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Abstract. An accurate and spatially explicit large-scale rice calendar can enhance understanding of agricultural practices and 

their ecological services, particularly in monsoon Asia. However, currently available global- or continental-scale rice calendars 

suffer from coarse resolution, poor recording, and outdated information, which do not provide detailed and consistent 

information on rice phenology. To address this limitation, this study mapped a new (2019 to 2020) gridded (0.5° × 0.5° 15 

resolution) rice calendar for monsoon Asia based on Sentinel-1 and Sentinel-2 satellite images. The novelty of this rice calendar 

lies in the development of a consistent optimal methodological framework that allows spatially explicit characterization of the 

rice transplanting date, harvest date, and number of rice croppings. The methodological framework incorporates two steps: (1) 

detection of rice phenological dates and number of rice croppings through combination of a feature-based algorithm and the 

fitted Weibull function, and (2) spatio-temporal integration of the detected transplanting and harvest dates derived from step 1 20 

using von Mises maximum likelihood estimates. Results revealed that the proposed rice calendar can accurately identify the 

rice phenological dates for three croppings in monsoon Asia. When compared with single rice data from the census-based 

RiceAtlas calendar, the proposed calendar exhibited better results than the MODIS-based RICA calendar. It exhibited bias of 

4 and −6 days for transplanting and harvest dates, respectively, with lower values in MAE by 10 and 15 days, and in RMSE 

by 6 and 15 days for transplanting and harvest dates, respectively. In total, the proposed rice calendar can detect single, double, 25 

and triple rice cropping with area of 0.53, 0.45, and 0.09 million of km2, respectively. This novel gridded rice calendar fills 

the gaps in half-degree rice calendars across major global rice production areas, facilitating research on rice phenology that is 

relevant to the climate change. The developed gridded Monsoon Asia Rice Calendar (MARC) is available at 

https://www.nies.go.jp/doi/10.17595/20230728.001-e.html (Zhao and Nishina, 2023). 
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1 Introduction 

A rice calendar records a series of phenological dates for rice growth and indicates the number of times that rice is grown in a 

year (Mishra et al., 2021; Zhao et al., 2023). Rice calendars provide critical information that contributes to agricultural 

management, crop production prediction, and estimation of greenhouse gas (GHG) emissions (Laborte et al., 2017; Portmann 35 

et al., 2010; Sacks et al., 2010). Specifically, concern regarding the negative impacts of rice cultivation is increasing because 

irrigated rice paddy field is an important source of anthropogenic GHG emissions, contributing 8% and 11% of global methane 

and nitrous oxide emissions, respectively (Saunois et al., 2020; Jiang et al., 2019). The inundated period from transplanting 

date to harvest date derived from a rice calendar largely determines the quantity of GHG emissions (Ito et al., 2021). To 

accurately estimate GHG emissions related to rice cultivation and to establish appropriate reduction measures, a detailed rice 40 

calendar that depicts rice phenology dynamics is urgently needed, especially for monsoon Asia, which accounts for 87% of 

the area of harvested rice globally and for 90% of global rice production (FAOSTAT, 2022). 

 

Existing approaches to rice calendar mapping can be grouped into three categories: those based on census data, those based on 

models, and those based on remote sensing images. The limited number of global rice calendars (e.g., SAGE (Sacks et al., 45 

2010), MIRCA2000 (Portmann et al., 2010), and RiceAtlas (Laborte et al., 2017)) that are currently available relies on 

compilation of statistical data at national and/or sub-national scales. Model-based rice calendars (Waha et al., 2012; Elliott et 

al., 2015; Mathison et al., 2017; Iizumi et al., 2019) provide large-scale spatially explicit rice phenology information that is 

mainly based on climate data, but they are difficult to validate using earth observation data over such scales (Mishra et al., 

2021). In contrast, remote sensing approaches that can provide consistent detection of large-scale rice phenological change 50 

over time have been used for rice calendar mapping with varying spatial coverage (e.g., global (Kotsuki and Tanaka, 2015), 

Asia (Mishra et al., 2021; Zhang et al., 2022), South and Southeast Asia (More et al., 2016), China (Luo et al., 2020), and 

Japan (Sakamoto et al., 2005)). 

 

However, many challenges hinder the production of accurate rice calendar using remote sensing approach. First, use of a 55 

coarse–moderate-resolution satellite sensor (e.g., AVHRR with approximately 5 km resolution and MODIS with 500 m 

resolution) or any single sensor (optical or synthetic aperture radar (SAR)) diminishes the accuracy of rice calendar mapping. 

The RICA rice calendar, produced using MODIS images, faces issues with rice paddy field sizes smaller than the 500 m sensor 

resolution (Mishra et al., 2021). Second, the rule-based algorithm currently in use for rice phenological date extraction depends 

on turning points or key nodes of vegetation indexes and backscattering (Xin et al., 2020), which are affected by the smoothing 60 

method and the parameters adopted. Additionally, existing algorithms like ChinaCropPhen1km for China (Luo et al., 2020) 

and EVI-related methods for Japan (Sakamoto et al., 2005) are limited to specific administrative areas. Some alternative 

algorithms like PhenoRice (Mishra et al., 2021) and LAI-related approaches (Zhang et al., 2022) aim to map rice phenology 

at large areas but may ignore the fine heterogeneity within administrative units. Third, determination of the number of rice 
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croppings is frequently biased. For example, some recent studies focused only on main rice cropping (Zhang et al., 2022) or 65 

determined rice cropping during specific time windows (Mishra et al., 2021), thereby excluding rice grown in other periods. 

