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Abstract. An accurate and spatially explicit large-scale rice calendar can enhance understanding of agricultural practices and 

their ecological services, particularly in monsoon Asia. However, currently available global- or continental-scale rice 

calendars suffer from coarse resolution, poor recording, and outdated information, which do not provide detailed and 

consistent information on rice phenology. To address this limitation, this study mapped a new (2019 to 2020) gridded (0.5° × 15 

0.5° resolution) rice calendar for monsoon Asia based on Sentinel-1 and Sentinel-2 satellite images. The novelty of this rice 

calendar lies in the development of a consistent optimal methodological framework that allows spatially explicit 

characterization of the rice transplanting date, harvest date, and number of rice croppings. The methodological framework 

incorporates two steps: (1) detection of rice phenological dates and number of rice croppings through combination of a 

feature-based algorithm and the fitted Weibull function, and (2) spatio-temporal integration of the detected transplanting and 20 

harvest dates derived from step 1 using von Mises maximum likelihood estimates. Results revealed that the proposed rice 

calendar can accurately identify the rice phenological dates for three croppings in monsoon Asia. When compared with 

single rice data from the census-based RiceAtlas rice calendar, the proposed rice calendar outperformed the MODIS-based 

RICA rice calendar. It exhibited bias of 4 and −6 days for transplanting and harvest dates, respectively, with marked 

improvement in MAE by 10 and 15 days, and in RMSE by 6 and 15 days for transplanting and harvest dates, respectively. In 25 

total, the proposed rice calendar can detect single, double, and triple rice cropping with area of 5.3 × 106, 4.5 × 106, and 0.9 × 

106 0.53, 0.45, and 0.09 million of km2, respectively. This novel gridded rice calendar fills the gaps in half-degree rice 

calendars across major global rice production areas, facilitating research on rice phenology that is relevant to the climate 

change. The developed gridded rice calendar for monsoon Asia is available at 

https://www.nies.go.jp/doi/10.17595/20230728.001-e.html (Zhao and Nishina, 2023). 30 
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1 Introduction 

A rice calendar records a series of phenological dates for rice growth and indicates the number of times that rice is grown in 

a year (Mishra et al., 2021; Zhao et al., 2023). Rice calendars provide critical information that contributes to agricultural 35 

management, crop production prediction, and estimation of greenhouse gas (GHG) emissions (Laborte et al., 2017; 

Portmann et al., 2010; Sacks et al., 2010). Specifically, concern regarding the negative impacts of rice cultivation is 

increasing because irrigated rice paddy field is an important source of anthropogenic GHG emissions, contributing 8 % and 

11 % of global methane and nitrous oxide emissions, respectively (Saunois et al., 2020; Jiang et al., 2019). The inundated 

period from transplanting date to harvest date derived from a rice calendar largely determines the quantity of GHG emissions 40 

(Ito et al., 2021). To accurately estimate GHG emissions related to rice cultivation and to establish appropriate reduction 

measures, a detailed rice calendar that depicts rice phenology dynamics is urgently needed, especially for monsoon Asia, 

which accounts for 87 % of the area of harvested rice globally and for 90 % of global rice production (FAOSTAT, 2022). 

 

Existing approaches to rice calendar mapping can be grouped into three categories: those based on census data, those based 45 

on models, and those based on remote sensing images. The limited number of global rice calendars (e.g., SAGE (Sacks et al., 

2010), MIRCA2000 (Portmann et al., 2010), and RiceAtlas (Laborte et al., 2017)) that are currently available, which rely on 

compilation of statistical data at national and/or sub-national scales. Model-based rice calendars (Waha et al., 2012; Elliott et 

al., 2015; Mathison et al., 2017; Iizumi et al., 2019) provide large-scale spatially explicit rice phenology information that is 

mainly based on climate data, but they are difficult to validate using earth observation data over such scales (Mishra et al., 50 

2021). In contrast, remote sensing approaches that can provide consistent detection of large-scale rice phenological change 

over time have been used for rice calendar mapping with varying spatial coverage (e.g., global (Kotsuki and Tanaka, 2015), 

Asia (Mishra et al., 2021; Zhang et al., 2022), South and Southeast Asia (More et al., 2016), China (Luo et al., 2020), and 

Japan (Sakamoto et al., 2005)). 
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However, many challenges in rice calendar mapping using remote sensing hinder the production of accurate rice calendar 

using remote sensing approach. First, use of a coarse–moderate-resolution satellite sensor (e.g., AVHRR with approximately 

5 km resolution and MODIS with 500 m resolution) or any single sensor (optical or synthetic aperture radar (SAR)) 

diminishes the accuracy of rice calendar mapping. The RICA rice calendar, produced using MODIS images, faces issues 

with rice paddy field sizes smaller than the 500 m sensor resolution. has the problem that the area of a rice paddy field is 60 

typically smaller than the 500 m resolution of the sensor (Mishra et al., 2021). Second, the algorithm that extracts rice 

phenological dates largely determines the accuracy of rice calendar mapping; currently, the rule-based algorithm is 

predominantly used for such purposes (Zhao et al., 2023). Phenological date detection depends on the turning points or key 

nodes of a vegetation index or backscattering (Xin et al., 2020). The smoothing method and the parameters adopted change 

the time series pattern, which consequently produces different thresholds, inflections, curvatures, or second-order derivatives 65 
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of the time series for each vegetation index or backscattering. Furthermore, the available algorithm is only used at a specific 

administrative coverage, such as ChinaCropPhen1km for China (Luo et al., 2020), and EVI-related for Japan (Sakamoto et 

al., 2005), and lacks applicability to larger areas. Some other algorithms have been proposed to map rice phenological 

dynamics over large areas (e.g., both PhenoRice (Mishra et al., 2021) and LAI-related (Zhang et al., 2022) for Asia). 

