Seeing the Wood for the Trees: Active human-environmental interactions in arid northwest China

Hui Shen¹,², Robert N. Spengler³,⁴, Xinying Zhou¹,², Alison Betts⁵, Peter Weiming Jia⁵, Keliang Zhao¹,², Xiaoqiang Li¹,²

¹ Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China
² University of Chinese Academy of Sciences, Beijing, 100049, China
³ Domestication and Anthropogenic Evolution Research Group, Max Planck Institute of Geoanthropology, Jena, 07745, Germany
⁴ Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, 07745, Germany
⁵ Department of Archaeology, University of Sydney, Sydney, NSW 2006, Australia

Corresponding author: Xiaoqiang Li
email: lixiaoqiang@ivpp.ac.cn
Abstract: Due largely to demographic growth, agricultural populations during the Holocene became increasingly more impactful ecosystem engineers. Multidisciplinary research has revealed a deep history of human-environmental dynamics; however, these pre-modern anthropogenic ecosystem transformations and cultural adoptions are still poorly understood. Here, we synthesis anthracological data to explore the complex array of human-environmental interactions in the regions of the prehistoric Silk Road. Our results suggest that these ancient humans were not passively impacted by environmental change, but rather they culturally adapted to, and in turn altered, arid ecosystems. Underpinned by the establishment of complex agricultural systems on the western Loess Plateau, people may have started to manage chestnut trees, likely through conservation of economically significant species, as early as 4600 BP. Since ca. 3500 BP, with the appearance of high-yielding wheat/barley farming in Xinjiang and the Hexi Corridor, people appear to have been cultivating Prunus and Morus trees. We also argue that people were transporting the-preferred coniferous woods over long distances to meet the need for fuel and timber. After 2500 BP, people in our study area were making conscious selections between wood types for craft production, and were also clearly cultivating a wide range of long-generation perennials, showing a remarkable traditional knowledge tied into the arid environment. At the same time, the data suggest that there was significant deforestation throughout the chronology of occupation, including a rapid decline of slow-growing spruce forests and riparian woodlands across the northwest China. The wood charcoal dataset is publicly available at https://doi.org/10.5281/zenodo.8158277 (Shen et al., 2023).

Keywords: Human-environmental interaction, human adaption, fruit management, deforestation, northwest China
1 Introduction

The extent of prehistoric anthropogenic environmental change, especially relating to the ways early agricultural practices reshaped terrestrial ecosystems, has been the subject of ongoing debate (Ruddiman, 2003, 2008; Zong et al., 2007; Zalasiewicz et al., 2017; ArchaeoGLOBE Project, 2019; Renn, 2020; Asouti and Kabukcu, 2014; Asouti et al., 2015; Dong et al., 2020a, 2022a; Cowie et al., 2022). Over the past decade, scholars have adopted big data approaches to understanding anthropogenic changes to the Earth’s surface (Zalasiewicz et al., 2017; ArchaeoGLOBE Project, 2019; Renn, 2020; Cowie et al., 2022). While humans have undoubtedly been reshaping their environments since before the Holocene, the magnitude and complexity of these impacts following the adoption of agricultural economies increased immensely. During this process, people shifted their subsistence system from hunting-gathering to cereal cultivation and animal husbandry, and increasingly gained the ability to alter and adapt their ecological surroundings (Bellwood, 2005; Zeder, 2008; Zohary et al., 2012). During the fifth millennium BP, agricultural populations across Europe and Asia first came into contact via diffusion of crops, contributing to food globalization in prehistory (Sherratt, 2006; Jones et al., 2011; Dong et al., 2017, 2022b; Boivin et al., 2016; Liu et al., 2019; Zhou et al., 2020). The intermingling of millets, adapted for arid and short-season grasslands in northern China, with cereals, adapted for rainy season growth in arid southwest Asia, eventually facilitated a greater intensification of farming systems (Spengler 2019; Miller et al. 2016).

Mounting evidence shows that the development of intensive farming systems
was accompanied by a series of ecological and social changes, including deforestation, wild species loss, and demographic expansion (Bellwood, 2005; Weisdorf, 2005; Atahan et al., 2008; Kaplan et al., 2009; Bocquet-Appel, 2011; Fuller et al., 2011a; Asouti et al., 2015; Ruddiman, 2013). For instance, the dispersal and expansion of agriculture largely altered the natural geographic distributions of anthropophilic plants (crops and weeds) and directly influenced vegetation communities worldwide (Vigne et al., 2012; Fuller et al., 2011b; Crowther et al., 2016; Boivin et al., 2017; Spengler et al., 2021). Forest clearing, either to increase the surface area of arable land or to acquire wood for construction or fuel, has caused large-scale deforestation and created a more open landscape (Zong et al., 2007; Atahan et al., 2008; Kaplan et al., 2009; Innes et al., 2013; Zheng et al., 2021). Meanwhile, human-mediated management of local woodlands encouraged the growth of fruit- and nut-bearing trees, shifting land-use strategies from an emphasis on short-term returns of annual cereals to long-term investment with delayed return crops, was widely recognized (Fall et al., 2002; Janick, 2005; Miller and Gross, 2011; Miller, 2013; Asouti and Kabukcu, 2014; Asouti et al., 2015). Today, essentially all ecosystems on the planet are anthropogenic constructs, recognized through the increasingly prominent use of the term Anthropocene (Crutzen, 2002; Ruddiman, 2003, 2013; Monastersky, 2015).