Additionally, rice sometimes grows across years because double or triple rice croppings, making it difficult to determine the 

actual number of rice croppings. Although methods have been proposed for extracting the number of croppings through 

growing season peak detection (Kotsuki and Tanaka, 2015; Yan et al., 2019), much effort is required to reduce the uncertainty 

of bias in the peak caused by ratoons and/or noisy data (Liu et al., 2020). 70 

 

The combination of optical and SAR sensors, utilizing the high spatial (10 m) and temporal (6 days for Sentinel-1, 5 days for 

Sentinel-2) resolution of Copernicus Sentinel images, benefits crop phenology monitoring by offering precise and timely 

information on phenological variations. A feature-based algorithm, proposed for large-scale rice phenology detection (Zhao et 

al., 2023), excels in utilizing backscattering (VH) and vegetation indices (Enhanced Vegetation Index (EVI) and Normalized 75 

Difference Yellow Index (NDYI)) derived from Sentinel-1&-2 images to reflect features related to rice cultivation such as 

flooding, maximum leaf area, and most yellowness around transplanting, heading, and harvest date. Additionally, this 

algorithm has successfully tracked rice phenological dates of different cropping systems (single, double, and triple croppings) 

and at different spatial scales (sub-nation, 0.5° gridcell, and site scales) (Zhao et al., 2023). Meanwhile, a fitted six-parametric 

Weibull function has successfully been adopted to depict the growth development of phytoplankton (Rolinski et al., 2007) and 80 

vegetation (Maciel-Nájera et al., 2020; Muñoz-Salazar et al., 2022). Because variation of greenness is a reasonable indicator 

of crop intensity, the ability of a fitted Weibull function to fit the beginning, peak, and end of the greenness cycle allows it to 

capture the number of rice croppings. Different from most widely used peak greenness detection methods, which depend on 

thresholds, derivatives, or inflection points for detection (Xin et al., 2020; Yang et al., 2020), the fitted Weibull function omits 

the noisy peaks, which means it can track the shape of the vegetation index time series. Moreover, the fitted Weibull function 85 

has been packaged in the R software, making detection of the number of rice croppings automatic. Therefore, a feature-based 

algorithm combined with a fitted Weibull function is suitable for extracting rice phenological dates and the number of rice 

croppings.  

 

The objective of this study was to develop a new gridded rice calendar that highlights the following features: (a) consistent 90 

detection using remote-sensing methods, (b) spatial resolution (0.5° × 0.5°), (c) large-scale coverage (monsoon Asia), and (d) 

ability to extract multiple rice croppings. To achieve this goal, Sentinel-1 and Sentinel-2 satellite images with high spatio-

temporal resolution, spanning 2019 to 2020, were integrated within a novel methodological framework. This framework 

consists of two main steps: (1) detection of rice phenological dates and the number of rice croppings using a combination of a 

feature-based algorithm and a fitted Weibull function, and (2) spatio-temporal integration of detected phenological dates using 95 

von Mises maximum likelihood estimates. The resulting rice calendar was then evaluated against existing rice calendars. The 

findings of this study provide valuable insight into the methodological framework and rice calendar products, benefiting both 

crop calendar algorithm developers and end users. 
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2 Materials and methods 

2.1 Study area 100 

The analysed area is located in monsoon Asia, which covers the region of 10° S to 53.5° N, 61° E to 153° E. The total area of 

monsoon Asia is 2106 millions of ha. 

  

Monsoon Asia accounts for the largest rice harvested area and the greatest volume of rice production globally (Zhang et al., 

2020). The rice paddy fields of monsoon Asia are mainly on the Indo-Gangetic Plain, the Yangtze Plain, the Ayeyarwady 105 

Delta region, and the Mekong Basin (Zhang et al., 2020). India and China have the two largest rice harvested areas covering 

44 and 30 millions ha, respectively, followed by Bangladesh, Thailand, Vietnam, Myanmar, Philippines, Cambodia, Pakistan, 

and Nepal (Fig. S1) (FAOSTAT, 2022). 
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Figure 1. Location of the study area and distribution of rice paddy fields in monsoon Asia. Rice paddy field distribution map (a) was 110 
obtained from Zhang et al. (2020), which was produced using MODIS images. Green areas indicate rice paddy fields, and bold black 

borders indicate the countries in this study area. Gridded rice paddy field map (b) shows the percentage of rice paddy field in 0.5° grids. 

Green gradient indicates variation in the percentage coverage of rice paddy fields. 
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2.2 Data 115 

2.2.1 Rice paddy field distribution map and sampling method 

The rice paddy field distribution map adopted in this study is from a 500 m resolution map produced using MODIS images 

(Zhang et al., 2020) (Fig. 1a). This map effectively displays the presence and distribution of rice paddy fields over monsoon 

Asia. The reliability of this map is substantiated by its strong correlation with existing rice paddy field maps across diverse 

areas (R2 values ranging from 0.72 to 0.95) and its alignment with the area information obtained from FAOSTAT statistical 120 

data for each country (Zhang et al., 2020). In this study, this rice paddy field distribution map was aggregated to a gridded map 

with 0.5° resolution (Fig. 1b). 

 

Within each 0.5° grid, 20 rice paddy fields were randomly selected to derive the average rice phenology for that grid (Xiao et 

al., 2021; Zhao et al., 2023). This sampling method effectively minimizes errors caused by misclassification of rice paddy 125 

fields by excluding outliers that deviate from the averaged rice phenology (Zhao et al., 2023). Additionally, this sampling size 

of 20 rice paddy fields is sufficiently enough that saves computation time and has no effect on averaged rice phenology 

detection (Fig. S2). 

