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Abstract 16 

The quantification and mapping of surficial seabed sediment organic carbon has wide-scale 17 

relevance across marine ecology, geology and environmental resource management, with carbon 18 

densities and accumulation rates being a major indicator of geological history, ecological function, 19 

and ecosystem service provisioning, including the potential to contribute to nature-based climate 20 

change mitigation. While global mapping products can appear to provide a definitive 21 

understanding of the spatial distribution of sediment carbon, there is inherently high uncertainty 22 

when making estimates at this scale. Finer resolution national maps which utilise targeted data 23 

syntheses and refined spatial data products are therefore vital to improve these estimates. Here, 24 

we report a national systematic review of data on organic carbon content in seabed sediments 25 

across Canada and combine this with a synthesis and unification of best available data on 26 

sediment composition, seafloor morphology, hydrology, chemistry, geographic setting and 27 

sediment mass accumulation rates within a machine learning mapping framework. Predictive 28 

quantitative maps of mud content, sediment dry bulk density, and organic carbon content, density 29 

and accumulation, were each produced along with cell specific estimates of their 95% confidence 30 

interval (CI) bounds at 200 m resolution across 4,489,235 km2 of the Canadian continental margin 31 

(92.6% of the seafloor area above 2,500 m). Fine-scale variation in carbon stocks was identified 32 

across the Canadian continental margin, particularly in the Pacific and Atlantic Ocean regions. 33 

Carbon accumulation was predicted to be concentrated in coastal areas, with the highest rates in 34 

the Gulf of St Lawrence and Bay of Fundy. Overall, we estimate the standing stock of organic 35 

carbon in the top 30 cm of surficial seabed sediments across the Canadian shelf and slope to be 36 

10.7 Gt (95% CI 6.6 – 16.0 Gt), and accumulation at 4.9 Mt per year (95% CI 2.6 – 9.3 Mt y-1). 37 

Increased in-situ sediment data collection and higher precision in spatial environmental data-38 

layers could significantly reduce uncertainty and increase accuracy in these products over time. 39 

 40 

1. Introduction 41 

The organic carbon contained in seafloor sediments has a major influence on global carbon cycles 42 

and earth’s climate (Hülse et al., 2017; Bauer et al., 2013). Seabed sediments have been 43 

estimated to accumulate approximately 126–350 Mt of organic carbon per year (Keil, 2017; 44 

Berner, 1982) and contain 87 Gt of organic carbon in their top 5 cm (Lee et al., 2019), 168 Gt in 45 

the top 10 cm (LaRowe et al., 2020a) and up to ~2,300 Gt in the top 1 m (Atwood et al., 2020), 46 

with the latter being equivalent to nearly twice that of soils on land. Continental shelves have the 47 
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highest concentrations of sediment carbon across the global ocean, covering only 5-8% of the 48 

marine area but an estimated 15-19% of surficial organic carbon stocks (LaRowe et al., 2020a; 49 

Atwood et al., 2020) and 80% of annual carbon burial (Bauer et al., 2013; Burdige, 2007). 50 

Continental margin zones (continental shelves and slopes) also contain the largest spatial 51 

variation in organic carbon densities due to highly heterogenous geological, geographic, biological 52 

and oceanographic settings (Smeaton et al., 2021; Diesing et al., 2017, 2021; Atwood et al., 53 

2020). They are also subjected to high levels of human activity, being impacted by many coastal 54 

and marine industries including fishing, shipping, energy generation, telecommunication, mineral 55 

extraction, and pollution from land based activities  (Halpern et al., 2019; Amoroso et al., 2018; 56 

Keil, 2017). The quantification and mapping of organic carbon on continental margins  is therefore 57 

imperative for best practise seabed management; with the densities and accumulation rates being 58 

a major indicator of ecological function, geological history and ecosystem service provision 59 

(Legge et al., 2020; Snelgrove et al., 2018; Middelburg, 2018).  60 

In the marine environment, organic carbon can originate from the fixation of carbon dioxide (CO2) 61 

by primary producers in the photic zone or via lateral transport from terrestrial sources (LaRowe 62 

et al., 2020b). Organic carbon then passes through a variety of biotic and abiotic pathways being 63 

consumed, transformed, respired or remineralised, with a large proportion converted back into 64 

inorganic compounds, leaving only ~5% of marine production and less than 1% of earth’s gross 65 

production eventually reaching the seafloor (Middelburg, 2019; Hülse et al., 2017; Turner, 2015; 66 

Bauer et al., 2013; Burdige, 2007). Once at the seafloor, a similarly complex process occurs on 67 

and within the sediment, with a wide range of biotic, biochemical and physical processes all 68 

influencing the rates of accumulation, remineralisation and resultant long term burial, with ~90% 69 

of all carbon reaching the seafloor being remineralised (LaRowe et al., 2020b; Middelburg, 2018, 70 

2019; Arndt et al., 2013). Even when considering this complex carbon cycle, the mass and 71 

accumulation of organic carbon in surficial seabed sediments will still have a direct influence on 72 

the scale of long-term carbon storage at the seafloor (LaRowe et al., 2020a; Middelburg, 2018).  73 

Marine habitats are being increasingly recognised as contributors to nature-based climate change 74 

mitigation (also known as nature-based climate solutions and natural climate solutions) due to 75 

their ability to both fix CO2 and store organic carbon for centennial to millennial timescales 76 

(Macreadie et al., 2021; Hoegh-Guldberg et al., 2019). This “blue carbon” potential was initially 77 

recognised in coastal vegetated habitats (i.e. mangrove, seagrass and saltmarsh) (Nellemann et 78 

al., 2009; Duarte et al., 2005), but has more recently been applied to other habitats such as kelp 79 

forests and unvegetated sediments (Luisetti et al., 2020; Raven, 2018; Avelar et al., 2017). There 80 
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is increasing evidence that human activities are influencing seabed sediment carbon stores from 81 

both perturbations of upstream processes and physical impacts directly on the seafloor (Cavan 82 

and Hill, 2022; Epstein et al., 2022; Keil, 2017; Bauer et al., 2013). For example, a recent study 83 

estimated that the direct physical impacts from global fishing activities could cause considerable 84 

remineralisation of seabed sediment organic carbon stocks back to CO2 (Sala et al., 2021), 85 

however the validity of the scale of these estimates has been called into question (Hiddink et al., 86 

2023; Hilborn and Kaiser, 2022; Epstein et al., 2022). By improving the accuracy in available 87 

sediment carbon mapping products, there may be potential to better research and design 88 

appropriate management strategies to enhance organic carbon accumulation or limit 89 

remineralisation from disturbance (Epstein and Roberts, 2022; Sala et al., 2021; Luisetti et al., 90 

2019). 91 

Historically, studies measuring seabed sediment carbon stocks and accumulation rates had small 92 

geographic scope, largely considering the ecological function, geological characteristics or 93 

biochemical functioning at local to regional scales (see citations within LaRowe et al., 2020b; 94 

Snelgrove et al., 2018; Middelburg, 2018; Burdige, 2007). In recent years, made possible by 95 

modern machine learning and statistical spatial prediction techniques, there has been increasing 96 

interest in estimating the size and distribution of carbon standing stocks and accumulation rates 97 

at national to global scales to better understand natural carbon cycles and biological productivity, 98 

and to identify the potential for improved management as a natural climate mitigation strategy 99 

(Restreppo et al., 2021; Smeaton et al., 2021; Diesing et al., 2021; Atwood et al., 2020; LaRowe 100 

et al., 2020b; Lee et al., 2019; Wilson et al., 2018; Avelar et al., 2017). Although global mapping 101 

products can appear to give a complete understanding of seabed sediment organic carbon stocks, 102 

there is high inherent uncertainty when making estimates at this scale (Ludwig et al., 2023; 103 

Atwood et al., 2020; Lee et al., 2019). This has been highlighted by several regional studies across 104 

the northwest European shelf (Smeaton et al., 2021; Diesing et al., 2017, 2021; Luisetti et al., 105 

2020; Wilson et al., 2018), which show distinct spatial patterns in organic carbon distribution and 106 

disparate estimates of total standing stocks when compared with these global studies. 107 

Canada has the world’s longest coastline and approximately the seventh largest Exclusive 108 

Economic Zone (EEZ) (Fig. 1), it could therefore be expected to contain a significant proportion 109 

of the global stock of seabed sediment organic carbon. Data from recent global studies estimated 110 

that the Canadian EEZ contains approximately 2.2 Gt of organic carbon in the top 5 cm and 48 111 

Gt in the top meter of seabed sediments, equivalent to ~2.3% of total global marine sediment 112 

carbon stocks covering around 1.3% of the area (Atwood et al., 2020; Lee et al., 2019). However, 113 
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these modelled estimates from global studies are at coarse spatial resolutions, have incomplete 114 

coverage and contain very limited in-situ data from within the Canadian EEZ itself. The Canadian 115 

marine environment is extremely complex, covering three oceans, 46 degrees of latitude, 94 116 

degrees of longitude, and containing numerous features including the largest enclosed marine 117 

bay in the world, over 50,000 islands, and on the comparatively short Pacific coastline alone, 118 

around 436 estuaries. It is therefore highly likely that global estimates of the distribution of seabed 119 

sediment organic carbon stock and accumulation rates are inaccurate for this region, and a 120 

national approach is needed. Here, we conduct a systematic review of data on seabed sediment 121 

organic carbon content across Canada and combine this with a synthesis and unification of best 122 

available data on sediment composition, seafloor morphology, hydrology, chemistry and sediment 123 

mass accumulation rates in a machine learning predictive mapping process, to construct the first 124 

national assessment of Canadian seabed sediment organic carbon stocks and accumulation 125 

rates. 126 

 127 
Figure 1. Map of the Canadian Exclusive Economic Zone (EEZ). The study area spatial maxima (red; see high 128 
resolution figure for further detail around the coastline) covers the entire sub-tidal portion of the Canadian EEZ. This is 129 
overlayed by the maximum potential modelling extent (grey) which only includes those areas where data were present 130 
for all predictor variables. Due to the distribution of available data, the final model domain was limited to a depth of 131 
2,500 meters, and is indicated with the colour relative to the estimated depth, from 0 (dark blue) to -2,500 (yellow). 132 
Country outlines from World Bank Official Boundaries, available at  133 
https://datacatalog.worldbank.org/search/dataset/0038272. 134 

135 
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2. Methods 136 

2.1 Analysis software 137 

Analyses were primarily undertaken in R 4.2.2 (R Core Team, 2022) and RStudio 2022.12.0.353 138 

(Posit Team, 2022), with some additional data manipulation and spatial plotting in QGIS 139 

(QGIS.org, 2021) and Python (Van Rossum and Drake, 2009). Within R, raster data were handled 140 

using the terra package (Hijmans, 2022), spatial vector data using the sf package (Pebesma, 141 

2018), netCDF data with the stars (Pebesma, 2022) and tidync (Sumner, 2022) packages, data-142 

frames with the dplyr package (Wickham et al., 2019), and vector data with base R (R Core Team, 143 

2022). Random forest modelling was primarily dependent on the ranger package (Wright and 144 

Ziegler, 2017), however models were constructed and tuned using the tidymodels package (Kuhn 145 

and Wickham, 2020), with cross-validation and predictor variable selection using the CAST 146 

(Meyer et al., 2023) and caret (Kuhn, 2022) packages. Plotting utilised the above packages as 147 

well as ggplot2 (Wickham et al., 2019) and patchwork (Pedersen, 2022) while parallel processing 148 

used the doParallel package (Microsoft Corporation and Weston, 2022). To aid clarity, a workflow 149 

diagram of the proceeding methods and results sections is shown in Figure 2.  150 

 151 

Figure 2. Study workflow diagram. Outline of the structure and linkages within the proceeding methods and results 152 
sections. Light blue shapes indicate input data; white ovals indicate data processes; dark shapes indicate output data; 153 
rectangles indicate point data; circles indicate raster data. OC = organic carbon; MAR = mass accumulation rate; WBD 154 
= wet bulk density; DBD = dry bulk density; OCAR = organic carbon accumulation rate.  155 
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2.2 Study area spatial maxima 156 