However, the rice calendars produced are based on the administrative scale that ignores the fine heterogeneity in rice 70 

phenology within administrative units. the rule-based algorithm currently in use for rice phenological date extraction 

depends on turning points or key nodes of vegetation indexes and backscattering (Xin et al., 2020), which are affected by the 

smoothing method and the parameters adopted. Additionally, existing algorithms like ChinaCropPhen1km for China (Luo et 

al., 2020) and EVI-related methods for Japan (Sakamoto et al., 2005) are limited to specific administrative areas. Some 

alternative algorithms like PhenoRice (Mishra et al., 2021) and LAI-related approaches (Zhang et al., 2022) aim to map rice 75 

phenology at large areas but may ignore the fine heterogeneity within administrative units. Third, determination of the 

number of rice croppings is frequently biased. For example, some recent studies focused only on main rice cropping (Zhang 

et al., 2022) or determined rice cropping during specific time windows (Mishra et al., 2021), thereby excluding rice grown in 

other periods. Additionally, rice sometimes grows across years because double or triple rice croppings, making it difficult to 

determine the actual number of rice croppings. Although methods have been proposed for extracting the number of 80 

croppings through growing season peak detection (Kotsuki and Tanaka, 2015; Yan et al., 2019), much effort is required to 

reduce the uncertainty of bias in the peak caused by ratoons and/or noisy data (Liu et al., 2020). 

 

The combination of optical and SAR sensors benefits from the availability of Copernicus Sentinel-1 and Sentinel-2 satellite 

images with high spatial (10 m) and temporal (6 days for Sentinel-1, 5 days for Sentinel-2) resolution. This sensor 85 

combination is ideal for monitoring crop phenology because it offers precise and timely information on crop phenological 

variations; consequently, it has been widely used in recent relevant research (d’Andrimont et al., 2020). The combination of 

optical and SAR sensors, utilizing the high spatial (10 m) and temporal (6 days for Sentinel-1, 5 days for Sentinel-2) 

resolution of Copernicus Sentinel images, benefits crop phenology monitoring by offering precise and timely information on 

phenological variations. A feature-based algorithm has been proposed for rice phenology detection at the large scale (Zhao et 90 

al., 2023). The superiority of this algorithm lies in the use of backscattering (VH) and vegetation indices (Enhanced 

Vegetation Index (EVI) and Normalized Yellow Index (NDYI)) derived from Sentinel-1 and Sentinel-2 images, which 

reflect features related to rice cultivation such as flooding, maximum leaf area, and most yellowness around transplanting, 

heading, and harvest date. A feature-based algorithm, proposed for large-scale rice phenology detection (Zhao et al., 2023), 

excels in utilizing backscattering (VH) and vegetation indices (Enhanced Vegetation Index (EVI) and Normalized Yellow 95 

Index (NDYI)) derived from Sentinel-1&-2 images to reflect features related to rice cultivation such as flooding, maximum 

leaf area, and most yellowness around transplanting, heading, and harvest date. Additionally, this algorithm has successfully 

tracked rice phenological dates of different cropping systems (single, double, and triple croppings) and at different spatial 

scales (sub-nation, 0.5° gridcell, and site scales) (Zhao et al., 2023). Thus, the recognition of rice phenological dates is based 
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on the feature-based algorithm. Meanwhile, a fitted six-parametric Weibull function has successfully been adopted to depict 100 

the growth development of phytoplankton (Rolinski et al., 2007) and vegetation (Maciel-Nájera et al., 2020; Muñoz-Salazar 

et al., 2022). Because variation of greenness is a reasonable indicator of crop intensity, the ability of a fitted Weibull function 

to fit the beginning, peak, and end of the greenness cycle allows it to capture the number of rice croppings. Different from 

most widely used peak greenness detection methods, which depend on thresholds for detection, the fitted Weibull function 

omits the noisy peak, which means it can track the shape of the vegetation index time series. Moreover, the fitted Weibull 105 

function has been packaged in the R software, making detection of the number of rice croppings automatic. Therefore, a 

feature-based algorithm combined with a fitted Weibull function is suitable for extracting rice phenological dates and the 

number of rice croppings. 

 

The objective of this study was to develop a new gridded rice calendar that highlights the following features: (a) consistent 110 

detection using remote-sensing methods, (b) spatial resolution (0.5° × 0.5°), (c) large-scale coverage (monsoon Asia), and 

(d) ability to extract multiple rice croppings. To achieve this goal, Sentinel-1 and Sentinel-2 satellite images with high 

spatio-temporal resolution, spanning 2019 to 2020, were integrated within a novel methodological framework. This 

framework consists of two main steps: (1) detection of rice phenological dates and the number of rice croppings using a 

combination of a feature-based algorithm and a fitted Weibull function, and (2) spatio-temporal integration of detected 115 

phenological dates using von Mises maximum likelihood estimates. The resulting rice calendar was then evaluated against 

existing rice calendars. The findings of this study provide valuable insight into the methodological framework and rice 

calendar products, benefiting both crop calendar algorithm developers and end users. 

2 Materials and methods 

2.1 Study area 120 

Figure 1 shows the study area in monsoon Asia, which covers the region of 10° S to 53.5° N, 61° E to 153° E. The analysed 

area is located in monsoon Asia, which covered the region of 10° S to 53.5° N, 61° E to 153° E. 