2.2.2 Satellite data 

All available images from Sentinel-1 and Sentinel-2 from 1 January 2019 to 31 December 2020 were used for generating 130 

backscattering or vegetation index time series via the Google Earth Engine (GEE) and the Google Colaboratory platforms. To 

overcome inherent speckle noise and overlapping observations of Sentinel-1 images, 3 × 3 pixels moving window filter and 

incidence angle processing were performed (Inoue et al., 2020). Invalid observations of Sentinel-2 images caused by clouds 

and cirrus were removed using cloud filtering (> 50%) and the cloud-score method (QA60 quality assessment band with 60 m 

resolution) (Inoue et al., 2020). The VH C-band Ground Range Detected images in the Interferometric Wide Swath mode were 135 

acquired with 6 day temporal resolution. Based on the Sentinel-2 Multispectral Instrument Level-1C top of atmosphere 

reflectance images, the EVI and the NDYI, based on the blue (B2), green (B3), red (B4), and NIR (B8) spectral bands with 10 

m spatial resolution and 5 day temporal resolution, were calculated as follows: 

𝐸𝑉𝐼 =
2.5 × (NIR - Red)

NIR + 6 × Red-7.5 × Blue + 1
 ,          (1) 

𝑁𝐷𝑌𝐼 =
(Green-Blue)

(Green+Blue)
,           (2) 140 

The Locally Estimated Scatterplot Smoothing (LOESS) method was further adopted to smooth the time series data. The span 

value was assigned as 0.075 and 0.2 to depict VH and the EVI/NDYI time series pattern. 
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2.2.3 Reference rice calendars 

There are three widely accepted rice calendars currently available. The RiceAtlas rice calendar, based on compilation of 

multiple census data sources, provides the start, peak, and end of the transplanting and harvest dates, and the number of rice 145 

croppings at national or sub-national scales globally (Laborte et al., 2017). The RICA rice calendar, generated using MODIS 

images, maps the rice transplanting date, harvest date, and number of rice croppings at administrative units in Asia (Mishra et 

al., 2021). The SAGE rice calendar records the gridded rice transplanting and harvest dates of 2000 at 5 min spatial resolution, 

but only records two rice croppings (Sacks et al., 2010). Therefore, the RiceAtlas, RICA, and SAGE rice calendars were used 

in this study to evaluate the number of rice croppings. The RiceAtlas rice calendar, with its detailed phenological date range, 150 

was used to assess the performance of the proposed rice calendar in determining transplanting date and harvest date, evaluating 

it based on the coefficient of determination (R2), bias error (Bias), Mean Absolute Error (MAE), and Root Mean Square Error 

(RMSE) (Supplementary Text 1).  

2.3 Methodology 

The overall methodology for rice calendar mapping, which is summarized in Fig. 2, can be divided into two steps. The first 155 

step is extraction of transplanting and harvest dates and detection of the number of rice croppings, depicted in Fig. 2 Step 1. 

The transplanting and harvest dates obtained in the first step (Step 1) require temporal and spatial integration for the 

generation of the rice calendar (Fig. 2 Step 2). 
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 160 

Figure 2. Workflow for gridded rice calendar mapping based on satellite images. Step 1 depicts the algorithm and process of transplanting 

and harvest dates extraction, along with the detection of number of rice croppings, as shown in the first box. In Step 2, the generation of 

the rice calendar is described, relying on the detected transplanting and harvest dates derived from Step 1, through the temporal and spatial 

integration of the detected phenological dates displayed in the second box.
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2.3.1 Step 1: Extraction of phenological dates and number of rice croppings 165 

2.3.1.1 Algorithm and process for extraction of transplanting and harvest dates 

Flooding rice cultivation, common in Asia and accounting for over 12% of the global cropland (FAOSTAT, 2020; Zhang et 

al., 2021a), presents a distinctive flooding signal that can be used for detection of rice transplanting date. Additionally, rice 

harvest is characterized by irreversible leaf yellowing due to chlorophyll breakdown (Zhang et al., 2021b) (Fig. 2 Step 1 

Algorithm). These phenological characteristics of rice crops can be captured by a feature-based algorithm applied on the 170 

smoothed VH, EVI, and NDYI time series data (Zhao et al., 2023). This algorithm’s robustness has been confirmed at multiple 

spatial scales (sub-nation, 0.5° gridcell, and site scales) and cropping systems (single, double, and triple croppings) in monsoon 

Asia (Zhao et al., 2023). The transplanting date was determined by identifying the minimum VH intensity from the shortest 

plants above the water surface, where VH intensity gradually increase as they interact with the radar signal (Torres et al., 

2012). The harvest date was detected using the NDYI’s yellow signal, indicating the maximum yellowness at harvest date 175 

(Zhao et al., 2023) (Fig. 2 Step 1 Algorithm a).  

 

The minimum VH and peak NDYI were detected within the time window (Fig. 2 Step 1 Process a), indicating that only the 

minimum VH and the maximum NDYI values within the time window, before and after the EVI peak, can be identified as the 

transplanting date and harvest date, respectively. To identify the optimal window for detection of the transplanting and harvest 180 

dates, the time window for detection of the minimum VH and peak NDYI were used (Table S1). If the peak NDYI could not 

be obtained from those time windows, peak NDYI was identified using the peak EVI date (𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥
) plus the difference 

days. The difference days for each rice cropping can be found in Zhao et al. (2023) (Fig. 2 Step 1 Process a).  

2.3.1.2 Method and process for detecting the number of rice croppings 

The six-parametric Weibull function can be used to identify the number of rice croppings by depicting an arc with the shape 185 

of downward-opening patterns from the smoothed EVI time series (hereafter referred to as EVI arc) (Fig. 2 Step 1 Algorithm 

b) as shown follows: 

𝑤(𝑥) = (d + exp (− (
𝑥

𝑒
)

𝑓

)) × (1 − 𝑎 exp (− (
𝑥

𝑏
)

𝑐
))                                                                                                   (3) 

where a, b, c, d, e, and f are the free parameters to be fitted (Rolinski et al., 2007). 

This fitted Weibull function can be implemented using the peakwindow function in the “cardidates” package of R (Rolinski et 190 

al., 2007) (Fig. S3a; Fig. 3). The rice cropping duration and its peak were determined as follows: 

𝐶𝑟𝑜𝑝𝑝𝑖𝑛𝑔 = 𝑝𝑒𝑎𝑘𝑤𝑖𝑛𝑑𝑜𝑤 (𝑥, 𝑦, 𝑚𝑖𝑛𝑐𝑢𝑡, 𝑚𝑖𝑛𝑝𝑒𝑎𝑘)                                                                                       (4) 

where 𝑦 represents the variations of smoothed EVI time series values with respect to the date variable 𝑥. 
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To control the shape of the EVI arc, which represents the relative height between the neighbouring peaks and valleys, for the 

purpose of identifying rice cropping, the parameters mincut and minpeak were set to 0.9 (Figs. S3c and S4) and 0.6 (Figs. S3d 195 

and S4), respectively.  