To define the maximum potential spatial coverage of this study, best available bathymetric 157 

datasets were combined across the Canadian Exclusive Economic Zone (EEZ) (Table 1). Firstly, 158 

three Digital Elevation Model (DEM) raster layers covering different extents of the Canadian EEZ 159 

were each filtered to contain only those elevations of less than or equal to 0 m. Where necessary, 160 

data were then aggregated (averaged) or disaggregated (split) to a resolution of approximately 161 

200 m, and all layers were projected onto a unified 200 m x 200 m equal area grid (co-ordinate 162 

reference system (CRS) EPSG:3573 - WGS 84 - North Pole Lambert Azimuthal Equal Area 163 

Canada). Reprojection was necessary as all three DEMs were in different co-ordinate systems, 164 

including some already being projected. The 200 m resolution was chosen as it is the median 165 

native resolution of the three DEMs, while also being considered towards the upper limit of what 166 

may be computationally possible within the scope of this study. After reprojection, the three layers 167 

were overlain, with the region-specific data given priority over global data where present. Finally, 168 

the seaward boundaries were delineated by the outer extent of the Canadian EEZ (Flanders 169 

Marine Institute, 2019). The resultant bathymetric layer was defined as the study area spatial 170 

maxima and used as the first potential predictor variable in predictive modelling (Fig. 1 – covering 171 

all coloured areas; Table 1).  172 
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Table 1. Summary of predictor variables constructed for the Canadian EEZ. For more information on methods 173 
used to derive these layers see Sections 2.1 and 2.2. 174 

Predictor variable Unit Region Source Native 
resolution 

Temporal 
range 

Bathymetry m BC NRCan (2021) 10 m NA 
Arctic IBCAO V4.2 (Jakobsson et al., 2020) 200 m NA 
Global GEBCO (2022) 0.0042° NA 

Slope ° Canada This study 200 m NA 
Slope smoothed ° Canada This study 1 km NA 
Total curvature rad/m Canada This study 200 m NA 
Total curvature smoothed rad/m Canada This study 1 km NA 
BPI – fine m Canada This study 200 m NA 
BPI - medium m Canada This study 400 m NA 
BPI - broad m Canada This study 400 m NA 
VRM – fine - Canada This study 200 m NA 
VRM - medium - Canada This study 200 m NA 
VRM - broad - Canada This study 400 m NA 
Distance to shore m Canada This study 200 m NA 
Bioregion - Canada DFO (2022) NA NA 
Distance to rivers - large m Canada NRCan (2019) 1:15000000 NA 
Distance to rivers - medium m Canada NRCan (2019) 1:5000000 NA 
Distance to rivers - small m Canada NRCan (2019) 1:1000000 NA 
Exposure proxy - Canada This study 200 m NA 
SPM (surface) g/m3 Global Copernicus (2022b) 4 km 2007 - 2019 
Wave velocity (seafloor) m/s Arctic Copernicus (2022a) 3 km 2007 - 2019 

Global Copernicus (2022c) 0.2° 2007 - 2019 
Mean current velocity 

(seafloor) 

m/s BC Peña et al. (2019) 3 km 2007 - 2019 
Salish Sea SalishSeaCast ERDDAP v19-05* 500 m 2007 - 2019 
Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 - 2019 

Temperature (seafloor) °C BC Peña et al. (2019) 3 km 2007 - 2019 
°C Salish Sea SalishSeaCast ERDDAP v19-05* 500 m 2007 - 2019 
°C Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 - 2019 

Salinity (seafloor) ppt BC Peña et al. (2019) 3 km 2007 - 2019 
Salish Sea SalishSeaCast ERDDAP v19-05* 500 m 2007 - 2019 
Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 - 2019 

Ice thickness (surface) m Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 - 2019 
Ice concentration (surface) % Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 - 2019 
Dissolved oxygen (seafloor) mol/m3 Global Bio-ORACLE V2.2 (Assis et al., 2018)  0.0833° 2000 - 2014 
Primary production (surface) g/m3/d Global Bio-ORACLE V2.2 (Assis et al., 2018)  0.0833° 2000 - 2014 
Chlorophyll concentration 

(surface) 

mg/m3

  

Global Bio-ORACLE V2.2 (Assis et al., 2018)  0.0833° 2000 - 2014 

Max current velocity 

(seafloor) 

m/s Global Bio-ORACLE V2.2 (Assis et al., 2018) 0.0833° 2000 - 2014 

Notes: BC = British Columbia; BPI = Benthic position index; VRM = Vector ruggedness measure; SPM = Suspended 175 
particulate matter. *See https://salishsea.eos.ubc.ca/erddap/index.html; Soontiens and Allen (2017); Soontiens et al. 176 
(2016). †See: https://canadian-nemo-ocean-modelling-forum-community-of-177 
practice.readthedocs.io/en/latest/Institutions/UofA/Configurations/ANHA12/index.html 178 

 179 

  180 
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2.3 Predictor variables 181 

2.3.1 Benthic terrain features 182 

A set of 10 benthic terrain features were constructed from the unified bathymetric layer (Table 1). 183 

As benthic terrain measures use data on the depth of a location relative to the depth of 184 

surrounding cells up to a given distance, bathymetric data within a given buffer outside the study 185 

area maxima were included as needed to avoid edge effects in each terrain feature. Slope and 186 

total curvature were calculated using the terra.terrain (Hijmans, 2022) and spatialEco.curvature 187 

(Evans and Murphy, 2021) functions respectively. As these measures can be particularly sensitive 188 

to artifacts from the DEM models and projections, they were constructed at two resolutions – the 189 

native 200 m resolution, and after aggregating the bathymetry by 5-fold to 1 km x 1 km (termed 190 

“smoothed”). Smoothed layers were disaggregated back to a 200 m resolution to maintain 191 

uniformity across predictor layers. 192 

Benthic position index (BPI) and vector ruggedness measures (VRM) were each calculated using 193 

the MultiscaleDTM package at 3 different levels to capture both small local features and larger 194 

spatial variation in terrain  (Ilich et al., 2021). Benthic position index was calculated as the 195 

difference between the depth of a focal cell and the mean of cells contained in annulus shaped 196 

window of 0.2 km to 5 km (BPI fine), 2 km to 25 km (BPI medium) and 4 km to 100 km (BPI broad). 197 

Vector ruggedness was measured by considering variation in the depth surrounding each cell 198 

within square windows of width 1 km (VRM fine), 5.8 km (VRM medium) and 11.6 km (VRM 199 

broad). Due to extremely inhibitive computational times when calculating VRM broad, BPI medium 200 

and BPI broad at 200 m resolution, for these features the bathymetric layer was first aggregated 201 

to a 400 m resolution before feature calculation, and then disaggregated back to 200 m to 202 

maintain uniformity. 203 

 204 

2.3.2 Predictors describing the geographic setting 205 

The geographic setting of each cell was described by its distance to shore and rivers, its broad 206 

bioregional classification, and a proxy measure describing the degree of exposition vs. 207 

shelteredness (Table 1). The geographic setting features are also influenced by the values of 208 

surrounding pixels, therefore appropriate buffers were also applied to the processing of these 209 

layers to avoid edge effects. Distance to shore was measured by the Euclidian distance to the 210 

nearest land cell (indicated by an ‘NA’ value in the bathymetry layer), while bioregion was defined 211 
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by the Fisheries and Oceans Canada Federal Marine Bioregions classification (DFO, 2022). The 212 

bioregion polygons were edited to include all bathymetry cells and re-classified with an integer 213 

scale of 1 to 12 from east to west.  214 

CanVec is a digital cartographic reference product produced by Natural Resources Canada 215 

(NRCan) which includes the location of rivers across Canada at three mapped scales (NRCan, 216 

2019). Firstly, the coarsest scale data (1:15,000,000) was projected onto the CRS of the 217 

bathymetry layer and converted from polylines to a 2 km resolution raster. A 2 km buffer was 218 

added around each river to ensure overlap of river mouths with the bathymetry data. The resultant 219 

raster layer was resampled onto the bathymetry raster and the grid distance of each bathymetry 220 

cell to the nearest river-mouth cell was calculated using the terra.gridDist function (Hijmans, 221 

2022). This was then repeated for the medium scale (1:5,000,000) and fine scale (1:1,000,000) 222 

layers with each river raster overlayed with the previous coarser scale layer to ensure all rivers 223 

were included as the scales decreased. 224 

To approximate the exposure setting of each cell, data on the mean distance from shore of 225 

surrounding cells was used to construct a proxy value of fetch. Using the terra.focal function 226 

(Hijmans, 2022), the mean distance to shore of surrounding pixels was calculated in square 227 

windows of width 10 km, 20 km, 50 km, 100 km, 175 km and 250 km. Due to extremely inhibitive 228 

computational times when calculating these values at the two largest distances, the distance to 229 

shore layer was first aggregated to a 400 m resolution before focal calculations of these 230 

components, and then disaggregated back to 200 m to maintain uniformity. The maximum value 231 

in each layer was then set to the relative window size, and all data in each layer normalised 232 

between 0 and 1. The mean of all layers was then calculated which resulted in continuous 233 

measure of relative exposure/shelteredness ranging from 0 (highly sheltered) to 1 (highly 234 

exposed).  235 

 236 

2.3.3 Satellite derived predictors 237 

Using data from the Copernicus Marine Data Store, two layers were created approximating the 238 

mass of suspended particulate matter in surface waters and the orbital velocity of waves at the 239 

seafloor. Data on suspended particulate matter in surface waters across Canada from 2007 to 240 

2019 was extracted in netCDF format from ACRI-ST (Sophia Antipolis, France) company’s global 241 

Bio-Geo-Chemical products at 4 km spatial resolution and a monthly temporal resolution 242 

(Copernicus, 2022b). The climatological mean across this entire period was then calculated for 243 
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each cell and the netCDF converted to a raster for further processing. Due to the complex nature 244 

of the Canadian coastline and the large dissimilarity in spatial resolution of the satellite data 245 

product (4 km) and the layers created above (200 m), the satellite raster layer was allowed to 246 

extrapolate by 1 cell in its native resolution by taking the mean value of neighbouring pixels. This 247 

allowed better overlap of satellite layers with the study area maxima at the coastline but limited 248 

over-extrapolation. The raster layer was then reprojected to the equal area CRS and resampled 249 

onto the bathymetry layer using cubic-spline interpolation. Due to a lack of consistent SPM data 250 

recorded in the northern Arctic Basin, this portion of the data layer was manually removed within 251 

QGIS.  252 

To calculate the estimated orbital velocity of waves at the seafloor, two satellite wave data 253 

products were combined with the unified bathymetry layer as constructed above. Hourly data from 254 

2007 to 2019 on the significant wave height (Hs; VHM0) in meters, and primary wave swell mean 255 

period (Tz; VTM01_SW1) in seconds, were extracted from the 0.2° resolution Global Ocean Wave 256 

Reanalysis (WAVERYS) produced by Mercator Océan International (Copernicus, 2022c) and the 257 

3 km resolution Arctic Ocean Wave Hindcast produced by MET Norway (Copernicus, 2022a). All 258 

data were processed as the SPM data layer (except for lack of removal of the Arctic basin data), 259 

and converted to an estimate of orbital wave velocity at the seafloor (Urms; measured in m s-1) 260 

using the following equation from Soulsby (2006); 261 

𝑈𝑈rms = �𝐻𝐻s

4
� �𝑔𝑔

𝑑𝑑
�
0.5

exp �− ��3.65
𝑇𝑇z
� �𝑑𝑑

𝑔𝑔
�
0.5
�
2.1
�          (1) 262 

where g is the acceleration due to gravity (9.806 m/s2) and d is the water depth (m), taken as the 263 

unified bathymetry layer multiplied by -1, and all values less than 1 meter depth rounded up to 264 

the nearest meter (as needed for the above calculation). The resultant Arctic orbital velocity data 265 

layer was then bias corrected to the global orbital velocity data layer utilising the qmap package 266 

with quantile mapping using a smoothing spline (Gudmundsson et al., 2012). Finally, the two data 267 

layers were overlayed with the regional Arctic data taking priority over the global data where 268 

available. 269 

 270 

2.3.4 Ocean circulation model predictors 271 

Data on the mean surface ice cover, seafloor salinity, temperature and current velocity was 272 

collated from three different ocean circulation model products covering different regions of 273 