Northwest China, the focus region of this paper, is of particular interest, because it is located at the core of the ancient trade routes that are colloquially referred to as the Silk Road and farmers in the region were the first to experiment with agricultural crops from both West and East Asia (Wang et al., 2017; Dong et al., 2017, 2018, 2022b; Zhou et al., 2020; Li, 2021). Archaeobotanical data have pinpointed the broad-region and time period when humans first started to cultivated millets in East Asia—
Specifically, evidence from the Dadiwan site has revealed that broomcorn millet cultivation began as early as the eighth millennium BP (Liu et al., 2004; Li, 2018), and the gradual diffusion of broomcorn millet reached farmers in the mountains of Central Asia by 4500 BP (Spengler et al. 2014; Yatoo et al. 2020). The remains of barley (*Hordeum vulgare var. nudum*) and wheat (*Triticum aestivum*) found at the Tongtian Cave site, have been dated to around 5200 BP, representing the earliest known southwest Asian cereals found in East Asia (Zhou et al., 2020). In addition to long-distance exchange-diffusion of cereals and knowledge of their cultivation, this area also fostered the trans-continental dispersals of sheep, goat, bronze-smelting technology, mudbrick-manufacturing techniques, and a variety of other cultural attributes (Mei and Shell, 1991; Dodson et al., 2009; Li et al., 2011; Yang et al., 2017; Dong et al., 2017; Chen et al., 2018; Ren et al., 2022). Additionally, most of this region is characterized by a hyper-arid desert and fragile oasis ecosystem, which are especially vulnerable to human activity, making it a prime zone for studying the interaction between early agricultural societies and the environment.

Archaeologists and geologists working in this region have mainly focused their attention on the relationship between climate change and Neolithic cultural development, as well as anthropogenic impacts on regional ecosystems. These scholars have argued that enhanced precipitation during the Late Yangshao (5500-5000 BP), Majiayao type (5300-4800 BP), and Qijia (4200-3800 BP) periods played an important role in the expansion of these early farmers (An et al., 2004; 2005, 2006; Hou et al. 2009; Liu et al., 2010; Dong et al., 2012, 2013, 2016, 2020a). A reduction in the number of archaeological sites during the gap between early and middle Majiayao (4800-4400 BP), and the decline of the Qijia culture are thought to be a response to increasingly aridity (Dong et al., 2012, 2013). Concurrent with these
changes, people were actively engaged in reshaping the landscape. For instance, a wood charcoal study from the Hexi Corridor has suggested that prehistoric wood collection led to a rapid reduction in local woodlands and a decline in woody plant diversity (Shen et al., 2018). In a different study, an increase in large-scale fire frequency was proposed based on micro carbon records from Tian’e Lake, which was further correlated with high Cu content, suggesting the consequence of large-scale bronze smelting activities (Dong et al., 2020b). However, relatively less attention has been paid to how agriculture influenced the cultural responses and adaption strategies employed by early farmers in these arid environments. Meanwhile, scientific records are geographically uneven, with regions, such as the Hexi Corridor, attracting considerable attention, while few studies have targeted the vast area of Xinjiang, leading to an incomplete picture of prehistoric human-environmental interactions along the ancient Silk Road.

In this study, we present a comprehensive synthesis of wood charcoal records from northwest China. As the result of incomplete burning, wood charcoal fragments from archaeological sites shed light on the practices of local woody plant use (Asouti and Austin, 2005; Marguerie and Hunot, 2007; Théry Parisot et al., 2010). Since the first charcoal analyse, beginning in the 1940s (Salysbury and Jane, 1940), the application of reflected light microscopy has allowed for the rapid identification of charcoal, making it widely used in: 1) the reconstruction of firewood collection strategies (Asouti and Asutin, 2005; Marguerie and Hunot, 2007; Li et al., 2016; Shen et al., 2018; Kabukcu, 2017; Mas et al., 2021); 2) elucidating the impacts that wood cutting had on local forests (Li et al., 2011; Asouti et al., 2015; Knapp et al., 2015; Shen et al., 2018); 3) identifying compositions of woody communities (Wang et al., 2014; Asouti et al., 2015; Allué and Zaidner, 2022; Mas et al., 2022); and 4)
determining fruit and/or nut tree management (Miller, 2013; Asouti and Kabukcu, 2014; Shen and Li, 2021). Here, we seek to identify patterns within wood charcoal assemblages recovered from seven archaeological sites in Xinjiang, which we contrast with more than 30 other published regional records. We aim to explore multiple perspectives on the complexities of human-environmental interactions within the agricultural background, including the influence of farming and wood cutting on woody vegetation change, as well as the strategies applied in response to climatic aridification.

2 Study area

2.1 Regional setting

Our study focuses on the provinces of Xinjiang and Gansu, because of the important roles people in this region played in exchange along the ancient Silk Road. This region is characterized by montane ecoclines, including those of the Tianshan, Altai, Altun, and Qilian mountains (Figure 1). Due to glacial snowmelt, alluvial plains are widely distributed across the low-land basins, and fine-grained nutrients and water brought by the runoff nourish a network of oases, especially within the Hexi Corridor and Tarim Basin (Zheng et al., 2015). Climatically, mean annual precipitation (MAP) is geographically uneven, due to differences in prevailing air masses. For the West Loess Plateau, which is under the control of the Asian monsoons, MAP usually exceeds 400 mm (https://data.cma.cn/). Water vapour carried by the westerlies mainly concentrates in the Ili or Irtysh valleys and Junggar Basin, and the MAP sometimes can reach more than 500 mm (Xiao et al., 2006; Zheng et al., 2015). In the Tarim Basin and the Hexi Corridor, the MAP is usually less than 200 mm
Temperatures are also spatially and seasonally unevenly distributed; likewise, the mean annual temperature in the Kunlun, Tianshan, and Altai mountains is below zero, while that of the Turpan Basin is around 14°C (Chen, 2010).

