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Abstract 16 

The quantification and mapping of surficial seabed sediment organic carbon has wide-scale 17 

relevance across marine ecology, geology and environmental resource management, with carbon 18 

densities and accumulation rates being a major indicator of geological history, ecological function, 19 

and ecosystem service provisioning, including the potential to contribute to nature-based climate 20 

change mitigation. While global mapping productsanalyses can appear to provide a definitive 21 

understanding of the spatial distribution of sediment carbon, there is inherently high uncertainty 22 

when making estimates at this scale. Finer resolution national regional maps may be constructed 23 

at finer resolutions and can which utilise targeted data syntheses and refined spatial data products 24 

are and therefore vital tohave the potential to improve these estimates. Here, we report a national 25 

systematic review of data on organic carbon content in seabed sediments across Canada and 26 

combine this with a synthesis and unification of best available data on sediment composition, 27 

seafloor morphology, hydrology, chemistry, and geographic settings and sediment mass 28 

accumulation rates within a machine learning mapping framework. Predictive quantitative maps 29 

of mud content, sediment dry bulk density, and organic carbon content and, organic carbon 30 

density and accumulation, were each produced along with cell specific estimates of their 95% 31 

confidence interval (CI) bounds uncertainty at 200 m resolution across 4,489,235 km2 of the 32 

Canadian continental margin (92.6% of the seafloor area above 2,500 m). Fine-scale variation in 33 

carbon stocks was identified across the Canadian continental margin, particularly in the Pacific 34 

and Atlantic Ocean regions. Carbon accumulation was predicted to be concentrated in coastal 35 

areas, with the highest rates in the Gulf of St Lawrence and Bay of Fundy. Overall, we estimate 36 

the standing stock of organic carbon in the top 30 cm of surficial seabed sediments across the 37 

Canadian shelf and slope to be 10.7 9 Gt (95% CI 67.60 – 16.0 Gt), and accumulation at 4.9 Mt 38 

per year (95% CI 2.6 – 9.3 Mt y-1). Increased in-situ empirical sediment data collection and higher 39 

precision in spatial environmental data-layers could significantly reduce uncertainty and increase 40 

accuracy in these products over time. 41 

 42 

1. Introduction 43 

The organic carbon contained in seafloor sediments has a major influence on global carbon cycles 44 

and earth’s climate (Hülse et al., 2017; Bauer et al., 2013). Seabed sediments have been 45 

estimated to accumulate approximately 126–350 Mt of organic carbon per year (Keil, 2017; 46 

Berner, 1982) and contain 87 Gt of organic carbon in their top 5 cm (Lee et al., 2019), 168 Gt in 47 
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the top 10 cm (LaRowe et al., 2020a) and up to ~2,300 Gt in the top 1 m (Atwood et al., 2020), 48 

with the latter being equivalent to nearly twice that of soils on land. Continental shelves have the 49 

highest concentrations densities of sediment carbon across the global ocean, covering only 5-8% 50 

of the marine area but an estimated 15-19% of surficial organic carbon stocks (LaRowe et al., 51 

2020a; Atwood et al., 2020) and 80% of annual carbon burial (Bauer et al., 2013; Burdige, 2007). 52 

Continental margin zones (continental shelves and slopes) also contain the largest spatial 53 

variation in organic carbon densities due to highly heterogenous geological, geographic, biological 54 

and oceanographic settings (Smeaton et al., 2021; Diesing et al., 2017, 2021; Atwood et al., 55 

2020). They are also subjected to high levels of human activity, being impacted by many coastal 56 

and marine industries including fishing, shipping, energy generation, telecommunication, mineral 57 

extraction, and pollution from land based activities  (Halpern et al., 2019; Amoroso et al., 2018; 58 

Keil, 2017). The quantification and mapping of organic carbon on continental margins  is therefore 59 

imperative for best practise seabed management; with the densities and accumulation rates being 60 

a major indicator of ecological function, geological history and ecosystem service provision 61 

(Legge et al., 2020; Snelgrove et al., 2018; Middelburg, 2018).  62 

In the marine environment, organic carbon can originate from the fixation of carbon dioxide (CO2) 63 

by primary producers in the photic zone or via lateral transport from terrestrial sources (LaRowe 64 

et al., 2020b). Organic carbon then passes through a variety of biotic and abiotic pathways being 65 

consumed, transformed, respired or remineralised, with a large proportion converted back into 66 

inorganic compounds, leaving only ~5% of marine production and less than 1% of earth’s gross 67 

production eventually reaching the seafloor (Middelburg, 2019; Hülse et al., 2017; Turner, 2015; 68 

Bauer et al., 2013; Burdige, 2007). Once at the seafloor, a similarly complex process occurs on 69 

and within the sediment, with a wide range of biotic, biochemical and physical processes all 70 

influencing the rates of accumulation, remineralisation and resultant long term burial, with ~90% 71 

of all carbon reaching the seafloor being remineralised (LaRowe et al., 2020b; Middelburg, 2018, 72 

2019; Arndt et al., 2013). Even when considering this complex carbon cycle, the mass and 73 

accumulation of organic carbon in surficial seabed sediments will still have a direct influence on 74 

the scale of long-term carbon storage at the seafloor (LaRowe et al., 2020a; Middelburg, 2018).  75 

Marine habitats are being increasingly recognised as contributors to nature-based climate change 76 

mitigation (also known as nature-based climate solutions and natural climate solutions) due to 77 

their ability to both fix CO2 and store organic carbon for centennial to millennial timescales 78 

(Macreadie et al., 2021; Hoegh-Guldberg et al., 2019). This “blue carbon” potential was initially 79 

recognised in coastal vegetated habitats (i.e. mangrove, seagrass and saltmarsh) (Nellemann et 80 
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al., 2009; Duarte et al., 2005), but has more recently been applied to other habitats such as kelp 81 

forests and unvegetated sediments (Luisetti et al., 2020; Raven, 2018; Avelar et al., 2017). There 82 

is increasing evidence that human activities are influencing seabed sediment carbon stores from 83 

both perturbations of upstream processes and physical impacts directly on the seafloor (Cavan 84 

and Hill, 2022; Epstein et al., 2022; Keil, 2017; Bauer et al., 2013). For example, a recent study 85 

estimated that the direct physical impacts from global fishing activities could cause considerable 86 

remineralisation of seabed sediment organic carbon stocks back to CO2 (Sala et al., 2021), 87 

however the validity of the scale of these estimates has been called into question (Hiddink et al., 88 

2023; Hilborn and Kaiser, 2022; Epstein et al., 2022). By improving the accuracy in available 89 

sediment carbon mapping products, there may be potential opportunities to better research and 90 

design appropriate management strategies to enhance organic carbon accumulation or limit 91 

potential remineralisation from disturbance (Epstein and Roberts, 2022; Sala et al., 2021; Luisetti 92 

et al., 2019). 93 

Historically, studies measuring seabed sediment carbon stocks and accumulation rates had small 94 

geographic scope, largely considering the ecological function, geological characteristics or 95 

biochemical functioning at local to regional scales (see citations within LaRowe et al., 2020b; 96 

Snelgrove et al., 2018; Middelburg, 2018; Burdige, 2007). In recent years, made possible by 97 

modern machine learning and statistical spatial prediction techniques, there has been increasing 98 

interest in estimating the size and distribution of carbon standing stocks and accumulation rates 99 

at national to global scales to better understand natural carbon cycles and biological productivity, 100 

and to identify the potential for improved management as a natural climate mitigation strategy 101 

(Restreppo et al., 2021; Smeaton et al., 2021; Diesing et al., 2021; Atwood et al., 2020; LaRowe 102 

et al., 2020b; Lee et al., 2019; Wilson et al., 2018; Avelar et al., 2017). Although global mapping 103 

products can appear to give a complete understanding of seabed sediment organic carbon stocks 104 

, there is high inherent uncertainty when making estimates at this scale (Ludwig et al., 2023; 105 

Atwood et al., 2020; Lee et al., 2019), regional mapping studies which utilised targeted data 106 

syntheses, refined spatial data products and finer resolution outputs, have shown distinct spatial 107 

patterns in organic carbon distribution and disparate estimates of total standing stocks when 108 

compared with these global studies.. This has been highlighted by several regional studies across 109 

the northwest European shelf (Smeaton et al., 2021; Diesing et al., 2017, 2021; Luisetti et al., 110 

2020; Wilson et al., 2018). , which show distinct spatial patterns in organic carbon distribution and 111 

disparate estimates of total standing stocks when compared with these global studies. 112 
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Canada has the world’s longest coastline and approximately the seventh largest Exclusive 113 

Economic Zone (EEZ) (Fig. 1), it could therefore be expected to contain a significant proportion 114 

of the global stock of seabed sediment organic carbon. Data from recent global studies estimated 115 

that the Canadian EEZ contains approximately 2.2 Gt of organic carbon in the top 5 cm and 48 116 

Gt in the top meter of seabed sediments, equivalent to ~2.3% of total global marine sediment 117 

carbon stocks covering around 1.3% of the area (Atwood et al., 2020; Lee et al., 2019). However, 118 

these modelled estimates from global studies are at coarse spatial resolutions, have incomplete 119 

coverage of the Canadian EEZ and contain very limited in-situ empirical data from within the 120 

Canadian EEZ itself. The Canadian marine environment is extremely complex, covering three 121 

oceans, 46 degrees of latitude, 94 degrees of longitude, and containing numerous features 122 

including the largest enclosed marine bay in the world, over 50,000 islands, and on the 123 

comparatively short Pacific coastline alone, around 436 estuaries. It is therefore highly likely that 124 

global estimates of the distribution of seabed sediment organic carbon stock and accumulation 125 

rates are inaccurate for this region, and a national approach is needed. Here, we conduct a 126 

systematic review of data on seabed sediment organic carbon content across Canada and 127 

combine this with a synthesis and unification of best available data on sediment composition, 128 

seafloor morphology, hydrology and, chemistry and sediment mass accumulation rates in a 129 

machine learning predictive mapping process, to construct the first high-resolution national 130 

assessment of Canadian seabed sediment organic carbon stocks and accumulation rates. To aid 131 

clarity, a workflow diagram of the proceeding methods and results sections is shown in Figure 2. 132 

 133 
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Figure 1. Map of the Canadian Exclusive Economic Zone (EEZ). The study area spatial maxima (red) was defined 134 

using best available bathymetry data and covers the entire sub-tidal portion of the Canadian EEZ (red; see high 135 

resolution figure for further detail around the coastline and Section 2.1.1 for more details) covers the entire sub-tidal 136 

portion of the Canadian EEZ. This is overlayed by the maximum potential modelling extent (grey) which only includes 137 

indicates only those areas where data were present for all predictor variables (see Section 2.1.7). Due to the distribution 138 

of available response data, the final modelling domain was limited to a depth of 2,500 meters (see Section 2.4), and is 139 

indicated with the colour relative to the estimated depth, from 0 (dark light blue) to -2,500 (yellowblack). Country outlines 140 

from World Bank Official Boundaries, available at  https://datacatalog.worldbank.org/search/dataset/0038272. 141 

142 

https://datacatalog.worldbank.org/search/dataset/0038272
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2. Methods 143 

2.1 Analysis software 144 

Analyses were primarily undertaken in R 4.2.2 (R Core Team, 2022) and RStudio 2022.12.0.353 145 

(Posit Team, 2022), with some additional data manipulation and spatial plotting in QGIS 146 

(QGIS.org, 2021) and Python (Van Rossum and Drake, 2009). Within R, raster data were handled 147 

using the terra package (Hijmans, 2022), spatial vector data using the sf package (Pebesma, 148 

2018), netCDF data with the stars (Pebesma, 2022) and tidync (Sumner, 2022) packages, data-149 

frames with the dplyr package (Wickham et al., 2019), and vector data with base R (R Core Team, 150 

2022). Random forest modelling was primarily dependent on the ranger package (Wright and 151 

Ziegler, 2017), however models were constructed and tuned using the tidymodels package (Kuhn 152 

and Wickham, 2020), with cross-validation and predictor variable selection using the CAST 153 

(Meyer et al., 2023) and caret (Kuhn, 2022) packages. Plotting utilised the above packages as 154 

well as ggplot2 (Wickham et al., 2019) and patchwork (Pedersen, 2022) while parallel processing 155 

used the doParallel package (Microsoft Corporation and Weston, 2022). To aid clarity, a workflow 156 

diagram of the proceeding methods and results sections is shown in Figure 2.  157 

 158 

Figure 2. Study workflow diagram. Outline of the structure and linkages within the proceeding methods and results 159 

sections. Light blue shapes indicate input data; white ovals indicate data processes; dark shapes indicate output data; 160 

rectangles indicate point raster data; circles indicate raster point data. OC = organic carbon; MAR = mass accumulation 161 

rate; WBD = wet bulk density; DBD = dry bulk density; OCAR = organic carbon accumulation rate.  162 
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 163 

2. Methods  164 

2.12 Study area spatial maximaPredictor variables 165 

2.1.1 Bathymetry 166 

Best available contiguous Digital Elevation Model (DEM) data were combined and unified to a 167 

200 m x 200 m equal area grid covering the Canadian EEZ (co-ordinate reference system (CRS) 168 

EPSG:3573 - WGS 84 - North Pole Lambert Azimuthal Equal Area Canada) (Table 1; see 169 

Appendix A2 for further details). Data were filtered to contain only sub-tidal areas (those cells with 170 

elevations of less than or equal to 0 m), with the resultant extent defined as the study area spatial 171 

maxima (Fig. 1). 172 

To define the maximum potential spatial coverage of this study, best available bathymetric 173 

datasets were combined across the Canadian Exclusive Economic Zone (EEZ) (Table 1). Firstly, 174 

three Digital Elevation Model (DEM) raster layers covering different extents of the Canadian EEZ 175 

were each filtered to contain only those elevations of less than or equal to 0 m. Where necessary, 176 

data were then aggregated (averaged) or disaggregated (split) to a resolution of approximately 177 

200 m, and all layers were projected onto a unified 200 m x 200 m equal area grid (co-ordinate 178 

reference system (CRS) EPSG:3573 - WGS 84 - North Pole Lambert Azimuthal Equal Area 179 

Canada). Reprojection was necessary as all three DEMs were in different co-ordinate systems, 180 

including some already being projected. The 200 m resolution was chosen as it is the median 181 

native resolution of the three DEMs, while also being considered towards the upper limit of what 182 

may be computationally possible within the scope of this study. After reprojection, the three layers 183 

were overlain, with the region-specific data given priority over global data where present. Finally, 184 

the seaward boundaries were delineated by the outer extent of the Canadian EEZ (Flanders 185 