  

Monsoon Asia accounts for the largest rice harvested area and the greatest volume of rice production globally (Zhang et al., 

2020). The rice paddy fields of monsoon Asia are mainly on the Indo-Gangetic Plain, the Yangtze Plain, the Ayeyarwady 125 

Delta region, and the Mekong Basin (Zhang et al., 2020). India and China have the two largest rice harvested areas covering 

44 and 30 million ha, respectively, followed by Bangladesh, Thailand, Vietnam, Myanmar, Philippines, Cambodia, Pakistan, 

and Nepal (Fig. S1) (FAOSTAT, 2022). 
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Figure 1. Location of the study area and distribution of rice paddy fields in monsoon Asia. Rice paddy field distribution map (a) was 130 
obtained from Zhang et al., (2020), which was produced using MODIS images. Green areas indicate rice paddy fields, and bold black 

borders indicate the countries in this study area. Gridded rice paddy field map (b) shows the percentage of rice paddy field in 0.5° grids. 

Green gradient indicates variation in the percentage coverage of rice paddy fields. 
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2.2 Data 135 

2.2.1 Rice paddy field distribution map and sampling method 

The rice paddy field distribution map adopted in this study is from a 500 m resolution map produced using MODIS images 

(Zhang et al., 2020) (Fig. 1a). This map effectively displays the presence and distribution of rice paddy fields over monsoon 

Asia. The reliability of this map is substantiated by its strong correlation with existing rice paddy field maps across diverse 

areas (R2 values ranging from 0.72 to 0.95) including China, North Korea, South Asia, and Southeast Asia, with R2 values 140 

ranging from 0.72 to 0.95. and its alignment with the area information obtained from FAOSTAT statistical data for each 

country (Zhang et al., 2020). Furthermore, this map aligns well with the area information obtained from FAOSTAT 

statistical data for each country (Zhang et al., 2020). Additionally, this map has been used to develop a feature-based 

algorithm for rice phenology detection (Zhao et al., 2023). In this study, this rice paddy field distribution map was 

aggregated to a gridded map with 0.5° resolution (Fig. 1b). 145 

 

This rice paddy field distribution map was aggregated to a gridded map with 0.5° resolution (Fig. 1b). Within each 0.5° grid, 

20 rice paddy fields were randomly selected to derive the average rice phenology for that grid (Xiao et al., 2021; Zhao et al., 

2023). This sampling method effectively minimizes errors caused by misclassification of rice paddy fields by excluding 

outliers that deviate from the averaged rice phenology (Zhao et al., 2023). Additionally, this sampling size of 20 rice paddy 150 

fields is sufficiently enough that saves computation time and has no effect on averaged rice phenology detection (Fig. S2). 

2.2.2 Satellite data 

All available images from Sentinel-1 and Sentinel-2 from 1 January 2019 to 31 December 2020 were used for generating 

backscattering or vegetation index time series via the Google Earth Engine (GEE) (http://earthengine.google.com/) platform 

and the Google Colaboratory platforms. To overcome inherent speckle noise and overlapping observations of Sentinel-1 155 

images, 3 × 3 pixels moving window filter and incidence angle processing were performed (Inoue et al., 2020). Invalid 

observations of Sentinel-2 images caused by clouds and cirrus were removed using cloud filtering (> 50 %) and the cloud-

score method (QA60 quality assessment band with 60 m resolution) (Inoue et al., 2020). The VH C-band Ground Range 

Detected images in the Interferometric Wide Swath mode were acquired with 6 day temporal resolution. Based on the 

Sentinel-2 Multispectral Instrument Level-1C top of atmosphere reflectance images, the EVI and the NDYI, based on the 160 

blue (B2), green (B3), red (B4), and NIR (B8) spectral bands with 10 m spatial resolution and 5 day temporal resolution, 

were calculated as follows: 

𝐸𝑉𝐼 =
2.5 × (NIR - Red)

NIR + 6 × Red-7.5 × Blue + 1
 ,          (1) 

http://earthengine.google.com/
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𝑁𝐷𝑌𝐼 =
(Green-Blue)

(Green+Blue)
,           (2) 

The Locally Estimated Scatterplot Smoothing (LOESS) method was further adopted to smooth the time series data. The span 165 

value was assigned as 0.075 and 0.2 to depict VH and the EVI/NDYI time series pattern. 

2.2.3 Reference rice calendars 

There are three widely accepted rice calendars currently available. The RiceAtlas rice calendar, based on compilation of 

multiple census data sources, provides the start, peak, and end of the transplanting date and harvest dates, and the number of 

rice croppings at national or sub-national scales globally. It is based on compilation of multiple data sources that include 170 

census data, databases, publications, and reports (Laborte et al., 2017). The RICA rice calendar, was generated using MODIS 

images, to maps the rice transplanting date, harvest date, and number of rice croppings at administrative units in Asia 

(Mishra et al., 2021). The SAGE rice calendar records the gridded rice transplanting date and harvest dates of 2000 at 5 min 

spatial resolution, but only records two rice croppings (Sacks et al., 2010). Therefore, the RiceAtlas, RICA, and SAGE rice 

calendars were used in this study to evaluate the number of rice croppings. The RiceAtlas rice calendar, with its detailed 175 

phenological date range, was used to assess the performance of the proposed rice calendar in determining regarding 

transplanting date and harvest date., evaluating it based onThe performance of the proposed rice calendar in determining the 

transplanting and harvest dates was assessed using the coefficient of determination (R2), bias error (Bias), Mean Absolute 

Error (MAE), and Root Mean Square Error (RMSE) (Supplementary Text 1). which were calculated as follows: 

𝑅2 = 1-
(∑ (𝑦𝑖−𝑦̅)(𝑠𝑖−𝑠̅))2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1 −∑ (𝑠𝑖−𝑠̅)2𝑛

𝑖=1
                                    (3) 180 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ (𝑦𝑖

𝑛
𝑖=1 − 𝑠𝑖)                                                  (4) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑠𝑖|𝑛

𝑖=1                                                   (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖

𝑛
𝑖=1 − 𝑠𝑖)2                                    (6) 

where 𝑦𝑖  and 𝑦̅ are the phenological dates from the proposed rice calendar for sample grid (i) and the corresponding mean 

value, respectively, 𝑠𝑖  and 𝑠̅  are the phenological dates from the reference rice calendar for sample grid (i) and the 185 

corresponding mean value, respectively, and 𝑛 represents the number of sampled phenological dates. 