Due to the arid climate, vegetation types here are characterized by expansive deserts (Xinjiang Integrated Expedition Team and Institute of Botany, 1978). Along the rivers in the low-land basins, riparian woodlands are mainly composed of *Populus, Elaeagnus, Ulmus,* and *Salix* (Chen, 2010). Within the montane belt, vegetation usually changes from grassland (dominated by *Stipa*), coniferous forest (mainly *Picea* and *Larix*), subalpine steppe (mainly *Stipa*), alpine meadows (including *Stipa, Carex,* and *Artemisia*), and alpine cushion vegetation (represented by...
Androsace, Stellaria media, and Geranium wilfordii), in banded ecoclines from lowest to highest elevation (Chen, 2010; Zheng et al., 2015; Xinjiang Integrated Expedition Team and Institute of Botany, 1978). Wild fruit and nut woodlands are distributed throughout the Tianshan Mountains, especially in the Ili valley, and the main wild fruit trees include Malus sp., Juglans regia, and Prunus spp. (Chen, 2009; Abudureheman et al., 2016).

2.2 Prehistoric cultures and agriculture

As an important cultural bridge connecting East and West Asia, northwest China has fostered a variety of cultural communities. The early Neolithic cultures included the Dadiwan and Yangshao, mainly distributed in southern Gansu (Institute of Cultural Relics and Archaeology of Gansu, 2006). Later, people with material culture ascribed to the Majiayao expanded quickly into the Hexi Corridor around 4800 BP (Xie, 2002; Dong et al., 2020b). From 4000-3000 BP, the main archaeological cultures in Gansu consisted of the Xichengyi, Qijia, Siba, and Dongjiatai (Li et al., 2010), and the Shanma and Shajing cultures gradually developed after 3000 BP (Li, 2009; Gansu Provincial Institute of Cultural Relics and Archaeology et al., 2015). In Xinjiang, the prehistoric peoples before 4000 BP were represented by material culture categorized as the Afanasievo and Chemurchek (Shao, 2018). From 4000-3500 BP, the Andronovo Culture expanded into western Xinjiang, and the Tianshanbeilu and Xiaobe cultures occupied the eastern Tianshan and Tarim Basin, respectively (Mei and Shell, 1999; Ruan, 2014; Jia et al., 2017; Shao and Zhang, 2019; Xinjiang Institute of Cultural Relics and Archaeology, 2004, 2014). Since 3500 BP, cultural communities have continually diversified, with more localized groups forming, like the Subeixi Culture in the Turpan Basin (Chen, 2002).
Archaeobotanical evidence shows that millet cultivation was already practiced by ca. 7800-7350 BP (Liu et al., 2004; Li, 2018). By at least 5500 years ago, people were engaging in an intensive intermixed crop-livestock system by integrating pig maintenance with millet cultivation (Yang et al., 2022). From 5000-4000 BP, both East Asian millets diffused into the Hexi Corridor, while agricultural practices in Xinjiang were restricted to limited microenvironmental pockets (Zhou et al., 2016; Dong et al., 2017, 2018, 2020b; Li, 2021). Since 4000 BP, mixed agricultural systems composed of both East and southwest Asian crops became more prominent; although, barley and wheat had reached northwest China about a millennium prior (Flad et al., 2010; Zhao et al., 2013; Yang et al., 2014; Zhang et al., 2017; Zhou et al., 2016, 2020; Jiang et al., 2017a, 2017b; Tian et al., 2021). Stable carbon isotope data also suggest that the consumption of both C\textsubscript{3} and C\textsubscript{4} plants was widely practiced after 4000 BP (Liu et al., 2014; Zhang et al., 2015; An et al., 2017; Wang et al., 2016, 2017; Ma et al., 2016; Qu et al., 2018). Around 3700-3300 BP, wheat and barley gradually replaced the millets, becoming the dominant crops within the Hexi Corridor (Zhou et al., 2016). From 3300-2200 BP, agriculture in Xinjiang gradually developed into something more complex and spread to larger areas and more diverse ecozones, as evidenced by the diversification of crops, and the appearance of irrigation technology and various types of farming tools (Li, 2021). Meanwhile, secondary crops, such as *Vitis vinifera* and *Ziziphus jujuba*, appeared more widely after ca. 2500 BP, indicating a strong concept of land tenure associated with the development of agriculture (Jiang et al., 2009, 2013; Li, 2021).

3 Archaeobotanical Data and Chronology

3.1 Chronology of the archaeological sites
In this study, we present data from seven archaeological sites and have developed a chronology based on AMS 14C dating through the Beta Analytic Testing Laboratory and Australian Nuclear Science and Technology Organisation. For dating, we focused on wheat seeds and wood charcoal, and the calibrated ages were generated using Oxcal 4.4 with IntCal20 (Table 1 and Figure 2) (Reimer et al., 2020). The dating results show that the seven archaeological sites cover a time span between 3900 and 2000 BP, and the oldest dates come from Xintala, at ca. 3900-3500 BP. The Xiakalangguer, Sidagou, Xicaozi, and Qiongkeke sites fall into the period of 3500-3000 BP. The chronology for Shirenzigou covers roughly 2700-2000 BP. At Wupaer, we collected wood charcoal samples from two sections, S1 and S3, and the date of the S3 section is about 2900-2800 BP. The S1 section shows two different timespans of occupation, specifically ca. 3400-3300 BP and 2500-2300 BP.