Marine Institute, 2019). The resultant bathymetric layer was defined as the study area spatial 186 

maxima and used as the first potential predictor variable in predictive modelling (Fig. 1 – covering 187 

all coloured areas; Table 1).  188 
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Table 1. Summary of predictor variables constructed for the Canadian EEZ. For more information on methods 189 

used to derive these layers see Sections 2.1 and 2.2. 190 

Predictor variable Unit Region Source Native 

resolution 

Temporal 

range 

Bathymetry m BC NRCan (2021) 10 m NA 

Arctic IBCAO V4.2 (Jakobsson et al., 2020) 200 m NA 

Global GEBCO (2022) 0.0042° NA 

Slope ° Canada This study 200 m NA 

Slope smoothed ° Canada This study 1 km NA 

Total curvature rad/m Canada This study 200 m NA 

Total curvature smoothed rad/m Canada This study 1 km NA 

BPI – fine m Canada This study 200 m NA 

BPI -– medium m Canada This study 400 m NA 

BPI -– broad m Canada This study 400 m NA 

VRM – fine - Canada This study 200 m NA 

VRM -– medium - Canada This study 200 m NA 

VRM -– broad - Canada This study 400 m NA 

Distance to shore m Canada This study 200 m NA 

Bioregion - Canada DFO (2022) NA NA 

Distance to rivers -– large m Canada NRCan (2019) 1:15000000 NA 

Distance to rivers -– medium m Canada NRCan (2019) 1:5000000 NA 

Distance to rivers -– small m Canada NRCan (2019) 1:1000000 NA 

Exposure proxy - Canada This study 200 m NA 

SPM (surface) g/m3 Global Copernicus (2022b) 4 km 2007 -– 

2019 Wave velocity (seafloor) m/s Arctic Copernicus (2022a) 3 km 2007 -– 

2019 Global Copernicus (2022c) 0.2° 2007 -– 

2019 Mean current velocity 

(seafloor) 

m/s BC Peña et al. (2019) 3 km 2007 -– 

2019 Salish Sea SalishSeaCast ERDDAP v19-05* 500 m 2007 -– 

2019 Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 -– 

2019 Temperature (seafloor) °C BC Peña et al. (2019) 3 km 2007 -– 

2019 °C Salish Sea SalishSeaCast ERDDAP v19-05* 500 m 2007 -– 

2019 °C Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 -– 

2019 Salinity (seafloor) ppt BC Peña et al. (2019) 3 km 2007 -– 

2019 Salish Sea SalishSeaCast ERDDAP v19-05* 500 m 2007 -– 

2019 Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 -– 

2019 Ice thickness (surface) m Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 -– 

2019 Ice concentration (surface) % Arctic & Atlantic ANHA12 (Hu et al., 2019)† 0.0833° 2007 -– 

2019 Dissolved oxygen (seafloor) mol/m3 Global Bio-ORACLE V2.2 (Assis et al., 2018)  0.0833° 2000 -– 

2014 Primary production (surface) g/m3/d Global Bio-ORACLE V2.2 (Assis et al., 2018)  0.0833° 2000 -– 

2014 Chlorophyll concentration 

(surface) 

mg/m3

  

Global Bio-ORACLE V2.2 (Assis et al., 2018)  0.0833° 2000 -– 

2014 

Max current velocity 

(seafloor) 

m/s Global Bio-ORACLE V2.2 (Assis et al., 2018) 0.0833° 2000 -– 

2014 

Notes: BC = British Columbia; BPI = Benthic position index; VRM = Vector ruggedness measure; SPM = Suspended 191 

particulate matter. *See https://salishsea.eos.ubc.ca/erddap/index.html; Soontiens and Allen (2017); Soontiens et al. 192 

(2016). †See: https://canadian-nemo-ocean-modelling-forum-community-of-193 

practice.readthedocs.io/en/latest/Institutions/UofA/Configurations/ANHA12/index.html 194 

 195 

  196 

https://salishsea.eos.ubc.ca/erddap/index.html
https://canadian/
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2.3 Predictor variables 197 

2.31.1 2 Benthic terrain features 198 

A set of 10 benthic terrain features were constructed from the unified bathymetric layer (Table 1). 199 

As benthic terrain measures use data on the depth of a location relative to the depth of 200 

surrounding cells up to a given distance, bathymetric data within a given buffer outside the study 201 

area maxima were included as needed to avoid edge effects in each terrain feature. Slope and 202 

total curvature were calculated using the terra.terrain (Hijmans, 2022) and spatialEco.curvature 203 

(Evans and Murphy, 2021) functions respectively. As these measures can be particularly sensitive 204 

to artifacts from the DEM models and projections, they were constructed at two resolutions – the 205 

native 200 m resolution, and after aggregating the bathymetry by 5-fold to 1 km x 1 km (termed 206 

“smoothed”). Smoothed layers were disaggregated back to a 200 m resolution to maintain 207 

uniformity across predictor layers. 208 

Benthic position index (BPI) and vector ruggedness measures (VRM) were each calculated using 209 

the MultiscaleDTM package at 3 different levels to capture both small local features and larger 210 

spatial variation in terrain  (Maxwell and Shobe, 2022; Ilich et al., 2021). Benthic position index 211 

was calculated as the difference between the depth of a focal cell and the mean of cells contained 212 

in annulus shaped window of 0.2 km to 5 km (BPI fine), 2 km to 25 km (BPI medium) and 4 km to 213 

100 km (BPI broad). Vector ruggedness was measured by considering variation in the depth 214 

surrounding each cell within square windows of width 1 km (VRM fine), 5.8 km (VRM medium) 215 

and 11.6 km (VRM broad). Due to extremely inhibitive computational times when calculating VRM 216 

broad, BPI medium and BPI broad at 200 m resolution, for these features the bathymetric layer 217 

was first aggregated to a 400 m resolution before feature calculation, and then disaggregated 218 

back to 200 m to maintain uniformity. 219 

 220 

2.31.2 3 Predictors describing the geographic setting 221 

The geographic setting of each cell was described by its distance to shore and rivers, its broad 222 

bioregional classification, and a proxy measure for exposure describing the degree of exposition 223 

vs. shelteredness (Table 1). The geographic setting features are also influenced by the values of 224 

surrounding pixels, therefore appropriate buffers were also applied to the processing of these 225 

layers to avoid edge effects. Distance to shore was measured by the Euclidian distance to the 226 

nearest land cell (indicated by an ‘NA’ value in the bathymetry layer), while bioregion was defined 227 
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by the Fisheries and Oceans Canada Federal Marine Bioregions classification (DFO, 2022). The 228 

bioregion polygons were edited to include all bathymetry cells and re-classified with an integer 229 

scale of 1 to 12 from east to west.  230 

CanVec is a digital cartographic reference product produced by Natural Resources Canada 231 

(NRCan) which includes the location of rivers across Canada at three mapped scales (NRCan, 232 

2019). Firstly, the coarsest scale data (1:15,000,000) was projected onto the CRS of the 233 

bathymetry layer and converted from polylines to a 2 km resolution raster. A 2 km buffer was 234 

added around each river to ensure overlap of river mouths with the bathymetry data. The resultant 235 

raster layer was resampled onto the bathymetry raster and the grid distance of each bathymetry 236 

cell to the nearest river-mouth cell was calculated using the terra.gridDist function (Hijmans, 237 

2022). This was then repeated for the medium scale (1:5,000,000) and fine scale (1:1,000,000) 238 

layers with each river raster overlayed with the previous coarser scale layer to ensure all rivers 239 

were included as the scales decreased. 240 

To approximate the exposure setting of each cell, data on the mean distance from shore of 241 

surrounding cells was used to construct a proxy value of fetch. Using the terra.focal function 242 

(Hijmans, 2022), the mean distance to shore of surrounding pixels was calculated in square 243 

windows of width 10 km, 20 km, 50 km, 100 km, 175 km and 250 km. Due to extremely inhibitive 244 

computational times when calculating these values at the two largest distances, the distance to 245 

shore layer was first aggregated to a 400 m resolution before focal calculations of these 246 

components, and then disaggregated back to 200 m to maintain uniformity. The maximum value 247 

in each layer was then set to the relative window size, and all data in each layer normalised 248 

between 0 and 1. The mean of all layers was then calculated which resulted in continuous 249 

measure of relative exposure/shelteredness ranging from 0 (highly sheltered) to 1 (highly 250 

exposed).  251 

 252 

2.31.3 4 Satellite derived predictors 253 

Using data from the Copernicus Marine Data Store, two layers were created approximating the 254 

mass of suspended particulate matter in surface waters and the orbital velocity of waves at the 255 

seafloor. Data on suspended particulate matter (SPM) in surface waters across Canada from 256 

2007 to 2019 was extracted in netCDF format from ACRI-ST (Sophia Antipolis, France) 257 

company’s global Bio-Geo-Chemical products at 4 km spatial resolution and a monthly temporal 258 

resolution (Copernicus, 2022b). The climatological mean across this entire period was then 259 
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calculated for each cell and the netCDF converted to a raster for further processing. Due to the 260 

complex nature of the Canadian coastline and the large dissimilarity disparity in spatial resolution 261 

of the satellite data product (4 km) and the layers created above (200 m), the satellite raster layer 262 

was allowed to extrapolate by 1 cell in its native resolution by taking the mean value of 263 

neighbouring pixels. This allowed better overlap of satellite layers with the study area maxima at 264 

the coastline but limited over-extrapolation. The raster layer was then reprojected to the equal 265 

area CRS and resampled onto the bathymetry layer using cubic-spline interpolation. Due to a lack 266 

of consistent SPM data recorded in the northern Arctic Basin, this portion of the data layer was 267 

manually removed within QGIS.  268 

To calculate the estimated orbital velocity of waves at the seafloor, two satellite wave data 269 

products were combined with the unified bathymetry layer as constructed above. Hourly data from 270 

2007 to 2019 on the significant wave height (Hs; VHM0) in meters, and primary wave swell mean 271 

period (Tz; VTM01_SW1) in seconds, were extracted from the 0.2° resolution Global Ocean Wave 272 

Reanalysis (WAVERYS) produced by Mercator Océan International (Copernicus, 2022c) and the 273 

3 km resolution Arctic Ocean Wave Hindcast produced by MET Norway (Copernicus, 2022a). All 274 

data were processed as the SPM data layer (except for lack of removal of the Arctic basin data), 275 

and converted to an estimate of orbital wave velocity at the seafloor (Urms; measured in m s-1) 276 

using the following equation from Soulsby (2006); 277 

𝑈rms = (
𝐻s

4
) (

𝑔

𝑑
)

0.5
exp {− [(

3.65

𝑇z
) (

𝑑

𝑔
)

0.5
]

2.1

}          (1) 278 

where g is the acceleration due to gravity (9.806 m/s2) and d is the water depth (m), taken as the 279 

unified bathymetry layer multiplied by -1, and all values less than 1 meter depth rounded up to 280 

the nearest meter (as needed for the above calculation). The resultant Arctic orbital velocity data 281 

layer was then bias corrected to the global orbital velocity data layer utilising the qmap package 282 

with quantile mapping using a smoothing spline (Gudmundsson et al., 2012). Finally, the two data 283 

layers were overlayed with the regional Arctic data taking priority over the global data where 284 

available. 285 

 286 

2.31.4 5 Ocean circulation model predictors 287 

To incorporate best available regional evidence, Ddata on the mean surface ice cover, seafloor 288 

salinity, temperature and current velocity was collated from three different ocean circulation model 289 

products covering different regions of Canada (Table 1; see Appendix A3 for further details). 290 
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ANHA12 is a regional  configuration of the NEMO ocean and sea-ice model (Madec et al., 1998) 291 

created at the University of Alberta, covering the Arctic and northern Hemisphere Atlantic at 5 day 292 

temporal resolution, a curvilinear 1/12th degree horizontal resolution ranging from 1.93 km in the 293 

Arctic to 9.3 km at the equator, and 50 vertical levels (Hu et al., 2019). The British Columbia 294 

continental margin (BCCM) circulation model created by Fisheries and Oceans Canada (DFO) 295 

covers the entire Canadian Pacific coast and extends approximately 400 km offshore. It has a 296 

uniform horizontal resolution of 3 km, 42 vertical levels and a 3 day temporal resolution (Peña et 297 

al., 2019; Masson and Fine, 2012). As the BCCM model has higher uncertainty in nearshore and 298 

enclosed environments due to its relatively coarse resolution, data was also extracted from the 299 

Salish Sea Cast ERDDAP data server. Similarly to the ANHA12 model, the Salish Sea Cast is a 300 

configuration of the NEMO circulation model developed by a consortium of Canadian Universities 301 

and government agencies and extends from Juan de Fuca Strait to Puget Sound to Johnstone 302 

Strait at 500 m horizontal resolution, 40 vertical layers and hourly temporal resolution (Soontiens 303 

and Allen, 2017; Soontiens et al., 2016). For further details on all these models, see relevant cited 304 

references. It should be noted that many of these ocean circulation models contain high 305 

uncertainty in nearshore areas. However, they are expected to be greatly improved when 306 

compared to global circulation model products which are frequently used in this sort of predictive 307 

mapping work (e.g. Atwood et al., 2020; Lee et al., 2019; Assis et al., 2018).  308 

 Three-dimensional data for salinity, temperature, u-velocity (eastward) and v-velocity (northward) 309 

was were extracted from each model and the climatological mean across all time points between 310 

2007-2019 was calculated. For each horizontal cell, data were only retained from the lowest 311 

vertical cell within a given position (i.e. the cell which contacts the seafloor) value was taken as 312 

the lowest vertical cell within a given position. Individual model outputs were then converted to 313 

spatial point data using the cell centroid positions and transformed to the unified equal area CRS. 314 

Point data was then converted to rasters with the respective resolution of each model, and the 315 

mean value taken if two points from the same model lay within a single raster cell as an artifact 316 

of reprojection. As the Arctic-Atlantic model (ANHA12) model has a varying horizontal resolution, 317 

point data were rasterized using the smallest resolution of the original model (1.6 km) and then 318 

interpolated using the gstat package  (Gräler et al., 2016) and a nearest neighbour interpolation 319 

method (including cells for land within the original model grid to supress extrapolation). For all 320 

three models, mean current velocity was then calculated as the root mean square of the u-velocity 321 

and v-velocity values in each cell. Finally, as carried out for the satellite data layers, each raster 322 

was allowed to extrapolate by one cell in its native resolution (or for the case of the ANHA12 323 

model -– its median resolution) and resampled onto the 200 m bathymetry grid using cubic-spline 324 
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interpolation. The three rasters were then combined with data only being assigned to the spatial 325 

extent of the respective bioregions as defined in Section 2.1.3.; the Salish Sea Cast data only 326 

being applied to cells that lay within the Salish Sea bioregion (as calculated in Section 2.3.2), the 327 