Canada (Table 1). ANHA12 is a regional  configuration of the NEMO ocean and sea-ice model 274 
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(Madec et al., 1998) created at the University of Alberta, covering the Arctic and northern 275 

Hemisphere Atlantic at 5 day temporal resolution, a curvilinear 1/12th degree horizontal resolution 276 

ranging from 1.93 km in the Arctic to 9.3 km at the equator, and 50 vertical levels (Hu et al., 2019). 277 

The British Columbia continental margin (BCCM) circulation model created by Fisheries and 278 

Oceans Canada (DFO) covers the entire Canadian Pacific coast and extends approximately 279 

400 km offshore. It has a uniform horizontal resolution of 3 km, 42 vertical levels and a 3 day 280 

temporal resolution (Peña et al., 2019; Masson and Fine, 2012). As the BCCM model has higher 281 

uncertainty in nearshore and enclosed environments due to its relatively coarse resolution, data 282 

was also extracted from the Salish Sea Cast ERDDAP data server. Similarly to the ANHA12 283 

model, the Salish Sea Cast is a configuration of the NEMO circulation model developed by a 284 

consortium of Canadian Universities and government agencies and extends from Juan de Fuca 285 

Strait to Puget Sound to Johnstone Strait at 500 m horizontal resolution, 40 vertical layers and 286 

hourly temporal resolution (Soontiens and Allen, 2017; Soontiens et al., 2016). For further details 287 

on all these models, see relevant cited references. It should be noted that many of these ocean 288 

circulation models contain high uncertainty in nearshore areas. However, they are expected to be 289 

greatly improved when compared to global circulation model products which are frequently used 290 

in this sort of predictive mapping work (e.g. Atwood et al., 2020; Lee et al., 2019; Assis et al., 291 

2018).  292 

Three-dimensional data for salinity, temperature, u-velocity (eastward) and v-velocity (northward) 293 

was extracted from each model and the climatological mean across all time points between 2007-294 

2019 was calculated. For each horizontal cell, the seafloor value was taken as the lowest vertical 295 

cell within a given position. Individual model outputs were then converted to spatial point data 296 

using the cell centroid positions and transformed to the unified equal area CRS. Point data was 297 

then converted to rasters with the respective resolution of each model, and the mean value taken 298 

if two points from the same model lay within a single raster cell as an artifact of reprojection. As 299 

the ANHA12 model has a varying horizontal resolution, point data were rasterized using the 300 

smallest resolution of the original model (1.6 km) and then interpolated using the gstat package  301 

(Gräler et al., 2016) and a nearest neighbour interpolation method (including cells for land within 302 

the original model grid to supress extrapolation). For all three models, mean current velocity was 303 

then calculated as the root mean square of the u-velocity and v-velocity values in each cell. 304 

Finally, as carried out for the satellite data layers, each raster was allowed to extrapolate by one 305 

cell in its native resolution (or for the case of the ANHA12 model - its median resolution) and 306 

resampled onto the 200 m bathymetry grid using cubic-spline interpolation. The three rasters were 307 

then combined; the Salish Sea Cast data only being applied to cells that lay within the Salish Sea 308 
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bioregion (as calculated in Section 2.3.2), the BCCM model outputs only being assigned to other 309 

bioregions within the Pacific and ANHA12 used for all Atlantic and Arctic regions. Although this 310 

means that different model products were used to measure the same predictor variable in different 311 

regions, which can create biases, the bioregion predictor variable was included as a co-variate in 312 

all models which included the ocean circulation variables, thus allowing for interactive effects and 313 

accounting for differences in circulation model structures. 314 

Predictor layers describing the mean concentration and thickness of sea ice for the same temporal 315 

period across the Arctic and Atlantic were also derived from the ANHA12 model. Processing of 316 

model data and spatial rasters was conducted as above, except a value of zero ice concentration 317 

and thickness was applied to all cells across the British Columbia Pacific bioregions.   318 

 319 

2.3.5 Global model predictors 320 

Four additional predictor variables were derived from Bio-ORACLE version 2.2 - a global unified 321 

marine environmental data-layers collation which gives climatological mean values at 1/12th 322 

degree resolution, for 2000-2014 and a wide-range of environmental variables (Assis et al., 2018). 323 

Although these datasets are expected to be of lower accuracy when compared to the regional 324 

data used above, based on previous research there were some additional variables not available 325 

from the regional circulation models which were considered potentially important for carbon 326 

modelling (Diesing et al., 2021; Atwood et al., 2020). Three described the oceanographic 327 

chemistry/biology – namely primary production and chlorophyll content of the surface water 328 

column, and dissolved oxygen concentration at the seafloor. The fourth predictor was an 329 

additional measure of current velocity (maximum current velocity), which was selected on top of 330 

the previously derived mean values because current velocity has been identified as a particularly 331 

strong predictor within previous seafloor sediment composition and carbon content predictive 332 

mapping studies (Gregr et al., 2021; Diesing et al., 2021; Mitchell et al., 2019). Raster data were 333 

downloaded from the Bio-ORACLE website and processed as the satellite data layers. 334 

 335 

2.3.6 Final collation of predictor variables 336 

The resulting 28 predictor variable raster layers were combined into a single raster stack and any 337 

cells containing NA values removed, leaving only those cells which contained values across all 338 

predictor layers. The remaining cells covered 92.3% of the subtidal zone of the Canadian EEZ 339 
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and delineated the maximum potential modelling area (Fig. 1). The final predictor variable layers 340 

are shown in the Supplement.  341 

 342 

2.4 Sediment composition data 343 

Sediment composition point data were extracted from two sources. Firstly, all data were exported 344 

from the NRCan Expedition Database on 11th November 2022. This data repository contains 345 

information related to marine and coastal field surveys conducted by or on behalf of the Geological 346 

Survey of Canada from the 1950s to present, which deployed sampling methods including piston 347 

cores and grab samples. Data were also extracted from a recent synthesis of grain size 348 

distribution measurements from the Canadian Pacific seafloor (1951-2017), compiled by 349 

Geological Survey Of Canada and NRCan (Enkin, 2023). Although there are some duplications 350 

between these two datasets, these are accounted for in the proceeding pre-processing steps. In 351 

both sources, grain size data is reported as the percentage content of mud (sometimes separated 352 

into silt and clay), sand and gravel within each sample. Due to modern developments in grain size 353 

analyses (e.g. laser diffraction) older samples may have lower measurement accuracy; however, 354 

due to the relatively coarse metric being used in this study (%mud/sand/gravel) and the 355 

occurrence of a number of largescale geological surveys occurring during the 1960s, we chose 356 

to retain data from 1960 onwards. Where sampling year was not recorded within the database, 357 

the date was inferred from the expedition code or from expedition metadata. The sampling method 358 

and depth of the sediment from which the sample/sub-sample originates are also predominantly 359 

recorded within the database. Where sediment depth was absent, but the sampling method was 360 

noted as “grab” or “other”, the penetration depth was assumed to be 10 cm (a commonly assumed 361 

penetration of standard sediment sampling devices such as Van Veen Grabs and Day Grabs). 362 

Samples were only retained if they originated from within the top 30 cm of the sediment and had 363 

associated geographic position information (latitude-longitude co-ordinates; lat-lon). Data were 364 

further filtered by excluding those where the sum of mud, sand and gravel was greater than 102% 365 

and lower than 98% - to allow for rounding errors but to exclude invalid data. Data were also 366 

excluded if samples/sub-samples were not present from at least the top 1 cm to 5 cm below the 367 

sediment surface within a given sampling event. After data filtering, the mean percentage of mud 368 

was taken across replicates/sub-samples, leaving a single value for each sampling event. We 369 

chose to concentrate on sediment mud content as this has previously been identified as the key 370 

sediment composition component from a number of related carbon mapping studies (Smeaton et 371 

al., 2021; Diesing et al., 2017, 2021; Pace et al., 2021; Wilson et al., 2018). Finally, mud content 372 

https://doi.org/10.5194/essd-2023-295
Preprint. Discussion started: 16 October 2023
c© Author(s) 2023. CC BY 4.0 License.



15 
 

data were projected onto the CRS of the predictor layers and only retained where overlap 373 

occurred. This led to a final dataset of 19,730 samples (Fig. A1). 374 

 375 

2.5 Organic carbon content data 376 

2.5.1 Organic carbon data collation and extraction 377 

Data on the percent organic carbon content within dried surface sediments (%OC) was collected 378 

from three different structured searches. Firstly, a systematic literature review was conducted 379 

through Web of Science and Scopus. Both searches were conducted on the 21st September 2022. 380 

Within Web of Science, its “Core collection” was searched via the field “Topic”, which examines 381 

a paper’s title, abstract, author, keywords and “keywords plus”. Within Scopus, the search was 382 

run via the field “Title-Abs-Key”, which scans a paper’s title, abstract and keywords. Within both 383 

databases the same search string was used: 384 

(“organic carbon” OR “organic matter” OR “organic content” OR TOC OR TOM) AND (coast* OR 385 

sea* OR ocean* OR estuar* OR marine OR gulf) AND (sediment* OR mud* OR sand* OR clay* 386 

OR silt* OR gravel* OR seabed) AND Canad*    387 

All articles identified from the searches were exported into a single Zotero library and duplicates 388 

removed, leaving 1,581 results. Screening was conducted via a hierarchical process that first 389 

assessed the title, then abstract and finally full text. At each stage an article was assessed against 390 

the inclusion criteria described below, with those considered relevant or of unclear relevance 391 

passing to the next level of assessment. 392 

The inclusion criteria were defined as: 1) Study conducted on subtidal seabed sediments (those 393 

concerning rock, shale or fauna were not included); 2) Physical samples collected using a seabed 394 

sediment sampling device (e.g. cores or grabs - sediment-trap samples were not included); 3) 395 

Samples from within the Canadian EEZ; 4) Studies concerning the chemical composition of the 396 

sediment; 5) Organic carbon content (%) directly measured after separation of organic and 397 

inorganic components (e.g. by acidification). After the title screening stage 242 articles remained, 398 

followed by 123 remaining after abstract screening, and a final set of 49 articles left for data 399 

extraction after review of the full text. Four additional primary literature papers were added based 400 

on expert advice.  401 

The second structured search was conducted on the Canadian Federal Science Libraries Network 402 

- a repository which contains departmental publications, reports and data sets from seven 403 
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science-based Canadian government departments. The search was carried out on the 7th 404 

November 2022 using the same search string as for the primary literature and querying all fields. 405 

The search led to only 178 results and therefore each result was assessed individually against 406 

the selection criteria first by their abstract and then by a full text assessment, leading to data 407 

extraction from 15 reports. The third search was carried out on the 15th November 2022 using 408 

GEOSCAN - the NRCan bibliographic database for scientific publications. As GEOSCAN does 409 

not allow search strings containing “AND”, the search was conducted on all fields using only the 410 

terms: “organic carbon” OR “TOC” OR “OC”; leading to 655 search results. The metadata of all 411 

entries was exported as a text file and further refined using a secondary manual search for the 412 

remainder of the search terms listed above within Microsoft Excel. This led to a final set of 233 413 

results, 178 which were excluded by screening of the title, and a further 51 excluded by abstract 414 

or full text screening, leaving 4 reports for data extraction.  415 

In total, these three structured searches of primary literature and government reports led to 72 416 

individual entries for data extraction. As well as data on the %OC, metadata extracted included 417 

the maximum depth of sample into the sediment (cm), geographic position (lat-lon), sample ID, 418 

year of sampling (approximated as publication year where not clearly stated), sampling method 419 