Table 1. Dates for the seven archaeological sites in this study.

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Culture</th>
<th>Lab no.</th>
<th>Material</th>
<th>Date (BP)</th>
<th>Calibrated date (2σ, BP)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xintala</td>
<td>42.22</td>
<td>86.39</td>
<td>Xintala type</td>
<td>OZM448</td>
<td>charcoal</td>
<td>3395±30</td>
<td>3815-3561</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OZM449</td>
<td>charcoal</td>
<td>3515±30</td>
<td>3877-3696</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OZM450</td>
<td>charcoal</td>
<td>3335±30</td>
<td>3680-3469</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OZM451</td>
<td>wheat</td>
<td>3460±35</td>
<td>3835-3593</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OZL437</td>
<td>wheat</td>
<td>3515±50</td>
<td>3960-3642</td>
<td>Zhao et al., 2013</td>
</tr>
<tr>
<td>Qiongkeke</td>
<td>43.83</td>
<td>82.75</td>
<td>Andronovo</td>
<td>Beta-642945</td>
<td>charcoal</td>
<td>3220±30</td>
<td>3482-3375</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta-642946</td>
<td>charcoal</td>
<td>3320±30</td>
<td>3591-3458</td>
<td></td>
</tr>
<tr>
<td>Xiakalangguer</td>
<td>46.74</td>
<td>83.03</td>
<td>Andronovo</td>
<td>Beta-642943</td>
<td>charcoal</td>
<td>3140±30</td>
<td>3447-3327</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta-642944</td>
<td>charcoal</td>
<td>3070±30</td>
<td>3365-3209</td>
<td></td>
</tr>
<tr>
<td>Sidaogou</td>
<td>43.79</td>
<td>90.19</td>
<td>Nanwan type</td>
<td>OZK664</td>
<td>wheat</td>
<td>3030±50</td>
<td>3362-3075</td>
<td>Dodson et al., 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OZK665</td>
<td>wheat</td>
<td>3080±60</td>
<td>3445-3080</td>
<td></td>
</tr>
<tr>
<td>Xicaozi</td>
<td>44.00</td>
<td>89.68</td>
<td>Unknown</td>
<td>OZM674</td>
<td>wheat</td>
<td>2975±45</td>
<td>3331-2997</td>
<td></td>
</tr>
<tr>
<td>Wupaer</td>
<td>39.28</td>
<td>75.52</td>
<td>Wupaer</td>
<td>Beta-642939</td>
<td>charcoal</td>
<td>3160±30</td>
<td>3451-3339</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta-642940</td>
<td>charcoal</td>
<td>2450±30</td>
<td>2544-2361</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta-642941</td>
<td>charcoal</td>
<td>2420±30</td>
<td>2515-2351</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta-642942</td>
<td>charcoal</td>
<td>2800±30</td>
<td>2967-2844</td>
<td></td>
</tr>
<tr>
<td>Shirenzigou</td>
<td>42.56</td>
<td>94.09</td>
<td>Shirenzigou type</td>
<td>Beta-642947</td>
<td>charcoal</td>
<td>2350±30</td>
<td>2466-2329</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta-642948</td>
<td>charcoal</td>
<td>2180±30</td>
<td>2313-2099</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta-642949</td>
<td>charcoal</td>
<td>2150±30</td>
<td>2178-2041</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. The chronology of seven archaeologic sites in this study.

3.2 Wood charcoal assemblages

The identification of wood charcoal was accomplished via scanning electron microscopy, with 2,960 fragments of charcoal analysed and reported here (Appendix A). Three of the sites are located in oases and wood charcoal assemblages show clear similarities, with a dominance of Tamarix wood (Figure 3). In sediments from Xintala, we identified 878 wood charcoal fragments, with Tamarix accounting for 74-95%. Elaeagnus angustifolia increased across the chronology and reached its highest level (13%) in the latest layer. There were limited occurrences of Populus, Salix, and cf. Nitraria. Wood charcoal from Wupaer also shows an abundance of
Tamarix (ca. 80%), followed by fragments of *Populus, Salix, and Chenopodioideae*. Fruit tree remains include *Prunus*, usually less than 3% in abundance. At the Xiakalangguer site, *Salix* and *Tamarix* account for 44 and 28% of the assemblage respectively, followed by Chenopodioideae (17%). A small number of fragments of *Betula* and *Prunus* were also identified.

Figure 3. Wood charcoal assemblages from seven archaeological sites in northwest China.