BCCM model outputs only being assigned to other bioregions within the Pacific and ANHA12 328 

used for all Atlantic and Arctic regions.  Although this means that different model products were 329 

used to measure the same predictor variable in different regions, which can create biases, the 330 

bioregion predictor variable was included as a co-variate in all models which included the ocean 331 

circulation variables, thus allowing for interactive effects and accounting for differences in 332 

circulation model structures. Combining different models can also create edge-effects, however 333 

the Arctic-Atlantic model is entirely spatially distinct so contains no common edges with other 334 

models. The only significant edge between the remaining two models lies at the mouth of the 335 

Juan de Fuca Strait and minimal disparity was seen (with the other common edge occurring in 336 

the narrows of Johnson Strait). 337 

Predictor layers describing the mean concentration and thickness of sea ice for the same temporal 338 

period across the Arctic and Atlantic were also derived from the ANHA12 model. Processing of 339 

model data and spatial rasters was conducted as above, except a value of zero ice concentration 340 

and thickness was applied to all cells across the British Columbia Pacific bioregions.   341 

 342 

2.31.5 6 Global model predictors 343 

Four additional predictor variables were derived from Bio-ORACLE version 2.2 -– a global unified 344 

marine environmental data-layers collation which gives climatological mean values at 1/12th 345 

degree resolution, for 2000-2014 and a wide-range of environmental variables (Assis et al., 2018). 346 

Although these datasets are expected to be of lower accuracyof lower resolution when compared 347 

to the regional data used above, based on previous research there were some additional variables 348 

not available from the regional circulation models which were considered potentially important for 349 

carbon modelling (Diesing et al., 2021; Atwood et al., 2020). Three described the oceanographic 350 

chemistry/biology – namely primary production and chlorophyll content of the surface water 351 

column, and dissolved oxygen concentration at the seafloor. The fourth predictor was an 352 

additional measure of current velocity (maximum current velocity), which was selected on top of 353 

the previously derived mean values because current velocity has been identified as a particularly 354 

strong predictor within previous seafloor sediment composition and carbon content predictive 355 

mapping studies (Gregr et al., 2021; Diesing et al., 2021; Mitchell et al., 2019). Raster data were 356 
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downloaded from the Bio-ORACLE website and processed as the satellite data layers (i.e. 357 

allowed to extrapolate by 1 cell in its native resolution by taking the mean value of neighbouring 358 

pixels, reprojected to the unified equal area CRS and resampled to the unified 200 m grid using 359 

cubic-spline interpolation). 360 

 361 

2.31.6 7 Final collation of predictor variables 362 

The resulting 28 predictor variable raster layers were combined into a single raster stack and any 363 

cells containing NA values removed, leaving only those cells which contained values across all 364 

predictor layers. The remaining cells covered 92.3% of the subtidal zone of the Canadian EEZ 365 

and delineated the maximum potential modelling area (Fig. 1). The final predictor variable layers 366 

are shown in the Supplement.  367 

 368 

2.4 2 Sediment composition mud content data 369 

Sediment composition point data were extracted from two sources. Firstly, all data were exported 370 

from the NRCan Expedition Database on 11th November 2022. This data repository contains 371 

information related to marine and coastal field surveys conducted by or on behalf of the Geological 372 

Survey of Canada from the 1950s to present, which deployed sampling methods including piston 373 

cores and grab samples. Data were also extracted from a recent synthesis of grain size 374 

distribution measurements from the Canadian Pacific seafloor (1951-2017), compiled by 375 

Geological Survey Of Canada and NRCan (Enkin, 2023). Although there are some duplications 376 

between these two datasets, these are accounted for in the proceeding pre-processing steps. In 377 

both sources, grain size data is reported as the percentage content of mud (sometimes separated 378 

into silt and clay), sand and gravel within each sample. Due to modern developments in grain size 379 

analyses (e.g. laser diffraction) older samples may have lower measurement accuracy; however, 380 

due to the relatively coarse metric being used in this study (%mud/sand/gravel) and the 381 

occurrence of a number of largescale geological surveys occurring during the 1960s, we chose 382 

to retain data from 1960 onwards. Where sampling year was not recorded within the database, 383 

the date was inferred from the expedition code or from expedition metadata. The sampling method 384 

and depth of the sediment from which the sample/sub-sample originates are also predominantly 385 

recorded within the database. Where sediment depth was absent, but the sampling method was 386 

noted as “grab” or “other”, the penetration depth was assumed to be 10 cm (a commonly assumed 387 
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penetration of standard sediment sampling devices such as Van Veen Grabs and Day Grabs). 388 

Empirical point data on seabed sediment mud content across the Canadian EEZ were extracted 389 

from two sources (Enkin, 2023; NRCan, 2022) (see Appendix A4 for further information). Samples 390 

Data were only retained if they originated from within the top 30 cm of the sediment and had 391 

associated geographic position information (latitude-longitude co-ordinates; lat-lon). Data were 392 

further filtered by excluding those where the sum of mud, sand and gravel content was greater 393 

than 102% and lower than 98% - to allow for rounding errors but to exclude invalid data. Data 394 

were also excluded if samples/sub-samples were not present from at least the top 1 cm to 5 cm 395 

below the sediment surface within a given sampling event. After data filtering, the mean 396 

percentage of mud was taken across replicates/sub-samples, leaving a single value for each 397 

sampling event. We chose to concentrate on sediment mud content as this has previously been 398 

identified as the key sediment composition component from a number of related carbon mapping 399 

studies (Smeaton et al., 2021; Diesing et al., 2017, 2021; Pace et al., 2021; Wilson et al., 2018). 400 

Finally, mud content data were projected onto the CRS of the predictor layers and only retained 401 

where overlap occurred. This led to a final dataset of 19,730 samples (Fig. A1B1). 402 

 403 

2.5 3 Organic carbon content data 404 

2.53.1 Organic carbon data collation and extraction 405 

Data on the percent organic carbon content within dried surface sediments (%OC) was collected 406 

from three different structured searches. Firstly, a systematic literature review was conducted 407 

through Web of Science and Scopus. Both searches were conducted on the 21st September 2022. 408 

Within Web of Science, its “Core collection” was searched via the field “Topic”, which examines 409 

a paper’s title, abstract, author, keywords and “keywords plus”. Within Scopus, the search was 410 

run via the field “Title-Abs-Key”, which scans a paper’s title, abstract and keywords. Within both 411 

databases the same search string was used: 412 

(“organic carbon” OR “organic matter” OR “organic content” OR TOC OR TOM) AND (coast* OR 413 

sea* OR ocean* OR estuar* OR marine OR gulf) AND (sediment* OR mud* OR sand* OR clay* 414 

OR silt* OR gravel* OR seabed) AND Canad*    415 

All articles identified from the searches were exported into a single Zotero library and duplicates 416 

removed, leaving 1,581 results. Screening was conducted via a hierarchical process that first 417 

assessed the title, then abstract and finally full text. At each stage an article was assessed against 418 
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the inclusion criteria described below, with those considered relevant or of unclear relevance 419 

passing to the next level of assessment. 420 

The inclusion criteria were defined as: 1) Study conducted on subtidal seabed sediments (those 421 

concerning rock, shale or fauna were not included); 2) Physical samples collected using a seabed 422 

sediment sampling device (e.g. cores or grabs -– sediment-trap samples were not included); 3) 423 

Samples from within the Canadian EEZ; 4) Studies concerning the chemical composition of the 424 

sediment; 5) Organic carbon content (%) directly measured after separation of organic and 425 

inorganic components (e.g. by acidification). After the title screening stage 242 articles remained, 426 

followed by 123 remaining after abstract screening, and a final set of 49 articles left for data 427 

extraction after review of the full text. Four additional primary literature papers were added based 428 

on expert advice. This included two large data collation studies, one concentrating on the Arctic 429 

(CASCADE; Martens et al., 2021) and one having global scope (MOSAIC v2; Paradis et al., 2023) 430 

The second structured search was conducted on the Canadian Federal Science Libraries Network 431 

-– a repository which contains departmental publications, reports and data sets from seven 432 

science-based Canadian government departments. The search was carried out on the 7th 433 

November 2022 using the same search string as for the primary literature and querying all fields. 434 

The search led to only 178 results and therefore each result was assessed individually against 435 

the selection criteria first by their abstract and then by a full text assessment, leading to data 436 

extraction from 15 reports. The third search was carried out on the 15th November 2022 using 437 

GEOSCAN -– the NRCan bibliographic database for scientific publications. As GEOSCAN does 438 

not allow search strings containing “AND”, the search was conducted on all fields using only the 439 

terms: “organic carbon” OR “TOC” OR “OC”; leading to 655 search results. The metadata of all 440 

entries was exported as a text file and further refined using a secondary manual search for the 441 

remainder of the search terms listed above within Microsoft Excel. This led to a final set of 233 442 

results, 178 which were excluded by screening of the title, and a further 51 excluded by abstract 443 

or full text screening, leaving 4 reports for data extraction.  444 

In total, these three structured searches of primary literature and government reports led to 72 445 

individual entries publications for data extraction. As well as data on the %OC, metadata extracted 446 

included the maximum depth of sample into the sediment (cm), geographic position (lat-lon), 447 

sample ID, year of sampling (approximated as publication year where not clearly stated), sampling 448 

method (e.g. multicorer, Van Veen grab) and water depth of sample site (where recorded). Data 449 

were extracted from data tables or supplementary databases when available, otherwise the 450 

PlotDigitizer online application was used to extract data from graphical products. Where possible 451 
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data were extracted on the %OC in different depth-layer sub-samples through a single core-452 

sample up to 50 cm, otherwise a single mean value was taken. 453 

Additional to data collated through the structured searches, %OC data were also extracted from 454 

PANGAEA -– a global data repository for geographic earth-system data (PANGAEA®, 2022). A 455 

data search across all topics was conducted on the 25th October 2022 using the same search 456 

terms as for the structured search, except for removal of the term “Canad*”.  The geographic 457 

extent of the results was instead delineated using the spatial tool within PANGAEA which allows 458 

results to be filtered by the geographic co-ordinates of a square/rectangular extent. Overall, this 459 

led to a total of 1,489 potential datasets. All relevant data within these datasets were exported 460 

using the Data Warehouse Download tool within Pangaea. Based on expert knowledge, two 461 

additional PANGAEA datasets were added to the output from published global %OC data-462 

syntheses (Atwood et al., 2020; Seiter et al., 2004). Lastly, where the date of the sample was not 463 

recorded, the sampling year was manually added by further exploring the metadata or cited 464 

studies. To align the PANGAEA data with the systematic review data, PANGAEA data points 465 

were excluded if: 1) they lacked data on %OC; 2) they lacked metadata on the depth of a sample 466 

within the sediment; 3) if the sample originated from greater than 50 cm below the sediment 467 

surface; or 4) metadata on the elevation/water depth indicated sampling above the subtidal. 468 

Additionally, metadata within PANGAEA were coalesced where necessary (due to different 469 

names being given to the same data type), and mean values of %OC taken if replicates were 470 

measured within a single sub-sample. 471 

All organic carbon data were converted into spatial point data, transformed to the unified equal 472 

area CRS and masked by the predictor variable’s maximum model area to leave only overlapping 473 

data. Additionally, values were only retained from the sampling year 1959 and onwards. The extra 474 

year was included when compared to the sediment compositionmud content data because there 475 

were some widescale surveys undertaken across the Labrador Sea in 1959 which was lacking 476 

from any additional %OC datasets. While this large temporal extent may add uncertainty in 477 

relation to the quality and uniformity of the response data, similar extents have been used by 478 

previous global mapping studies (Atwood et al., 2020; Lee et al., 2019; Seiter et al., 2004) and, 479 

72% of the %OC data within this study were sampled after 1980 and 55% after 2000. The larger 480 

temporal extent also allows for the inclusion of a larger frequency and wider spatial extent of data, 481 

therefore potentially improving accuracy robustness in of our spatial predictive modelsons. In total 482 

our %OC dataset contained 2,518 point-samples (Fig. A2B2) and 3,308 sub-samples across 483 

different depth layers within cores. 484 
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  485 

2.53.2 Organic carbon data processing 486 

Due to commonly adopted uneven sampling distributions within single core samples (i.e. more 487 

sub-samples towards the top of the core), where sub-sample data were present on the %OC in 488 

different depth-layers these were converted into weighted cumulative means assuming linear 489 

distribution between sub-samples. Additionally, there was large variation in the maximum 490 

sediment depth of point-samples, ranging from %OC measures from only the top 1 cm of 491 

sediment, to values up to the chosen data extraction limit of 50 cm deep. We chose to standardise 492 

all samples to 30 cm depth as only 6% of the point-samples covered sediment depths below this 493 

layer and because 30 cm is a commonly suggested carbon stock accounting depth for terrestrial 494 

soil and marine sediment habitats in both carbon accrediting methodologies and greenhouse gas 495 

inventories (VERRA, 2020; IPPC, 2019).  496 

To estimate the cumulative mean of %OC at 30 cm for all individual point-samples, we created a 497 

transfer function using a generalised additive mixed model (GAMM) smoothing spline. It is 498 

generally expected that the %OC in marine sediments decreases with depth within the seafloor 499 

(Middelburg, 2018); we used the collated data above to approximate a mean decay function trend 500 

for this study. Firstly, only those data that contained at least five sub-sampled depth layers were 501 

retained for modelling as fitting distributions to those with fewer points would likely be invalid. This 502 

left 183 unique samples with 2,640 weighted cumulative mean sub-samples for model 503 

construction. Cumulative mean %OC data were arcsin transformed (arcsin{√ [%OC/100]}; a 504 

commonly adopted transformation for percentage data), and a simple GAMM model applied with 505 

sub-sample sediment depth as the fixed factor modelled with a cubic regression spline and 506 

sample ID as the random factor. The GAMM model was fitted using the mgcv package; a scaled-507 

t distribution family was used for heavy tailed Gaussian-like data, the number of basis dimensions 508 

was set to 20 and smoothing parameter estimation was conducted by Restricted Maximum 509 