(e.g. multicorer, Van Veen grab) and water depth of sample site (where recorded). Data were 420 

extracted from data tables or supplementary databases when available, otherwise the 421 

PlotDigitizer online application was used to extract data from graphical products. Where possible 422 

data were extracted on the %OC in different depth-layer sub-samples through a single core-423 

sample up to 50 cm, otherwise a single mean value was taken. 424 

Additional to data collated through the structured searches, %OC data were also extracted from 425 

PANGAEA - a global data repository for geographic earth-system data (PANGAEA®, 2022). A 426 

data search across all topics was conducted on the 25th October 2022 using the same search 427 

terms as for the structured search, except for removal of the term “Canad*”.  The geographic 428 

extent of the results was instead delineated using the spatial tool within PANGAEA which allows 429 

results to be filtered by the geographic co-ordinates of a square/rectangular extent. Overall, this 430 

led to a total of 1,489 potential datasets. All relevant data within these datasets were exported 431 

using the Data Warehouse Download tool within Pangaea. Based on expert knowledge, two 432 

additional PANGAEA datasets were added to the output from published global %OC data-433 

syntheses (Atwood et al., 2020; Seiter et al., 2004). Lastly, where the date of the sample was not 434 

recorded, the sampling year was manually added by further exploring the metadata or cited 435 

studies. To align the PANGAEA data with the systematic review data, PANGAEA data points 436 
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were excluded if: 1) they lacked data on %OC; 2) they lacked metadata on the depth of a sample 437 

within the sediment; 3) if the sample originated from greater than 50 cm below the sediment 438 

surface; or 4) metadata on the elevation/water depth indicated sampling above the subtidal. 439 

Additionally, metadata within PANGAEA were coalesced where necessary (due to different 440 

names being given to the same data type), and mean values of %OC taken if replicates were 441 

measured within a single sub-sample. 442 

All organic carbon data were converted into spatial point data, transformed to the unified equal 443 

area CRS and masked by the predictor variable’s maximum model area to leave only overlapping 444 

data. Additionally, values were only retained from the sampling year 1959 and onwards. The extra 445 

year was included when compared to the sediment composition data because there were some 446 

widescale surveys undertaken across the Labrador Sea in 1959 which was lacking from any 447 

additional %OC datasets. While this large temporal extent may add uncertainty in relation to the 448 

quality and uniformity of the response data, similar extents have been used by previous global 449 

mapping studies (Atwood et al., 2020; Lee et al., 2019; Seiter et al., 2004) and, 72% of the %OC 450 

data within this study were sampled after 1980 and 55% after 2000. The larger temporal extent 451 

also allows for the inclusion of a larger frequency and wider spatial extent of data, therefore 452 

improving accuracy in spatial predictions. In total our %OC dataset contained 2,518 point-samples 453 

(Fig. A2) and 3,308 sub-samples across different depth layers within cores. 454 

  455 

2.5.2 Organic carbon data processing 456 

Due to commonly adopted uneven sampling distributions within single core samples (i.e. more 457 

sub-samples towards the top of the core), where sub-sample data were present on the %OC in 458 

different depth-layers these were converted into weighted cumulative means assuming linear 459 

distribution between sub-samples. Additionally, there was large variation in the maximum 460 

sediment depth of point-samples, ranging from %OC measures from only the top 1 cm of 461 

sediment, to values up to the chosen data extraction limit of 50 cm deep. We chose to standardise 462 

all samples to 30 cm depth as only 6% of the point-samples covered sediment depths below this 463 

layer and because 30 cm is a commonly suggested carbon stock accounting depth for terrestrial 464 

soil and marine sediment habitats in both carbon accrediting methodologies and greenhouse gas 465 

inventories (VERRA, 2020; IPPC, 2019).  466 

To estimate the cumulative mean of %OC at 30 cm for all individual point-samples, we created a 467 

transfer function using a generalised additive mixed model (GAMM) smoothing spline. It is 468 
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generally expected that the %OC in marine sediments decreases with depth within the seafloor 469 

(Middelburg, 2018); we used the collated data above to approximate a mean decay function for 470 

this study. Firstly, only those data that contained at least five sub-sampled depth layers were 471 

retained for modelling as fitting distributions to those with fewer points would likely be invalid. This 472 

left 183 unique samples with 2,640 weighted cumulative mean sub-samples for model 473 

construction. Cumulative mean %OC data were arcsin transformed (arcsin{√ [%OC/100]}; a 474 

commonly adopted transformation for percentage data), and a simple GAMM model applied with 475 

sub-sample sediment depth as the fixed factor modelled with a cubic regression spline and 476 

sample ID as the random factor. The GAMM model was fitted using the mgcv package; a scaled-477 

t distribution family was used for heavy tailed Gaussian-like data, the number of basis dimensions 478 

was set to 20 and smoothing parameter estimation was conducted by Restricted Maximum 479 

Likelihood (REML) (Wood et al., 2016). Model validation was carried out using visual assessment 480 

of diagnostic plots of residuals, as well as observed vs fitted values. Significance of the sampling 481 

depth smoothing spline was assessed by an analysis of variance (ANOVA) with a chi-squared 482 

test comparing the full GAMM model to a null GAMM model containing only the random factor 483 

and the intercept (see Appendix B for results). The difference between estimated deviance 484 

explained in the full and null models was also used to approximate the variance explained by the 485 

fixed and random factors. To create a transfer function, the cumulative %OC was predicted from 486 

the mean fixed effects of the GAMM model at sediment depths from 0 – 30 cm at 0.1 cm intervals. 487 

The predictions were then back-transformed to percentage data and the cumulative mean %OC 488 

at each depth was converted to an inverse proportion of the mean at 30 cm. Overall, this gave an 489 

estimated proportional conversion factor from the cumulative mean at any given depth to an 490 

expected cumulative mean at 30 cm (Appendix B).  491 

All point-sample data from PANGAEA and the systematic review were combined, corrected to 492 

weighted cumulative means where sub-samples were present, checked for duplication, and 493 

unified to a mean %OC value of the top 30 cm of sediment using the above transfer function. One 494 

outlier was removed from the dataset as it was reported to have a carbon content twice that of 495 

any other sample within the dataset. Finally, for further analyses %OC data were arcsin 496 

transformed due to a highly right skewed distribution and its application within similar modelling 497 

exercises (Smeaton et al., 2021; Diesing et al., 2017). 498 

 499 

 500 
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2.6 Final model domain selection 501 

After visual assessment of the coverage of both the sediment composition and %OC data, the 502 

final model domain was limited to a water depth of 2,500 meters. This depth limit (as delineated 503 

by the bathymetry predictor layer) encompassed 99.95% of sediment composition point data (Fig. 504 

A1) and 99.3% of %OC data (Fig. A2). The predictor layer raster stack was filtered with all cells 505 

deeper than 2,500 meters excluded from the model domain. This final model domain covers 506 

4,489,235 km2 which is 78.4% of the EEZ or 92.6% of the seafloor area above 2,500 m (Fig. 1).  507 

 508 

2.7 Sediment mass accumulation rate data 509 

From preliminary exploratory research it was determined that there would be insufficient data on 510 

organic carbon accumulation rates, or sediment mass accumulation rates, to undertake a 511 

Canada-specific data synthesis. We therefore chose to downscale a recent global spatial 512 

predictive map of seafloor sediment mass accumulation rates (Restreppo et al., 2021). To 513 

approximate a sample of values across the model domain in this study the global mass 514 

accumulation rate data (MAR; log10{g cm-2 yr-1}) netCDF was converted to a raster and masked 515 

by the coverage of the model domain. The raster layer was then converted to spatial point data 516 

by the location of cell centroids, and a stratified-random sample of 10% of the data was taken. 517 

Data was stratified by assigning the x-coordinate, y-coordinate and mass accumulation rate 518 

values to decile bins; and a random sample of 10% of values taken within each unique 519 

combination of the three-way binning. This resulted in 12,660 point estimates of MAR across the 520 

model domain, which were then reprojected to the unified equal area CRS for further analyses 521 

(Fig. A3).  522 

 523 

2.8 Random forest modelling 524 

For predictive mapping we adopted random forest machine learning techniques due to their 525 

flexibility regarding violations of traditional statistical assumptions, ability to handle a range of data 526 

types and predictor variables and elucidate both drivers of model response and predictions of 527 

uncertainty, as well as their successful application in previous similar modelling tasks (Diesing et 528 

al., 2017, 2021; Pace et al., 2021; Atwood et al., 2020; Wilson et al., 2018). Contemporary 529 

research in spatial machine learning techniques have highlighted that robust spatially-explicit 530 

cross-validation (CV) strategies and predictor variable selection processes are essential to 531 

https://doi.org/10.5194/essd-2023-295
Preprint. Discussion started: 16 October 2023
c© Author(s) 2023. CC BY 4.0 License.



20 
 

calculate valid performance metrics, limit overfitting and construct reliable spatial predictions 532 

(Zhang et al., 2023; Ludwig et al., 2023; Meyer and Pebesma, 2022; Meyer et al., 2019). We 533 

discuss the incorporation of these processes into our modelling framework below.  534 

Three response variables (mud content, organic carbon content (%OC) and MAR) were modelled 535 

using the following framework. Firstly, each response variable was overlain onto the predictor 536 

variable grid and the mean values were taken if more than one data-point fell within a single raster 537 

cell. All predictor variable data were then extracted for each response dataset; however, the three 538 

biological/biochemical predictor variables (primary production, chlorophyll concentration and 539 

dissolved oxygen) were only used within the %OC model as they are not expected to drive 540 

variation in physical sediment properties (Restreppo et al., 2021; Gregr et al., 2021; Graw et al., 541 

2021; Mitchell et al., 2019).  542 

For each response variable, the spatialsample package (Silge and Mahoney, 2023) was used to 543 

construct a variety of spatial CV data-fold structures (splitting the data into different analysis and 544 

assessment sets) and the validity of each structure was visually assessed using the 545 

CAST.plot_geodist function (Meyer et al., 2023). This function creates density plots of nearest 546 

neighbour distances in multivariate predictor space between all response data as well as between 547 

response data and a random sample of prediction locations, and between analysis and 548 

assessment data within CV folds (see Appendix C). The suitability of a given CV structure to be 549 

representative of estimating map accuracy can be determined by visually assessing the density 550 

plots and finding the analysis-to-assessment CV-distance curve being closely aligned to the 551 

sample-to-prediction density curve (see Appendix C; Ludwig et al., 2023; Meyer and Pebesma, 552 

2022). Contrastingly, if the sample-to-sample distance curve closely overlays the sample-to-553 

prediction curve, this indicates that traditional random cross-validation strategies are likely to be 554 

appropriate (see Appendix C; Ludwig et al., 2023). To approximate sample-to-prediction 555 

distances, the sample size number within plot_geodist was set to select 5,000 random samples 556 

across the model domain. Further, as the spatial distribution of data is a key consideration to 557 

ensure robust cross-validation (Ludwig et al., 2023; Meyer and Pebesma, 2022), the x- and y-558 

coordinates of each data point were also included as predictor variables in the plot_geodist 559 

calculations. 560 

For the mud content data, a spatial kmeans clustering CV structure was chosen as the response 561 

data had good coverage of the model domain, contained a large number of data points, and 562 

showed relatively strong spatial clustering (Fig. A1). A range of options in the number of kmeans 563 

clusters were tested, with 35 being determined as the optimal number and each cluster being 564 

https://doi.org/10.5194/essd-2023-295
Preprint. Discussion started: 16 October 2023
c© Author(s) 2023. CC BY 4.0 License.



