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Abstract. Developing air quality management systems to control the impacts of air pollution requires reliable data. However,
current initiatives do not provide datasets with large spatial and temporal resolutions for developing air pollution policies in
Brazil. Here, we introduce the Brazilian Atmospheric Inventories — BRAIN, the first comprehensive database of air quality
and its drivers in Brazil. BRAIN encompasses hourly datasets of meteorology, emissions, and air quality. We provide gridded
data in two domains, covering the Brazilian territory with 20x20 km of spatial resolution and another covering Southern Brazil
with 4x4 km. The emissions dataset includes vehicular emissions derived from the Brazilian Vehicular Emissions Inventory
Software (BRAVES), industrial emissions produced with local data from the Brazilian environmental agencies, biomass
burning emissions from FINN - Fire Inventory from the National Center for Atmospheric Research (NCAR), and biogenic
emissions from the Model of Emissions of Gases and Aerosols from Nature (MEGAN). The meteorology dataset has been
derived from Weather Research and Forecasting Model (WRF). The air quality dataset contains the surface concentration of
216 air pollutants produced from coupling meteorological and emissions datasets with the Community Multiscale Air Quality
Modeling System (CMAQ). This paper describes how the datasets were produced, their limitations, and their spatiotemporal
features. To evaluate the quality of the database, we compare the air quality dataset with 244 air quality monitoring stations,
providing the model’s performance for each measured pollutant by the monitoring stations. We present a sample of the spatial
variability of emissions, meteorology, and air quality in Brazil from 2019, revealing the hotspots of emissions and air pollution
issues. By making BRAIN publicly available, we aim to provide the required data for developing air quality policies on
municipality and state scales, especially for not developed and data-scarce municipalities. We also envision that BRAIN has

the potential to create new insights and opportunities for air pollution research in Brazil.


mailto:leonardo.hoinaski@ufsc.br
mailto:robsonwillfsc@gmail.com
mailto:cb_ambiental@hotmail.com
mailto:leonardo.hoinaski@ufsc.br

30

35

40

45

50

55

60

65

1. Introduction

It is consensus that air pollution threats public health (OECD, 2023), economic progress (OECD, 2016), and climate (USEPA,
2023a). The negative outcomes associated with air pollution are not uniform within populations and the impacts may be greater
for more susceptible and exposed individuals (Makri and Stilianakis, 2008). Due to its social vulnerability and increasing
emissions, developing countries urgently require reliable databases to provide information for designing air quality

management systems to control air pollution (Sant’Anna et al., 2021).

Brazil has continental dimensions, is the seventh most populous country in the world, and has the 12" largest Gross Domestic
Product (IBGE, 2023). Combining poorly planned development and the huge socioeconomic discrepancy has led to air quality
impacts in Brazil. Air pollution-related problems are not only restricted to great Brazilian cities and industrialized areas.
Vehicular fleet and fuel consumption have also increased in small municipalities (CEIC, 2021, MME, 2023), posing a challenge
to control vehicular emissions. In preserved and rural areas, large fire emissions have occurred due to illegal deforestation and

soil management (Escobar, 2019; Rajo et al., 2020).

Following practices of developed countries, Brazilian air quality policies have been enforced through legislative laws, using
air quality standards as key components. However, the whole loop of the air quality management process has never been
completed in Brazil. Policies are far to be efficient since the lack of air quality monitoring data in most of the country has
restricted the knowledge to well-developed areas (Sant’Anna et al., 2021). Moreover, Brazilian’s environmental agencies have
not provided enough data and guidance for permitting process. Air quality consultants still struggling to find mandatory inputs
to understand and predict air quality for regulatory purposes. Efforts for permanent improvement of high spatiotemporal

resolution emissions inventories, meteorological, and air quality data are needed.

An effective air quality management system must provide data to determine how much emissions reductions are needed to
achieve the air quality standards (USEPA, 2023b). It requires air quality monitoring, robust and detailed emissions inventory,
reliable meteorological datasets, and methodologies to adapt the state-of-the-art air quality models to Brazilian’s reality.
Moreover, it is crucial to undertake ongoing evaluation and fully understand the air quality problem to design and implement
the programs for pollution control. Currently, available initiatives including reanalysis and satellite products are still not
providing datasets with large spatial and temporal resolutions for developing air pollution policies in Brazil. Global reanalysis
such as Copernicus Atmospheric Monitoring Service (CAMS) (Inness et al., 2018) and the second version of Modern-Era
Retrospective analysis for Research and Applications (MERRA-2) (GMAO, 2015a,b) can provide estimates of air pollutants
by combining chemical transport models (CTMs) with satellite and ground-based observations and physical information,
assimilating data to constrain the results. However, the currently available reanalysis products do not provide data with high
spatial resolution (up to 0.75° x 0.75° and 0.5° x 0.625°) and could be biased to represent local and regional air quality (Arfan
Ali et al., 2022). Moreover, they provide data only for a small list of air pollutants. Satellite-based products such as Sentinel-
5P TROPOMI (Veefkind et al., 2012) and Moderate-Resolution Imaging Spectroradiometer (MODIS) (Levy et al., 2015;
Platnick et al., 2015) are still challenging due to their low temporal resolution, data gaps due to cloud coverage, and
uncertainties (Shin et al., 2019). Besides, satellite relies on total tropospheric column measurements which do not represent

surface concentrations (Shin et al., 2019).