Likelihood (REML) (Wood et al., 2016). Model validation was carried out using visual assessment 510 

of diagnostic plots of residuals, as well as observed vs fitted values. Significance of the sampling 511 

depth smoothing spline was assessed by an analysis of variance (ANOVA) with a chi-squared 512 

test comparing the full GAMM model to a null GAMM model containing only the random factor 513 

and the intercept (see Appendix B C for results). The difference between estimated deviance 514 

explained in the full and null models was also used to approximate the variance explained by the 515 

fixed and random factors. To create a transfer function, the cumulative %OC was predicted from 516 

the mean fixed effects of the GAMM model at sediment depths from 0 – 30 cm at 0.1 cm intervals. 517 
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The predictions were then back-transformed to percentage data and the cumulative mean %OC 518 

at each depth was converted to an inverse proportion of the mean acrossat 30 cm. Overall, this 519 

gave an estimated proportional conversion factor from the cumulative mean at any given depth 520 

to an expected cumulative mean at across 30 cm (Appendix BC).  521 

All point-sample data from PANGAEA and the systematic review were combined, corrected to 522 

weighted cumulative means where sub-samples were present, checked for duplication, and 523 

unified to a mean %OC value of the top 30 cm of sediment using the above transfer function. One 524 

outlier was removed from the dataset as it was reported to have a carbon content twice that of 525 

any other sample within the dataset. Finally, for further analyses %OC data were arcsin 526 

transformed due to a highly right skewed distribution and its application within similar modelling 527 

exercises (Smeaton et al., 2021; Diesing et al., 2017). 528 

 529 

 530 

2.6 4 Final model domain selection 531 

After visual assessment of the coverage of both the sediment compositionmud content and %OC 532 

data, the final model domain was limited to a water depth of 2,500 meters. This depth limit (as 533 

delineated by the bathymetry predictor layer) encompassed 99.95% of sediment compositionmud 534 

content point data (Fig. A1B1) and 99.3% of %OC data (Fig. A2B2). The predictor layer raster 535 

stack was filtered with all cells deeper than 2,500 meters excluded from the model domain. This 536 

final model domain covers 4,489,235 km2 which is 78.4% of the EEZ or 92.6% of the seafloor 537 

area above 2,500 m (Fig. 1).  538 

 539 

2.7 Sediment mass accumulation rate data 540 

From preliminary exploratory research it was determined that there would be insufficient data on 541 

organic carbon accumulation rates, or sediment mass accumulation rates, to undertake a 542 

Canada-specific data synthesis. We therefore chose to downscale a recent global spatial 543 

predictive map of seafloor sediment mass accumulation rates (Restreppo et al., 2021). To 544 

approximate a sample of values across the model domain in this study the global mass 545 

accumulation rate data (MAR; log10{g cm-2 yr-1}) netCDF was converted to a raster and masked 546 

by the coverage of the model domain. The raster layer was then converted to spatial point data 547 

by the location of cell centroids, and a stratified-random sample of 10% of the data was taken. 548 
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Data was stratified by assigning the x-coordinate, y-coordinate and mass accumulation rate 549 

values to decile bins; and a random sample of 10% of values taken within each unique 550 

combination of the three-way binning. This resulted in 12,660 point estimates of MAR across the 551 

model domain, which were then reprojected to the unified equal area CRS for further analyses 552 

(Fig. A3).  553 

 554 

2.8 5 Random forest modelling 555 

For predictive mapping we adopted random forest machine learning techniques due to their 556 

flexibility regarding violations of traditional statistical assumptions, ability to handle a range of data 557 

types and predictor variables and elucidate both drivers of model response and predictions of 558 

uncertainty, as well as their successful application in previous similar modelling tasks (Diesing et 559 

al., 2017, 2021; Pace et al., 2021; Atwood et al., 2020; Wilson et al., 2018). Contemporary 560 

research in spatial machine learning techniques have highlighted that robust spatially-explicit 561 

cross-validation (CV) strategies and predictor variable selection processes are essential to 562 

calculate valid performance metrics, limit overfitting and construct reliable spatial predictions 563 

(Zhang et al., 2023; Ludwig et al., 2023; Meyer and Pebesma, 2022; Meyer et al., 2019). We 564 

discuss the incorporation of these processes into our modelling framework below.  565 

Three response variables (mMud content and, organic carbon content (%OC) and MAR) were 566 

both modelled using the following framework. Firstly, each response variable was overlain onto 567 

the predictor variable grid and the mean values were taken if more than one data-point fell within 568 

a single raster cell. All predictor variable data were then extracted for each response dataset; 569 

however, the three biological/biochemical predictor variables (primary production, chlorophyll 570 

concentration and dissolved oxygen) were only used within the %OC model as they are not 571 

expected to drive variation in physical sediment properties (Restreppo et al., 2021; Gregr et al., 572 

2021; Graw et al., 2021; Mitchell et al., 2019).  573 

Contemporary research in spatial machine learning techniques have highlighted that robust 574 

spatially-explicit cross-validation (CV) strategies and predictor variable selection processes are 575 

essential to calculate valid performance metrics, limit overfitting and construct reliable spatial 576 

predictions (Zhang et al., 2023; Ludwig et al., 2023; Meyer and Pebesma, 2022; Meyer et al., 577 

2019). We discuss the incorporation of these processes into our modelling framework 578 

belowDetails of the methods used to ensure appropriate cross-validation design and feature 579 

selection are discussed in Appendix A5.  580 



22 
 

For each response variable, the spatialsample package (Silge and Mahoney, 2023) was used to 581 

construct a variety of spatial CV data-fold structures (splitting the data into different analysis and 582 

assessment sets) and the validity of each structure was visually assessed using the 583 

CAST.plot_geodist function (Meyer et al., 2023). This function creates density plots of nearest 584 

neighbour distances in multivariate predictor space between all response data as well as between 585 

response data and a random sample of prediction locations, and between analysis and 586 

assessment data within CV folds (see Appendix C). The suitability of a given CV structure to be 587 

representative of estimating map accuracy can be determined by visually assessing the density 588 

plots and finding the analysis-to-assessment CV-distance curve being closely aligned to the 589 

sample-to-prediction density curve (see Appendix D; Ludwig et al., 2023; Meyer and Pebesma, 590 

2022). Contrastingly, if the sample-to-sample distance curve closely overlays the sample-to-591 

prediction curve, this indicates that traditional random cross-validation strategies are likely to be 592 

appropriate (see Appendix D; Ludwig et al., 2023). To approximate sample-to-prediction 593 

distances, the sample size number within plot_geodist was set to select 5,000 random samples 594 

across the model domain. Further, as the spatial distribution of data is a key consideration to 595 

ensure robust cross-validation (Ludwig et al., 2023; Meyer and Pebesma, 2022), the x- and y-596 

coordinates of each data point were also included as predictor variables in the plot_geodist 597 

calculations. 598 

For the mud content data, a spatial kmeans clustering CV structure was chosen as the response 599 

data had good coverage of the model domain, contained a large number of data points, and 600 

showed relatively strong spatial clustering (Fig. A1). A range of options in the number of kmeans 601 

clusters were tested, with 35 being determined as the optimal number and each cluster being 602 

assigned to its own CV fold (Fig. C1). Through visual assessment of the density plots, it was 603 

identified that the kmeans CV structure was somewhat mis-aligned from response-to-prediction 604 

distances, with the CV distances being overly conservative at including near-distance 605 

comparisons (Fig. C1). We therefore used a partially repeated CV strategy, with a small number 606 

of randomly selected data-points added to the assessment set in each kmeans spatial-CV fold 607 

(1% of mud content data randomly sampled at each fold without replacement) (Fig. C2). As the 608 

%OC response dataset was relatively small and spatially dispersed (Fig. A2), we used a spatial 609 

block CV strategy in place of the kmeans clustering to avoid clusters containing highly spatially 610 

dispersed data. We chose to use hexagonal shaped blocks, random assignment of blocks to folds, 611 

and the same number of CV folds as for the mud content data (v = 35) - both to maintain uniformity 612 

and because varying the fold-number did not significantly influence the density plots. Instead, the 613 

diameter of the spatial blocks was altered, and an optimal block size of 100 km identified using 614 
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the plot_geodist function (Fig. C3). For both response variables, following identification of an 615 

appropriate CV35-fold spatial CV structure, a single fold was assigned held-back as testing data, 616 

with all other data retained for model fittingtraining. To ensure an absence of duplication between 617 

the training and testing data, Following the training-testing split, the 34 spatial CV folds were 618 

reconstructed on the training data (i.e. all training data assigned to one of 34 validation sets). on 619 

the training data to ensure an absence of duplication. For the MAR data, the density plots 620 

indicated that traditional random cross-validation would be a valid approach (Fig. C4), which was 621 

expected as the response data were a stratified-random sample across the model domain (Fig. 622 

A3). The random CV folds were stratified by the MAR response value to ensure a relatively even 623 

distribution across CV folds. A 10% stratified-random sample was first assigned as the test-set 624 

and random CV folds assigned to the remaining training data.  625 

Three random forest models were constructed (mud content, OC content and MAR), each 626 

following the same modelling protocol. Firstly, tUsing these CV folds, the CAST.ffs function 627 

(Meyer et al., 2023) was then used to run a spatially-explicit forward predictor variable selection 628 

processes with appropriate spatial considerations (see Appendix A5 for further information). The 629 

function fits a model with all combinations of two-way predictors, selects the best model based on 630 

a given metric, and then increases the number of predictors by one, testing all remaining 631 

variables. This iteratively continues with the process stopping if none of the tested variables 632 

increases the performance when compared to the best previous model with “n-1” predictors. The 633 

function also allows models to be fit separately across all individual CV folds, therefore 634 

incorporating appropriate spatial considerations into the feature selection process. Due to the 635 

large number of variables within this study, and the relatively large datasets, this process was 636 

very computationally expensive. We therefore chose to adapt the function to initiate forward 637 

variable selection after a priori identification of the first two predictor variables. These variables 638 

were identified by constructing a basic random forest model with all training data and predictor 639 

variables, and the hyperparameters mtry (the number of variables to randomly sample as 640 

candidates at each split), min_n (the number of observations needed to keep splitting nodes) and 641 

trees (the number of random forest trees to construct and take mean predictions across) set to 2, 642 

5 and 1,000 respectively. Variable importance was estimated using permutation, and the two 643 

predictor variables with largest importance selected. The ffs function was then run starting with 644 

the two pre-selected variables (see Fig. 3, 6 & 9) and performance of each iteration assessed on 645 

the root mean squared error (RMSE) of predictions across all CV folds.  646 
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Following variable selection, hyperparameter tuning was conducted on the hyperparameters mtry 647 

(the number of variables to randomly sample as candidates at each split) and min_n min_n (the 648 

number of observations needed to keep splitting nodes);hyperparameters, with the number of 649 

trees hyperparameter (the number of random forest trees to construct and take mean predictions 650 

across) set to 1,000 (Probst et al., 2019). 11 potential combinations of hyperparameters were 651 

selected using a semi-random Latin hypercube grid (Kuhn and Silge, 2023; Kuhn and Wickham, 652 

2020). The tuning process fitted individual separate models across all CV folds and 653 

hyperparameter combinations , each with 11 combinations of hyperparameters (i.e. 34 CV folds 654 

x 11 hyperparameter options = a total of 374 models) which were selected using a semi-random 655 

Latin hypercube grid(Kuhn and Silge, 2023; Kuhn and Wickham, 2020). The performance of each 656 

of the 11 hyperparameter combinations was assessed based by on calculating the root mean 657 

squared error (RMSE) of on predictions of the validation data across all CV folds, with the optimal 658 

hyperparameter combination selected as that with the lowest RMSE s(Meyer et al., 2019, 2023). 659 

After selection of the best performing hyperparameter combination, a single last-fit model fit was 660 

conducted constructed on the entire training set and evaluated on the held-back test set (Kuhn 661 

and Silge, 2023; Kuhn and Wickham, 2020), with the absence of overfitting determined by the 662 

RMSE and R2 of the last-fit model falling within the range of those found across CV folds with 663 

optimal hyperparameters. Overall Final model performance metrics (RMSE and R2) (RMSE and 664 

R2) were then calculated using the all predictions of validation data across from all CV folds (with 665 

optimal hyperparameters) folds with optimal hyperparameters and from predictions of the testing 666 

data from the last-fit model (Meyer et al., 2019, 2023).; while predictor variable importance was 667 

calculated by fitting an additional model across all training data using optimal tuning parameters 668 

and the importance calculated through permutation(for further details see Kuhn and Silge, 2023; 669 

Wright et al., 2016). Accumulated local effects (ALE) plots were produced for the six predictor 670 

variables with highest importance in each model using the iml package (Molnar et al., 2018) to 671 

give a visual representation of the average effect of predictors on model prediction outcomes. 672 

Finally, mean model pPredicted valuesredictions were then calculated across the entire model 673 

domain using the last-fit model and the predictor variable raster stack (Kuhn and Silge, 2023; 674 

Kuhn and Wickham, 2020), and cell-specific estimation of uncertainty was calculated using 675 

standard error on out-of-bag predictions using infinitesimal jack-knife for bagging (Roy and 676 

Larocque, 2020; Wager et al., 2014). Due to computational restraints when calculating predictions 677 

across the entire model domain (which contains 112,230,871 cells), data the predictor variable 678 

raster stack werewas split into 150 non-overlapping partitions by random sampling es (without 679 

replacement) and both prediction and standard error estimates made serially on each 680 
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splitpartition. . All predictions were then merged to create a raster layer covering the entire model 681 

domain (although edge effects were not expected between partitions, random sampling without 682 

replacement across the entire domain was chosen to ensure its absence)..  683 

A cell-specific approximation of the upper and lower bounds of the 95% confidence interval (CI) 684 

was calculated by adding/subtracting the cell-specific standard error estimates, each multiplied 685 

by 1.96, from the mean predictions and then back transformed where needed (Kuhn and 686 

Wickham, 2020; Wager et al., 2014). After calculation, CI values were corrected where necessary 687 

-– being bounded by 0, and where applicable also bounded by 100. The resulting three raster 688 

layers from the mud content model were also used as available additional predictor variables 689 

when constructing the random forest models for %OC and MAR as outlined above (Fig. 2). 690 