 

After application of the function (Eq. (4)), all available arcs of the smoothed EVI time series were labelled, including the start 

(start day of detected EVI arc, 𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦
), peak (peak day of detected EVI arc, 𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥

), and end (end day of 

detected EVI arc,  𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑙𝑎𝑠𝑡 𝑑𝑎𝑦
) of the arc, and the peak EVI value (𝑉𝑎𝑙𝑢𝑒𝐸𝑉𝐼𝑚𝑎𝑥

) (Fig. 2 Step 1 Process b).  200 

 

This method can detect the EVI arc, even if it does not exhibit a complete downward-opening shape (Fig. S3b). This is because 

rice growth spans two years, and some days are not within the period of study, resulting in lack of EVI time series data for 

those days. Based on the labelled EVI arc, all rice croppings were recognized, as the heading date through extraction of the 

𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥
. 205 
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Figure 3. Smoothed EVI time series and subsequent identification of the number of rice croppings at adjacent grids (32.25°N, 130.25°E, 

and 32.75°N, 130.25E°) across two years. Left column shows the smoothed EVI time series using the LOESS method. Black points and 

green lines indicate the EVI value at specific dates and the smoothed EVI time series, respectively. Green area indicates the 95% confidence 

interval around the smoothed EVI time series. Right column displays the number of rice croppings detected using the fitted Weibull function 210 
implemented via the “cardidates” package in R. Blue, yellow, red, and black lines correspond to the detected first, second, third, and fourth 

arcs of the smoothed EVI time series. 

 

2.3.2 Step 2: Temporal and spatial integration of detected transplanting and harvest dates for rice calendar generation 

All the transplanting and harvest dates across two years for each grid were detected in Step 1 by using the algorithms and 215 

processes described above. However, these detected transplanting and harvest dates in each grid vary annually due to different 

weather conditions, the effects of climate change, adjustments in agricultural schedule, and the availability of satellite images. 

Additionally, the detected transplanting and harvest dates for a specific cropping season in a grid can differ markedly from 
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those in neighboring grids, possibly indicating detection errors. Therefore, the temporal and spatial integration of the detected 

transplanting and harvest dates, referred to as Step 2, is a necessary step for generation of a multi-year, spatially averaged rice 220 

calendar.  

 

To achieve this goal, the first step involved converting all the detected transplanting and harvest dates over two years into the 

Day Of the Year (DOY) format, ranging from DOY 1 (1 January 2019) to DOY 730 (31 December 2020; 29 February 2020 

was not considered for simplicity). Subsequently, the detected transplanting and harvest dates that occurred in 2020 (DOY 366 225 

to DOY 730) were converted for consistency with the first year (DOY 1 to DOY 365) by subtracting 365 (Fig. 2 Step 2a). 

Finally, all the detected transplanting and harvest dates were converted to DOY values from 1 to 365 (Fig. 2 Step 2a). 

 

The temporal and spatial integration of phenological dates should be conducted within specific periods of time. Typically, rice 

is cultivated up to three times annually in most areas (Mishra et al., 2021), which serves as a meaningful basis for dividing the 230 

year into three equal periods. Thus, the year was divided into three groups: Group 1: July–October (DOY 182 to DOY 304), 

Group 2: March–June (DOY 60 to DOY 181), and Group 3: November–February (DOY 305 to DOY 59) (Fig. 2 Step 2b). The 

detected phenological dates were assigned to the corresponding group based on the maximum number of days from the 

transplanting date to the harvest date falling within that group (Fig. 2 Step 2c).  

 235 

The phenological date DOY values represent circular data that exhibit periodicity or cyclicity (Mahan, 1991). The designation 

of high and low values is arbitrary (Berens, 2009). For example, DOY 365 is almost the same as DOY 1 with 1 day difference 

instead of a difference of 364 days. Adoption of statistical analysis commonly used with circular data can lead to incorrect 

results, whereas the von Mises distribution 𝑉𝑀(𝜇, 𝜅)  can display a circular unimodal distribution (Berens, 2009). The 

probability density function of the von Mises distribution can be expressed as follows: 240 

𝑝 (𝑥;  𝜇;  𝜅) =
1

2𝜋𝐼0(𝜅)
exp (𝜅 cos (𝑥 −  𝜇))                                                                                                                    (5) 

where 𝐼0 is the modified Bessel function of zero order, and for −𝜋 ≪ 𝑥 ≤ 𝜋, 𝜅 > 0. 

 

The availability of the “circular” R package (Agostinelli and Lund, 2023) is convenient for analysis of circular data. In the 

“circular” R package, the probability density function of the von Mises distribution can be displayed as follows:  245 

𝑞𝑣𝑜𝑛𝑚𝑖𝑠𝑒𝑠 (𝑥, 𝑚𝑢, 𝑘𝑎𝑝𝑝𝑎)                                                                                                                                  (6) 

where 𝑚𝑢 is the mean direction of the distribution, and 𝑘𝑎𝑝𝑝𝑎 is a non-negative numeric value representing a concentration 

parameter of the distribution; 𝑚𝑢 and 𝑘𝑎𝑝𝑝𝑎 are correspond to 𝜇 and 𝜅 in Eq. (5), respectively. 

 

The circular data 𝑥 in Eqs. (5) and (6) denote the phenological date shown in DOY format. The DOY was converted to an 250 

angle value (degrees) (Fig. 2 Step 2d) (Franch et al., 2022) as follows: 
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𝐷𝑂𝑌𝑑𝑒𝑔 =
𝐷𝑂𝑌

365
×  360                                     (7) 

where 𝐷𝑂𝑌𝑑𝑒𝑔  represents the angular value of the DOY, and 365 denotes the number of equal interval date units representing 

one rotation around the circle. 