2.3 Methodology 

The overall methodology for rice calendar mapping, which is summarized in Fig. 2, can be divided into two steps. The first 

step is extraction of transplanting and harvest dates and detection of the number of rice croppings, depicted in Fig. 2 Step 1-1 

as the algorithm for phenological dates and number of rice croppings detection and in Fig. 2 Step 1-2 as the process of 190 
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phenological dates and number of rice croppings detection. The transplanting and harvest dates obtained in the first step 

(Step 1) require temporal and spatial integration for the generation of the rice calendar (Fig. 2 Step 2). The following 

sections provide elaboration on the major procedures involved in each step.
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 195 

Figure 2. Workflow for gridded rice calendar mapping based on satellite images. Step 1 depicts the algorithm and process of transplanting 

and harvest dates extraction, along with the detection of number of rice croppings, as shown in the first box. In Step 2, the generation of 

the rice calendar is described, relying on the detected transplanting and harvest dates derived from Step 1, through the temporal and spatial 

integration of the detected phenological dates displayed in the second box.
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2.3.1 Step 1: Algorithm and process for eExtraction of phenological dates and number of rice croppings 200 

2.3.1.1 Algorithm (Step 1-1a) and process (Step 1-2b) for extraction of transplanting and harvest dates 

Flooding rice cultivation, common in Asia and accounting for over 12 % of the global cropland (FAOSTAT, 2020; Zhang et 

al., 2021a), presents a distinctive flooding signal that can be used for detection of rice transplanting date. Additionally, rice 

harvest is characterized by irreversible leaf yellowing due to chlorophyll breakdown (Zhang et al., 2021b)Flooding rice 

cultivation, as opposed to direct seeding, is common practice in Asia (Boschetti et al., 2017; Pandey et al., 2000) and 205 

accounts for more than 12 % of the global cropland area (FAOSTAT, 2020; Zhang et al., 2021a). This cultivation practice 

allows rice to grow in flooded soil, which presents a distinctive flooding signal that can be used for detection of rice 

transplanting date. Additionally, the time of rice harvest is characterized by irreversible yellowing of the leaves, resulting 

from the rapid breakdown of chlorophyll and the photosynthetic apparatus (Zhang et al., 2021b) (Fig. 2 Step 1 Algorithm). 

These phenological characteristics of rice crops can be captured by a feature-based algorithm applied on the smoothed VH, 210 

EVI, and NDYI time series data (Zhao et al., 2023).The feature-based algorithm was used on the smoothed VH, EVI, and 

NDYI time series data to capture the aforementioned phenological characteristics of rice crops (Zhao et al., 2023). This 

algorithm’s robustness has been confirmed at multiple spatial scales (sub-nation, 0.5° gridcell, and site scales) and cropping 

systems (single, double, and triple croppings) in monsoon Asia (Zhao et al., 2023). The transplanting date was determined by 

identifying the minimum VH intensity from the shortest plants above the water surface, where VH intensity gradually 215 

increase as they interact with the radar signal. As the rice plants grow above the water surface and interact with the incident 

radar signal, the VH intensity gradually increases (Torres et al., 2012). The harvest date was detected using the NDYI’s 

yellow signal derived from the NDYI, which employs a combination of green and blue bands to represent the balance 

between rice growth and senescence. Consequently, the NDYI value reaches a peak (approaches nearly 0 from negative 

values), indicating the maximum yellowness associated with the at harvest date (Zhao et al., 2023) (Fig. 2 Step 1 Algorithm 220 

a).  

 

The minimum VH and peak NDYI were detected within the time window (Fig. 2 Step 1 Process a), indicating that only the 

minimum VH and the maximum NDYI values within the time window, before and after the EVI peak, can be identified as 

the transplanting date and harvest date, respectively. To identify the optimal window for detection of the transplanting and 225 

harvest dates, the time window for detection of the minimum VH and peak NDYI were used (Table S1). To identify the 

optimal time window for detection of the transplanting and harvest dates, the time window for detection of the minimum VH 

was set from 120 days before the date of peak EVI (𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥
) to 45 days before the date of peak EVI, i.e., [𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥

−

120, 𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥
− 45] or from the first day of EVI arc (𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦

) to 45 days before the date of peak EVI, i.e., 

[ 𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦
,  𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥

− 45]. The time window for detection of the peak NDYI was set from 13 days after the 230 

peak EVI date to 55 days after the date of peak EVI, i.e., [𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥
+ 13,  𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥

+ 55] or from 13 days after the peak 
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EVI date to the last day of the EVI arc (𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑙𝑎𝑠𝑡 𝑑𝑎𝑦
), i.e., [𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥

+ 13,  𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑙𝑎𝑠𝑡 𝑑𝑎𝑦
]. If the peak NDYI 

could not be obtained from those time windows, peak NDYI was identified using the peak EVI date (𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥
) plus the 

corresponding difference days for each rice cropping, as referenced in Zhao et al. (2013) (Fig. 2 Step 1 Process a).  

2.3.1.2 Method (Step 1-1b) and process (Step 1-2a) for detecting the number of rice croppings 235 

The six-parametric Weibull function, 𝑤(𝑥) = (d + exp (− (
𝑥

𝑒
)

𝑓

)) × (1 − 𝑎 exp (− (
𝑥

𝑏
)

𝑐
)) (where a, b, c, d, e, and f are the 

free parameters to be fitted) (Rolinski et al., 2007), can be used to identify the number of rice croppings by depicting an arc 

with the shape of downward-opening patterns from the smoothed EVI time series (hereafter referred to as EVI arc) (Fig. 2 

Step 1 Algorithm b). as shown follows: 

𝑤(𝑥) = (d + exp (− (
𝑥

𝑒
)

𝑓

)) × (1 − 𝑎 exp (− (
𝑥

𝑏
)

𝑐
))                                                                                                   (3) 240 

(where a, b, c, d, e, and f are the free parameters to be fitted) (Rolinski et al., 2007). 