In this article, we present the Brazilian Atmospheric Inventories (BRAIN), the first comprehensive database to elaborate air
quality management systems in Brazil. BRAIN combines local inventories, consolidated datasets, and the usage of
internationally recommended models to provide hourly emissions, meteorological, and air quality data covering the entire

country.
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2. BRAIN Database

BRAIN contains three types of hourly datasets: emissions, meteorology, and air quality. The emissions inventories include
vehicular, industrial, biogenic, and biomass-burning emissions. We provide meteorological data derived from Weather
Research and Forecasting (WRF) model. Coupling emissions, WRF, and the Community Multiscale Air Quality Modeling
System (CMAQ) version 5.3.2, we provide air quality gridded data. All datasets are available on two spatial resolutions, the
largest (Figure SM1 — d01) covers the entire country, while the smallest covers southern Brazil (Figure SM1 — d02). The
BRAIN datasets in dOl are freely available at https://doi.org/10.57760/sciencedb.09858 (Hoinaski et al., 2023a),
https://doi.org/10.57760/sciencedb.09857 (Hoinaski and Will, 2023a), and https://doi.org/10.57760/sciencedb.09859
(Hoinaski and Will, 2023b). The BRAIN datasets in d02 are available at https://doi.org/10.57760/sciencedb.09886 (Hoinaski
et al., 2023b), https://doi.org/10.57760/sciencedb.09885 (Hoinaski and Will, 2023c), and
https://doi.org/10.57760/sciencedb.09884 (Hoinaski and Will, 2023d). The Federal University of Santa Catarina (UFSC)
institutional repository https://brain.ens.ufsc.br/ and the web platform https://hoinaski.prof.ufsc.br/BRAIN/ serve the BRAIN

database from 2019. We envision making available more detailed datasets for other Brazilian regions, especially in the
Southeast where the anthropogenic emission effects are more prominent. Future versions will also provide more detailed

modeling outputs to properly cover medium- and small-sized cities.

BRAIN intends to fill the gaps in those cases where adequately representative monitoring data to characterize the air quality
is not available. BRAIN would be useful to provide background concentrations for a good procedure for licensing new sources

of air pollution.

2.1 Emissions inventory

BRAIN emissions inventory allows the spatiotemporal analysis of vehicular, industrial, biomass burning, and biogenic
emissions in Brazil. The present version of this database does not account for other South American countries emissions, apart
from biomass burning and biogenic sources. We envision to implement other sources and a more detailed emissions from other
South American countries in future version. Figure 1 presents a sample of the inventory, showing the annual Carbon Monoxide
(CO) emissions by source. Table SM2 summarizes the species in each emission source inventory. More information on each

emissions dataset can be found in sections 2.1.1 to 2.1.5.

We observed the higher vehicular emissions rates of CO in urban areas with large population and vehicle fleet densities, mainly
in the South and Southeast (Figure 1a). High industrial emission rates have been detected in the Brazilian regions with large
stationary sources such as refining units, thermoelectric power plants, cement, and paper industries (Figure 1b) (Kawashima
et al., 2020). In general, the North concentrates higher biogenic and fire emissions. While the hotspots of biogenic emissions
are predominately in the extreme North, the hotspots of fire emissions turn up in Mid-West, North, and South regions, as well

as in the Brazilian west border (Figure 1c-d).
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Figure 1. Spatial distribution of CO emissions from a) vehicles, b) industries, ¢) biomass burning, d) biogenic provided by BRAIN.

2.1.1 Vehicular emissions

BRAIN uses the multispecies and high-spatiotemporal-resolution database vehicular emissions from Brazilian Vehicular
Emission Inventory Software — BRAVES (Hoinaski et al., 2022; Vasques and Hoinaski, 2021). BRAVES database
disaggregates municipality aggregated emissions using the road density approach and temporal disaggregation based on
vehicular flow profiles. SPECIATE 5.1 (USEPA, 2020; Eyth et al., 2020) from United States Environmental Protection Agency

(USEPA) https://www.epa.gov/air-emissions-modeling/speciate) speciates conventional pollutants in 41 species. BRAVES
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considers local studies (Nogueira et al., 2015) and data from Companhia Ambiental do Estado de S&o Paulo (CETESB)

(https://cetesb.sp.gov.br/veicular/relatorios-e-publicacoes/) to speciate acetaldehydes, formaldehyde, ethanol, and aldehydes

since to account for biofuels particularities in Brazil.