The angle value of the DOY (𝐷𝑂𝑌𝑑𝑒𝑔) was then converted to the radian value of the DOY (𝐷𝑂𝑌𝑟𝑎𝑑) with interval [−𝜋,  𝜋] 255 

(Fig. 2 Step 2d) as follows: 

𝐷𝑂𝑌𝑟𝑎𝑑 =  𝐷𝑂𝑌𝑑𝑒𝑔 ×  
𝜋

180
− 𝜋 =  

(𝐷𝑂𝑌−182.5) × 𝜋

182.5
                                                                                                     (8) 

Then, 𝐷𝑂𝑌𝑟𝑎𝑑  was input into the mle.vonmises function in the “circular” R package to obtain the parameters of the von Mises 

distribution via maximum likelihood estimates. For each group (i.e., Group 1, Group 2, and Group 3), the 𝐷𝑂𝑌𝑟𝑎𝑑  of each grid 

and the eight neighbouring grids (3 × 3 pixel window) across the two years were included as input for the mle.vonmises 260 

function (Fig. 2 Step 2d). Overall, 18 𝐷𝑂𝑌𝑟𝑎𝑑  values were used as follows:  

𝑟𝑒𝑠 =  𝑚𝑙𝑒. 𝑣𝑜𝑛𝑚𝑖𝑠𝑒𝑠 (𝐷𝑂𝑌𝑟𝑎𝑑1, 𝐷𝑂𝑌𝑟𝑎𝑑2 , 𝐷𝑂𝑌𝑟𝑎𝑑3, … , 𝐷𝑂𝑌𝑟𝑎𝑑18)                                              (9) 

The parameters 𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑  and 𝑉𝑎𝑟 were derived from the mle.vonmises function (Eq. (9)), representing the value and 

variance of the phenological dates (𝐷𝑂𝑌𝑟𝑎𝑑), respectively, after performing temporal and spatial integration for each grid 

within each group: 265 

𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 =  𝑟𝑒𝑠$𝑚𝑢                                                   (10) 

𝑉𝑎𝑟 =  𝑟𝑒𝑠$𝑘𝑎𝑝𝑝𝑎                                                   (11) 

However, this value and variance of the phenological date (𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑  and 𝑉𝑎𝑟) is a radian value, which must be converted 

back to the DOY (𝐷𝑂𝑌𝑚𝑢 and 𝐷𝑂𝑌𝑣𝑎𝑟) as follows: 

𝐷𝑂𝑌𝑚𝑢 = 𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 ×  
182.5

𝜋
+ 182.5                                                                                                                     (12) 270 

𝐷𝑂𝑌𝑣𝑎𝑟 =
1

𝑉𝑎𝑟
 ×

180

𝜋
/

360

365
  =

1

𝑉𝑎𝑟
 ×  

182.5

𝜋
                                                                    (13) 

 

The integrated transplanting dates from all the groups (e.g., 𝐷𝑂𝑌𝑚𝑢_𝐺1 , 𝐷𝑂𝑌𝑚𝑢_𝐺2 , and 𝐷𝑂𝑌𝑚𝑢_𝐺3 ) were then reordered 

according to their chronological order for each grid. Finally, cropping-based phenological dates were obtained through the 

conversion of the group-based phenological dates (Fig. 2 Step 2e).  275 
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3 Results and discussion 

3.1 Transplanting date and harvest date 

Based on the above methodological framework, rice calendars with two types of transplanting and harvest dates were obtained: 

a group-based calendar (Fig. 4) and a cropping-based calendar (Fig. 6). The group-based rice calendar was initially produced, 

displaying explicit transplanting and harvest dates for three groups (Fig. 4). The median transplanting dates across monsoon 280 

Asia for the three rice groups are DOY 182, 77, and 325, with standard deviations of 23, 24, and 60, respectively (Fig. 4). 

Similarly, the median harvest dates for the three groups are 281, 172, and 67, with standard deviations of 23, 27, and 56, 

respectively (Fig. 4). Because the three groups divide the year equally, the transplanting date and the harvest date both exhibit 

a mono-peaked distribution (Fig. S5). Moreover, the variance of the transplanting or harvest dates observed in each grid 

originates from analysis of 18 detected transplanting or harvest dates from its eight neighbors across the two years, thereby 285 

highlighting both its temporal and spatial variations. The variance in transplanting and harvest dates across monsoon Asia for 

the three groups is shown in Fig. 5. The variance is 8, 11, and 12 for the transplanting dates and 7, 11, and 15 for the harvest 

dates (Fig. 5). These variances arise from interannual variation and spatial smoothing effect, and their small values indicate 

stability in phenological date extraction.  
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 290 

Figure 4. Transplanting date and harvest date for the three groups. Colour gradient from blue to red in the legend denotes the respective 

transplanting and harvest dates.  
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Figure 5. Variance in transplanting date and harvest date for the three groups. Colour gradient from blue to red in the legend denotes the 

respective variance in transplanting and harvest dates. 295 
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Then, the group-based transplanting and harvest dates were converted to the cropping-based format by reordering the detected 

transplanting dates for each grid. The cropping-based transplanting and harvest dates are in a common format that facilitates 

comparison with those of other rice calendars. The median transplanting dates across monsoon Asia for three rice croppings 

are DOY 154, 208, and 327, with standard deviations of 61, 68, and 27, respectively (Fig. 6). Similarly, the median harvest 300 

dates for three croppings are 253, 273, and 62, with standard deviations of 63, 111, and 47, respectively (Fig. 6). Owing to the 

large spatial coverage, the transplanting and harvest dates vary across different croppings, exhibiting a dual-peaked distribution 

(Fig. 8). The variance in transplanting dates for three croppings across monsoon Asia is 9, 10, and 12, while the variance in 

harvest dates is 8, 11, and 16 (Fig. 7).  
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 305 

Figure 6. Transplanting date and harvest date for three rice croppings. Colour gradient from blue to red in the legend denotes the 

respective transplanting and harvest dates.  
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Figure 7. Variance in transplanting date and harvest date for three rice croppings. Colour gradient from blue to red in the legend denotes 310 
the respective variance in transplanting and harvest dates. 
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Figure 8. Distribution of transplanting and harvest dates for three rice croppings. Blue and orange represent the transplanting date and the 

harvest date, respectively. 315 

 