In the eastern Tianshan, wood charcoal from three sites revealed an abundance of coniferous wood fragments. At Shirenzigou, wood charcoal fragments from cultural strata included *Picea, Juniperus, Tamarix, Populus, Salix, and Rhamnus*, with
conifers accounting for over 90% of the fragments. However, 14 wood samples taken from coffins suggest that they are all made from coniferous woods, including *Picea* (11) and *Juniperus* (3). At Sidaogou, wood charcoal from five samples was dominated by *Picea* and *Populus*, followed by *Salix* and *Tamarix*. Progressively over time, *Picea* fragments decreased from 52% to less than 20%, while *Populus* increased quickly from 37% to over 70%. Similarly, *Picea* and *Populus* also constituted a dominant percentage of the Xicaozi assemblage and the other taxa only cover a small percentage, represented by *Prunus, Juniperus, Salix*, and *Betula*. The Qiongkeke site is located in the Ili Valley, with five taxa identified among 229 wood charcoal fragments. *Prunus* and *Rhamnus* account for 30% each. The proportion of *Picea* is around 20%, followed by *Tamarix* and Maloideae.

In addition, we compiled wood charcoal data from published studies. In the Altai Mountains, wood charcoal from Tongtian Cave indicates that people widely collected *Larix, Picea, Betula, Populus, Salix, Maloideae*, and *Prunus* (Zhou et al., 2020). On the Pamir Plateau, the data we have assembled from the Ji’rzankal Cemetery show that *Populus* was used for making fire tools, *Betula* for wooden plates, *Salix* for wooden sticks, *Juniperus* for fire altars, and *Lonicera* for arrow shafts (Shen et al., 2015). Similarly, in the Turpan Basin, *Populus* was also selected for making fire tools at the Yanghai Cemetery, and there was selective use of a variety of other woods, including *Picea, Spiraea, Tamarix, Betula, Morus, Salix, Clematis*, and *Vitis vinifera* (Jiang, 2022). *Lonicera* was also used for arrow shafts and composite bows at the Jiayi and Shengjindian cemeteries (Nong et al., 2023). *Picea* was widely used at Yuergou for coffin manufacture and firewood (Jiang et al., 2013). While in the Tarim and Hami basins, *Populus* and *Tamarix* were largely used for coffins and wooden utensils, as revealed by studies at the Xiaohe, Gumugou, South Aisikexiaer, and

In the Hexi Corridor, *Picea* and/or *Juniperus* constituted the dominant portion of wood charcoal fragments in sites located near the Qilian Mountains, such as Xihetan and Zhaojiashuimo (Shen et al., 2018). While wood charcoal from oasis sites, like Huoshagou, Huoshiliang, and Ganggangwa, also record the abundance of *Tamarix*, and woody Polygonaceae and *Salix* disappear from later phases of Huoshiliang, presumably due to over harvesting for fuel (Shen et al., 2018, Li et al., 2011). The other sites in this area are characterized by abundant broadleaved taxa, with a small percentage of coniferous wood fragments, such as at the Lifuzhai, Xichengyi, and Sanjiao sites (Wang et al., 2014; Shen et al., 2018; Liu et al., 2019). Meanwhile, wood charcoal assemblages from the Mozuizi and Donghuishan sites suggest a rapid decline of local wood sources, including those of *Picea*, Maloideae, and *Betula* (Shen et al., 2018). Additionally, an abundance of *Prunus* wood fragments was found in these two sites, and people might have transported *Picea* wood over long distances to burn at Donghuishan (Shen et al., 2018). The long-distance transport of *Picea* and *Pinus* was also recognized in the assemblage from the Jingbaoer jade mine (Liu et al., 2021). At the Yingwoshu and Sanjiaocheng sites, abundant *Morus* wood fragments were identified, possibly indicating the early cultivation of mulberry (Shen et al., 2018).

As with the Hexi Corridor, wood taxa recovered from the western Loess Plateau also suggest a quick decline in the abundance of *Picea*, notably from 37% to less than 4% at Majiayao (Shen et al., 2021). In the assemblage from Xishanping, *Picea*, *Betula*, *Acer*, and *Quercus* decreased markedly after 4600 BP, and *Picea* declined from a peak value of 28% to less than 5%, while Bambusoideae increased sharply (Li
et al., 2012). The sudden spike on abundance of bamboo is thought to be due to rapid successional colonization after significant deforestation or clearing of woody competitive species. Meanwhile, fruit trees, including Castanea, Prunus (what the wood specialists in this study called Cerasus and Padus), and Diospyros expressed a considerable increase in abundance (Li et al., 2012). The use of fruit tree wood was also recognized in the Dadiwan, Shannashuzha, Daping, and Gaozhuang sites, with the abundance of Prunus (these researchers subdivided this group into Prunus and Padus, which we have clumped together in this study for consistency, since that the wide conception of Prunus, that is, Prunus sensu lato (s.l.) includes Prunus sensu stricto (s.s.), Amygdalus, Cerasus, Padus, as well as Armeniaca), Maloideae, and Ziziphus (Sun et al., 2013; An et al., 2014; Li et al., 2017).

4 Discussions and Conclusion

4.1 Wood collection strategies and the transport of conifers

As the result of wood fuel useburning, wood charcoal provides insights into the decision-making process regarding the collection of fuelstrategies. In this study, we found that wood charcoal assemblages from all oasis sites were dominated by Tamarix. Most species from the Tamarix genus are deciduous shrubs, generally 2-5 meters high, with slender and soft branches (Yang and Gaskin, 2012). The twigs are often browsed by sheep, camel, and donkey, and the branches can serve as a rapidly-regenerating fuel (Editorial Board of Flora of China, CAS, 1990). Therefore, this widely-distributed, arid-tolerant, and rapid-growing shrubby Tamarix, might would have constituted the best fuel for ancient oases groups. For the archaeological sites located in mountainous areas, wood fragments from coniferous trees are more
prevalent. For example, abundant *Picea* and *Juniperus* wood fragments were found at Shirenzigou in the eastern Tianshan. Similarly, *Picea-Juniperus* constitutes the dominant portion of the fragments from sites near the Qilian Mountains (Shen et al., 2018). All of the assemblages show that people were largely opportunistic in their choices and the availability of wood sources played a key role in the wood collection strategies.