Although this gives the potential for data leakage if mud content and %OC data were from the 691 

same samples, we found only 31 occurrences (1.3% of OC samples) where direct spatial overlap 692 

occurred, and therefore do not consider that significant data leakage is present and no impact on 693 

variable importance or model performance calculations will be seen. Finally, a measure of relative 694 

predictor variable importance was calculated by fitting an additional single random forest model 695 

on all training data using optimal hyperparameters, and the predictor importance calculated on 696 

out-of-bag data through permutation of predictor variable values (for further details see Kuhn and 697 

Silge, 2023; Wright et al., 2016). Accumulated local effects (ALE) plots for the last-fit model were 698 

produced for the six predictor variables with highest importance in each model using the iml 699 

package (Molnar et al., 2018) to give a visual representation of the average effect of predictors 700 

on model prediction outcomes.  701 

 702 

2.9 6 Estimating sediment dry bulk density 703 

To An estimate for the dry bulk density of the sediment across the model domain (ρD – the mass 704 

of dried sediment per unit volume within the seafloor; g cm-3) was constructed across the model 705 

domain based on the  outputs predictions of mud content from the random forest model s for mud 706 

and organic carbon content were combined with a variety of published transfer functions and 707 

global modelled products (Fig. 2). We identified three published functions which describe the 708 

relationship between mud content and porosity Three of the transfer functions calculate the 709 

porosity of the sediment (Φ; the proportion of sediment volume which is water) in seabed 710 

sediments. based on the predicted mud content using tThe following equations,  are respectively 711 

from Jenkins (2005), Diesing et al. (2017) and Pace et al. (2021):  712 
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𝛷 =  0.3805. 𝑚𝑢𝑑 + 0.42071          (2) 713 

𝛷 =  0.4013. 𝑚𝑢𝑑 + 0.4265          (3) 714 

𝛷 =  10^{0.138. log10(𝑚𝑢𝑑) − 0.486}         (4) 715 

Due to each of these equations being approximations of the relationship between mud content 716 

and Φ, we chose to take the mean response. In all cases equations mud representsis the 717 

predicted mean mud content values across the model domain as calculated above, each 718 

expressed as a decimal proportion. For Equation 4, mud content was rounded up to the nearest 719 

0.01 as lower values give unrealistic porosity estimates. All sSediment porosity estimates can 720 

were then be converted to an estimate of dry bulk density using the following equation:  721 

ρD = ρS(1 −  𝛷)            (5) 722 

where ρS is the grain density of seabed sediments in g cm-3, which was set at the frequently used 723 

constant approximation of 2.65 (Diesing et al., 2017, 2021; e.g. Pace et al., 2021; Lee et al., 2019; 724 

Wilson et al., 2018; Kuzyk et al., 2017). Although this standard approximation of grain density is 725 

not ideal, the variation under different environmental settings is generally found to be small when 726 

compared to differences in %OC and porosity, therefore the values of grain density are not 727 

expected to strongly drive variation in organic carbon density (Atwood et al., 2020; Lee et al., 728 

2019; Middelburg, 2019; Martin et al., 2015; Berner, 1982).  729 

To incorporate uncertainty from our mud content predictions, estimates of dry bulk density were 730 

also calculated from the cell-specific predictions of the lower and upper bounds of the 95% CI of 731 

mud content. We used these derived lower and upper bounds of dry bulk density estimates as 732 

best available approximations of uncertainty around the dry bulk density mean estimate values. 733 

Equivalent approaches to estimating uncertainty have been used in other seabed sediment 734 

carbon mapping studies (e.g. Diesing et al., 2017, 2023; Lee et al., 2019). A forth transfer function 735 

from Atwood et al. (2020) calculates an estimate of dry bulk density directly from %OC using the 736 

following equation: 737 

ρD = 0.861.          (6) 738 

For this equation, carbon content as predicted above was rounded up to the nearest 0.1% as 739 

lower values give unrealistic dry bulk density estimates. For each of the four transfer functions 740 

(Equations 2,3,4 and 6) the value was calculated using the mean prediction as well as the upper 741 

and lower confidence interval bounds of mud content and %OC respectively, resulting in three 742 

raster layers from each function.  743 
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Two further estimates of dry bulk density were calculated using products from global predictive 744 

models, both at 5 arc min spatial resolutions. Martin et al. (2015) created a predictive map of 745 

seabed sediment porosity, while Graw et al. (2021) estimate sediment wet bulk density (ρW) 746 

across the global seafloor. Both raster layers were processed as the satellite predictor layers to 747 

align with the model domain. The resulting porosity raster layer was converted to dry bulk density 748 

using Equation 5, while the wet bulk density layer was initially converted to porosity using the 749 

equation: 750 

𝛷 =            (7) 751 

where ρSW is the density of seawater estimated as 1.024 g/cm3. In total this led to 14 dry bulk 752 

density estimates across the model domain. A final mean value and standard error was calculated 753 

for each cell, and the upper and lower 95% confidence interval bounds calculated using the 754 

standard error as above.  755 

 756 

2.10 7 Estimating organic carbon standing stock and accumulation rates 757 

The organic carbon density (g cm-3) is calculated by multiplying the %OC (expressed as a decimal 758 

proportion) by the sediment dry bulk density ; while organic carbon accumulation rates (g cm-2 yr-759 

1) are calculated by multiplying MAR by %OC (Fig. 2). For the final calculations, of both density 760 

and accumulation the respective means, upper and lower CI uncertainty bounds were multiplied 761 

together to incorporate uncertainty from both components. These compound uncertainties were 762 

used as best available approximations of the lower and upper bounds of uncertainty around the 763 

estimates of mean organic carbon density (akin to Diesing et al., 2017, 2023; Lee et al., 2019). 764 

To create a more meaningful response value,s organic carbon density was converted to kg m-3 765 

(multiplied by 1000) and organic carbon accumulation to g m-2 y-1 (multiplied by 10,000). Finally, 766 

the organic carbon stock in each mapped cell can be calculated by multiplying the organic carbon 767 

density by the reference sediment depth of this study (0.3 m) and the cell area (40,000 m2) and 768 

converted to metric tonnes (divided by 1000). The total accumulation per cell per year can be 769 

calculated by multiplying the organic carbon accumulation rate by the cell area. Overall, this 770 

allows estimates to be calculated for the total values of organic carbon stock and accumulation 771 

across different parts of model domain.  772 

 773 

 774 
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2.11 8 Rock substrate distribution case studies 775 

The method followed in this study is similar to that used for many similar seabed sediment 776 

predictive mapping exercises in that it uses data only from sediment grab and core samples to 777 

build predictive maps across the model domain (Restreppo et al., 2021; Graw et al., 2021; Diesing 778 

et al., 2017, 2021; LaRowe et al., 2020a; Atwood et al., 2020; Lee et al., 2019; Mitchell et al., 779 

2019; Wilson et al., 2018; Stephens and Diesing, 2015). One major limitation with this modelling 780 

approach is that areas of bedrock, which would have zero values for all sediment response 781 

variables, will not be recorded in these datasets. Therefore, the under representation of zero 782 

values in the response data could lead to an overestimate of organic carbon standing stocks and 783 

accumulation rates as zero values are unlikely to be predicted from model outputs.  784 

In the context of this study, information regarding the distribution of bedrock is lacking for many 785 

regions. We therefore use two regional case studies from the Pacific British Columbian EEZ and 786 

the Atlantic Scotian shelf and slope where recent publications have made estimated maps on the 787 

distribution of rock substrates (Philibert et al., 2022; Gregr et al., 2021). Each of these products 788 

was overlayed onto the final spatial predictions of sediment carbon densities and accumulation 789 

rates and all cells set to zero where rock substrates were predicted. The proportional effect on 790 

the mean, upper and lower confidence interval bounds of estimates of d carbon stock and 791 

accumulation rates was then calculated in each bioregion.  792 

 793 

3. Results 794 

3.1 Mud content predictive mapping 795 

Of the 25 predictor variables available for mud content random forest modelling, 13 were selected 796 

in the optimal model (Fig. 3). Mean orbital velocity of waves at the seafloor and the mass of 797 

suspended particulate matter at the surface were the variables with highest importance (Fig. 3). 798 

Other variables with relatively high importance for predicting mud content included the exposure 799 

setting, ice thickness, distance to rivers, bathymetry, and benthic position indices (Fig. 3). Higher 800 

mud content was generally predicted in areas of low wave velocity, low exposure and close to but 801 

not directly adjacent to river mouths; with the effect of SPM and ice thickness less distinct, likely 802 

due to more complex interactive effects (Fig. 4).  803 

 804 
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  805 

Figure 3. Predictor variable importance from random forest models of mud content in marine subtidal 806 

sediments. The y-axis is a unitless relative variable importance score for each model. Asterisks indicate the two a 807 

prioriinitial variable predictors selection which were selected based on variable importance, with all other predictor 808 

variables selected using a forward selection process (see Appendix A5 for further details). WaveVel = Orbital wave 809 

velocity at the seafloor, SPM = Suspended particulate matter within the water column, BPI = Benthic position index, 810 

DistRiver = Distance to nearest river, IceThick = Sea ice thickness, Bathy = Bathymetry, VRM = Vector ruggedness 811 

measure, CurrVel = Current velocity at the seafloor.  812 

 813 

 814 

Figure 4. Accumulated local effects (ALE) plots for the six predictor variables with highest importance in the 815 

mud content random forest model. ALE (distributions dawn by lines) gives a visual representation of the average 816 

effect of the predictor variable on the response but does not indicate the influence of multi-way interactions which are 817 
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inherent in random forest models. Rug plots (dashed marks at bottom) indicate the distribution of each variable within 818 

the training dataset. SPM = suspended particulate matter. 819 

 820 

Areas with sediments dominated by mud (>75%) were predicted across the basins of many of the 821 

Pacific fjords, inlets and estuaries, and within the southern Salish Sea (Fig. 5). In the Arctic, mud 822 

dominated areas included large parts of the Canadian western Arctic as well as Hudson Bay. In 823 

the Atlantic, the Laurentian channel and central deeper parts of the Scotian Shelf contained 824 

particularly high mud fractions (Fig. 5). Across the model domain, sediment in deeper areas on 825 

the continental slope was also highly dominated by mud (Fig. 5) Using robust spatial cross 826 

validation, the model was estimated to have an RMSE of 24.4% and R2 of 0.60. The cell specific 827 

upper and lower 95% CI bounds are shown in Figure D1E1. On average the upper CI bounds 828 

were 28% higher larger than the mean and the lower CI bounds 20% less.  829 

 830 

Figure 5. Predictive mapping of mud content (%) in subtidal marine sediments across the Canadian continental 831 

margin. The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The 95% confidence interval 832 

bounds around the predicted means are shown in Figure D1E1. Labels indicating the locations of different areas 833 

mentioned within the text are shown in Figure A4B3. Country outlines from World Bank Official Boundaries, available 834 

at  https://datacatalog.worldbank.org/search/dataset/0038272. 835 

 836 

  837 

https://datacatalog.worldbank.org/search/dataset/0038272
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3.2 Organic carbon content predictive mapping 838 

Eleven predictor variables were selected in the optimal organic carbon content (%OC) model (Fig. 839 

6). The variables with highest importance in predicting %OC were the mud content layers 840 

constructed above (specifically the mean and lower CI bound), with all other predictors having 841 

less than half the relative importance of the mean mud predictions (Fig. 6). On average organic 842 

carbon content increased with predicted mud content and was generally higher in areas with low 843 

SPM concentrations, low exposure settings, close to but not directly adjacent to rivers, and at high 844 

water temperatures (Fig. 7).  845 

 846 

 847 

Figure 6. Predictor variable importance from random forest models for the organic carbon content in marine 848 

subtidal sediments. The y-axis is a unitless relative variable importance score. Asterisks indicate the two initial 849 

predictors which were selected based on variable importance, with all other predictor variables selected using a forward 850 

selection process (see Appendix A5 for further details).a priori variable selection. Mud_min = Lower bound of 95% CI 851 

for mud content, SPM = Suspended particulate matter within the water column, Temp = Temperature, DistRiver = 852 

Distance to nearest river, IceConc = Sea ice concentration, DO = Dissolved oxygen at the seafllor, IceThick = Sea ice 853 

thickness, CurrVel = Current velocity at the seafloor.  854 

  855 
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 856 

 857 

Figure 7. Accumulated local effects (ALE) plots for the six predictor variables with highest importance in the 858 

organic carbon (OC) content random forest model. ALE (distributions dawn by lines) gives a visual representation 859 

of the average effect of the predictor variable on the response but does not indicate the influence of multi-way 860 

interactions which are inherent in random forest models. Rug plots (dashed marks at bottom) indicate the distribution 861 

of each variable within the training dataset.  SPM = suspended particulate matter. 862 

The predictions of %OC ranged from 3x10-5 to 5.6% with an overall mean of 0.8 ± 0.3% (± SD). 863 

Areas with highest predicted %OC (>3%) were restricted to parts of the Pacific west coast fjords 864 

and channels, and in small parts of the inlets and bays on the east coast of Nova Scotia and 865 

around Passamaquoddy Bay in the Bay of Fundy (Fig. 8). High concentrations (i.e. >1%) were 866 

more widespread across these areas as well as covering much of the Beaufort Sea, western 867 

Baffin Bay and Foxe Basin in the Arctic, southern and central Hudson Bay, the Laurentian 868 

channel, coastal north Newfoundland and the central Scotian shelf in the Atlantic, as well as 869 

across the Salish sea and deeper areas to the south of the British Colombian Pacific continental 870 

margin (Fig. 8). Lowest %OC was predicted across shallower parts of the central Pacific shelf and 871 

near coast areas west of Vancouver Island (Fig. 8). Cross validation estimated an R2 for the model 872 

of 0.58 and an RMSE of 0.09 arcsin{%OC}. Cell specific upper and lower 95% CI bounds are 873 

shown in Figure ED2. On average the upper CI bounds were 42% higher larger than the mean 874 

prediction, and the lower CI bounds 33% less than the mean prediction. 875 
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 876 

Figure 8. Predictive mapping of organic carbon content (%) in subtidal marine sediments across the Canadian 877 

continental margin. The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous 878 

variable is shown displayed in discrete colour bands to improve visualisation of highly right skewed data. The 95% 879 

confidence interval bounds around the predicted means are shown in Figure D2E2. Labels indicating the locations of 880 

different areas mentioned within the text are shown in Figure A4B3. Country outlines from World Bank Official 881 

Boundaries, available at  https://datacatalog.worldbank.org/search/dataset/0038272. 882 

3.3 Sediment mass accumulation rate predictive mapping 883 

The optimal model for mass accumulation rate (MAR) of seabed sediments contained 10 884 

variables (Fig. 9). On average, MAR was negatively associated with increasing ice thickness, ice 885 

concentration, salinity and distance from rivers, and was particularly high in Eastern bioregions 886 