This fitted Weibull function can be implemented using the peakwindow function in the “cardidates” package of R (Petzoldt 

et al., 2023; Rolinski et al., 2018; R Core Team, 2013Rolinski et al., 2007) (https://cran.r-

project.org/web/packages/cardidates/index.html) (Fig. S3a; Fig. 3). The rice cropping duration and its peak were determined 

as follows: 245 

𝐶𝑟𝑜𝑝𝑝𝑖𝑛𝑔 = 𝑝𝑒𝑎𝑘𝑤𝑖𝑛𝑑𝑜𝑤 (𝑥, 𝑦, 𝑚𝑖𝑛𝑐𝑢𝑡, 𝑚𝑖𝑛𝑝𝑒𝑎𝑘)                                                                                       (74) 

where 𝑦 represents the variations of smoothed EVI time series values with respect to the date variable 𝑥. 

To control the shape of the EVI arc, which represents the relative height between the neighbouring peaks and valleys, for the 

purpose of identifying rice cropping, the parameters mincut and minpeak were set to 0.9 (Figs. S23c and S34) and 0.6 (Figs. 

S23d and S34), respectively.  250 

 

After application of the function (Eq. (74)), all available arcs of the smoothed EVI time series were then labelled, including 

the start (start day of detected EVI arc, 𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑓𝑖𝑟𝑠𝑡 𝑑𝑎𝑦
), peak (peak day of detected EVI arc, 𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥

), and end (end 

day of detected EVI arc,  𝐷𝑂𝑌𝐸𝑉𝐼 𝑎𝑟𝑐𝑙𝑎𝑠𝑡 𝑑𝑎𝑦
) of the arc, and the peak EVI value (𝑉𝑎𝑙𝑢𝑒𝐸𝑉𝐼𝑚𝑎𝑥

) (Fig. 2 Step 1 Process b).  

 255 

This method can detect the EVI arc, even if it does not exhibit a complete downward-opening shape (Fig. S3b). This is 

because rice growth spans two years, and some days are not within the period of study, resulting in lack of EVI time series 

data for those days. Based on the labelled EVI arc, all rice croppings were recognized, as the heading date through extraction 

of the 𝐷𝑂𝑌𝐸𝑉𝐼𝑚𝑎𝑥
. 

https://cran.r-project.org/web/packages/cardidates/index.html
https://cran.r-project.org/web/packages/cardidates/index.html
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 260 

Figure 3. Smoothed EVI time series and subsequent identification of the number of rice croppings at adjacent grids (32.25°N, 130.25°E, 

and 32.75°N, 130.25E°) across two years. Left column shows the smoothed EVI time series using the LOESS method. Black points and 

green lines indicate the EVI value at specific dates and the smoothed EVI time series, respectively. GreyGreen area indicates the 95 % 

confidence interval around the smoothed EVI time series. Right column displays the number of rice croppings detected using the fitted 
Weibull function implemented via the “cardidates” package in R. Blue, yellow, red, and black lines correspond to the detected first, 265 
second, third, and fourth arcs of the smoothed EVI time series. 

 

2.3.2 Step 2: Temporal and spatial integration of detected transplanting and harvest dates for rice calendar 

generation 

All the transplanting and harvest dates across two years for each grid were detected in Step 1 by using the algorithms and 270 

processes described above. However, these detected transplanting and harvest dates in each grid vary annually due to 

different weather conditions, the effects of climate change, adjustments in agricultural schedule, and the availability of 
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satellite images. Additionally, the detected transplanting and harvest dates for a specific cropping season in a grid can differ 

markedly from those in neighboring grids, possibly indicating detection errors. Therefore, the temporal and spatial 

integration of the detected transplanting and harvest dates, referred to as Step 2, is a necessary step for generation of a multi-275 

year, spatially averaged rice calendar.  

 

To achieve this goal, the first step involved converting all the detected transplanting and harvest dates over two years into the 

Day Of the Year (DOY) format, ranging from DOY 1 (1 January 2019) to DOY 730 (31 December 2020; 29 February 2020 

was not considered for simplicity). Subsequently, the detected transplanting and harvest dates that occurred in 2020 (DOY 280 

366 to DOY 730) were converted for consistency with the first year (DOY 1 to DOY 365) by subtracting 365 (Fig. 2 Step 

2a). Finally, all the detected transplanting and harvest dates were converted to DOY values from 1 to 365 (Fig. 2 Step 2a). 

 

The temporal and spatial integration of phenological dates should be conducted within specific periods of time. Typically, 

rice is cultivated up to three times annually in most areas (Mishra et al., 2021), which serves as a meaningful basis for 285 

dividing the year into three equal periods. Thus, the year was divided into three groups: Group 1: July–October (DOY 182 to 

DOY 304), Group 2: March–June (DOY 60 to DOY 181), and Group 3: November–February (DOY 305 to DOY 59) (Fig. 2 

Step 2b). The detected phenological dates were assigned to the corresponding group based on the maximum number of days 

from the transplanting date to the harvest date falling within that group (Fig. 2 Step 2c).  

 290 

The phenological date DOY values represent circular data that exhibit periodicity or cyclicity (Mahan, 1991). The 

designation of high and low values is arbitrary (Berens, 2009). For example, DOY 365 is almost the same as DOY 1 with 1 

day difference instead of a difference of 364 days. Adoption of statistical analysis commonly used with circular data can lead 

to incorrect results, whereas the von Mises distribution 𝑉𝑀(𝜇, 𝜅) can display a circular unimodal distribution (Berens, 2009). 