There are difficulties in directly comparing transplanting and harvest dates with those from other rice calendars owing to 

differences in spatial resolution (grid versus administrative) and the identification of rice cropping sequences (Clauss et al., 

2018). Thus, the RiceAtlas rice calendar, which has been rasterized to the same spatial resolution as that of the proposed rice 

calendar (0.5°), was used to evaluate the performance in terms of single rice cropping for the transplanting and harvest dates. 320 

The transplanting dates of the proposed rice calendar are consistent with those of the RiceAtlas rice calendar, with R2 of 0.43, 

Bias of 3.93 days, MAE of 16.38 days, and RMSE of 27.62 days (Fig. 9). Additionally, the harvest dates of the proposed rice 

calendar are correlated with those of the RiceAtlas rice calendar, with R2 of 0.44, Bias of −5.76 days, MAE of 17.87 days, and 

RMSE of 28.32 days (Fig. 9). However, the presence of the same transplanting or harvest dates across large spatial areas in 

the RiceAtlas rice calendar (Fig. S6) reduces its accuracy. Similarly, the RiceAtlas rice calendar has been used to evaluate the 325 

performance of the MODIS-based RICA rice calendar (Mishra et al., 2021). Compared to the RICA rice calendar in terms of 

accuracy, the proposed rice calendar demonstrates a smaller MAE (26.41 days in the RICA rice calendar) and RMSE (34.20 

days in the RICA rice calendar) for transplanting dates, and almost half the MAE (33.20 days in the RICA rice calendar) and 

smaller RMSE (42.72 days in the RICA rice calendar) for harvest dates (Mishra et al., 2021).  

 330 



21 

 

 

Figure 9. Comparison of transplanting date and harvest date for single rice cropping between the proposed rice calendar and the RiceAtlas 

rice calendar. Blue and orange represent the transplanting date and harvest date, respectively; vertical lines denote the range of the 

transplanting and harvest dates of the proposed rice calendar; horizontal lines denote the range of the transplanting and harvest dates of the 

RiceAtlas rice calendar; dots denote the peak of the transplanting or harvest dates. Black dots denote the detected phenological day that 335 
falls within the transplanting or harvest ranges from the RiceAtlas rice calendar. Red and black solid lines represent the 1:1 line and 

regression, respectively. 

 

3.2 Number of rice croppings 

The number of rice croppings in the proposed rice calendar was obtained by counting the phenological dates for the three 340 

croppings (Fig. 10a). In comparison with the RiceAtlas (Fig. 10b), RICA (Fig. 10c), and SAGE (Fig. 10d) rice calendars based 

on the administrative scale, the proposed rice calendar shows the number of rice croppings per grid, which cannot be paralleled 

by the other rice calendars. Among the total of 4811 detected grids, 2728, 1644, and 439 grids were identified as single, double, 

and triple rice croppings, respectively. To compare the number of each rice cropping across the rice calendars with different 

spatial resolutions, the area for each number of croppings was calculated (Fig. 11). In the area calculation, the variation of the 345 

area of each grid cell on the ellipsoidal earth (Fig. S9) was considered, as was the percentage coverage of rice paddy fields in 

each grid (Fig. 1b).  
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Figure 10. Detected number of rice croppings of (a) the proposed rice calendar, (b) the RiceAtlas rice calendar, (c) the RICA rice 

calendar, and (d) the SAGE rice calendar. Blue, yellow, and red colours represent single, double, and triple rice cropping, respectively.  350 

 

The areas covered by single, double, and triple rice croppings in the proposed rice calendar are 0.53, 0.45, and 0.09 million of 

km2, respectively (Fig. 11). The area covered by single rice cropping falls within the range of 0.24 (RiceAtlas rice calendar) 

to 0.65 million of km2 (RICA rice calendar) (Fig. 11). The single rice cropping detection of the proposed rice calendar shows 

reasonable performance, with consistent detection across the north of the middle–lower reaches of the Yangtze River, North 355 

Korea, South Korea, and most of Japan when compared with the other three rice calendars (Fig. 10). The regions of Haryana, 

Himachal Pradesh, and Punjab in India, central, midwestern, and western Nepal, and Balochistan, the Federally Administered 

Tribal Areas, and the North-West Frontier Province in Pakistan were also identified as single rice cropping areas (Fig. 10). In 

fact, these regions were initially identified as having double rice cropping, but they are dominated by the rice–wheat cropping 
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system (Abrol, 1997; Dhanda et al., 2022; Ahmad and Iram, 2023). Therefore, in this study, wheat cropping was removed 360 

within this region (Figs. 4–7, 10, 11, S10a, and S10b) (Abrol, 1997; Dhanda et al., 2022). 

 

Figure 11. Area of rice cropping of (a) the proposed rice calendar, (b) the RiceAtlas rice calendar, (c) the RICA rice calendar, and (d) the 

SAGE rice calendar. Blue, yellow, and red colours represent single, double, and triple rice cropping, respectively.  

 365 

The region of detected double rice cropping occupies a larger area in the proposed rice calendar than in the other three rice 

calendars (Fig. 11a). Additionally, the area covered by triple rice cropping falls within the range of 0.05 million of km2 (RICA 

rice calendar) to 0.4 million of km2 (RiceAtlas rice calendar). The proposed rice calendar successfully detects the mix of double 

and triple rice croppings in Southeast Asia, including Vietnam, Malaysia, Indonesia, and the Philippines. The results align 

with real-world observations. Double or triple rice croppings are mostly cultivated in Vietnam (Nguyen et al., 2012; Diem et 370 

al., 2021). Two main croppings are cultivated in Malaysia (Fatchurrachman et al., 2022) and the Philippines (Laborte et al., 
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2012). Even on Java Island (Indonesia), the cultivation ranges from single to triple rice cropping systems (Ramadhani et al., 