(Fig. 10). The predictions of MAR ranged from 4x10-4 to 0.35 g cm-2 yr-1 with an overall mean of 887 

0.01 ± 0.03 g cm-2 yr-1 (± SD). Areas with highest MAR (>0.1 g cm-2 yr-1) were predicted on the 888 

east coast around inshore areas of the Gulf of St Lawrence and Bay of Fundy (Fig. 11). Other 889 

areas with higher than average MAR were predicted across Canadian inshore areas particularly 890 

in the southern Arctic, Hudson Bay, Foxe Basin, Salish Sea and northeast British Colombia Pacific 891 

shelf (Fig. 11). The optimal model had an estimated R2 of 0.89 and RMSE of 0.206 log10{g cm-2 892 

yr-1}. Cell specific upper and lower 95% CI bounds are shown in Figure D3. On average the upper 893 

CI bounds were 33% higher than the mean prediction, and the lower CI bounds 20% less than 894 

their means.  895 

https://datacatalog.worldbank.org/search/dataset/0038272
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 896 

Figure 9. Predictor variable importance from random forest models for the mass accumulation rate of subtidal 897 

sediments. The y-axis is a unitless relative variable importance score. Asterisks indicate the a priori variable selection. 898 

IceThick = Sea ice thickness, IceConc = Sea ice concentration, DistRiver = Distance to nearest river, Bathy = 899 

Bathymetry, Temp = Temperature, BPI = Benthic position index.  900 

 901 

 902 

 903 

Figure 10. Accumulated local effects (ALE) plots for the six predictor variables with highest importance in the 904 

sediment mass accumulation rate (MAR) random forest model. ALE gives a visual representation of the average 905 

effect of the predictor variable on the response but does not indicate the influence of multi-way interactions which are 906 

inherent in random forest models. Rug plots indicate the distribution of each variable within the training dataset. 907 

 908 
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 909 

Figure 11. Predictive mapping of sediment mass accumulation rate (g cm-2 yr-1) across the Canadian 910 

continental margin. The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous 911 

variable is shown displayed in discrete colour bands to improve visualisation of highly right skewed data. The 95% 912 

confidence interval bounds around the predicted means are shown in Figure D3. Labels indicating the locations of 913 

different areas mentioned within the text are shown in Figure A4. Country outlines from World Bank Official Boundaries, 914 

available at  https://datacatalog.worldbank.org/search/dataset/0038272. 915 

 916 

3.4 3 Dry bulk density estimation 917 

The dry bulk density of sediments was estimated using a variety of transfer functions and global 918 

predictionsthe predicted values of mud content from our random forest model, and previously 919 

published functions for conversions to porosity and dry bulk density (Fig. 2). Estimated values 920 

ranged from 0.67 – 1.62 61 g cm-3 with a mean of 1.02 04 ± 0.216 g cm-3 (± SD). As many of the 921 

transfer functions are dependent on the predicted mud content, As expected by its derivation, the 922 

spatial distribution of dry bulk density values was very similar to the mud content values predicted 923 

above (Fig. 5), i.e. lowest dry bulk density was estimated in mud dominated areas (Fig. 129). Cell 924 

specific upper and lower 95% CIuncertainty bounds are shown in Figure D4E3. On average CI 925 

these bounds were 8.5% either side of their means6.2% larger and 6.0% lower than the cell-926 

specific mean estimate. 927 
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 928 

Figure 129. Estimates of sediment dry bulk density (g cm-3) across the Canadian continental margin. The main 929 

plot shows the Arctic and Atlantic regions with the Pacific region inset. The 95% confidence intervalestimated bounds 930 

of uncertainty around the predicted means are shown in Figure D4E3. Labels indicating the locations of different areas 931 

mentioned within the text are shown in Figure A4B3. Country outlines from World Bank Official Boundaries, available 932 

at  https://datacatalog.worldbank.org/search/dataset/0038272. 933 

 934 

3.5 4 Estimated organic carbon density and standing stock 935 

From combining predictions of dry bulk density and organic carbon content, organic carbon 936 

density could be estimated across the Canadian continental margin (Fig. 2). Estimated values 937 

ranged from 5x10-4 to 508.04 kg m-3 with a mean of 87.91 ± 2.85 kg m-3 (± SD). Spatial patterns 938 

in organic carbon density (Fig. 103) were similar to those found for organic carbon content (Fig. 939 

8). Areas with highest carbon density (> 25 kg m-3) were restricted to small areas within nearshore 940 

zones, including inlets and fjords of British Columbia (Pacific), as well as enclosed nearshore 941 

areas of the Atlantic East Coast (Fig. 103). High carbon densities (> 15 kg m-3) where predicted 942 

to occur across wide parts of these areas as well as further offshore in parts of the Laurentian 943 

channel and central Scotian Shelf, and at the edge of the continental slope off the West of 944 

Vancouver Island (Fig. 103). In the Arctic, areas with relatively high carbon (>10 kg m-3) were 945 

predicted across many nearshore areas, as well as across large parts of the Beaufort Shelf, Foxe 946 

Basin, James Bay and the Kane Basin (Fig. 103). Cell specific upper and lower 95% CIuncertainty 947 

https://datacatalog.worldbank.org/search/dataset/0038272
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bounds are shown in Figure D5E4. On average the upper CI bounds were 5450% higher than the 948 

mean prediction, and the lower CI bounds 3937% less than their means.  949 

Using a standardised sediment depth of 30 cm, the total standing stock of organic carbon in 950 

surficial sediments across the model domain is estimated at 10.7 9 Gt with a 95% confidence 951 

intervaluncertainty bounds of 67.6 0 – 16.0 Gt. Between bioregions, total stock was predominantly 952 

related to the total areal extent, for example Hudson Bay having the largest carbon stock and 953 

largest area (Table 2). The Strait of Georgia and Southern Shelf bioregions of the Pacific had the 954 

lowest total standing stocks due their small extent, however per unit area, these regions contained 955 

the highest organic carbon stocks, along with the Gulf of St Lawrence.  956 

 957 

 958 

Figure 1310. Estimates of organic carbon density (kg m-3) across the Canadian continental margin. The main 959 

plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous variable is shown displayed in 960 

discrete colour bands to improve visualisation of highly right skewed data. The 95% confidence intervalestimated 961 

bounds of uncertainty around the predicted means are shown in Figure D5E4. Labels indicating the locations of different 962 

areas mentioned within the text are shown in Figure A4B3. Country outlines from World Bank Official Boundaries, 963 

available at  https://datacatalog.worldbank.org/search/dataset/0038272. 964 

  965 

https://datacatalog.worldbank.org/search/dataset/0038272
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Table 2. Summary of estimated mean total organic carbon stocks and accumulation rates in surficial seabed 966 

sediments of different bioregions across the Canadian continental margin. Organic carbon standing stocks are 967 

estimated for the top 30 cm of seabed sediments. For delineation of the different bioregions see Supplement.  968 

Bioregion Model domain 

extent (km2) 

OC stock 

(Gt) 

Stock per 

unit area 

(kt km2) 

1. Offshore Pacific 53,598 0.1415 2.6775 

2. Northern Shelf BC 96,373 0.231 2.3417 

3. Southern Shelf BC 28,313 0.1009 3.3811 

4. Strait of Georgia 8,664 0.04 4.9456 

5. Western Arctic 526,309 1.0911 2.0611 

6. Arctic Basin 250,178 0.425 1.6978 

7. Arctic Archipelago 243,425 0.478 1.927 

8. Eastern Arctic 757,226 1.820 2.4038 

9. Hudson Bay 1,234,257 3.083 2.496 

10. NL Shelves 820,462 21.0495 2.4938 

11. Gulf of St Lawrence 235,541 0.8075 3.3818 

12. Scotian Shelf 234,888 0.651 2.7759 

Notes: OC = Organic carbon; NL = Newfoundland-Labrador.  969 

 970 

3.6 Estimated organic carbon accumulation rates 971 

Organic carbon accumulation rates were estimated from combining mapped products of sediment 972 

mass accumulation and organic carbon content (Fig. 2). Estimated values ranged from 3.5x10-6 973 

to 76.9 g m-2 y-1 with a mean of 1.1 ± 2.8 g m-2 y-1 (± SD). The majority of the model domain was 974 

estimated to have low accumulation rates with values < 0.5 g m-2 y-1 (Fig. 14). Highest 975 

accumulation rates were restricted to the East coast of Canada across the Gulf of St Lawrence 976 

and in nearshore areas of the Bay of Fundy (Fig. 14). Other areas with relatively high 977 

accumulation rates were confined to near coast areas including the Salish Sea and some fjords 978 

and inlets in the Pacific west coast, as well as near coast areas in Hudson Bay, Foxe Basin and 979 

the Beaufort Sea in the Arctic (Fig. 14). Cell specific upper and lower 95% CI bounds are shown 980 

in Figure D6. On average the upper CI bounds were 88% higher than the mean prediction, and 981 

the lower CI bounds 47% less than their means. Overall, the total accumulation of organic carbon 982 

across the model domain is estimated with a mean of 4.9 Mt y-1 with a 95% confidence interval of 983 

2.6 – 9.3 Mt y-1. In contrast to the organic carbon standing stock, total accumulation between 984 

bioregions was not strongly related to the total areal extent. The Gulf of St Lawrence was 985 
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estimated to contain both the largest total annual organic carbon accumulation and the highest 986 

accumulation per unit area (Table 2). The Strait of Georgia was estimated to have the second 987 

highest accumulation rates per unit area, but low total carbon accumulation due to its small area 988 

(Table 2). The Hudson Bay bioregion also included a large proportion of the organic carbon 989 

accumulation across the model domain with the second highest total accumulation value and the 990 

third highest mean per unit area (Table 2). 991 

 992 

Figure 14. Estimates of organic carbon accumulation rate (g m-2 y-1) across the Canadian continental margin. 993 

The main plot shows the Arctic and Atlantic regions with the Pacific region inset. The continuous variable is shown 994 

displayed in discrete colour bands to improve visualisation of highly right skewed data. The 95% confidence interval 995 

bounds around the predicted means are shown in Figure D6. Labels indicating the locations of different areas 996 

mentioned within the text are shown in Figure A4. Country outlines from World Bank Official Boundaries, available at  997 

https://datacatalog.worldbank.org/search/dataset/0038272. 998 

 999 

3.7 5 Rock substrate distribution case studies 1000 

As the predictive maps produced in this study rely on physical sediment samples alone, they are 1001 

unlikely to produce valid estimates for areas of bedrock -– i.e. estimates of zero sediment carbon 1002 

density and accumulation where bedrock is located. On the Scotian shelf (bioregion 12), 1003 

correcting our predictive maps with a predicted bedrock distribution map (Fig. FE1) reduces total 1004 
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organic carbon stock estimates in this region by between 7.5 7 – 7.68% leading to a value of 0.56 1005 

59 Gt (95% CI 0.33 37 – 0.87 90 Gt), and reducing total accumulation by 12.7 - 15.9% to a total 1006 

of 0.18 Mt y-1 (95% CI 0.08 – 0.44 Mt y-1). For the Pacific British Columbian marine region 1007 

(bioregions 1-4), assigning zero values to areas covered by a predicted bedrock distribution map 1008 

(Fig. E2F2) would reduce our estimates by 89.51 -– 9.70% to a total of 0.44 46 Gt (95% CI 0.26 1009 

29 – 0.7169 Gt) for of organic carbon stock and reducing by 13.8 – 15.3% to a total of 0.08 Mt y-1010 

1 (95% CI 0.03 – 0.23 Mt y-1) for organic carbon accumulation.   1011 

 1012 

4. Code and data availability 1013 

All mapped products as shown in Figures 5, 8, 11, 129, and 10 3 and 14 have been made available 1014 

as georeferenced TIFF files in the Borealis data repository at 1015 

https://borealisdata.ca/privateurl.xhtml?token=7bb00f1e-2ce3-400c-955d-e8e0d4fe3080  1016 

(Epstein et al., 2023). This includes the mean predictions as well as the cell-specific 1017 

95%uncertainty confidence interval bounds as shown in Appendix DE. The repository also 1018 

contains all data collated within the systematic data review of organic carbon content and the 1019 

georeferenced TIFF files from the rock distribution case studies (Appendix EF). Additionally, all 1020 

the associated code used for data manipulations, model building and predictive mapping can also 1021 

be found within the above repository.   1022 

 1023 

5. Discussion 1024 

Using best available data, we have produced the first national assessment of organic carbon in 1025 

surficial seabed sediments across the Canadian continental margin, estimating the standing stock 1026 

in the top 30 cm to be 10.7 9 Gt (95% CI 67.06 – 16.0 Gt). Although comparisons to previous 1027 

global studies is challenging due to differences in sediment reference depths, mapping resolutions 1028 

and total spatial coverage, our estimate falls within a similar range to those previously published 1029 

(e.g. 2.2 Gt in the top 5 cm (Lee et al., 2019) and 48 Gt in the top meter (Atwood et al., 2020) of 1030 

the Canadian EEZ). In contrast to these global studies, the national approach taken here allows 1031 

for a more complete data synthesis, a finer spatial resolution, larger spatial coverage of the 1032 

Canadian continental margin and spatially explicit defined estimates of uncertainty; all of which 1033 

allow for higher confidence in the predictive mapping products and overall estimates of standing 1034 

stock. Similarly to other national and regional mapping studies (Smeaton et al., 2021; Diesing et 1035 

https://borealisdata.ca/privateurl.xhtml?token=7bb00f1e-2ce3-400c-955d-e8e0d4fe3080
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al., 2017, 2021), areas of high organic carbon stocks were predominantly predicted to occur in 1036 

coastal fjords, inlets, estuaries, enclosed bays and sheltered basins, as well as in deeper 1037 

channels and throughs troughs (Fig. 103). To put our estimated organic carbon standing stock 1038 

into context, 10.7 9 Gt equates to 5152% of the organic carbon estimated to be stored in all 1039 

Canadian terrestrial plant live biomass and detritus (both above and below ground), and 349.8% 1040 

of soil organic carbon to 30 cm across Canada (assuming equal distribution of soil carbon in the 1041 

top 1 m) (Sothe et al., 2022).  1042 

Due to a lack of available data, we were unable to undertake a fully independent predictive 1043 

mapping exercise for organic carbon accumulation rates on Canadian seabed sediments. 1044 