21 
 

assigned to its own CV fold (Fig. C1). Through visual assessment of the density plots, it was 565 

identified that the kmeans CV structure was somewhat mis-aligned from response-to-prediction 566 

distances, with the CV distances being overly conservative at including near-distance 567 

comparisons (Fig. C1). We therefore used a partially repeated CV strategy, with a small number 568 

of randomly selected data-points added to the assessment set in each kmeans spatial-CV fold 569 

(1% of mud content data randomly sampled at each fold without replacement) (Fig. C2). As the 570 

%OC response dataset was relatively small and spatially dispersed (Fig. A2), we used a spatial 571 

block CV strategy in place of the kmeans clustering to avoid clusters containing highly spatially 572 

dispersed data. We chose to use hexagonal shaped blocks, random assignment of blocks to folds, 573 

and the same number of CV folds as for the mud content data (v = 35) - both to maintain uniformity 574 

and because varying the fold-number did not significantly influence the density plots. Instead, the 575 

diameter of the spatial blocks was altered, and an optimal block size of 100 km identified using 576 

the plot_geodist function (Fig. C3). For both response variables, following identification of an 577 

appropriate CV structure, a single fold was assigned as testing data, with all other data retained 578 

for model fitting. Following the training-testing split, the spatial CV folds were reconstructed on 579 

the training data to ensure an absence of duplication. For the MAR data, the density plots 580 

indicated that traditional random cross-validation would be a valid approach (Fig. C4), which was 581 

expected as the response data were a stratified-random sample across the model domain (Fig. 582 

A3). The random CV folds were stratified by the MAR response value to ensure a relatively even 583 

distribution across CV folds. A 10% stratified-random sample was first assigned as the test-set 584 

and random CV folds assigned to the remaining training data.  585 

Three random forest models were constructed (mud content, OC content and MAR), each 586 

following the same modelling protocol. Firstly, the CAST.ffs function (Meyer et al., 2023) was used 587 

to run a spatially-explicit forward predictor variable selection processes. The function fits a model 588 

with all combinations of two-way predictors, selects the best model based on a given metric, and 589 

then increases the number of predictors by one, testing all remaining variables. This iteratively 590 

continues with the process stopping if none of the tested variables increases the performance 591 

when compared to the best previous model with “n-1” predictors. The function also allows models 592 

to be fit separately across all individual CV folds, therefore incorporating appropriate spatial 593 

considerations into the feature selection process. Due to the large number of variables within this 594 

study, and the relatively large datasets, this process was very computationally expensive. We 595 

therefore chose to adapt the function to initiate forward variable selection after a priori 596 

identification of the first two predictor variables. These variables were identified by constructing a 597 

basic random forest model with all training data and predictor variables, and the hyperparameters 598 
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mtry (the number of variables to randomly sample as candidates at each split), min_n (the number 599 

of observations needed to keep splitting nodes) and trees (the number of random forest trees to 600 

construct and take mean predictions across) set to 2, 5 and 1,000 respectively. Variable 601 

importance was estimated using permutation, and the two predictor variables with largest 602 

importance selected. The ffs function was then run starting with the two pre-selected variables 603 

(see Fig. 3, 6 & 9) and performance of each iteration assessed on the root mean squared error 604 

(RMSE) of predictions across all CV folds.  605 

Following variable selection, hyperparameter tuning was conducted on the mtry and min_n 606 

hyperparameters, with the number of trees set to 1,000. The tuning process fitted individual 607 

models across all CV folds, each with 11 combinations of hyperparameters which were selected 608 

using a semi-random Latin hypercube grid. The performance of each hyperparameter 609 

combination was assessed based on the RMSE of predictions across all CV folds. After selection 610 

of the best performing hyperparameter combination, a last model fit was conducted on the entire 611 

training set and evaluated on the test set, with the absence of overfitting determined by the RMSE 612 

and R2 of the last-fit model falling within the range of those found across CV folds. Overall model 613 

performance metrics (RMSE and R2) were then calculated using the predictions across all CV 614 

folds with optimal hyperparameters and the last-fit; while predictor variable importance was 615 

calculated by fitting an additional model across all training data using optimal tuning parameters 616 

and the importance calculated through permutation. Accumulated local effects (ALE) plots were 617 

produced for the six predictor variables with highest importance in each model using the iml 618 

package (Molnar et al., 2018) to give a visual representation of the average effect of predictors 619 

on model prediction outcomes. Finally, mean model predictions were calculated across the entire 620 

model domain using the last-fit model and the predictor variable raster stack, and cell-specific 621 

estimation of uncertainty was calculated using standard error on out-of-bag predictions using 622 

infinitesimal jack-knife for bagging (Roy and Larocque, 2020; Wager et al., 2014). Due to 623 

computational restraints when calculating predictions across the entire model domain (which 624 

contains 112,230,871 cells), data were split into 150 random samples (without replacement) and 625 

both prediction and standard error estimates made serially on each split. All predictions were then 626 

merged to create a raster layer covering the entire model domain. 627 

A cell-specific approximation of the upper and lower bounds of the 95% confidence interval (CI) 628 

was calculated by adding/subtracting the cell-specific standard error estimates, each multiplied 629 

by 1.96, from the mean predictions and then back transformed where needed (Kuhn and 630 

Wickham, 2020; Wager et al., 2014). After calculation, CI values were corrected where necessary 631 
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- being bounded by 0, and where applicable also bounded by 100. The resulting three raster 632 

layers from the mud content model were also used as available additional predictor variables 633 

when constructing the random forest models for %OC and MAR as outlined above (Fig. 2).  634 

 635 

2.9 Estimating sediment dry bulk density 636 

To estimate the dry bulk density of the sediment across the model domain (ρD – the mass of dried 637 

sediment per unit volume within the seafloor; g cm-3) the outputs from the random forest models 638 

for mud and organic carbon content were combined with a variety of published transfer functions 639 

and global modelled products (Fig. 2). Three of the transfer functions calculate the porosity of the 640 

sediment (Φ; the proportion of sediment volume which is water) based on the predicted mud 641 

content using the following equations, respectively from Jenkins (2005), Diesing et al. (2017) and 642 

Pace et al. (2021):  643 

𝛷𝛷 =  0.3805.𝑚𝑚𝑚𝑚𝑚𝑚 + 0.42071          (2) 644 

𝛷𝛷 =  0.4013.𝑚𝑚𝑚𝑚𝑚𝑚 + 0.4265          (3) 645 

𝛷𝛷 =  10^{0.138. log10(𝑚𝑚𝑚𝑚𝑚𝑚) − 0.486}         (4) 646 

In all cases mud is the predicted values across the model domain as calculated above expressed 647 

as a decimal proportion. For Equation 4 mud content was rounded up to the nearest 0.01 as lower 648 

values give unrealistic porosity estimates. All sediment porosity estimates were then converted to 649 

an estimate of dry bulk density using the following equation:  650 

ρD = ρS(1 −  𝛷𝛷)            (5) 651 

where ρS is the grain density of seabed sediments in g cm-3, which was set at the frequently used 652 

constant approximation of 2.65 (Diesing et al., 2017, 2021; e.g. Pace et al., 2021; Lee et al., 2019; 653 

Wilson et al., 2018; Kuzyk et al., 2017). Although this standard approximation of grain density is 654 

not ideal, the variation under different environmental settings is generally found to be small when 655 

compared to differences in %OC and porosity, therefore the values of grain density are not 656 

expected to strongly drive variation in organic carbon density (Atwood et al., 2020; Lee et al., 657 

2019; Middelburg, 2019; Martin et al., 2015; Berner, 1982). A forth transfer function from Atwood 658 

et al. (2020) calculates an estimate of dry bulk density directly from %OC using the following 659 

equation: 660 

ρD = 0.861. %𝑂𝑂𝑂𝑂−0.3999          (6) 661 
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For this equation, carbon content as predicted above was rounded up to the nearest 0.1% as 662 

lower values give unrealistic dry bulk density estimates. For each of the four transfer functions 663 

(Equations 2,3,4 and 6) the value was calculated using the mean prediction as well as the upper 664 

and lower confidence interval bounds of mud content and %OC respectively, resulting in three 665 

raster layers from each function.  666 

Two further estimates of dry bulk density were calculated using products from global predictive 667 

models, both at 5 arc min spatial resolutions. Martin et al. (2015) created a predictive map of 668 

seabed sediment porosity, while Graw et al. (2021) estimate sediment wet bulk density (ρW) 669 

across the global seafloor. Both raster layers were processed as the satellite predictor layers to 670 

align with the model domain. The resulting porosity raster layer was converted to dry bulk density 671 

using Equation 5, while the wet bulk density layer was initially converted to porosity using the 672 

equation: 673 

𝛷𝛷 = ρW− ρS
ρSW− ρS

            (7) 674 

where ρSW is the density of seawater estimated as 1.024 g/cm3. In total this led to 14 dry bulk 675 

density estimates across the model domain. A final mean value and standard error was calculated 676 

for each cell, and the upper and lower 95% confidence interval bounds calculated using the 677 

standard error as above.  678 

 679 

2.10 Estimating organic carbon standing stock and accumulation rates 680 

The organic carbon density (g cm-3) is calculated by multiplying the %OC (expressed as a decimal 681 

proportion) by the sediment dry bulk density; while organic carbon accumulation rates (g cm-2 yr-682 
1) are calculated by multiplying MAR by %OC (Fig. 2). For the final calculations of both density 683 

and accumulation the respective means, upper and lower CI bounds were multiplied together to 684 

incorporate uncertainty from both components. To create more meaningful response values 685 

organic carbon density was converted to kg m-3 (multiplied by 1000) and organic carbon 686 

accumulation to g m-2 y-1 (multiplied by 10,000). Finally, the organic carbon stock in each mapped 687 

cell can be calculated by multiplying the organic carbon density by the reference sediment depth 688 

of this study (0.3 m) and the cell area (40,000 m2) and converted to metric tonnes (divided by 689 

1000). The total accumulation per cell per year can be calculated by multiplying the organic carbon 690 

accumulation rate by the cell area. Overall, this allows estimates to be calculated for the total 691 

values of organic carbon stock and accumulation across different parts of model domain.  692 
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 693 

2.11 Rock substrate distribution case studies 694 

The method followed in this study is similar to that used for many similar predictive mapping 695 

exercises in that it uses data only from sediment grab and core samples to build predictive maps 696 

across the model domain (Restreppo et al., 2021; Graw et al., 2021; Diesing et al., 2017, 2021; 697 

LaRowe et al., 2020a; Atwood et al., 2020; Lee et al., 2019; Mitchell et al., 2019; Wilson et al., 698 

2018; Stephens and Diesing, 2015). One major limitation with this modelling approach is that 699 

areas of bedrock, which would have zero values for all sediment response variables, will not be 700 

recorded in these datasets. Therefore, the under representation of zero values in the response 701 

data could lead to an overestimate of organic carbon standing stocks and accumulation rates as 702 

zero values are unlikely to be predicted from model outputs.  703 

In the context of this study, information regarding the distribution of bedrock is lacking for many 704 

regions. We therefore use two regional case studies from the Pacific British Columbian EEZ and 705 

the Atlantic Scotian shelf and slope where recent publications have made estimated maps on the 706 

distribution of rock substrates (Philibert et al., 2022; Gregr et al., 2021). Each of these products 707 

was overlayed onto the final spatial predictions of sediment carbon densities and accumulation 708 

rates and all cells set to zero where rock substrates were predicted. The proportional effect on 709 

the mean, upper and lower confidence interval bounds of estimated carbon stock and 710 

accumulation rates was then calculated in each bioregion.  711 

 712 

3. Results 713 

3.1 Mud content predictive mapping 714 

Of the 25 predictor variables available for mud content random forest modelling, 13 were selected 715 

in the optimal model (Fig. 3). Mean orbital velocity of waves at the seafloor and the mass of 716 

suspended particulate matter at the surface were the variables with highest importance (Fig. 3). 717 

Other variables with relatively high importance for predicting mud content included the exposure 718 

setting, ice thickness, distance to rivers, bathymetry, and benthic position indices (Fig. 3). Higher 719 

mud content was generally predicted in areas of low wave velocity, low exposure and close to but 720 

not directly adjacent to river mouths; with the effect of SPM and ice thickness less distinct, likely 721 

due to more complex interactive effects (Fig. 4).  722 
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 723 