2020). In contrast, fewer areas of double rice cropping were detected in Myanmar, Thailand, Laos, and Cambodia using remote 

sensing-based methods such as the proposed calendar (Fig. 10a) and the RICA rice calendar (Fig. 10c), in comparison with 

census-based rice calendars such as the RiceAtlas (Fig. 10b) and SAGE (Fig. 10d) rice calendars. The presence of a large 375 

amount of small but highly heterogeneous rice paddy fields limits accurate detection of the number of rice croppings using 

remote sensing (Mishra et al., 2021). Moreover, census-based rice calendars record the potential number of rice cropping, 

which means that some rice croppings might overlap or that triple rice cropping is determined even though it accounts for only 

a small proportion of the rice cultivation activity within an administrative unit. This is a condition that does not occur in 

association with remote sensing-based rice calendars. 380 

 

The proposed rice calendar extracts 9% of triple rice croppings (Fig. 11a), which are scattered and distributed in South China, 

Southeast Asia, and India (Fig. 10a). This proportion is close to that of the RICA rice calendar (6% in Fig. 11c), but markedly 

lower than that of the RiceAtlas rice calendar (41% in Fig. 11c). However, the larger percentage of triple rice croppings in the 

RiceAtlas rice calendar might be overestimated, especially in Northeast India and Bangladesh in areas of the lower Gangetic 385 

Plain. The double rice cropping system is predominant on the lower Gangetic Plain (Wang et al., 2020). In this area, rice 

cultivation occurs in one to three seasons, namely Aus (Mar/April/May to June/July), Aman (June/July/August to 

November/December), and Boro (November/December to January–April/May). Among the three seasons, Aus and Aman are 

the dominant croppings (Gunna et al., 2014; Singha et al., 2019). Similarly, in South China, which is dominated by double rice 

cropping, early rice is transplanted at the end of April and harvested at the end of July, while late rice is cultivated from June 390 

to October (Chen et al., 2020). 

3.3 Advantages of the proposed rice calendar 

The proposed rice calendar (Zhao and Nishina, 2023) successfully extracts rice transplanting and harvest dates at 0.5° grid-

cell scale across monsoon Asia by utilizing the rice feature-based phenology algorithm (Zhao et al., 2023) on Sentinel-1 and 

Sentinel-2 images (Fig. 2 Step 1 Algorithm a). The detected transplanting and harvest dates have been validated against 40 395 

site-scale records from the literatures, showing high agreement with R2 of 0.90 and 0.87, Bias of 7.99 and −9.07 days, MAE 

of 16.32 and 19.58 days, and RMSE of 19.00 and 22.43 days for transplanting and harvest dates, respectively (Supplementary 

Text 3.1). The robustness of the site validation (Fig. S12), combined with reasonable performance compared to other rice 

calendars (Fig. 9), further demonstrates the efficacy of the transplanting and harvest dates in the proposed rice calendar.  

 400 

The main difference between the proposed rice calendar and other rice calendars lies in the algorithm for phenological date 

extraction. In contrast to census-based methods (such as the RiceAtlas rice calendar) that face the issue of overlapping rice 

croppings, and remote sensing-based methods (such as the RICA rice calendar) that rely on constant threshold values set for 

large areas, this algorithm is not limited by rice variety, management, and environmental factors. It extracts the features of 
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flooding around the transplanting date and peak yellowness during harvest from the minimum VH and peak NDYI values, 405 

respectively, without setting threshold parameters to characterize rice phenological variations. Unfortunately, due to the 

absence of ground-truth data, it is not possible to validate the Asian continental scale rice calendar with correct accuracy. 

Instead, the validation in this study was based on observational records available in the previous literature. In this validation, 

it is worth noting that the proposed rice calendar showed a relatively high coefficient of determination and low RMSE 

compared to other rice calendars (Supplementary Text 3.2). 410 

 

Detection of the number of rice croppings is another important part of the methodological framework of the proposed rice 

calendar. The fitted Weibull function, implemented in the R package (Fig. 2 Step 1 Algorithm b), automatically detects the 

number of rice croppings based on the shape of the smoothed EVI time series, facilitating rapid and efficient rice calendar 

mapping. The shape-based detection avoids identification of the number of rice croppings based on peak detection or on the 415 

occurrence of some certain phenological date within the rice season (e.g., flowering date, as in Mishra et al. (2021)). 

Additionally, the EVI shape-based detection allows identification of incomplete EVI arcs caused by non-continuous 

observations as one of the rice croppings (Fig. S2b). 

 

Temporal and spatial integration of detected transplanting and harvest dates, as derived from Step 1, pose a great challenge 420 

owing to flexible agricultural schedules and the availability of satellite imagery. This limitation restricts widespread application 

of remote sensing-based rice calendars. In this study, a new algorithm (Fig. 2 Step 2) was proposed to address this problem, 

which has long been a challenge in the preparation of previous rice calendars (Mishra et al., 2021). The use of von Mises 

maximum likelihood estimates produces the average of the transplanting and harvest dates for 18 grids (3 × 3 grids × 2 years), 

taking the circular nature of phenological dates into special consideration (Fig. 2 Step 2d). This algorithm is of great benefit 425 

for application in tropical areas where rice growth continues throughout the year, let alone temperate areas where rice growth 

occurs once a year. Additionally, the superiority of this algorithm lies in its ability to consider all rice croppings instead of 

excluding one of the rice cropping seasons through direct averaging based on administrative units. Furthermore, this algorithm 

improves the accuracy of the rice calendar by employing spatio-temporal integration, which reduces the presence of abnormal 

phenological dates. 430 

 