In BRAVES, vehicular activity is defined by fuel consumption in each municipality using data provided by the Brazilian

National Agency for Oil, Natural Gas and Biofuel (ANP) (https://www.gov.br/anp/pt-br/centrais-de-conteudo/dados-

abertos/vendas-de-derivados-de-petroleo-e-biocombustiveis). A fraction of fuel consumed by road transportation is based on

data from National Energy Balance (BEN) (https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-

energetico-nacional-ben), and MMA, (2014). BRAVES calculates weighted Emission Factor (EF) to address the effect of the

fleet composition in terms of category, model-year, and fuel utilization.

Vasques and Hoinaski, (2021) compared BRAVES with different vehicular emission inventories, from a local to national scale.
On a national scale, vehicular emission rates from BRAVES underestimate Emission Database for Global Atmospheric
Research (EDGAR) and are slightly higher for CO (14%) and Non-Methane Volatile Organic Compounds (NMVOC) (9%)
compared with the national inventory from Ministério do Meio Ambiente (MMA). The differences between estimates from
BRAVES and well-developed state inventories vary from —1% to 35% in S@o Paulo and from —2% to 52% in Minas Gerais. In
addition, a relatively small bias between BRAVES and Vehicular Emission Inventory (VEIN) was observed in Sdo Paulo and

Vale do Paraiba (Vasques and Hoinaski, 2021).

2.1.2 Industrial emissions

We derived the industrial emissions inventory by combining data from state environmental agencies of Espirito Santo, Minas
Gerais, and Santa Catarina. The emission rates of point sources from Espirito Santo and Minas Gerais are publicly provided
by Instituto de Meio  Ambiente e Recursos Hidricos do Espirito Santo (IEMA-ES)

(https://iema.es.gov.br/qualidadedoar/inventariodefontes) and Fundagdo Estadual de Meio Ambiente (FEAM)

(http://www.feam.br/qualidade-do-ar/emissao-de-fontes-fixas). Data from IEMA-ES contains emissions from Vitoria

Metropolitan Region from 2015, compiling measurements from regulatory procedures and emissions estimates. We did not
convert the emissions inventory to the current modeling year since the data is not continuously updated. Therefore, we assumed

that all emissions from these multiple sources occurred in 2019.

In Santa Catarina, industrial emission data has been provided by Instituto de Meio Ambiente (IMA)

(https://www.ima.sc.gov.br/index.php). These data are collected in the licensing process of potentially polluting industries. The

base year of emission rates varies according to the availability. Summary information about the industrial sector types, the
number of industries, and the respective emission rates in Santa Catarina can be found in Hoinaski et al., (2020) and at

https://github.com/leohoinaski/IND Inventory/blob/main/Inputs/BR Ind.xIsx. Emissions from large stationary sources

(refining units, thermoelectric power plants, cement, and paper industries) provided by Kawashima et al., (2020) have been

included when not encountered in the environmental agencies’ inventories.

We chemically speciated the industrial emission rates adopting the following steps: i) grouping each point source using the
same categories as in Emission Database for Global Atmospheric Research (EDGAR) (Crippa et al., 2018) and
Intergovernmental Panel on Climate Change (IPCC) industrial segments; ii) selecting compatible profiles in SPECIATE 5.1
for each group (Eyth et al., 2020); iii) averaging the speciation factor for by group and pollutant, and iv) applying the speciation
factor for the targeted pollutant (PM, NOx, VOCs). The SPECIATE 5.1 profiles used in this work are listed in

https://github.com/leohoinaski/IND Inventory/tree/main/IndustrialSpeciation. The speciation factor by industrial group and

pollutant are available at: https://github.com/leohoinaski/IND_Inventory/blob/main/IndustrialSpeciation/IND_speciation.csv.

We also vertically allocate the industrial emissions according to the plume's effective height, estimated by the sum of the

geometric height and superelevation of the plume. The plume superelevation was estimated by the Briggs method (Briggs,
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1975, 1969). The initial vertical distribution of the plume has been estimated by disaggregating the emissions using a Gaussian
approach, as proposed in the Sparse Matrix Operator Kernel Emissions (SMOKE) model (Bieser et al., 2011; Gordon et al.,
2018; Guevara et al., 2014). Python code to estimate the plume’s effective height and the initial vertical disaggregation of

industrial emissions is available at https://github.com/leohoinaski/IND_Inventory.

2.1.3 Biomass burning emissions

Fire Inventory from NCAR (FINN) version 1.5 (Wiedinmyer et al., 2011) provides data from biomass burning emissions in
BRAIN. FINN outputs contain daily emissions of trace gas and particle emissions from wildfires, agricultural fires, and
prescribed burnings and do not include biofuel use and trash burning. Datasets have 1km of spatial resolution and are available

at https://www.acom.ucar.edu/Data/fire/.