However, our downscaling exercise of a recently published global product on mass accumulation 1045 

rates, coupled with the national predictive mapping of sediment organic carbon content, led to an 1046 

estimated annual accumulation at the seafloor of 4.9 Mt of organic carbon per year (95% CI 2.6 1047 

– 9.3 Mt y-1). Given the extent of the model domain (~1.25% of the global ocean), this estimate 1048 

again falls close to the range of previous global predictions – i.e. 1.25% of global accumulation at 1049 

126–350 Mt y-1 is 1.6-4.4 Mt y-1 (Keil, 2017; Berner, 1982). Areas of high accumulation were 1050 

predominantly restricted to the Gulf of St Lawrence and Bay of Fundy, as well as other near-coast 1051 

areas where large river outlets co-occurred with predicted areas of high carbon density (Fig. 10, 1052 

13, Supplement). 1053 

 1054 

Model interpretation and uncertainties 1055 

The two key components of the carbon stock estimates in this study are the predictive maps for 1056 

mud content and organic carbon content, which were estimated to have a map accuracy of 60% 1057 

and 58% respectively (R2 0.60 and 0.58). While these values may seem relatively low when 1058 

compared to some other related studies (Diesing et al., 2017, 2021; Atwood et al., 2020; Mitchell 1059 

et al., 2019), the use of robust, spatially explicit  cross-validation to calculate model evaluation 1060 

metrics (as we did herein) has been shown to produce significantly more conservative estimates 1061 

of map accuracy when compared to frequently used random cross-validation approaches (Ludwig 1062 

et al., 2023; Meyer et al., 2019) such as those used in both the global seabed carbon stock studies 1063 

discussed above (Atwood et al., 2020; Lee et al., 2019). Within this study, we also calculated cell 1064 

specific confidence intervaluncertainty bounds to give spatially explicit estimates of uncertainty. 1065 

While there are many ways to calculate model uncertainty, therefore making comparisons 1066 

between studies challenging, the uncertainty in carbon density calculated here (CI 3937-5450% 1067 
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either side of the mean) is close to those found within similar regional (Diesing et al., 2021; 58%) 1068 

and global studies (Lee et al., 2019; 49%), both of which predict carbon stocks at significantly 1069 

coarser resolutions. Our 95% confidence interval bounds for total standing stock (3836% lower 1070 

and 5047% higher than the mean) are also similar to the estimated bounds from the recently 1071 

published predictive models of Canadian terrestrial vegetation and soil carbon (a 90% confidence 1072 

interval 48% either side of the mean) (Sothe et al., 2022).  1073 

Higher map accuracy was estimated for mass accumulation rate (R2 0.89); however, it is important 1074 

to recognise that this only describes the accuracy of our downscaled product to represent the 1075 

global spatial product from which data were sampled. This global model was itself estimated to 1076 

have an R2 of 0.88 for empirical point data, however this was calculated with traditional random 1077 

cross-validation techniques (Restreppo et al., 2021). The estimated values of organic carbon 1078 

accumulation rate predicted here should be used with some caution as there is likely significant 1079 

uncertainty that is not truly quantified due to the small amount of in-situ empirical data from the 1080 

Canadian continental margin (Restreppo et al., 2021). The mean confidence interval for organic 1081 

carbon accumulation estimated in this study was also very wide at its upper bound (88% above 1082 

mean). This is largely due to the highly right skewed distribution of predictions, with a 1083 

preponderance of small accumulation rate values, meaning a small absolute increase in 1084 

estimated accumulation can have very large proportional effects when compared to the mean. 1085 

Even so, the estimates of organic carbon accumulation made here give our current best estimate 1086 

for the Canadian continental margin, and while the absolute values may contain high uncertainty, 1087 

the spatial patterns between areas across the model domain are expected to have higher 1088 

confidence.  1089 

Using two case studies from British Columbia and the Scotian Shelf, we estimated that the 1090 

distribution of rock substrates could reduce our estimates of carbon stock by approximately 7.5 7 1091 

-– 9.07% and carbon accumulation by 12.7 – 15.3% (Fig. E1F1, E2F2). As much of the Canadian 1092 

coastline is distant from significant infrastructure, extensive surveys of the seafloor are generally 1093 

lacking, especially when compared to similar regional carbon mapping studies in northwest 1094 

Europe (e.g. Smeaton et al., 2021). It is therefore unclear how representative these case studies 1095 

are of the entire Canadian EEZ. Improved data on the presence of bedrock across lesser studied 1096 

regions of the Canadian Arctic, Hudson Bay, Gulf of St Lawrence, Newfoundland and Labrador 1097 

may allow for the production of a predictive map of bedrock across the Canadian EEZ which 1098 

would significantly improve the carbon estimates and spatial predictive maps produced in this 1099 

study.  1100 
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Areas of uncertainty which could not be fully quantified include the accuracy and precision of 1101 

response data and predictor layers. The response data drive the model construction, and 1102 

therefore sampling, processing, or recording errors can propagate into predictions. This is 1103 

particularly relevant given the large temporal extent of response data which was required to gain 1104 

sufficient coverage for this work (1959-2019). This large duration may also add additional variation 1105 

from temporal differences between data, for example from differing anthropogenic drivers on 1106 

carbon storage and/or accumulation (Keil, 2017); however, similar temporal extents have been 1107 

used in related studies (Atwood et al., 2020; Lee et al., 2019; Seiter et al., 2004) and 72% of the 1108 

organic carbon data within this study were sampled after 1980 and 55% after 2000. Within the 1109 

response data, assumptions and/or predictions were also required regarding the distribution of 1110 

mud and carbon across sediment depths. While standardising for this factor is clearly necessary, 1111 

especially when using a wide variety of legacy data, it does add additional uncertainty which would 1112 

not be present if widescale standardised sampling methods were employed. The results from this 1113 

study do however highlight, that within the top 30 cm of sediment, the spatial location of the 1114 

sample is a far stronger driver of organic carbon content than the sediment sampling depth (Table 1115 

B1C1).  1116 

Most of the predictor variables used in this study are also themselves modelled products, which 1117 

contain their own inherent uncertainties and/or interpolations which cannot be fully quantified 1118 

here. Additionally, many predictors are constructed at spatial resolutions significantly coarser than 1119 

that used for modelling and prediction in this study. This meant that predictor data had to be 1120 

interpolated, with significant inherent assumptions regarding variation and distribution of the data. 1121 

Although best available data were used in this study, if predictor variables were available at higher 1122 

native resolutions, less assumptions would be necessary and significant differences may be found 1123 

in predictions, as well as their uncertainty and variability. mMany of the predictor variables also 1124 

have temporal components, and while the climatological mean of a 12 -– 14 year timespan used 1125 

in this study is expected to produce variables representative for the study region, they do not 1126 

completely align with the temporal extent of the response data which could add further prediction 1127 

uncertainty. Finally, due to data availability, the uncertainty bounds around our mean estimates 1128 

of dry bulk density and organic carbon density were approximated from the constructed 95% CIs 1129 

of mud content and %OC from the random forest models. While these provide an appropriate 1130 

measure of uncertainty in our estimates in the context of this study, if large empirical datasets 1131 

became available for dry bulk and organic carbon density, it would be preferable to construct 1132 

predictive models, mean estimates and uncertainty bounds for these response variables directly. 1133 
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 1134 

Future directions and applications 1135 

Improvements could be made in future iterations of these sediment carbon maps when additional 1136 

response data become available. The size of the organic carbon content dataset was relatively 1137 

small (2,518 point-samples) given the size of the model domain, so new data could greatly 1138 

improve accuracy and reduce uncertainty in predictions. Additionally, wide-spread in-situ 1139 

empirical data on sediment dry bulk density and sediment mass accumulation rates would reduce 1140 

the assumptions needed in using transfer approximate conversions from mud content,functions 1141 

and downscaling models; however, large datasets would be needed to conduct robust 1142 

independent modelling exercises. while a large geographically dispersed empirical dataset on 1143 

seabed sediment organic carbon density (i.e. where OC content and dry bulk density is measured 1144 

directly in each physical sample) would reduce assumptions even further, with the potential to 1145 

construct a single predictive map for this response alone (Diesing et al., 2021).  There are also 1146 

improvements to be made with the development of higher resolution or more accurate predictor 1147 

layers. This would be particularly relevant for those variables with coarse resolutions and those 1148 

which were seen to have highest importance within our models or from related seabed sediment 1149 

mapping studies (e.g. Gregr et al., 2021; Diesing et al., 2017, 2021; Mitchell et al., 2019) -– i.e. 1150 

wave velocities, suspended particulate matter, exposure, current velocities and oxygen 1151 

concentrations. Further validation and refinements could also be supported by numerical 1152 

biogeochemical modelling products where the organic carbon densities and/or accumulations are 1153 

mathematically estimated based on oceanographic, climatological and benthic conditions, 1154 

including the potential to incorporate predictions under different future climate scenarios (Ani and 1155 

Robson, 2021).  1156 

The organic carbon predictive mapping products generated here could have many future 1157 

applications. Regionalisation and prioritisation processes could identify key areas of carbon 1158 

storage for further research and possible protections (Epstein and Roberts, 2022, 2023; Diesing 1159 

et al., 2021). There is also potential to combine these mapped products with spatial data on 1160 

human activities occurring on the seafloor to consider potential management implications, such 1161 

as controlling the levels of impactful industries (e.g. mobile bottom fishing, mineral extraction, 1162 

energy generation) in areas with high organic carbon storage/accumulation areas (Clare et al., 1163 

2023; Epstein and Roberts, 2022). The mud content predictive maps may also have applications 1164 

for marine planning more widely, being a strong driver of the biological habitat type and sensitivity. 1165 

Overall, these data have wide-scale relevance across marine ecology, geology and environmental 1166 
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management disciplines, however, the use of these products should always consider the 1167 

discussed uncertainties and quantified confidence intervaluncertainty bounds of predictions. As 1168 

with all large-scale mapping exercises, continued in-situ empirical data collection is needed for 1169 

improved accuracy of mapping seabed carbon stocks and accumulation rates across Canada.  1170 
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6. Appendices 1171 

Appendix A. Supplementary methods 1172 

2.A1. Analysis software 1173 

Analyses were primarily undertaken in R 4.2.2 (R Core Team, 2022) and Rstudio 2022.12.0.353 1174 

(Posit Team, 2022), with some additional data manipulation and spatial plotting in QGIS 1175 

(QGIS.org, 2021) and Python (Van Rossum and Drake, 2009). Within R, raster data were handled 1176 

using the terra package (Hijmans, 2022), spatial vector data using the sf package (Pebesma, 1177 

2018), netCDF data with the stars (Pebesma, 2022) and tidync (Sumner, 2022) packages, data-1178 

frames with the dplyr package (Wickham et al., 2019), and vector data with base R (R Core Team, 1179 

2022). Random forest modelling was primarily dependent on the ranger package (Wright and 1180 

Ziegler, 2017), however models were constructed and tuned using the tidymodels package (Kuhn 1181 

and Wickham, 2020), with cross-validation and predictor variable selection using the CAST 1182 

(Meyer et al., 2023) and caret (Kuhn, 2022) packages. Plotting utilised the above packages as 1183 

well as ggplot2 (Wickham et al., 2019) and patchwork (Pedersen, 2022) while parallel processing 1184 

used the doParallel package (Microsoft Corporation and Weston, 2022). 1185 

 1186 

A2. Bathymetry layer construction 1187 

To define the maximum potential spatial coverage of this study, best available bathymetric 1188 

datasets were combined across the Canadian Exclusive Economic Zone (EEZ) (Table 1). Firstly, 1189 

three Digital Elevation Model (DEM) raster layers covering different extents of the Canadian EEZ 1190 

were each filtered to contain only those elevations of less than or equal to 0 m. Where necessary, 1191 

data were then aggregated (averaged) or disaggregated (split) to a resolution of approximately 1192 

200 m, and all layers were projected onto a unified 200 m x 200 m equal area grid (co-ordinate 1193 

reference system (CRS) EPSG:3573 -– WGS 84 -– North Pole Lambert Azimuthal Equal Area 1194 

Canada). Reprojection was necessary as all three DEMs were in different co-ordinate systems, 1195 

including some already being projected. The 200 m resolution was chosen as it is the median 1196 

native resolution of the three DEMs, while also being considered towards the upper limit of what 1197 

may be computationally possible within the scope of this study. After reprojection, the three layers 1198 

were overlain, with the region-specific data given priority over global data where present. Finally, 1199 

the seaward boundaries were delineated by the outer extent of the Canadian EEZ (Flanders 1200 

Marine Institute, 2019). 1201 
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 1202 

A3. Details of ocean circulation models 1203 

ANHA12 is a regional  configuration of the NEMO ocean and sea-ice model (Madec et al., 1998) 1204 

created at the University of Alberta, covering the Arctic and northern Hemisphere Atlantic at 5 day 1205 

temporal resolution, a curvilinear 1/12th degree horizontal resolution ranging from 1.93 km in the 1206 

Arctic to 9.3 km at the equator, and 50 vertical levels (Hu et al., 2019). The British Columbia 1207 

continental margin (BCCM) circulation model created by Fisheries and Oceans Canada (DFO) 1208 

covers the entire Canadian Pacific coast and extends approximately 400 km offshore. It has a 1209 

uniform horizontal resolution of 3 km, 42 vertical levels and a 3 day temporal resolution (Peña et 1210 

al., 2019; Masson and Fine, 2012). As the BCCM model has higher uncertainty in nearshore and 1211 

enclosed environments due to its relatively coarse resolution, data waswere also extracted for the 1212 

enclosed Salish Sea from the Salish Sea Cast ERDDAP data server. Similarly to the ANHA12 1213 

model, the Salish Sea Cast is a configuration of the NEMO circulation model developed by a 1214 

consortium of Canadian Universities and government agencies and extends from Juan de Fuca 1215 

Strait to Puget Sound to Johnstone Strait at 500 m horizontal resolution, 40 vertical layers and 1216 

hourly temporal resolution (Soontiens and Allen, 2017; Soontiens et al., 2016). For further details 1217 

on all these models, see relevant cited references. It should be noted that many of these ocean 1218 

circulation models contain high uncertainty in nearshore areas. However, they are expected to be 1219 

greatly improved when compared to global circulation model products (Peña et al., 2019; Hu et 1220 

al., 2019; Soontiens and Allen, 2017) which are frequently used in this sort of predictive mapping 1221 

work (e.g. Atwood et al., 2020; Lee et al., 2019; Assis et al., 2018). 1222 

 1223 

A4. Sediment grain size data collation and processing details 1224 

Sediment composition point data were extracted from two sources. Firstly, all data were exported 1225 

from the NRCan Expedition Database on 11th November 2022. This data repository contains 1226 

information related to marine and coastal field surveys conducted by or on behalf of the Geological 1227 