The probability density function of the von Mises distribution can be expressed as follows: 295 

𝑝 (𝑥;  𝜇;  𝜅) =
1

2𝜋𝐼0(𝜅)
exp (𝜅 cos (𝑥 −  𝜇))                                                                                                                    (85) 

where 𝐼0 is the modified Bessel function of zero order, and for −𝜋 ≪ 𝑥 ≤ 𝜋, 𝜅 > 0. 

 

The availability of the “circular” R package (https://rdrr.io/rforge/circular/man/circular-package.html) (Agostinelli and Lund, 

2023) is convenient for analysis of circular data. In the “circular” R package, the probability density function of the von 300 

Mises distribution can be displayed as follows:  

𝑞𝑣𝑜𝑛𝑚𝑖𝑠𝑒𝑠 (𝑥, 𝑚𝑢, 𝑘𝑎𝑝𝑝𝑎)                                                                                                                                  (96) 

where 𝑚𝑢 is the mean direction of the distribution, and 𝑘𝑎𝑝𝑝𝑎 is a non-negative numeric value representing a concentration 

parameter of the distribution; 𝑚𝑢 and 𝑘𝑎𝑝𝑝𝑎 are correspond to 𝜇 and 𝜅 in Eq. (85), respectively. 

 305 

https://rdrr.io/rforge/circular/man/circular-package.html
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The circular data 𝑥 in Eqs. (85) and (96) denote the phenological date shown in DOY format. The DOY was converted to an 

angle value (degrees) (Fig. 2 Step 2d) (Franch et al., 2022) as follows: 

𝐷𝑂𝑌𝑑𝑒𝑔 =
𝐷𝑂𝑌

365
×  360                                     (107) 

where 𝐷𝑂𝑌𝑑𝑒𝑔  represents the angular value of the DOY, and 365 denotes the number of equal interval date units representing 

one rotation around the circle. 310 

The angle value of the DOY (𝐷𝑂𝑌𝑑𝑒𝑔) was then converted to the radian value of the DOY (𝐷𝑂𝑌𝑟𝑎𝑑) with interval [−𝜋,  𝜋] 

(Fig. 2 Step 2d) as follows: 

𝐷𝑂𝑌𝑟𝑎𝑑 =  𝐷𝑂𝑌𝑑𝑒𝑔 ×  
𝜋

180
− 𝜋 =  

(𝐷𝑂𝑌−182.5) × 𝜋

182.5
                                                                                                     (118) 

Then, 𝐷𝑂𝑌𝑟𝑎𝑑  was input into the mle.vonmises function in the “circular” R package to obtain the parameters of the von 

Mises distribution via maximum likelihood estimates. For each group (i.e., Group 1, Group 2, and Group 3), the 𝐷𝑂𝑌𝑟𝑎𝑑  of 315 

each grid and the eight neighbouring grids (3 × 3 pixel window) across the two years were included as input for the 

mle.vonmises function (Fig. 2 Step 2d). Overall, 18 𝐷𝑂𝑌𝑟𝑎𝑑  values were used as follows:  

𝑟𝑒𝑠 =  𝑚𝑙𝑒. 𝑣𝑜𝑛𝑚𝑖𝑠𝑒𝑠 (𝐷𝑂𝑌𝑟𝑎𝑑1, 𝐷𝑂𝑌𝑟𝑎𝑑2 , 𝐷𝑂𝑌𝑟𝑎𝑑3, … , 𝐷𝑂𝑌𝑟𝑎𝑑18)                                              (129) 

The parameters 𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑  and 𝑉𝑎𝑟 were derived from the mle.vonmises function (Eq. (129)), representing the value and 

variance of the phenological dates (𝐷𝑂𝑌𝑟𝑎𝑑), respectively, after performing temporal and spatial integration for each grid 320 

within each group: 

𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 =  𝑟𝑒𝑠$𝑚𝑢                                                   (1310) 

𝑉𝑎𝑟 =  𝑟𝑒𝑠$𝑘𝑎𝑝𝑝𝑎                                                   (1411) 

However, this value and variance of the phenological date (𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑  and 𝑉𝑎𝑟) is a radian value, which must be 

converted back to the DOY (𝐷𝑂𝑌𝑚𝑢 and 𝐷𝑂𝑌𝑣𝑎𝑟) as follows: 325 

𝐷𝑂𝑌𝑚𝑢 = 𝐷𝑂𝑌𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 ×  
182.5

𝜋
+ 182.5                                                                                                                     (1512) 

𝐷𝑂𝑌𝑣𝑎𝑟 =
1

𝑉𝑎𝑟
 ×

180

𝜋
/

360

365
  =

1

𝑉𝑎𝑟
 ×  

182.5

𝜋
                                                                    (1613) 

 

The integrated transplanting dates from all the groups (e.g., 𝐷𝑂𝑌𝑚𝑢_𝐺1 , 𝐷𝑂𝑌𝑚𝑢_𝐺2 , and 𝐷𝑂𝑌𝑚𝑢_𝐺3 ) were then reordered 

according to their chronological order for each grid. Finally, cropping-based phenological dates were obtained through the 330 

conversion of the group-based phenological dates (Fig. 2 Step 2e).  
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3 Results and discussion 

3.1 Transplanting date and harvest date 

Based on the above methodological framework, rice calendars with two types of transplanting and harvest dates were 

obtained: a group-based calendar (Fig. 4) and a cropping-based calendar (Fig. 6). The group-based rice calendar was initially 335 

produced, displaying explicit transplanting and harvest dates for three groups (Fig. 4). The median transplanting dates across 

monsoon Asia for the three rice groups are DOY 182, 77, and 325, with standard deviations of 23, 24, and 60, respectively 