Since CMAQ requires hourly emissions, a Python code (https://github.com/barronh/finn2cmaq) temporally disaggregates daily
emissions into hourly emissions. The same code vertically splits the fire emissions to consider the plume rise effect and

represents the vertical distribution (Henderson, 2022), converting text files into hourly 3D netCDF files.

Pereira et al., (2016) suggest that fire emissions estimated by FINN are strongly related to deforestation in many Brazilian
regions. FINN estimates have a high correlation both with the Brazilian Biomass Burning Emission Model (3BEM) (0.86) and
Global Fire Assimilation System (GFAS) (0.84). The emissions estimated from FINN commonly overestimated other biomass
burning emission inventories. An overestimation also occurs when FINN is used in air quality models and compared with
observations. However, the use of FINN as input in air quality models can capture the temporal variability of pollutants emitted

by biomass burning (Vongruang et al., 2017).

We have implemented the FINNv1.5 in this first version of BRAIN. However, FINN version 2.5 (Wiedinmyer et al., 2023)
will be included in our emissions inventory in future work, which uses an updated algorithm for determining fire size based
on MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments. We also provide data from 2020 with
the same modeling grid upgrading to FINN v2.5.

2.1.4 Biogenic emissions

We derived the biogenic emissions using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 3.2
(Guenther et al., 2012; Silva et al., 2020). MEGAN is based on the leaf area index and plant functional groups. The model
estimates emissions of gases and aerosols for different meteorological conditions and land cover types (Guenther et al., 2012).
The leaf-level temperature and photosynthetically active radiation, as well as the vegetative stress conditions implemented in
MEGAN, provide more physically realistic parameterizations for biosphere-atmosphere interactions (Silva et al., 2020). Input

datasets, emission factor processors, and emission estimation module are available at https://bai.ess.uci.edu/megan/data-and-

code. Data from WRF and Meteorology-Chemistry Interface Processor (MCIP) have been used in MEGAN simulations.

MEGAN is commonly adopted to estimate emissions from biogenic fluxes, which is an important input for air quality modeling
in many regions worldwide (Hogrefe et al., 2011; Kitagawa et al., 2022; Kota et al., 2015). Although MEGAN overestimates
nighttime biogenic fluxes, the modeled emissions are correlated with measurements in Amazon, both during wet and dry
seasons. The model is capable to capture relatively well the seasonal variability of important organic pollutants in tropical

forests (Sindelarova et al., 2014).

2.1.5 Sea spray aerosol emissions

Sea spray aerosol (SSA) is an important source of particles in the atmosphere. Due to its properties, SSA influences gas-particle

partitioning in coastal environments (Gantt et al., 2015). SSA has been implemented in CMAQ as an inline source and requires


https://github.com/leohoinaski/IND_Inventory
https://www.acom.ucar.edu/Data/fire/
https://github.com/barronh/finn2cmaq
https://bai.ess.uci.edu/megan/data-and-code
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the input of an ocean mask file (OCEAN) to identify the fractional coverage in each model grid cell allocated to the open ocean
(OPEN) or surf zone (SURF). CMAQ uses this coverage information to calculate sea spray emission fluxes from the model’s
grid cells (USEPA, 2022). Detailed information on the mechanism of sea spray aerosol emissions and its implementation on

CMAAQ can be found in (Gantt et al., 2015).

We provide a Python code (https:/github.com/leohoinaski/CMAQrunner/blob/master/hoinaskiSURFZONEv2.py) to
reproduce the OCEAN time-independent Input/Output Applications Programming Interface (/O  API)

(https://www.cmascenter.org/ioapi/) file ready to use in CMAQ. This code uses a shoreline Environmental Systems Research

Institute (ESRI) shapefile from National Oceanic and Atmospheric Administration (NOAA) available at
https://www.ngdc.noaa.gov/mgg/shorelines/.

2.2 Meteorology

WRF model has been used in this work to produce inputs for CMAQ and for meteorology characterization in Brazil. We
provide hourly simulation in netCDF files. WRF has been set up to reproduce 36 hours simulations, where the initial 12 hours
have been dedicated to model stabilization, which are excluded from the analysis. Thirty-three vertical levels have been
employed, spaced at 50 hPa intervals. The parameterizations used in this work are described in SM3. The remaining vertical
levels followed a hybrid modeling scheme, accounting for terrain in the lower layers and gradually minimizing its influence

in the higher levels. Details of WRF outputs can be found in SM4.

Global Forecast System (GFS) from the National Center for Atmospheric Research (NCAR) provided inputs with spatial
resolution of 0.25° x 0.25° and a temporal resolution of six hours for the WRF simulations (Skamarock et al., 2008). Land use
data and classification parameters from the United States Geological Survey's (USGS) Moderate Resolution Imaging

Spectroradiometer (MODIS).

