss with relatively high accuracy. However, there is still a 20% level of uncertainty (Hansen et al., 

2013), and further efforts are needed to improve the identification of clear-cutting. 555 

 Third, we compared our estimates of carbon stocks of HWPs with previous studies. Zhang et al. 

(2019) estimated the carbon stock of HWPs to be 1.7 Gt CO2e for the period of 2003-2016, which is 1.3 

times higher than our estimates for the same period (Fig. 8b). Zhang et al. (2019) used statistical data of 

HWPs provided by FAO, which has a significant disparity to China's official figures (Fig. 6). Zhang et 

al. (2018) estimated carbon stocks of HWPs from 1950 to 2015 using China's official data, but which 560 
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also included the imported HWPs. As the China's wood imports are considerable, the estimates of Zhang 

et al. (2018) for 2003-2015 is nearly 1.8 times of our estimates. This study aims to quantity the 

contribution of harvested wood to national CO2 emission in China; therefore, we excluded the imported 

wood according to the IPCC standard. Moreover, these previous estimates depended on default factors 

recommend by IPCC inventory method to calculate CO2 emissions and stocks in HWPs, and which 565 

showed large differences with specific factors in China used by this study. In addition, this study also 

provides estimates of stocks and CO2 emissions dynamics, which is quite important for understanding its 

long-term contributions. Nevertheless, information on the end products of harvested wood (i.e., bathroom 

tissue, tableware, types of furniture, columns, etc.) is unavailable (Profft et al., 2009), leading to rough 

estimates of wood destination and product service life. In this study, all residual wood was assumed to 570 

be burned as fuelwood would induce an overestimation of carbon emissions. Meanwhile, this study 

ignored recycled wood products, which may extend the carbon storage in products (Brunet-Navarro et 

al., 2017), causing an underestimation of carbon stock in products in use. More efforts are needed to track 

the production and end use of the harvested wood, as they play a key role in the estimation of the effects 

on national GHG inventories (White et al., 2005; Johnston and Radeloff, 2019).  575 

5. Data availability 

The 30 m × 30 m Long-term harvEst and Allocation of Forest Biomass (LEAF) dataset is available 

at https://doi.org/10.6084/m9.figshare.23641164.v2.(Wang et al., 2023).  

The file format of the product is GeoTIFF with the spatial reference of WGS84 (EPSG:4326). Each 

GeoTIFF file represents annual harvested forest carbon (unit: g C m−2yr-1), the absolute harvested carbon 580 

per pixel is obtained by multiplying by the corresponding pixel area. 

6. Conclusion 

This study produced a Long-term harvEst and Allocation of Forest Biomass (LEAF) dataset, which 

provides spatial information on forest harvesting at a resolution of 30 m. The validation results 

demonstrated the accuracy and reliability of the LEAF dataset in capturing the spatial variation of 585 

harvested carbon. From 2003 to 2018, harvested carbon showed an increased trend. Additionally, our 

dataset showed that selective logging resulted in more than 80% of the total harvested carbon. The carbon 
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taken away from forest harvesting was allocated to six wood pools, with the direct combustion of 

fuelwood as the primary source of carbon emissions after harvesting. However, it is important to highlight 

that the carbon stored in wooden products has the potential for long-term retention. In summary, the 590 

development of the LEAF dataset enhances our understanding of the spatial patterns of forest harvesting 

and post-harvest carbon dynamics in China. The LEAF dataset generated by this study is an important 

data source for estimating the carbon budget of forest ecosystems in China, which can also provide 

essential insights for sustainable forest management and climate change mitigation efforts. 
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