Additionally, as wood resources in arid northwest China are relatively limited, coping with localized wood shortages would have been an issue that people inevitably dealt with. Among these wood charcoal assemblages, we found that there are some fragments of coniferous woods that likely represent people traveling over long distances on collection trips. The earliest known evidence might come from Donghuishan (3700-3400 BP), in which *Picea* charcoal experienced a sharp decrease and then suddenly increased to its highest level (Shen et al., 2018). Given that spruce forests are very slow to regenerate, the sudden increase of spruce fragments was likely the result of long-distance collection from the Qilian Mountains (Shen et al., 2018). Generally, spruce wood has preferential properties, as its timber is straight and tall, and easily worked, presumably contributing to the selection and transportation of this specific species. Since 2500 BP, the long-distance collection of coniferous woods seems to have been a more regular activity, as evidenced at the Jingbaoer jade mine, where *Picea* and *Pinus* wood fragments are recovered well outside their natural ecological distribution (Liu et al., 2021). In the Turpan Basin, *Picea* wood fragments were found in sediments from a series of Subeixi sites, which may have been collected from the Tianshan Mountains (Jiang et al., 2013; Jiang, 2022).

In addition to noting the likely long-distance collection of coniferous woods, the
abundance of conifers in most of our study sites hints to the likelihood that people
might also have a preference for this specific wood type. At Sidaogou, spruce wood
fragments comprise more than 60% of the total fragment assemblage. Similarly,
charcoal from Majiayao recorded spruce fragments as the most used taxon right from
the onset of when people settled down at the location (Shen et al., 2021). Meanwhile,
the exclusive use of coniferous wood for coffin construction is also recognizable in
this study. At Shirenzigou, the analysis of 14 wooden coffins show that they were all
made of coniferous woods. However, in sediments from the site, we found a variety
of carbonized wood types, including *Tamarix, Populus, Rhamnus, Salix*, etc.

Historically, a preference towards coniferous woods is widely noted in ancient China
(Ding, 2022), and archaeological wood studies in Central Asia have also noted similar
patterns (Spengler and Willcox 2013). Many ethnographic and historical references to
ritual juniper twig burning as incense are noted from across Inner Asia. The fact that
the wooden coffins at Shirenzigou are all constructed from conifers, suggests that the
ritual significance of the resinous trees may stretch much further back in time.

**Ultimately, we conclude that an awareness of the properties and special meaning of
these woods probably plays a key role in their wide use.**

4.2 Collection and cultivation of fruit trees

In addition to the prehistoric expansion of agricultural systems, the significant
amounts of fruit wood fragments in our study may imply that the anthropogenic
processes were increasing the density of fruit trees near human settlements. Presently,
scholars continue to grapple with the question of what evidence is necessary to
differentiate between wild foraging, conservation of economically significant trees
and low-investment cultivation of wild populations (Dal Martello et al., 2023). In our
study, fruit wood fragments before 4600 BP were usually found in low percentages, indicating limited collection of seasonally available wild fruits (Sun et al., 2013; Li et al., 2017; Shen et al., 2021). Roughly between 4600-4300 BP, Castanea, Prunus, and Diospyros charcoal shows a rapid increase in abundance at Xishanping on the western Loess Plateau (Li et al., 2012). Pollen data at this time also demonstrates that Castanea became the dominant broadleaved taxon, which is quite different from the reconstructed natural vegetation, likely indicating the management of wild chestnut forests or at least that humans were choosing not to cut these trees down, increasing their populations (Li et al., 2007). Also, archaeobotanical records at this site illustrate that a complex agricultural system based on a variety of crops, including millets (Setaria italica and Panicum miliaceum), rice (Oryza sativa), oats (Avena sp.), soybean (Glycine soja), and buckwheat (Fagopyrum sp.), appeared synchronously with the management of chestnut. This cooccurrence probably suggests that the exploitation of secondary crops was closely related to and underpinned by the well-organized agricultural system.

During the period from 4300 to 3500 years ago, there is an increase in the abundance of fruit wood remains in Xinjiang and the Hexi Corridor. For example, Elaeagnus angustifolia charcoal was found throughout the whole section and shows a gradually increasing trend at Xintala. In the Hexi Corridor, Prunus wood fragments were found discovered in great abundance at Mozuizi and Donghuishan, far higher than its percentage is believed to have been in the natural vegetation, possibly showing an intensive collection of Prunus (Shen et al., 2019). However, there is no clear sign of fruit management during this period, given that a wide range of wild fruit types, such as Nitraria and Cotoneaster were also widely exploited (Zhou et al., 2016; Shen et al., 2019). Meanwhile, previous studies show that, although a mixed
agricultural system consisting of both millets, wheat, and barley existed in Xinjiang
and the Hexi Corridor after 4000 BP, people still relied heavily on animal herding
and/or feeding (Dong et al., 2020b; Li, 2021).