The Brazilian regions (North, North-East, Mid-West, South-East, and South) encompass three distinct climatic zones, namely
the equatorial, tropical, and subtropical zones. The climatic diversity in Brazil is also shaped by topographical variations,
landscape/vegetation, and the coastal areas. The temperature in Brazil follows a latitudinal pattern, increasing from South to
North (Figure 2e). The highest average temperatures are observed in the Amazon region, matching the historic data (Cavalcanti,
2016). The South region exhibits the lowest average temperatures, which is also consistent with historical data (Cavalcanti,

2016).

The highest values of atmospheric pressure occurred in the North region and the extreme South of the country, and the lowest
values were between the South-East and South regions (Figure 2a). The planetary boundary layer height (PBLH) reaches the
highest levels in the North-East region and the lowest in the South and South-East coast (Figure 2b). The highest values of
wind speed occurred in part of the North and South region. The Amazon region presented the lowest values of surface wind
speed (Figure 2f).

Humidity and precipitation exhibit similar patterns in the North and Northeast regions (Figure 2 cd), due to the trade winds
that transport moisture from the tropical Atlantic (Mendonga and Danni-Oliveira, 2017). Except for the coast, the North-East
region is characterized by low humidity and drought during half of the year. The South and South-East regions have well-
distributed rainfall throughout the year, as well as intermediate levels of humidity, except for the northern coast of the South

region, which have an elevated level of precipitation and humidity throughout the year.

The WRF model demonstrated the ability to reproduce diurnal and seasonal variability of winds in the Brazilian North-East
region (Souza et al., 2022a), although it underestimated the height of the planetary boundary layer (PBLH) by up to 20%, as
well as the temperature and humidity at 4°C and 15%, respectively. Pedruzzi et al. (2022) tested several model configurations,
including an alternative land use scheme, and found a WRF tendency to overestimate temperature and humidity in the Brazilian

South-East region. Macedo et al., 2016 also evaluated the model's ability to predict extreme precipitation events. Although the
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WREF reasonably predict the main meteorological aspects of the Brazilian South region, the precipitation extremes were
underestimated. A wind mapping study (Souza et al., 2022b) using WRF indicated that the average errors presented by the
model in Brazil are minor, with an average bias of 2m/s at 200m in wind intensity, and errors at temperatures of 2°C and
humidity of approximately 10%. Winds at lower levels tended to be overestimated, whereas PBLH was generally

underestimated during the day.
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Figure 2. Annual average of meteorological variables in 2019, simulated by the WRF with 20 x 20 km resolution. (a) Atmospheric
pressure, (b) Planetary boundary layer height, (¢) Specific humidity, (d) Annual accumulated precipitation, (e¢) Temperature, (f)
Wind intensity and direction. All variables are annual averages except for precipitation, which represents the annual accumulated
total.
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2.3 Air quality

We coupled emissions inventories, WRF, and CMAQ to produce the BRAIN air quality dataset for Brazil. CMAQ version
5.3.2 was set up using the third version of the Carbon Bond 6 chemical mechanism (cb6r3 ae7 aq) (Yarwood et al., 2010;
Emery et al., 2015) with AERO7 treatment of Secondary Organic Aerosol for standard cloud chemistry (Wyat Appel et al.,
2021). Other model’s configuration used in this work can be found in SM5 and https://github.con/leohoinaski/CMA Qrunner.

The pollutant list in CMAQ outputs containing 216 species can be found in SM6.

The CMAQ standard profile of boundary conditions is used in the larger domain (d01), which provides the boundary conditions
for the smaller one (d02). Further improvements of the database could include the boundary conditions derived from the

GEOS-Chem model (Bey et al., 2001) (https://geoschem.github.io/) or other better alternatives for the largest domain. The

simulations have 24 hours length and time step interval of 1 hour. The last hour of the previous simulation has been set up as
the initial condition of the next one. We used the standard profile for the first hour of the first simulation (00:00:00 01-01-
2019). The figures with the spatial distribution and violations of criteria pollutants can be found in SM7. SMS8 also presents

the time-series of criteria pollutants in Brazilian cities.
Using BRAIN air quality dataset, we can observe the highest concentrations of NO, (Figure 3a-b), O3 (Figure 3c-d), and PMjo
(Figure 3e-f) in South-East and South Brazil. The concentration violates the World Health Organization (WHO) air quality

standards in multiple locations all over the country for O3, while for NO, and PM it occurred mostly in South-East and South

Brazil.
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2.3.1 Models’ performance

We sampled pixels around the monitoring station using a buffer of 0.5° degrees. We calculate the Spearman rank, bias, Root
Mean Squared Error (RMSE), and Mean Absolute Error (MAE) of the sampled pixels. We selected the highest Spearman rank
of each pixel to demonstrate the model’s performance in Figures 4 and 5. SM10 presents the boxplots with overall statistical
metrics for all stations. SM11 presents statistical metrics by a monitoring station and pollutant, considering the pixel with the
highest Spearman rank around each monitoring station. SM12 presents the scatterplots comparing BRAIN air quality dataset

and observations of each monitoring station. We used the simulations with domain dO1 in the statistical analysis.