The advantages of the above-mentioned algorithms (Fig. 2 Step 1, Step 2) largely contribute to the production of a gridded 

rice calendar. The proposed rice calendar provides spatially explicit rice phenology with continental coverage through remote 

sensing methods. The major difference between the proposed rice calendar and the RICA rice calendar lies in the use of a 

feature-based algorithm with VH and NDYI, which allows the proposed rice calendar to theoretically estimate rice phenology 435 

more accurately. Zhao et al. (2023) demonstrated that VH can accurately capture the start of paddy water logging, and NDYI 

is a good indicator of rice maturity stage. The proposed rice calendar presents a highly patchy map of rice phenological 

information (Figs. 6 and 10a). The 0.5° resolution of the proposed rice calendar is finer than that of other rice calendars, 
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including the RiceAtlas, RICA at sub-national scale, and SAGE derived from sub-national data. This improvement greatly 

reduces the bias error caused by assigning averaged rice phenology to administrative units, as rice phenology can vary 440 

considerably within large administrative units (Franch et al., 2022). Furthermore, the proposed rice calendar displays the 

detailed distribution of rice paddy fields (Figs. 6 and 10a), in contrast to previous rice calendars that covered entire 

administrative areas, irrespective of the small proportion of rice cultivation (Figs. S6–S8 and 10b–d). Site-scale validation 

reinforces the above-mentioned advantages, as the phenological dates in the proposed rice calendar are closer to the in-site 

records (Fig. S13; Fig. S14; Supplementary Text 3). The relatively large bias and variance in other three rice calendars (Fig. 445 

S14) demonstrate their limitations and uncertainties in calculating the rice paddy field area as shown in Fig. 11.  

3.4 Uncertainty 

Although the potential and advantages of the proposed gridded rice calendar for monsoon Asia have been highlighted, some 

uncertainties remain. One challenge is the limited experimental periods on which the calendar is based, specifically during 

2019–2020. While it was facilitated by the GEE and Google Colaboratory, generating detailed detection for two years (127 × 450 

184 = 23,368 grids × 2 years) still requires large computation power. Additionally, errors can arise from the spatial and 

temporal integration of transplanting and harvest dates. The grouping process, in particular, poses a risk of assigning single 

rice cropping seasons from two years into different groups, potentially overestimating the number of rice croppings. 𝑉𝑎𝑟 

parameter, derived from the mle.vonmises function (Eqs. (9) and (11)), is prone to bias, requiring bias-corrected estimates 

when the sample size is less than 16 (Best and Fisher, 1981). To address these issues, a 3 × 3 pixel window was used over two 455 

years to produce 18 values, highlighting the need to balance window size and sample size in spatio-temporal integration. The 

accuracy of reference rice calendars should also be considered, as they may rely on data from various sources and 

administrative scales (Laborte et al., 2017). Overlapping phenological dates between rice cropping seasons (Figs. S6–S8) can 

introduce further uncertainty. Furthermore, the complexity of multiple crop cropping systems can lead to an overestimation of 

the number of rice croppings. The growth of other crop exhibits a similar pattern of a mono-peaked EVI time series and flood 460 

irrigation before sowing, similar to rice (Ahmad and Iram, 2023). Examples include the middle rice cropping system (rice with 

wheat, barley, or rapeseed cropping systems) in East and Central China (Chen et al., 2020) and the rice–wheat cropping systems 

on the Indo-Gangetic Plain (Abrol, 1997; Dhanda et al., 2022). Thus, detected triple rice in central China (Fig. 10a) will be 

bias, which requires specific noted when using it. Except for the rice-predominant areas, the rice–crop mixing problem can 

also puzzle the grids with a low rice percentage. While rice phenology extraction was obtained through randomly selected 465 

sampling of rice paddy fields from the 500 m resolution rice distribution map (Zhang et al., 2020), grids with a low rice 

percentage have a higher possibility of errors in wrongly classifying non-rice crops as rice, consequently resulting in the high 

possibility of non-rice crops being considered as rice cultivation or one of the rice croppings. The application of a higher 

resolution rice distribution map is expected to address this issue.  

 470 



27 

 

These uncertainties do not obscure the fact that this is a novel gridded rice calendar that provides more detailed rice phenology 

information, and could be input into ecosystem models for GHG emission evaluation and production prediction. With the 

continued efforts of the research community to increase the spatio-temporal resolution of earth observational data, integrated 

use of the new rice paddy field distribution map, and implementation of new tools for improved analysis of huge satellite 

images, it should become feasible to produce more precise rice calendars at finer scale. Meanwhile, the methodological 475 

framework developed in this study for mapping the proposed rice calendar provides robust reference for mapping other crop 

calendars. 

4 Data availability 

The developed Monsoon Asia Rice Calendar (MARC) described in the manuscript is available at the Global Environmental 

Database (GED) https://www.nies.go.jp/doi/10.17595/20230728.001-e.html (Zhao and Nishina, 2023).  480 

5 Code availability 

The code for getting VH/EVI/NDYI time series data from Sentinel-1 and Sentinel-2 images, extracting the transplanting and 

harvest dates from smoothed VH/EVI/NDYI time series data, and spatial and temporal integration of detected transplanting 

and harvest dates can be found at https://db-test.cger.nies.go.jp/DL/10.17595/20230728.001.html.en (Zhao and Nishina, 2023). 

 485 

6 Conclusions 

Given the absence of an updated global/continental-scale rice calendar that can explicitly depict spatial gridded transplanting 

date and harvest date information, and the number of rice croppings, this study developed a new gridded rice calendar for 

monsoon Asia with spatially explicit fine detail of rice phenology using a new methodological framework based on Sentinel-

1 and Sentinel-2 images. Combination of a feature-based algorithm and a fitted Weibull function facilitates extraction of the 490 

transplanting and harvest dates and detection of number of rice croppings, respectively. Subsequently, the detected 

transplanting and harvest dates were subjected to temporal and spatial integration to produce the rice calendar. The proposed 

rice calendar was found sufficiently robust to map rice phenology more finely than that presented in other commonly used rice 

calendars, showing small Bias, MAE, and RMSE in terms of detection of transplanting and harvest dates. The proposed rice 

calendar could be used for global research on climate change and crop security, and the methodological framework could serve 495 

as a basis for producing large-scale mapping calendars for other crops.  

https://www.nies.go.jp/doi/10.17595/20230728.001-e.html
https://db-test.cger.nies.go.jp/DL/10.17595/20230728.001.html.en
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