From 3500-2500 BP, the cultivation or maintenance of Prunus and Morus trees
was probably adopted into the agricultural system. As in Wupaer, located in the
Kashgar oasis, the presence of Prunus charcoal remains recovered beyond its natural distribution of the tree and the climatic conditions around the site are not
suitable for the growth of Prunus, likely resulted from anthropogenic planting. On the
other hand, considering that the distribution of wild Prunus trees had largely shrunk
or even disappeared presumably due to long-term human activity, we should still be
cautious about this conclusion. Almost at the same time, people in the Hexi Corridor
probably also started engaging in horticultural practices, supported by the abundant
discovery of Morus charcoal (Shen et al., 2019). Synchronously, a high-yield wheat
and barley farming system was developed in the Hexi Corridor (Zhou et al., 2012),
and a more intensified agricultural system developed in Xinjiang (Li, 2021), likely
providing a fundamental basis for the exploration of delayed-return perennial crops.

After 2500 BP, the cultivation of fruit trees was probably widely practiced in
northwest China. For instance, evidence from the Turpan Basin shows the presence of
Morus woods and Vitis vinifera stems at the Yanghai cemetery (Jiang, 2022; Jiang et
al., 2009), Vitis vinifera seeds in the Shengjindian cemetery (Jiang et al., 2015), and
Ziziphus jujuba stones in the Yuergou site (Jiang et al., 2013). At the Sampula
cemetery, fruit, nut and seed types were more abundant, including Prunus persica, P.
armeniaca, Juglans regia, Coix lacryma-jobi, etc. (Jiang et al., 2008). The appearance
of such a rich and diverse array of fruit crops indicates that people in northwest China
had developed a complex indigenous knowledge to survive in this hyper arid environment and conducted more and more frequent exchange across the Eurasian continent.

4.3 Indigenous knowledge of plant resources

Due to the extreme arid climate, wooden objects found in our study area are usually well-preserved and the data suggest that people might have also captured the knowledge of deliberately selecting certain types of woods when making various utensils. For example, within the Subeixi groups in the Turpan Basin, Lonicera was harvested from wild stands for making arrow shafts at Jiayi and Shengjingdian (Nong et al., 2023). At the Yanghai cemetery, Betula was selected for making dippers or ladles, for its rigidity; flammable Populus and Picea were used for fire tool manufacture (Jiang et al., 2018, 2021). People at this time also used Lithospermum officinale seeds for decoration (Jiang et al., 2007a), Nitraria tangutorum for making necklaces (Jiang, 2022), and Cannabis for ritualized consumption and/or medical purposes, as revealed in both the Turpan Basin (Jiang et al., 2006, 2007b, 2016) and the Pamir Plateau (Ren et al., 2019).

Similarly, on the Pamir Plateau, Betula, which has high rigidity and density, and homogeneous texture, was selected for making wooden plates (Shen et al., 2015). Additionally, the study of other wooden objects suggests that people specifically chose flammable Populus wood to make fire tools; Salix, with long and straight branches, was used for fashioning wooden sticks; sweet resinous-scented Juniperus was the preferred choice for making fire altars, and Lonicera was selected for arrow shaft manufacture (Shen et al., 2015). Such conscious utilization of different wood properties illustrates the ingenuity of these ancient people. Although the current
archaeobotanical research data related to wooden utensils is still limited, studies from the Turpan Basin and the Pamir Plateau clearly suggest that the conscious selection of wood types for specific properties was a particularly pronounced practice after 2500 BP, especially among cultural contexts of a well-established agriculture based on millets, wheat, and barley. Meanwhile, the appearance of horticulture based on a variety of secondary crops at the time indicated a more settled lifestyle, which might provide opportunities for prehistoric people to fully explore and make the best use of the indigenous plant resources.

4.4 Anthropogenic deforestation

Presumably, largely due to slash and burn agriculture, people have largely altered terrestrial ecosystems across the globe (Zong et al., 2007; Schlütz et al., 2009; Li et al., 2009; Neumann et al., 2012; Innes et al., 2013; Ma et al., 2020; Zheng et al., 2021). For northwest China, wood charcoal data in this study show that, apart from diversified cultural adaptations, human-induced landscape alteration also occurred widely, not only throughout the whole history of agricultural activity, but also across different vegetation contexts. Along the Tianshan mountains, for example, pollen records from the Bosten and Balikun lakes suggest a relatively stable climate during 3900-3500 BP, and a long-term increase of humidity after 3800 BP (Chen et al., 2006; Huang et al., 2009; An et al., 2012). However, wood charcoal data from Sidaogou (3400-3000 BP) in the eastern Tianshan recorded a significant decrease in abundance of spruce wood fragments (Figure 4). Meanwhile, Tamarix and Salix nearly disappeared in the later stage, showing that wood cutting caused the sharp attenuation of spruce forests and broadleaved woodlands was caused by intensive wood cutting rather than climate change. Similarly, Tamarix charcoal from the
Xintala (3900-3500 BP) section in the Yanqi Oasis firstly increased and then decreased to its lowest level in the upper layer, suggesting that continuous wood cutting resulted in the decline of *Tamarix* shrubs. At the same time, *Populus* and *Salix* charcoal disappeared in the middle layer, implying that local riparian woodlands were largely deforested.