We observed the highest Spearman rank (0.72) in the state of Sdo Paulo for O3 concentration. Bias analysis revealed an
underestimation in Sao Paulo metropolitan area, while an overestimation occurred in Minas Gerais, Santa Catarina, Rio Grande
do Sul, and the interior of Sdo Paulo. In the North-East and the state of Espirito Santo, bias is closer to zero. In Rio de Janeiro,
the model over and underestimated the observations. Regarding RMSE and MAE, the model performed better in coastal areas
(maps in Figure 4).

Comparing the states with air quality monitoring stations, the Spearman correlation of the O3 dataset from BRAIN is higher
in Sdo Paulo, Minas Gerais, and Rio de Janeiro. However, these states also have a higher range of bias values, which could be

negative and positive in Sdo Paulo and Rio de Janeiro, and only positive in Minas Gerais (boxplots in Figure 4).

The heterogeneity in the stations' type and the insufficient spatial representativeness of observations in the Brazilian states
must be considered while evaluating the model performance. According to the IEMA (2022), the strategic planning for the
implementation of air quality monitoring stations, the financing and political efforts, and the technical characteristics (from
installation to calibration and maintenance) vary significantly between Brazilian states. The lack of data quality assurance may

compromise the credibility of the available air quality observations in Brazil.

BRAIN well reproduced the concentrations in moderately urbanized areas, such as Limeira and Piracicaba (Figures in SM12).
The database reached moderate performance in highly urbanized areas such as Copacabana/RJ and at Marginal Tieté in the
megacity of Sdo Paulo (Figure in SM12). Regarding the temporal profiles of O3 and PMy, the seasonal and daily profiles are
captured for both modeled pollutants, showing a suitable fit with the observation at Limeira and Pecém Industrial and Port
Complex (CIPP) air quality monitoring stations (Figure 5). It reveals that the database can capture temporal patterns of air

pollutant concentrations in urbanized and industrialized areas.

Figures with statistical metrics for other pollutants can be found in SM13. Figures of modeled and observed timeseries for all

monitoring stations can be found in SM14.
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Figure 5. Hourly (a), daily (b), and monthly (c) time-series of Oz and PM10 modeled and measured in Limeira (left) and CIPP (right)
monitoring stations.

Overall, the average concentrations are well simulated by CMAQ in BRAIN, with fair to good correlations (up to ~0.7)
between modeling and local measurement in Sdo Paulo. Similar results have been reported by Albuquerque et al., (2018).
Kitagawa et al., (2021) simulated PMs in a Brazilian coastal-urban area and showed that the CMAQ results commonly
overestimated the observations, which agrees with the BRAIN air quality dataset. In another comparison between observations
and CMAQ simulations (Kitagawa et al., 2022), the model overestimated the PM and NO; concentrations in the Metropolitan
Region of Vitoria (MRV) and underestimated Os. The authors suggest that the CMAQ simulations are suitable over the MRV,

even though the model could not capture some local variabilities of air pollutant concentrations. It is already reported that the
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short-time abrupt variations are difficult to reproduce by air quality models (Albuquerque et al., 2018). The complex task of
predicting air quality is associated with multiple error factors, including the lack of emissions inventory, meteorology
parameterizations, initial and boundary conditions, chemical mechanisms, numerical routines, etc. (Cheng et al., 2019;

Albuquerque et al., 2018; Park et al., 2006; Pedruzzi et al., 2019).

We analyzed the performances of 4x4 km simulations for CO, NO,, O3, and SO, drawing a buffer of 0.5° degrees around
monitoring station positions in southern Brazil. Our findings indicated higher Spearman values for the spatial resolution of
20x20 km for CO, O3, and SO,. Specifically, for O, the best result at 20x20 km was 0.76, whereas the same point at 4x4 km
resolution showed a correlation of 0.46. This pattern was also observed for CO, with the best result at 20x20 km being 0.47
for Spearman and 0.23 at the same point at 4x4 km resolution. The smallest differences in Spearman rank were observed for
SO, (0.22: 20x20, 0.19: 4x4). Even though improving spatial resolution did not increase the correlation with measured data,
we found best results for Bias, RMSE, and MAE for almost all pollutants at a 4x4 km resolution, except for CO. Please refer

to SM15 for the complete statistical analysis of 4x4 km simulations.