  724 
Figure 3. Predictor variable importance from random forest models of mud content in marine subtidal 725 
sediments. The y-axis is a unitless relative variable importance score for each model. Asterisks indicate the a priori 726 
variable selection. WaveVel = Orbital wave velocity at the seafloor, SPM = Suspended particulate matter within the 727 
water column, BPI = Benthic position index, DistRiver = Distance to nearest river, IceThick = Sea ice thickness, Bathy 728 
= Bathymetry, VRM = Vector ruggedness measure, CurrVel = Current velocity at the seafloor.  729 

 730 

 731 
Figure 4. Accumulated local effects (ALE) plots for the six predictor variables with highest importance in the 732 
mud content random forest model. ALE gives a visual representation of the average effect of the predictor variable 733 
on the response but does not indicate the influence of multi-way interactions which are inherent in random forest 734 
models. Rug plots indicate the distribution of each variable within the training dataset. SPM = suspended particulate 735 
matter. 736 
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 737 

Areas with sediments dominated by mud (>75%) were predicted across the basins of many of the 738 

Pacific fjords, inlets and estuaries, and within the southern Salish Sea (Fig. 5). In the Arctic, mud 739 

dominated areas included large parts of the Canadian western Arctic as well as Hudson Bay. In 740 

the Atlantic, the Laurentian channel and central Scotian Shelf contained particularly high mud 741 

fractions (Fig. 5). Across the model domain, sediment in deeper areas on the continental slope 742 

was also highly dominated by mud (Fig. 5) Using robust spatial cross validation, the model was 743 

estimated to have an RMSE of 24.4% and R2 of 0.60. The cell specific upper and lower 95% CI 744 

bounds are shown in Figure D1. On average the upper CI bounds were 28% higher than the mean 745 

and the lower CI bounds 20% less.  746 

 747 
Figure 5. Predictive mapping of mud content (%) in subtidal marine sediments across the Canadian continental 748 
margin. The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The 95% confidence interval 749 
bounds around the predicted means are shown in Figure D1. Labels indicating the locations of different areas 750 
mentioned within the text are shown in Figure A4. Country outlines from World Bank Official Boundaries, available at  751 
https://datacatalog.worldbank.org/search/dataset/0038272. 752 

 753 

  754 
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3.2 Organic carbon content predictive mapping 755 

Eleven predictor variables were selected in the optimal organic carbon content (%OC) model (Fig. 756 

6). The variables with highest importance in predicting %OC were the mud content layers 757 

constructed above (specifically the mean and lower CI bound), with all other predictors having 758 

less than half the relative importance of the mean mud predictions (Fig. 6). On average organic 759 

carbon content increased with predicted mud content and was generally higher in areas with low 760 

SPM concentrations, low exposure settings, close to but not directly adjacent to rivers, and at high 761 

water temperatures (Fig. 7).  762 

 763 

 764 

Figure 6. Predictor variable importance from random forest models for the organic carbon content in marine 765 
subtidal sediments. The y-axis is a unitless relative variable importance score. Asterisks indicate the a priori variable 766 
selection. Mud_min = Lower bound of 95% CI for mud content, SPM = Suspended particulate matter within the water 767 
column, Temp = Temperature, DistRiver = Distance to nearest river, IceConc = Sea ice concentration, DO = Dissolved 768 
oxygen at the seafllor, IceThick = Sea ice thickness, CurrVel = Current velocity at the seafloor.  769 

  770 
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 771 

 772 

Figure 7. Accumulated local effects (ALE) plots for the six predictor variables with highest importance in the 773 
organic carbon (OC) content random forest model. ALE gives a visual representation of the average effect of the 774 
predictor variable on the response but does not indicate the influence of multi-way interactions which are inherent in 775 
random forest models. Rug plots indicate the distribution of each variable within the training dataset.  SPM = suspended 776 
particulate matter. 777 

The predictions of %OC ranged from 3x10-5 to 5.6% with an overall mean of 0.8 ± 0.3% (± SD). 778 

Areas with highest predicted %OC (>3%) were restricted to parts of the Pacific west coast fjords 779 

and channels, and in small parts of the inlets and bays on the east coast of Nova Scotia and 780 

around Passamaquoddy Bay in the Bay of Fundy (Fig. 8). High concentrations (i.e. >1%) were 781 

more widespread across these areas as well as covering much of the Beaufort Sea, western 782 

Baffin Bay and Foxe Basin in the Arctic, southern and central Hudson Bay, the Laurentian 783 

channel, coastal north Newfoundland and the central Scotian shelf in the Atlantic, as well as 784 

across the Salish sea and deeper areas to the south of the British Colombian continental margin 785 

(Fig. 8). Lowest %OC was predicted across shallower parts of the central Pacific shelf and near 786 

coast areas west of Vancouver Island (Fig. 8). Cross validation estimated an R2 for the model of 787 

0.58 and an RMSE of 0.09 arcsin{%OC}. Cell specific upper and lower 95% CI bounds are shown 788 

in Figure D2. On average the upper CI bounds were 42% higher than the mean prediction, and 789 

the lower CI bounds 33% less than the mean prediction. 790 
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 791 
Figure 8. Predictive mapping of organic carbon content (%) in subtidal marine sediments across the Canadian 792 
continental margin. The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous 793 
variable is shown displayed in discrete colour bands to improve visualisation of highly right skewed data. The 95% 794 
confidence interval bounds around the predicted means are shown in Figure D2. Labels indicating the locations of 795 
different areas mentioned within the text are shown in Figure A4. Country outlines from World Bank Official Boundaries, 796 
available at  https://datacatalog.worldbank.org/search/dataset/0038272. 797 

3.3 Sediment mass accumulation rate predictive mapping 798 

The optimal model for mass accumulation rate (MAR) of seabed sediments contained 10 799 

variables (Fig. 9). On average, MAR was negatively associated with increasing ice thickness, ice 800 

concentration, salinity and distance from rivers, and was particularly high in Eastern bioregions 801 

(Fig. 10). The predictions of MAR ranged from 4x10-4 to 0.35 g cm-2 yr-1 with an overall mean of 802 

0.01 ± 0.03 g cm-2 yr-1 (± SD). Areas with highest MAR (>0.1 g cm-2 yr-1) were predicted on the 803 

east coast around inshore areas of the Gulf of St Lawrence and Bay of Fundy (Fig. 11). Other 804 

areas with higher than average MAR were predicted across Canadian inshore areas particularly 805 

in the southern Arctic, Hudson Bay, Foxe Basin, Salish Sea and northeast British Colombia Pacific 806 

shelf (Fig. 11). The optimal model had an estimated R2 of 0.89 and RMSE of 0.206 log10{g cm-2 807 

yr-1}. Cell specific upper and lower 95% CI bounds are shown in Figure D3. On average the upper 808 

CI bounds were 33% higher than the mean prediction, and the lower CI bounds 20% less than 809 

their means.  810 
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 811 

Figure 9. Predictor variable importance from random forest models for the mass accumulation rate of subtidal 812 
sediments. The y-axis is a unitless relative variable importance score. Asterisks indicate the a priori variable selection. 813 
IceThick = Sea ice thickness, IceConc = Sea ice concentration, DistRiver = Distance to nearest river, Bathy = 814 
Bathymetry, Temp = Temperature, BPI = Benthic position index.  815 

 816 

 817 

 818 

Figure 10. Accumulated local effects (ALE) plots for the six predictor variables with highest importance in the 819 
sediment mass accumulation rate (MAR) random forest model. ALE gives a visual representation of the average 820 
effect of the predictor variable on the response but does not indicate the influence of multi-way interactions which are 821 
inherent in random forest models. Rug plots indicate the distribution of each variable within the training dataset. 822 

 823 
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 824 

Figure 11. Predictive mapping of sediment mass accumulation rate (g cm-2 yr-1) across the Canadian 825 
continental margin. The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous 826 
variable is shown displayed in discrete colour bands to improve visualisation of highly right skewed data. The 95% 827 
confidence interval bounds around the predicted means are shown in Figure D3. Labels indicating the locations of 828 
different areas mentioned within the text are shown in Figure A4. Country outlines from World Bank Official Boundaries, 829 
available at  https://datacatalog.worldbank.org/search/dataset/0038272. 830 

 831 

3.4 Dry bulk density estimation 832 

The dry bulk density of sediments was estimated using a variety of transfer functions and global 833 

predictions (Fig. 2). Estimated values ranged from 0.67 – 1.62 g cm-3 with a mean of 1.02 ± 0.16 834 

g cm-3 (± SD). As many of the transfer functions are dependent on the predicted mud content, the 835 

spatial distribution of dry bulk density values was very similar to the mud content values predicted 836 

above (Fig. 5), i.e. lowest dry bulk density was estimated in mud dominated areas (Fig. 12). Cell 837 

specific upper and lower 95% CI bounds are shown in Figure D4. On average CI bounds were 838 

8.5% either side of their means. 839 
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 840 

Figure 12. Estimates of sediment dry bulk density (g cm-3) across the Canadian continental margin. The main 841 
plot shows the Arctic and Atlantic regions with the Pacific region inset. The 95% confidence interval bounds around the 842 
predicted means are shown in Figure D4. Labels indicating the locations of different areas mentioned within the text 843 
are shown in Figure A4. Country outlines from World Bank Official Boundaries, available at  844 
https://datacatalog.worldbank.org/search/dataset/0038272. 845 

 846 

3.5 Estimated organic carbon density and standing stock 847 

From combining predictions of dry bulk density and organic carbon content, organic carbon 848 

density could be estimated across the Canadian continental margin (Fig. 2). Estimated values 849 

ranged from 5x10-4 to 50.0 kg m-3 with a mean of 7.9 ± 2.5 kg m-3 (± SD). Spatial patterns in 850 

organic carbon density (Fig. 13) were similar to those found for organic carbon content (Fig. 8). 851 

Areas with highest carbon density (> 25 kg m-3) were restricted to small areas within nearshore 852 

zones, including inlets and fjords of British Columbia, as well as enclosed nearshore areas of the 853 

Atlantic East Coast (Fig. 13). High carbon densities (> 15 kg m-3) where predicted to occur across 854 

wide parts of these areas as well as further offshore in parts of the Laurentian channel and central 855 

Scotian Shelf, and at the edge of the continental slope off the West of Vancouver Island (Fig. 13). 856 

In the Arctic, areas with relatively high carbon (>10 kg m-3) were predicted across many nearshore 857 

areas, as well as across large parts of the Beaufort Shelf, Foxe Basin, James Bay and the Kane 858 

Basin (Fig. 13). Cell specific upper and lower 95% CI bounds are shown in Figure D5. On average 859 
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the upper CI bounds were 54% higher than the mean prediction, and the lower CI bounds 39% 860 

less than their means.  861 

Using a standardised sediment depth of 30 cm, the total standing stock of organic carbon in 862 

surficial sediments across the model domain is estimated at 10.7 Gt with a 95% confidence 863 

interval of 6.6 – 16.0 Gt. Between bioregions, total stock was predominantly related to the total 864 

areal extent, for example Hudson Bay having the largest carbon stock and largest area (Table 2). 865 

The Strait of Georgia and Southern Shelf bioregions of the Pacific had the lowest total standing 866 

stocks due their small extent, however per unit area, these regions contained the highest organic 867 

carbon stocks.  868 

 869 

 870 

Figure 13. Estimates of organic carbon density (kg m-3) across the Canadian continental margin. The main plot 871 
shows the Arctic and Atlantic regions with the Pacific region inset. The continuous variable is shown displayed in 872 
discrete colour bands to improve visualisation of highly right skewed data. The 95% confidence interval bounds around 873 
the predicted means are shown in Figure D5. Labels indicating the locations of different areas mentioned within the 874 
text are shown in Figure A4. Country outlines from World Bank Official Boundaries, available at  875 
https://datacatalog.worldbank.org/search/dataset/0038272. 876 