Figure 4. The wood charcoal and pollen records show synchronous deforestation of spruce forests across all of northwest China. (a) the change of *Picea* wood charcoal (bar) and pollen (curve) from archaeological sites including Sidaogou, Donghuishan (Zhou et al., 2012; Shen et al., 2018), Majiayao (Zhou, 2009; Shen et al., 2021), and Xishanping (Li et al., 2007, 2012). The column chart shows the stratum layer. (b) the comparison of spruce forests between prehistoric times and now, the squares represent archaeological sites with *Picea* charcoal.
remains and the red areas show the current distribution of spruce forests in northwest China (after Hou, 2019).

The Neolithic deforestation and reduction in range of spruce forests have also been widely recognized across the western Loess Plateau and the Hexi Corridor. At the western Loess Plateau, high-resolution (ca. ~5 year increments) stalagmite δ¹⁸O data recorded no abrupt climate changes at around 5300-5100 BP and 4600 BP (Tan et al., 2020). While, the Majiayao site record from the Majiayao site showed the rapid decline of Picea from its highest level of nearly 40% to the lowest of less than 4% during the early stages of the site’s occupation at ca. 5300-5100 BP, implying that anthropogenic exploration exerted a significant impact on local spruce forests (Figure 4a) (Shen et al., 2021). Not far from Majiayao, wood charcoal from the Xishanping section revealed a similar pattern, with Picea, Betula, Acer, Ulmus, and Quercus, illustrating a marked decrease after 4600 BP, while Bambusoideae quickly colonized after the clearing of the original forest (Li et al., 2012). In the Hexi Corridor, studies of wood charcoal fragments assemblages from the Mozuizi and Donghuishan sites also show a quick decline in plant diversity concurrent with human settlement, and the percentage of Picea from Donghuishan recorded-experienced a sharp decrease (Figure 4) (Shen et al, 2018). Similarly, wood charcoal fragments from Huoshiliang show that Salix and Polygonaceae almost disappear, likely due to the large demand for fuel used in bronze smelting activities (Li et al., 2011). Collectively, we interpret the broader trend throughout all of these wood charcoal assemblages as revealing a rather rapid process of deforestation across northwest China, especially shown in the large-scale reduction in spruce forests. Our results are also supported by evidence from pollen records, especially Picea pollen from Majiayao (Zhou, 2009), Xishanping (Li et al., 2007), Donghuishan (Zhou et al.,
2012), and other sections from the Loess Plateau (Zhou and Li, 2011). All of these records document considerable reduction in spruce forests (Figure 4a). Today, the distribution of spruce forests has shrunk down to a few constrained small forest patches (Figure 4b).

5 Data availability

The datasets of archaeobotanical wood charcoal records in northwest China including taxa types, absolute counts of wood charcoal fragments, and the locations and AMS 14C dates of each archaeological site are available at the open-access repository Zenodo (Shen et al., 2023; https://doi.org/10.5281/zenodo.8158277).

6 Summary

The synthesis of wood charcoal data from nearly 40 archaeological sites shows that prehistoric human-environmental interactions in northwest China were closely related to the development of agriculture and considerably more complicated than previously thought (Figure 5). Although anthropogenic deforestation occurred throughout the whole period, most evidently relating to the decline of spruce forests, people also actively applied a range of adaptive strategies to survive in this harsh environment. As early as 4600 BP, people on the western Loess Plateau might have started managing or at least conserving chestnut trees, likely underpinned by the development of a complex agricultural system. Since ca. 3500 BP, with the appearance of high-yielding agriculture based on wheat and barley in Xinjiang and the Hexi Corridor, people appear to have been planting perennial tree crops, such as Prunus and Morus. Additionally, they likely engaged in long-distance transportation of preferred woods, specifically coniferous trees. After 2500 BP, people successfully mastered a wide
range of adaption strategies along the ancient Silk Road, as they began manufacturing wooden utensils with conscious selection of wood properties. Moreover, the consumption of a further diversity of fruit types, including grapes, signalled more intensive horticultural practices and complex social structure.

Figure 5. A summary of prehistory human-environmental interactions in northwest China.

Author contributions. HS and XL designed the archaeobotanical dataset; HS was responsible for construction of the database; HS performed numerical analyses and organized the manuscript, and XZ, RS, PJ and AB revised the draft of the paper. All authors discussed the results and contributed to the final paper.

Competing interests. The contact author has declared that none of the authors has any competing interests.
Acknowledgements. We sincerely thank Ming Ji and Hongbin Zhang for their help in the wood charcoal sample collection, and Nan Sun for her assistance with data collection.

Financial support. This research has been supported by the National Natural Science Foundation of China (grant no. 42002202), the Youth Innovation Promotion Association of Chinese Academy of Sciences (grant no. 2022071), and the National Key Research and Development Program of China (grant no. 2022YFF0801502).

References

An, C., Wang, W., Duan, F., Huang, W., and Chen, F.: Environmental changes and cultural exchange between East and West along the Silk Road in arid Central...

Ren, L., Yang, Y., Qiu, M., Brunson, K., Chen, G., and Dong, G.: Direct dating of the earliest domesticated cattle and caprines in northwestern China reveals the history of pastoralism in the Gansu-Qinghai region, J. Archaeol. Sci., 144,

Zhang, G., Wang, S., Ferguson, D. K., Yang, Y., Liu, X., and Jiang, H.: Ancient plant use and palaeoenvironmental analysis at the Gumugou Cemetery, Xinjiang,

Zohary, D., Hopf, M., and Weiss, E. (Eds.): Domestication of plants in the Old
World: The origin and spread of cultivated plants in West Asia, Europe and Nile

management of coastal swamp enabled first rice paddy cultivation in east China,