BRAIN captures seasonal patterns and the absolute magnitude of PM, s in the Northwest of the Amazonas state (near the
Amazon Tall Tower Observatory -ATTO) presented by Artaxo et al., (2013). It shows that our database can reproduce the
concentrations in background areas (far from highly urbanized centers). Comparing BRAIN with observations at heavy
biomass burning impacted sites in south-western Amazonia (Porto Velho) (Artaxo et al., 2013) revealed that BRAIN can

capture seasonal variations caused by wet and dry seasons and the magnitude of average and peak concentrations.

BRAIN has a similar spatial pattern compared with MERRA-2 (GMAO, 2015a b), capturing hotspots in higher populated
areas located in the Southeast, South, and Mid-West. In the Amazon region, BRAIN can also capture hotspots similar to
MERRA-2 (Figure 6). BRAIN estimates for carbon monoxide are lower than MERRA-2, except for the South region and some
urban centers in the Southeast and Midwest (Figure 6). Carbon monoxide concentrations estimated by BRAIN are moderately
correlated with MERRA-2 mainly in the South (0.57) and Southeast (0.55), while in the Midwest, North, and Northeast the
correlation is weaker (Figure 7). Compared with the consolidated MERRA-2 database, BRAIN has the advantage since it uses
local and more refined information and provides data in higher spatial resolution for multiple species. We provide a detailed

comparison between MERRA-2 and BRAIN datasets for PM» 5, SO,, O3, and CO in SM16.

/ [ ] a
100 200 300 400 100 200 300 400 100 200 300 400 -100 0 100
CO (ppb) CO (ppb) CO (ppb) CO (ppb)
a) BRAIN original b) BRAIN regrid c) MERRA2 d) MERRA2 - BRAIN regrid

Figure 6. Annual average concentration of CO from BRAIN original resolution (a), BRAIN regridded to MERRA-2 resolution (b),
MERRA-2 (¢), and difference between MERRA-2 and BRAIN (d).
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Figure 7. Concentration of CO from BRAIN vs MERRA-2 in Brazil (a), North Brazil (b), Northeast Brazil (c), Midwest Brazil (d),
Southeast Brazil (e), South Brazil (f).

We also compare our database with Sentinel-SP TROPOMI (Veefkind et al., 2012) data to demonstrate BRAIN’s ability to
capture the spatiotemporal variability of air pollutants in unmonitored areas (Figure 8). We spatially realign Sentinel-5P
TROPOMI products in the BRAIN resolution (20x20km), using data from the NASA Goddard Earth Sciences Data and
Information Services Center (GES-DISC) (https://disc.gsfc.nasa.gov/). We merged all layers of the same day and interpolated

to match BRAIN resolution. We computed the daily averages for both datasets. In this evaluation, we must consider the

differences between the datasets, since Sentinel-SP TROPOMI relies on tropospheric column measurements and BRAIN

16


https://disc.gsfc.nasa.gov/

345

350

surface concentrations. BRAIN captured the hotspots of CO and NO; similar to Sentinel-5P TROPOMI products, especially
in Southeast Brazil. However, the hotspots of CO are dislocated towards the ocean in Sentinel-5SP TROPOMI. NO, estimates
from BRAIN present a higher number of hotspots. We emphasize that surface concentrations data are more suitable than

tropospheric column data in representing air quality.

—

200 400 600 800 1000 250 500 750 1000 1250
CO (ppb) | CO tropospheric column (10~*mol. m=?)
a) BRAIN original b) Regrided SENTINEL/TROPOMI

100 200 300 1 2 3
NO2 (ug.m™) NO2 tropospheric column (10~*mol. m~2)
c) BRAIN original d) Regrided SENTINEL/TROPOMI

Figure 8. Annual average concentration of CO and NO:z from BRAIN original resolution (a, c), Sentinel-SP TROPOMI regridded to
BRAIN resolution (b, d).

When we compared CO daily datasets from BRAIN and Sentinel-5SP TROPOMI by Brazilian regions, we observed a moderate
correlation in North (0.41), Midwest (0.32), and South (0.3). This analysis shows that BRAIN can reasonably detect temporal
and spatial patterns of air pollutants. The complete comparison of CO and NO; from Sentinel-5P TROPOMI and BRAIN can
be found in SM17.
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355 Midwest Brazil (d), Southeast Brazil (¢), South Brazil (f).

We highlight that BRAIN, MERRA-2, and Sentinel-5P TROPOMI can capture similar temporal patterns of air pollutant

concentrations in heavy biomass-burning impacted sites such as Porto Velho in Rondénia (Figure 10), background areas such

as Manaus in Amazonas, and urban areas such as Sdo Paulo. We provide figures with the time series of BRAIN, MERRA-2,

?60 and Sentinel-5P TROPOMI of Brazilian capitals in SM18SM18.
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Figure 10. Annual average and hourly time series of CO from BRAIN (a), MERRA-2 (b), and Sentinel-SP TROPOMI (daily

averages) (c) in Porto Velho — Brazil.
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The inability to better predict the observations relies mostly on the quality of the emissions inventory. The lack of information

on industrial emissions and their temporal variability is an important source of errors. Moreover, the vehicular emissions
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inventory also needs improvements to properly disaggregate the emissions in high-flow roads. Future versions of BRAIN

could address these issues and incorporate other emission sources.
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3. Data availability

Table 1. BRAIN datasets freely available.