  877 
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Table 2. Summary of estimated mean total organic carbon stocks and accumulation rates in surficial seabed 878 
sediments of different bioregions across the Canadian continental margin. Organic carbon standing stocks are 879 
estimated for the top 30 cm of seabed sediments. For delineation of the different bioregions see Supplement.  880 

Bioregion Model domain 
extent (km2) 

OC stock 
(Gt) 

Stock per 
unit area 
(kt km2) 

OC 
accumulation 
(Mt y-1) 

Accumulation 
per unit area 
(t km2 y-1) 

1. Offshore Pacific 53,598 0.14 2.67 <0.01 0.09 

2. Northern Shelf BC 96,373 0.21 2.17 0.03 0.29 

3. Southern Shelf BC 28,313 0.09 3.11 0.01 0.34 

4. Strait of Georgia 8,664 0.04 4.56 0.05 5.31 

5. Western Arctic 526,309 1.11 2.11 0.44 0.84 

6. Arctic Basin 250,178 0.45 1.78 0.02 0.08 

7. Arctic Archipelago 243,425 0.48 1.97 0.02 0.06 

8. Eastern Arctic 757,226 1.80 2.38 0.14 0.19 

9. Hudson Bay 1,234,257 3.03 2.46 1.29 1.04 

10. NL Shelves 820,462 1.95 2.38 0.34 0.41 

11. Gulf of St Lawrence 235,541 0.75 3.18 2.31 9.79 

12. Scotian Shelf 234,888 0.61 2.59 0.21 0.90 

Notes: OC = Organic carbon; NL = Newfoundland-Labrador.  881 

 882 

3.6 Estimated organic carbon accumulation rates 883 

Organic carbon accumulation rates were estimated from combining mapped products of sediment 884 

mass accumulation and organic carbon content (Fig. 2). Estimated values ranged from 3.5x10-6 885 

to 76.9 g m-2 y-1 with a mean of 1.1 ± 2.8 g m-2 y-1 (± SD). The majority of the model domain was 886 

estimated to have low accumulation rates with values < 0.5 g m-2 y-1 (Fig. 14). Highest 887 

accumulation rates were restricted to the East coast of Canada across the Gulf of St Lawrence 888 

and in nearshore areas of the Bay of Fundy (Fig. 14). Other areas with relatively high 889 

accumulation rates were confined to near coast areas including the Salish Sea and some fjords 890 

and inlets in the Pacific west coast, as well as near coast areas in Hudson Bay, Foxe Basin and 891 

the Beaufort Sea in the Arctic (Fig. 14). Cell specific upper and lower 95% CI bounds are shown 892 

in Figure D6. On average the upper CI bounds were 88% higher than the mean prediction, and 893 

the lower CI bounds 47% less than their means. Overall, the total accumulation of organic carbon 894 

across the model domain is estimated with a mean of 4.9 Mt y-1 with a 95% confidence interval of 895 

2.6 – 9.3 Mt y-1. In contrast to the organic carbon standing stock, total accumulation between 896 

bioregions was not strongly related to the total areal extent. The Gulf of St Lawrence was 897 
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estimated to contain both the largest total annual organic carbon accumulation and the highest 898 

accumulation per unit area (Table 2). The Strait of Georgia was estimated to have the second 899 

highest accumulation rates per unit area, but low total carbon accumulation due to its small area 900 

(Table 2). The Hudson Bay bioregion also included a large proportion of the organic carbon 901 

accumulation across the model domain with the second highest total accumulation value and the 902 

third highest mean per unit area (Table 2). 903 

 904 

Figure 14. Estimates of organic carbon accumulation rate (g m-2 y-1) across the Canadian continental margin. 905 
The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous variable is shown 906 
displayed in discrete colour bands to improve visualisation of highly right skewed data. The 95% confidence interval 907 
bounds around the predicted means are shown in Figure D6. Labels indicating the locations of different areas 908 
mentioned within the text are shown in Figure A4. Country outlines from World Bank Official Boundaries, available at  909 
https://datacatalog.worldbank.org/search/dataset/0038272. 910 

 911 

3.7 Rock substrate distribution case studies 912 

As the predictive maps produced in this study rely on physical sediment samples alone, they are 913 

unlikely to produce valid estimates for areas of bedrock - i.e. estimates of zero sediment carbon 914 

density and accumulation where bedrock is located. On the Scotian shelf (bioregion 12), 915 

correcting our predictive maps with a predicted bedrock distribution map (Fig. E1) reduces total 916 
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organic carbon stock estimates in this region by between 7.5 – 7.6% leading to a value of 0.56 Gt 917 

(95% CI 0.33 – 0.87 Gt), and reducing total accumulation by 12.7 - 15.9% to a total of 0.18 Mt y-918 
1 (95% CI 0.08 – 0.44 Mt y-1). For the Pacific British Columbian marine region (bioregions 1-4), 919 

assigning zero values to areas covered by a predicted bedrock distribution map (Fig. E2) would 920 

reduce our estimates by 8.5 - 9.0% to a total of 0.44 Gt (95% CI 0.26 – 0.69 Gt) for organic carbon 921 

stock and reducing by 13.8 – 15.3% to a total of 0.08 Mt y-1 (95% CI 0.03 – 0.23 Mt y-1) for organic 922 

carbon accumulation.   923 

 924 

4. Code and data availability 925 

All mapped products as shown in Figures 5, 8, 11, 12, 13 and 14 have been made available as 926 

georeferenced TIFF files in the Borealis data repository at 927 

https://borealisdata.ca/privateurl.xhtml?token=7bb00f1e-2ce3-400c-955d-e8e0d4fe3080 928 

(Epstein et al., 2023). This includes the mean predictions as well as the cell-specific 95% 929 

confidence interval bounds as shown in Appendix D. The repository also contains all data collated 930 

within the systematic data review of organic carbon content and the georeferenced TIFF files from 931 

the rock distribution case studies (Appendix E). Additionally, all the associated code used for data 932 

manipulations, model building and predictive mapping can also be found within the above 933 

repository.   934 

 935 

5. Discussion 936 

Using best available data, we have produced the first national assessment of organic carbon in 937 

surficial seabed sediments across the Canadian continental margin, estimating the standing stock 938 

in the top 30 cm to be 10.7 Gt (95% CI 6.6 – 16.0 Gt). Although comparisons to previous global 939 

studies is challenging due to differences in sediment reference depths, mapping resolutions and 940 

total spatial coverage, our estimate falls within a similar range to those previously published (e.g. 941 

2.2 Gt in the top 5 cm (Lee et al., 2019) and 48 Gt in the top meter (Atwood et al., 2020) of the 942 

Canadian EEZ). In contrast to these global studies, the national approach taken here allows for a 943 

more complete data synthesis, a finer spatial resolution, larger spatial coverage of the Canadian 944 

continental margin and spatially explicit estimates of uncertainty; all of which allow for higher 945 

confidence in the predictive mapping products and overall estimates of standing stock. Similarly 946 

to other national and regional mapping studies (Smeaton et al., 2021; Diesing et al., 2017, 2021), 947 
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areas of high organic carbon stocks were predominantly predicted to occur in coastal fjords, inlets, 948 

estuaries, enclosed bays and sheltered basins, as well as in deeper channels and throughs (Fig. 949 

13). To put our estimated organic carbon standing stock into context, 10.7 Gt equates to 51% of 950 

the organic carbon estimated to be stored in all Canadian terrestrial plant live biomass and detritus 951 

(both above and below ground), and 34% of soil organic carbon to 30 cm across Canada 952 

(assuming equal distribution of soil carbon in the top 1 m) (Sothe et al., 2022).  953 

Due to a lack of available data, we were unable to undertake a fully independent predictive 954 

mapping exercise for organic carbon accumulation rates on Canadian seabed sediments. 955 

However, our downscaling exercise of a recently published global product on mass accumulation 956 

rates, coupled with the national predictive mapping of sediment organic carbon content, led to an 957 

estimated annual accumulation at the seafloor of 4.9 Mt of organic carbon per year (95% CI 2.6 958 

– 9.3 Mt y-1). Given the extent of the model domain (~1.25% of the global ocean), this estimate 959 

again falls close to the range of previous global predictions – i.e. 1.25% of global accumulation at 960 

126–350 Mt y-1 is 1.6-4.4 Mt y-1 (Keil, 2017; Berner, 1982). Areas of high accumulation were 961 

predominantly restricted to the Gulf of St Lawrence and Bay of Fundy, as well as other near-coast 962 

areas where large river outlets co-occurred with predicted areas of high carbon density (Fig. 10, 963 

13, Supplement). 964 

 965 

Model interpretation and uncertainties 966 

The two key components of the carbon stock estimates in this study are the predictive maps for 967 

mud content and organic carbon content, which were estimated to have a map accuracy of 60% 968 

and 58% respectively (R2 0.60 and 0.58). While these values may seem relatively low when 969 

compared to some other related studies (Diesing et al., 2017, 2021; Atwood et al., 2020; Mitchell 970 

et al., 2019), the use of robust, spatially explicit cross-validation to calculate model evaluation 971 

metrics (as we did herein) has been shown to produce significantly more conservative estimates 972 

of map accuracy when compared to frequently used random cross-validation approaches (Ludwig 973 

et al., 2023; Meyer et al., 2019) such as those used in both the global seabed carbon stock studies 974 

discussed above (Atwood et al., 2020; Lee et al., 2019). Within this study, we also calculated cell 975 

specific confidence interval bounds to give spatially explicit estimates of uncertainty. While there 976 

are many ways to calculate model uncertainty, therefore making comparisons between studies 977 

challenging, the uncertainty in carbon density calculated here (CI 39-54% either side of the mean) 978 

is close to those found within similar regional (Diesing et al., 2021; 58%) and global studies (Lee 979 
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et al., 2019; 49%), both of which predict carbon stocks at significantly coarser resolutions. Our 980 

95% confidence interval bounds for total standing stock (38% lower and 50% higher than the 981 

mean) are also similar to the estimated bounds from the recently published predictive models of 982 

Canadian terrestrial vegetation and soil carbon (a 90% confidence interval 48% either side of the 983 

mean) (Sothe et al., 2022).  984 

Higher map accuracy was estimated for mass accumulation rate (R2 0.89); however, it is important 985 

to recognise that this only describes the accuracy of our downscaled product to represent the 986 

global spatial product from which data were sampled. This global model was itself estimated to 987 

have an R2 of 0.88 for empirical point data, however this was calculated with traditional random 988 

cross-validation techniques (Restreppo et al., 2021). The estimated values of organic carbon 989 

accumulation rate predicted here should be used with some caution as there is likely significant 990 

uncertainty that is not truly quantified due to the small amount of in-situ empirical data from the 991 

Canadian continental margin (Restreppo et al., 2021). The mean confidence interval for organic 992 

carbon accumulation estimated in this study was also very wide at its upper bound (88% above 993 

mean). This is largely due to the highly right skewed distribution of predictions, with a 994 

preponderance of small accumulation rate values, meaning a small absolute increase in 995 

estimated accumulation can have very large proportional effects when compared to the mean. 996 

Even so, the estimates of organic carbon accumulation made here give our current best estimate 997 

for the Canadian continental margin, and while the absolute values may contain high uncertainty, 998 

the spatial patterns between areas across the model domain are expected to have higher 999 

confidence.  1000 

Using two case studies from British Columbia and the Scotian Shelf, we estimated that the 1001 

distribution of rock substrates could reduce our estimates of carbon stock by approximately 7.5 - 1002 

9.0% and carbon accumulation by 12.7 – 15.3% (Fig. E1, E2). As much of the Canadian coastline 1003 

is distant from significant infrastructure, extensive surveys of the seafloor are generally lacking, 1004 

especially when compared to similar regional carbon mapping studies in northwest Europe (e.g. 1005 