(Fig. 4). Similarly, the median harvest dates for the three groups are 281, 172, and 67, with standard deviations of 23, 27, and 

56, respectively (Fig. 4). Because the three groups divide the year equally, the transplanting date and the harvest date both 

exhibit a mono-peaked distribution (Fig. S45). Moreover, the variance of the transplanting or harvest dates observed in each 340 

grid originates from analysis of 18 detected transplanting or harvest dates from its eight neighbors across the two years, 

thereby highlighting both its temporal and spatial variations. The variance in transplanting and harvest dates across monsoon 

Asia for the three groups is shown in Fig. 5. The variance is 8, 11, and 12 for the transplanting dates and 7, 11, and 15 for the 

harvest dates (Fig. 5). These variances arise from interannual variation and spatial smoothing effect, and their small values 

indicate stability in phenological date extraction.  345 
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Figure 4. Transplanting date and harvest date for the three groups. Upper, middle, and lower panels of the left column show the 

transplanting date for Group 1, Group 2, and Group 3, respectively. Upper, middle, and lower panels of the right column show the harvest 

date for Group 1, Group 2, and Group 3, respectively. Colour gradient from blue to red in the legend denotes the respective transplanting 

and harvest dates.  350 
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Figure 5. Variance in transplanting date and harvest date for the three groups. Upper, middle, and lower panels of the left column show the 

variance in transplanting date for Group 1, Group 2, and Group 3, respectively. Upper, middle, and lower panels of the right column show 

the variance in harvest date for Group 1, Group 2, and Group 3, respectively. Colour gradient from blue to red in the legend denotes the 

respective variance in transplanting and harvest dates. 355 
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Then, the group-based transplanting and harvest dates were converted to the cropping-based format by reordering the 

detected transplanting dates for each grid. The cropping-based transplanting and harvest dates are in a common format that 

facilitates comparison with those of other rice calendars. The median transplanting dates across monsoon Asia for three rice 

croppings are DOY 154, 208, and 327, with standard deviations of 61, 68, and 27, respectively (Fig. 6). Similarly, the 360 

median harvest dates for three croppings are 253, 273, and 62, with standard deviations of 63, 111, and 47, respectively (Fig. 

6). Owing to the large spatial coverage, the transplanting and harvest dates vary across different croppings, exhibiting a dual-

peaked distribution (Fig. 8). The variance in transplanting dates for three croppings across monsoon Asia is 9, 10, and 12, 

while the variance in harvest dates is 8, 11, and 16 (Fig. 7).  
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 365 

Figure 6. Transplanting date and harvest date for three rice croppings. Upper, middle, and lower panels of the left column show the 

transplanting date for Cropping 1, Cropping 2, and Cropping 3, respectively. Upper, middle, and lower panels of the right column show the 

harvest date for Cropping 1, Cropping 2, and Cropping 3, respectively. Colour gradient from blue to red in the legend denotes the 

respective transplanting and harvest dates.  

 370 
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Figure 7. Variance in transplanting date and harvest date for three rice croppings. Upper, middle, and lower panels of the left column 

show the variance in transplanting date for Cropping 1, Cropping 2, and Cropping 3, respectively. Upper, middle, and lower panels of the 

right column show the variance in harvest date for Cropping 1, Cropping 2, and Cropping 3, respectively. Colour gradient from blue to red 

in the legend denotes the respective variance in transplanting and harvest dates. 375 
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Figure 8. Distribution of transplanting and harvest dates for three rice croppings. Blue and orange represent the transplanting date and the 

harvest date, respectively. 

 380 

There are difficulties in directly comparing transplanting and harvest dates with those from other rice calendars owing to 

differences in spatial resolution (grid versus administrative) and the identification of rice cropping sequences (Clauss et al., 

2018). Thus, the RiceAtlas rice calendar, which has been rasterized to the same spatial resolution as that of the proposed rice 

calendar (0.5°), was used to evaluate the performance in terms of single rice cropping for the transplanting and harvest dates. 

The transplanting dates of the proposed rice calendar are consistent with those of the RiceAtlas rice calendar, with Bias of 385 

3.93 days, MAE of 16.38 days, and RMSE of 27.62 days (Fig. 9). Additionally, the harvest dates of the proposed rice 

calendar are correlated with those of the RiceAtlas rice calendar, with Bias of −5.76 days, MAE of 17.87 days, and RMSE of 

28.32 days (Fig. 9). However, the presence of the same transplanting or harvest dates across large spatial areas in the 

RiceAtlas rice calendar (Fig. S56) reduces its accuracy. Similarly, the RiceAtlas rice calendar has been used to evaluate the 

performance of the MODIS-based RICA rice calendar (Mishra et al., 2021). The proposed rice calendar outperforms the 390 

RICA rice calendar in terms of accuracy, with smaller MAE (26.41 days in the RICA rice calendar) and RMSE (34.20 days 

in the RICA rice calendar) in relation to transplanting dates, and almost half the MAE (33.20 days in the RICA rice calendar) 

and smaller RMSE (42.72 days in the RICA rice calendar) in relation to harvest dates (Mishra et al., 2021).  
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 395 

Figure 9. Comparison of transplanting date and harvest date for single rice cropping between the proposed rice calendar and the RiceAtlas 

rice calendar. Blue and orange represent the transplanting date and harvest date, respectively; vertical lines denote the range of the 

transplanting and harvest dates of the proposed rice calendar; horizontal lines denote the range of the transplanting and harvest dates of the 

RiceAtlas rice calendar; dots denote the peak of the transplanting or harvest dates. Black dots denote the detected phenological day that 

falls within the transplanting or harvest ranges from the RiceAtlas rice calendar. Grey dotted line and red solid line represent the 1:1 line 400 
and regression, respectively. Red and black solid lines represent the 1:1 line and regression, respectively. 