Dataset

DOI

Reference

Citation

Emission

dol

10.57760/sciencedb.09858

Hoinaski, L., Will, R., Ribeiro, C.B. (2023a).
Brazilian Atmospheric Inventories - BRAIN version
1: emission dataset in Brazil[DS/OL]. V1. Science
Data Bank, 2023[2023-08-02].
https://cstr.cn/31253.11.sciencedb.09858.
CSTR:31253.11.sciencedb.09858.

Hoinaski et al.,

(2023a)

Emission

do2

10.57760/sciencedb.09886

Hoinaski, L., Will, R., Ribeiro, C.B. (2023b).
Brazilian Atmospheric Inventories - BRAIN version
1: emission dataset in Southern Brazil[DS/OL]. V1.

Science Data Bank, 2023[2023-08-02].
https://cstr.cn/31253.11.sciencedb.09886.
CSTR:31253.11.sciencedb.09886.

Hoinaski et al.,

(2023b)

Meteorology
dol

10.57760/sciencedb.09857

Hoinaski, L., Will, R. (2023a). Brazilian
Atmospheric Inventories - BRAIN version 1:
meteorology dataset in Brazil[DS/OL]. V1. Science
Data Bank, 2023[2023-08-01].
https://cstr.cn/31253.11.sciencedb.09857.
CSTR:31253.11.sciencedb.09857.

Hoinaski and Will,
(2023a)

Meteorology
do2

10.57760/sciencedb.09885

Hoinaski, L., Will, R. (2023c¢). Brazilian
Atmospheric Inventories - BRAIN version 1:
meteorology dataset in Southern Brazil[DS/OL]. V1.
Science Data Bank, 2023[2023-08-02].
https://cstr.cn/31253.11.sciencedb.09885.
CSTR:31253.11.sciencedb.09885.

Hoinaski and Will,
(2023¢)

Air quality
do1

10.57760/sciencedb.09859

Hoinaski, L., Will, R. (2023b). Brazilian
Atmospheric Inventories - BRAIN version 1: air
quality dataset in Brazil[DS/OL]. V1. Science Data
Bank, 2023[2023-08-01].
https://cstr.cn/31253.11.sciencedb.09859.
CSTR:31253.11.sciencedb.09859.

Hoinaski and Will,
(2023b)

Air quality
do2

10.57760/sciencedb.09884

Hoinaski, L., Will, R. (2023d). Brazilian
Atmospheric Inventories - BRAIN version 1: air
quality dataset in Southern Brazil[DS/OL]. V1.
Science Data Bank, 2023[2023-08-02].
https://cstr.cn/31253.11.sciencedb.09884.
CSTR:31253.11.sciencedb.09884.

Hoinaski and Will,
(2023d)
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4. Code availability

Codes to generate the database, statistic, and figures are available at: https://github.com/leohoinaski/CMAQrunner (last access:

27 July 2023).
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5. Conclusion

In this paper, we present BRAIN, the first comprehensive database for air quality management in Brazil. BRAIN provides
emissions, meteorology, and air quality datasets for the entire country in reliable spatiotemporal resolution. BRAIN database
covers a wide range of pollutant species (emissions and ambient concentrations) and atmospheric variables. So far, Brazil has
lacked a comprehensive and easily accessible database for developing air quality management systems in urbanized and rural
areas. This work contributes to overcoming this gap. BRAIN is a step forward for a good procedure for licensing new sources

of air pollution in Brazil.

Using a sample of BRAIN, we observed several violations of WHO air quality recommendations. The violations are not
restricted to densely populated areas but also occur in rural ones. It reinforces the need for better air quality policies and a deep

restructuring of the environmental agencies’ procedures and data management in Brazil.

Compared with observations, the BRAIN air quality dataset has achieved good overall performance in predicting the criteria
pollutants. However, there is plenty of room for improvement mainly related to the quality of emissions inventory. The lack of
information on industrial emissions and their temporal variability is an important source of errors. Moreover, the vehicular
emissions inventory also needs improvements to properly disaggregate the emissions in high-flow roads. Improvements in
boundary conditions and the inclusion of emissions sources from other Latin American countries could also enhance the
CMAQ performance. The influence of long-range transport will be addressed in a future version of the database by
implementing boundary contributions from GEOSCHEM and other tools. Future versions of BRAIN could address these
issues, incorporate other emission sources, and provide CMAQ outputs using different chemical mechanisms. We envision
providing enough data to reproduce the historical pattern and future scenarios of air pollution in Brazil through a web platform

to facilitate the access and usage of our database. We believe in an ongoing process that will improve the database.
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