Smeaton et al., 2021). It is therefore unclear how representative these case studies are of the 1006 

entire Canadian EEZ. Improved data on the presence of bedrock across lesser studied regions 1007 

of the Canadian Arctic, Hudson Bay, Gulf of St Lawrence, Newfoundland and Labrador may allow 1008 

for the production of a predictive map of bedrock across the Canadian EEZ which would 1009 

significantly improve the carbon estimates and spatial predictive maps produced in this study.  1010 

Areas of uncertainty which could not be fully quantified include the accuracy and precision of 1011 

response data and predictor layers. The response data drive the model construction, and 1012 
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therefore sampling, processing, or recording errors can propagate into predictions. This is 1013 

particularly relevant given the large temporal extent of response data which was required to gain 1014 

sufficient coverage for this work (1959-2019). This large duration may also add additional variation 1015 

from temporal differences between data, for example from differing anthropogenic drivers on 1016 

carbon storage and/or accumulation (Keil, 2017); however, similar temporal extents have been 1017 

used in related studies (Atwood et al., 2020; Lee et al., 2019; Seiter et al., 2004) and 72% of the 1018 

organic carbon data within this study were sampled after 1980 and 55% after 2000. Within the 1019 

response data, assumptions and/or predictions were also required regarding the distribution of 1020 

mud and carbon across sediment depths. While standardising for this factor is clearly necessary, 1021 

especially when using a wide variety of legacy data, it does add additional uncertainty which would 1022 

not be present if widescale standardised sampling methods were employed. The results from this 1023 

study do however highlight, that within the top 30 cm of sediment, the spatial location of the 1024 

sample is a far stronger driver of organic carbon content than the sediment sampling depth (Table 1025 

B1). Most of the predictor variables used in this study are also themselves modelled products, 1026 

which contain their own inherent uncertainties and/or interpolations which cannot be fully 1027 

quantified here. Additionally, many of the predictor variables have temporal components, and 1028 

while the climatological mean of a 12 - 14 year timespan used in this study is expected to produce 1029 

variables representative for the study region, they do not completely align with the temporal extent 1030 

of the response data which could add further prediction uncertainty. 1031 

 1032 

Future directions and applications 1033 

Improvements could be made in future iterations of these sediment carbon maps when additional 1034 

response data become available. The size of the organic carbon content dataset was relatively 1035 

small (2,518 point-samples) given the size of the model domain, so new data could greatly 1036 

improve accuracy and reduce uncertainty in predictions. Additionally, wide-spread in-situ data on 1037 

sediment dry bulk density and sediment mass accumulation rates would reduce the assumptions 1038 

needed in using transfer functions and downscaling models; however, large datasets would be 1039 

needed to conduct robust independent modelling exercises. There are also improvements to be 1040 

made with the development of higher resolution or more accurate predictor layers. This would be 1041 

particularly relevant for those variables with coarse resolutions and those which were seen to 1042 

have highest importance within our models or from related seabed sediment mapping studies 1043 

(e.g. Gregr et al., 2021; Diesing et al., 2017, 2021; Mitchell et al., 2019) - i.e. wave velocities, 1044 

suspended particulate matter, exposure, current velocities and oxygen concentrations. Further 1045 
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validation and refinements could also be supported by numerical biogeochemical modelling 1046 

products where the organic carbon densities and/or accumulations are mathematically estimated 1047 

based on oceanographic, climatological and benthic conditions, including the potential to 1048 

incorporate predictions under different future climate scenarios (Ani and Robson, 2021).  1049 

The organic carbon predictive mapping products generated here could have many future 1050 

applications. Regionalisation and prioritisation processes could identify key areas of carbon 1051 

storage for further research and possible protections (Epstein and Roberts, 2022, 2023; Diesing 1052 

et al., 2021). There is also potential to combine these mapped products with spatial data on 1053 

human activities occurring on the seafloor to consider potential management implications, such 1054 

as controlling the levels of impactful industries (e.g. mobile bottom fishing, mineral extraction, 1055 

energy generation) in high organic carbon storage/accumulation areas (Clare et al., 2023; Epstein 1056 

and Roberts, 2022). The mud content predictive maps may also have applications for marine 1057 

planning more widely, being a strong driver of the biological habitat type and sensitivity. Overall, 1058 

these data have wide-scale relevance across marine ecology, geology and environmental 1059 

management disciplines, however, the use of these products should always consider the 1060 

discussed uncertainties and quantified confidence interval bounds of predictions. As with all large-1061 

scale mapping exercises, continued in-situ empirical data collection is needed for improved 1062 

accuracy of mapping seabed carbon stocks and accumulation rates across Canada.  1063 
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6. Appendices 1064 

Appendix A. Distribution of response data 1065 

 1066 

Figure A1. Map showing the distribution of mud content samples across the model domain. 1067 

 1068 

 1069 

Figure A2. Map showing the distribution of carbon content samples across the model domain. 1070 
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 1071 

Figure A3. Map showing the distribution of random-stratified sampled sediment mass accumulation rates 1072 
across the model domain. 1073 

 1074 

Figure A4. Map indicating the locations of different areas which are mentioned within the text. The Canadian 1075 
Pacific (blue), Arctic (grey) and Atlantic (red) regions are shown with labelled locations overlayed. BC = British 1076 
Columbia; Passa’ Bay = Passamaquoddy Bay; NS = Nova Scotia; NF = Newfoundland; SPMI = St Pierre and Miquelon. 1077 
The locations are for guidance only and do not represent the entire extent or exact location of a given area. Country 1078 
outlines are derived from World Bank Official Boundaries, available at   1079 
https://datacatalog.worldbank.org/search/dataset/0038272. 1080 
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Appendix B. Organic carbon sediment depth modelling results 1081 

There was a significant effect of sampling depth on the organic carbon content in seabed 1082 

sediments (χ2 =  1400.9, p < 0.001). While sample ID explained most of the variation between 1083 

sub-sample carbon contents, the sampling depth was also a significant factor (Table B1). Carbon 1084 

content decreased with increasing sampling depth (Fig. B1). The rate of carbon content decline 1085 

generally decreased with increasing depth into the sediment, however uncertainty in this trend 1086 

increased within deeper sediment layers (Fig. B1).  1087 

 1088 

Table B1. Results from the generalised additive mixed model between the carbon content of marine sediments 1089 
and sampling depth. A basic generalised additive mixed model with a scaled-t distribution was constructed for carbon 1090 
content in sediment sub-samples with sample ID as the random factor and sampling depth as the fixed factor. 1091 

Spline Type edf Res. df χ2 Deviance 
explained 

p 

Sampling depth (cm) Cubic 4.28 5.36 2299 1.1% < 0.001 

ID Random 181.94 182.00 715046 86.9% < 0.001 

Notes: edf = Effective degrees of freedom. Res. df = Residual degrees of freedom 1092 

 1093 

Figure B1. Regression splines indicating the effect of sediment sampling depth (a) and sample ID (b) on the 1094 
organic carbon content in seabed sediment sub-samples.  1095 

 1096 

The predicted mean effect of sediment depth on carbon content was extracted from the model 1097 

and converted into a transfer function which states the expected ratio between the cumulative 1098 

carbon content at 30 cm compared to any given sampling depth (Figure B2). The ratio ranged 1099 

from 89.3% when only measuring the sediment surface, to 93.7% if measuring the carbon content 1100 

across the top 10 cm, and by 25 cm was approaching equilibrium at 98.8%. 1101 

(a) (b) 
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  1102 

 1103 

Figure B2. Transfer function for cumulative mean organic carbon (OC) content at 30 cm sediment depth. Using 1104 
a generalised additive mixed model an estimated transfer function was constructed to standardise the cumulative mean 1105 
carbon content at any given depth to an expected value at 30 cm.  1106 

 1107 

Appendix C. Results from random forest cross-validation structure selection 1108 

 1109 

Figure C1. Multivariate nearest-neighbour distance density plot for mud content data with the optimal number 1110 
of spatial k-means clusters across cross validation (CV) folds. Frequency of nearest neighbour distances (x-axis) 1111 
is shown for sample-to-sample distance (red), sample-to-prediction distance (green) and CV fold analysis-to-1112 
assessment distance (blue). An optimal number of 35 clusters was selected to due close overlap between the CV-1113 
distance and sample-to-prediction curve.  1114 
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 1115 

Figure C2. Multivariate nearest-neighbour distance density plot for mud content data with a partially repeated 1116 
spatial-random mixture method for cross validation (CV) folds. Frequency of nearest neighbour distances (x-axis) 1117 
is shown for sample-to-sample distance (red), sample-to-prediction distance (green) and CV fold analysis-to-1118 
assessment distance (blue). Due to the optimal spatial k-means clustering showing poor overlap at lower multivariate 1119 
distances (Fig. C1), a 1% random sample without replacement was added to each fold.  1120 

 1121 

 1122 

Figure C3. Multivariate nearest neighbour distance density plot for organic carbon content data with the 1123 
optimal block size across cross validation (CV) folds. Frequency of nearest neighbour distances (x-axis) is shown 1124 
for sample-to-sample distance (red), sample-to-prediction distance (green) and CV fold analysis-to-assessment 1125 
distance (blue). An optimal block size of 100 km was selected to due close overlap between the CV-distance and 1126 
sample-to-prediction curve.  1127 
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 1128 

Figure C4. Multivariate nearest neighbour density plot for sediment mass accumulation rate data. Frequency of 1129 
nearest neighbour distances (x-axis) is shown for sample-to-sample distance (red) and sample-to-prediction distance 1130 
(green). The close overlap indicates that random cross-validation will produce valid results.  1131 

  1132 
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Appendix D. Cell-specific confidence interval bounds for predictive sediment maps 1133 

 1134 
Figure D1. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of mud 1135 
content (%) in subtidal marine sediments across the Canadian continental margin. Within each panel the main 1136 
plot shows the Arctic and Atlantic regions with the Pacific region inset.  1137 

 1138 

 1139 

Figure D2. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of carbon 1140 
content (%) in subtidal marine sediments across the Canadian continental margin.  The continuous variable is 1141 
shown in discrete colour bands to improve visualisation of highly right skewed data. Within each panel the main plot 1142 
shows the Arctic and Atlantic regions with the Pacific region inset.  1143 

 1144 
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 1145 

Figure D3. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of mass 1146 
accumulation rate (g cm-2 yr-1) on subtidal marine sediments across the Canadian continental margin. The 1147 
continuous variable is shown in discrete colour bands to improve visualisation of highly right skewed data. Within each 1148 
panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset.  1149 

 1150 

 1151 

Figure D4. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of dry bulk 1152 
density (g cm-3) of subtidal marine sediments across the Canadian continental margin. Within each panel the 1153 
main plot shows the Arctic and Atlantic regions with the Pacific region inset. 1154 

 1155 
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 1156 

Figure D5. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of organic 1157 
carbon density (kg m-3) in subtidal marine sediments across the Canadian continental margin. The continuous 1158 
variable is shown in discrete colour bands to improve visualisation of highly right skewed data. Within each panel the 1159 
main plot shows the Arctic and Atlantic regions with the Pacific region inset. 1160 

 1161 

 1162 

Figure D6. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of organic 1163 
carbon accumulation rates (g m-2 y-1) on subtidal marine sediments across the Canadian continental margin. 1164 
The continuous variable is shown in discrete colour bands to improve visualisation of highly right skewed data. Within 1165 
each panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset. 1166 

 1167 

  1168 
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Appendix E. Bedrock distribution case studies 1169 

 1170 

Figure E1. Predicted mean values of organic carbon density and accumulation rates within the Scotian Shelf 1171 
overlayed by the estimated distribution of rock substrates. Data on the estimated distribution of rock on the 1172 
seafloor across the Scotian Shelf Bioregion is taken from Philibert et al. (2022). 1173 

 1174 

 1175 

 1176 

Figure E2. Predicted mean values of organic carbon density and accumulation rates within the British 1177 
Columbia EEZ overlayed by the estimated distribution of rock substrates. Data on the estimated distribution of 1178 
rock on the seafloor across the British Columbian continental margin is taken from Gregr et al. (2021). 1179 
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