Survey of Canada from the 1950s to present, which deployed sampling methods including piston 1228 

cores and grab samples. Data were also extracted from a recent synthesis of grain size 1229 

distribution measurements from the Canadian Pacific seafloor (1951-2017), compiled by 1230 

Geological Survey Of Canada and NRCan (Enkin, 2023). Although there are some duplications 1231 

between these two datasets, these are accounted for in the proceeding pre-processing steps. In 1232 

both sources, grain size data is reported as the percentage content of mud (sometimes separated 1233 
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into silt and clay), sand and gravel within each sample. Due to modern developments in grain size 1234 

analyses (e.g. laser diffraction) older samples may have lower measurement accuracy; however, 1235 

due to the relatively coarse metric being used in this study (%mud/sand/gravel) and the 1236 

occurrence of a number of largescale geological surveys occurring during the 1960s, we chose 1237 

to retain data from 1960 onwards. Where sampling year was not recorded within the database, 1238 

the date was inferred from the expedition code or from expedition metadata. The sampling method 1239 

and depth of the sediment from which the sample/sub-sample originates are also predominantly 1240 

recorded within the database. Where sediment depth was absent, but the sampling method was 1241 

noted as “grab” or “other”, the penetration depth was assumed to be 10 cm (a commonly assumed 1242 

penetration of standard sediment sampling devices such as Van Veen Grabs and Day Grabs). 1243 

 1244 

A5. Details on construction and implementation of spatial cross validation and feature selection 1245 

For each response variable modelled in this study (mud content and organic carbon content 1246 

(%OC)), the spatialsample package (Silge and Mahoney, 2023) was used to construct a variety 1247 

of spatial CV data-fold structures and the validity of each structure was visually assessed using 1248 

the CAST.plot_geodist function (Meyer et al., 2023). This function creates density plots of nearest 1249 

neighbour distances (Euclidean) in multivariate predictor space (using normalized variables) 1250 

between response data locations and a random sample of prediction locations, and between data 1251 

inside and outside each CV fold (Ludwig et al., 2023; Meyer et al., 2023; Meyer and Pebesma, 1252 

2022). The suitability of a given CV structure to be representative of estimating map accuracy can 1253 

be determined by visually assessing the density plots and finding the CV-distance curve being 1254 

closely aligned to the density curve of response data to prediction distances (see Appendix D; 1255 

Ludwig et al., 2023; Meyer and Pebesma, 2022). To approximate response-to-prediction 1256 

distances, the sample size number within plot_geodist was set to select 5,000 random samples 1257 

across the model domain. Further, as the spatial distribution of data is a key consideration to 1258 

ensure robust cross-validation (Ludwig et al., 2023; Meyer and Pebesma, 2022), for the 1259 

plot_geodist calculations alone, the x- and y-coordinates of each data point were included in 1260 

addition to those predictor variables listed in Table 1 and described in Section 2.5. 1261 

For the mud content data, a spatial kmeans clustering CV structure was chosen as the response 1262 

data had good coverage of the model domain, contained a large number of data points, and 1263 

showed relatively strong spatial clustering (Fig. B1). A range of options in the number of kmeans 1264 

clusters were tested, with 35 being determined as the optimal number and each cluster being 1265 



49 
 

assigned to its own CV fold (Fig. D1). Through visual assessment of the density plots, it was 1266 

identified that the kmeans CV structure was somewhat mis-aligned from response-to-prediction 1267 

distances, with the CV distances being overly conservative at including near-distance 1268 

comparisons (Fig. D1). We therefore used a partially repeated CV strategy, with a small number 1269 

of randomly selected data-points added to the assessment set in each kmeans spatial-CV fold 1270 

(1% of mud content data randomly sampled at each fold without replacement) (Fig. D2). As the 1271 

%OC response dataset was relatively small and spatially dispersed (Fig. B2), we used a spatial 1272 

block CV strategy in place of the kmeans clustering to avoid clusters containing highly spatially 1273 

dispersed data. We chose to use hexagonal shaped blocks, random assignment of blocks to folds, 1274 

and the same number of CV folds as for the mud content data (v = 35) – both to maintain 1275 

uniformity and because varying the fold-number did not significantly influence the density plots. 1276 

Instead, the diameter of the spatial blocks was altered, and an optimal block size of 100 km 1277 

identified using the plot_geodist function (Fig. D3). 1278 

The CAST.ffs function (Meyer et al., 2023) was used to run a forward predictor variable selection 1279 

process with appropriate spatial considerations. The function fits a model with all combinations of 1280 

two-way predictors, selects the best model based on a given metric, and then increases the 1281 

number of predictors by one, testing all remaining variables. This iteratively continues with the 1282 

process stopping if none of the tested variables increases the performance when compared to 1283 

the best previous model with “n-1” predictors. The function also allows models to be fit separately 1284 

across all individual  on each spatial CV fold (as defined above),s, with the overall performance 1285 

of each iteration based on model accuracy across all CV folds. This therefore 1286 

incorporatingincorporates appropriate spatial considerations into the feature selection process. 1287 

Due to the large number of variables within this study, and the relatively large datasets, this 1288 

process was very computationally expensive. We therefore chose to adapt the function to initiate 1289 

forward variable selection after a prioriinitial identification of the first two predictor variables. These 1290 

variables were identified by constructing a basic single random forest model with all training data 1291 

and predictor variables, and the hyperparameters mtry (the number of variables to randomly 1292 

sample as candidates at each split), min_n (the number of observations needed to keep splitting 1293 

nodes) and trees (the number of random forest trees to construct and take mean predictions 1294 

across) set to 2, 5 and 1,000 respectively. Variable importance was estimated on out-of-bag 1295 

samples using permutationthrough permutation of predictor variable values (Wright et al., 2016), 1296 

and the two predictor variables with largesthighest importance selected. The ffs function was then 1297 

run starting with the two pre-selected variables (see Fig. 3 &, 6 & 9) and performance of each 1298 

iteration assessed on the root mean squared error (RMSE) of predictions across all CV folds. 1299 
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 1300 

Appendix AB. Distribution of response data 1301 

 1302 

Figure A1B1. Map showing the distribution of mud content samples across the model domain. 1303 

 1304 

 1305 

Figure A2B2. Map showing the distribution of carbon content samples across the model domain. 1306 
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 1307 

Figure A3. Map showing the distribution of random-stratified sampled sediment mass accumulation rates 1308 

across the model domain. 1309 

 1310 

Figure A4B3. Map indicating the locations of different areas which are mentioned within the text. The Canadian 1311 

Pacific (blue), Arctic (grey) and Atlantic (red) regions are shown with labelled locations overlayed. BC = British 1312 

Columbia; Passa’ Bay = Passamaquoddy Bay; NS = Nova Scotia; NF = Newfoundland; SPMI = St Pierre and Miquelon. 1313 

The locations are for guidance only and do not represent the entire extent or exact location of a given area. Country 1314 

outlines are derived from World Bank Official Boundaries, available at   1315 

https://datacatalog.worldbank.org/search/dataset/0038272. 1316 

https://datacatalog.worldbank.org/search/dataset/0038272
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 1317 

 1318 

 1319 

Appendix BC. Organic carbon sediment depth modelling results 1320 

There was a significant effect of sampling depth on the organic carbon content in seabed 1321 

sediments (χ2 =  1400.9, p < 0.001). While sample ID explained most of the variation between 1322 

sub-sample carbon contents, the sampling depth was also a significant factor (Table B1C1). 1323 

Carbon content decreased with increasing sampling depth (Fig. B1C1). The rate of carbon content 1324 

decline generally decreased with increasing depth into the sediment, however uncertainty in this 1325 

trend increased within deeper sediment layers (Fig. B1C1).  1326 

 1327 

 1328 

Table B1C1. Results from the generalised additive mixed model between the carbon content of marine 1329 

sediments and sampling depth. A basic generalised additive mixed model with a scaled-t distribution was constructed 1330 

for carbon content in sediment sub-samples with sample ID as the random factor and sampling depth as the fixed 1331 

factor. 1332 

Spline Type edf Res. df χ2 Deviance 

explained 

p 

Sampling depth (cm) Cubic 4.28 5.36 2299 1.1% < 0.001 

ID Random 181.94 182.00 715046 86.9% < 0.001 

Notes: edf = Effective degrees of freedom. Res. df = Residual degrees of freedom 1333 

 1334 

 1335 

Figure B1C1. Regression splines indicating the effect of sediment sampling depth (a) and sample ID (b) on the 1336 

organic carbon content in seabed sediment sub-samples.  1337 

(a) (b) 
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 1338 

The predicted mean effect of sediment depth on carbon content was extracted from the model 1339 

and converted into a transfer function which states the expected ratio between the cumulative 1340 

carbon content at across 30 cm compared to the cumulative mean at any given sampling depth 1341 

(Figure B2C2). The ratio ranged from 89.3% when only measuring the sediment surface, to 93.7% 1342 

if measuring the carbon content across the top 10 cm, and by 25 cm was approaching equilibrium 1343 

at 98.8%. 1344 

  1345 

 1346 

Figure B2C2. Transfer function for cumulative mean organic carbon (OC) content at 30 cm sediment depth. 1347 

Using a generalised additive mixed model an estimated transfer function was constructed to standardise the cumulative 1348 

mean carbon content at any given depth to an expected value at 30 cm.  1349 

 1350 

Appendix CD. Results from random forest cross-validation structure selection 1351 
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 1352 

Figure C1D1. Multivariate nearest-neighbour distance density plot for mud content data with the optimal 1353 

number of spatial k-means clusters across cross validation (CV) folds. Frequency of nearest neighbour distances 1354 

(x-axis) is shown for sample-to-sample distance (red), sample-to-prediction distance (green) and CV fold analysis-to-1355 

assessment distance (blue). dist = Multivariate Euclidean distance in predictor space after normalization of predictors. 1356 

An optimal number of 35 clusters was selected to due close overlap between the CV-distance and sample-to-prediction 1357 

curve.  1358 

 1359 

Figure C2D2. Multivariate nearest-neighbour distance density plot for mud content data with a partially 1360 

repeated spatial-random mixture method for cross validation (CV) folds. Frequency of nearest neighbour 1361 

distances (x-axis) is shown for sample-to-sample distance (red), sample-to-prediction distance (green) and CV fold 1362 

analysis-to-assessment distance (blue). dist = Multivariate Euclidean distance in predictor space after normalization of 1363 

predictors. Due to the optimal spatial k-means clustering showing poor overlap at lower multivariate distances (Fig. 1364 

C1D1), a 1% random sample without replacement was added to each fold.  1365 

 1366 



55 
 

 1367 

Figure C3D3. Multivariate nearest neighbour distance density plot for organic carbon content data with the 1368 

optimal block size across cross validation (CV) folds. Frequency of nearest neighbour distances (x-axis) is shown 1369 

for sample-to-sample distance (red), sample-to-prediction distance (green) and CV fold analysis-to-assessment 1370 

distance (blue). dist = Multivariate Euclidean distance in predictor space after normalization of predictors. An optimal 1371 

block size of 100 km was selected to due close overlap between the CV-distance and sample-to-prediction curve.  1372 

 1373 

Figure C4. Multivariate nearest neighbour density plot for sediment mass accumulation rate data. Frequency of 1374 

nearest neighbour distances (x-axis) is shown for sample-to-sample distance (red) and sample-to-prediction distance 1375 

(green). The close overlap indicates that random cross-validation will produce valid results.  1376 

  1377 
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Appendix DE. Cell-specific confidence intervaluncertainty bounds for predictive sediment 1378 

maps 1379 

 1380 

Figure D1E1. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of mud 1381 

content (%) in subtidal marine sediments across the Canadian continental margin. Within each panel the main 1382 

plot shows the Arctic and Atlantic regions with the Pacific region inset.  1383 

 1384 

 1385 

Figure D2E2. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of carbon 1386 

content (%) in subtidal marine sediments across the Canadian continental margin.  The continuous variable is 1387 

shown in discrete colour bands to improve visualisation of highly right skewed data. Within each panel the main plot 1388 

shows the Arctic and Atlantic regions with the Pacific region inset.  1389 

 1390 
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 1391 

Figure D3. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of mass 1392 

accumulation rate (g cm-2 yr-1) on subtidal marine sediments across the Canadian continental margin. The 1393 

continuous variable is shown in discrete colour bands to improve visualisation of highly right skewed data. Within each 1394 

panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset.  1395 

 1396 

 1397 

Figure D4E3. Estimated lower (a) and upper (b) uncertainty bounds aroundof the 95% confidence interval for 1398 

mean predictions of dry bulk density (g cm-3) of subtidal marine sediments across the Canadian continental 1399 

margin. Within each panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset. 1400 

 1401 
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 1402 

Figure D5E4. Estimated lower (a) and upper (b) uncertainty bounds of around the 95% confidence interval for 1403 

mean predictions of organic carbon density (kg m-3) in subtidal marine sediments across the Canadian 1404 

continental margin. The continuous variable is shown in discrete colour bands to improve visualisation of highly right 1405 

skewed data. Within each panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset. 1406 

 1407 

 1408 

Figure D6. Estimated lower (a) and upper (b) bounds of the 95% confidence interval for predictions of organic 1409 

carbon accumulation rates (g m-2 y-1) on subtidal marine sediments across the Canadian continental margin. 1410 

The continuous variable is shown in discrete colour bands to improve visualisation of highly right skewed data. Within 1411 

each panel the main plot shows the Arctic and Atlantic regions with the Pacific region inset. 1412 

 1413 

  1414 
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Appendix EF. Bedrock distribution case studies 1415 

 1416 

Figure E1F1. Predicted mean values of organic carbon density and accumulation rates within the Scotian Shelf 1417 

overlayed by the estimated distribution of rock substrates. Data on the estimated distribution of rock on the 1418 

seafloor across the Scotian Shelf Bioregion is taken from Philibert et al. (2022). 1419 

 1420 

 1421 

 1422 

Figure E2F2. Predicted mean values of organic carbon density and accumulation rates within the British 1423 

Columbia EEZ overlayed by the estimated distribution of rock substrates. Data on the estimated distribution of 1424 

rock on the seafloor across the British Columbian continental margin is taken from Gregr et al. (2021). 1425 
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