 

3.2 Number of rice croppings 

The number of rice croppings in the proposed rice calendar was obtained by counting the phenological dates for the three 

croppings (Fig. 10a). In comparison with the RiceAtlas (Fig. 10b), RICA (Fig. 10c), and SAGE (Fig. 10d) rice calendars 405 

based on the administrative scale, the proposed rice calendar shows the number of rice croppings per grid, which cannot be 

paralleled by the other rice calendars. Among the total of 4811 detected grids, 2728, 1644, and 439 grids were identified as 

single, double, and triple rice croppings, respectively. To compare the number of each rice cropping across the rice calendars 

with different spatial resolutions, the area for each number of croppings was calculated (Fig. 11). In the area calculation, the 

variation of the area of each grid cell on the ellipsoidal earth (Fig. S89) was considered, as was the percentage coverage of 410 

rice paddy fields in each grid (Fig. 1b).  
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Figure 10. Detected number of rice croppings of (a) the proposed rice calendar, (b) the RiceAtlas rice calendar, (c) the RICA rice 

calendar, and (d) the SAGE rice calendar. Blue, yellow, and red colours represent single, double, and triple rice cropping, respectively.  

 415 

The areas covered by single, double, and triple rice croppings in the proposed rice calendar are 5.3 × 106, 4.5 × 106, 0.9 × 106 

km2 0.53, 0.45, and 0.09 million of km2, respectively (Fig. 11). The area covered by single rice cropping falls within the 

range of 0.24 2.4 × 106 (RiceAtlas rice calendar) to 6.5 × 106 0.65 million of km2 (RICA rice calendar) (Fig. 11). The single 

rice cropping detection of the proposed rice calendar shows reasonable performance, with consistent detection across the 

north of the middle–lower reaches of the Yangtze River, North Korea, South Korea, and most of Japan when compared with 420 

the other three rice calendars (Fig. 10). The regions of Haryana, Himachal Pradesh, and Punjab in India, central, midwestern, 

and western Nepal, and Balochistan, the Federally Administered Tribal Areas, and the North-West Frontier Province in 

Pakistan were also identified as single rice cropping areas (Fig. 10). In fact, these regions were initially identified as having 
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double rice cropping, but they are dominated by the rice–wheat cropping system (Abrol, 1997; Dhanda et al., 2022; Ahmad 

and Iram, 2023). Therefore, in this study, wheat cropping was removed within this region (Figs. 4–7, 10, 11, S910a, and 425 

S910b) (Abrol, 1997; Dhanda et al., 2022). 

 

Figure 11. Area of rice cropping of (a) the proposed rice calendar, (b) the RiceAtlas rice calendar, (c) the RICA rice calendar, and (d) the 

SAGE rice calendar. Blue, yellow, and red colours represent single, double, and triple rice cropping, respectively. Area calculation was 

based on the percentage of rice paddy field map (Fig. 1b) and area of each grid cell on the ellipsoidal earth (Fig. S8). 430 

 

The region of detected double rice cropping occupies a larger area in the proposed rice calendar than in the other three rice 

calendars (Fig. 11a). Additionally, the area covered by triple rice cropping falls within the range of 0.5 × 105 0.05 million of 

km2 (RICA rice calendar) to 4 × 105 0.4 million of km2 (RiceAtlas rice calendar). The proposed rice calendar successfully 

detects the mix of double and triple rice croppings in Southeast Asia, including Vietnam, Malaysia, Indonesia, and the 435 
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Philippines. The results align with real-world observations. Double or triple rice croppings are mostly cultivated in Vietnam 

(Nguyen et al., 2012; Diem et al., 2021). Two main croppings are cultivated in Malaysia (Fatchurrachman et al., 2022) and 

the Philippines (Laborte et al., 2012). Even on Java Island (Indonesia), the cultivation ranges from single to triple rice 

cropping systems (Ramadhani et al., 2020). In contrast, fewer areas of double rice cropping were detected in Myanmar, 

Thailand, Laos, and Cambodia using remote sensing-based methods such as the proposed calendar (Fig. 10a) and the RICA 440 

rice calendar (Fig. 10c), in comparison with census-based rice calendars such as the RiceAtlas (Fig. 10b) and SAGE (Fig. 

10d) rice calendars. The presence of a large amount of small but highly heterogeneous rice paddy fields limits accurate 

detection of the number of rice croppings using remote sensing (Mishra et al., 2021). Moreover, census-based rice calendars 

record the potential number of rice cropping, which means that some rice croppings might overlap or that triple rice cropping 

is determined even though it accounts for only a small proportion of the rice cultivation activity within an administrative 445 

unit. This is a condition that does not occur in association with remote sensing-based rice calendars. 

 

The proposed rice calendar extracts 9 % of triple rice croppings (Fig. 11a), which are scattered and distributed in South 

China, Southeast Asia, and India (Fig. 10a). This proportion is close to that of the RICA rice calendar (6 % in Fig. 11c), but 

markedly lower than that of the RiceAtlas rice calendar (41 % in Fig. 11c). However, the larger percentage of triple rice 450 

croppings in the RiceAtlas rice calendar might be overestimated, especially in Northeast India and Bangladesh in areas of the 

lower Gangetic Plain. The double rice cropping system is predominant on the lower Gangetic Plain (Wang et al., 2020). In 

this area, rice cultivation occurs in one to three seasons, namely Aus (Mar/April/May to June/July), Aman (June/July/August 

to November/December), and Boro (November/December to January–April/May). Among the three seasons, Aus and Aman 

are the dominant croppings (Gunna et al., 2014; Singha et al., 2019). Similarly, in South China, which is dominated by 455 

double rice cropping, early rice is transplanted at the end of April and harvested at the end of July, while late rice is 

cultivated from June to October (Chen et al., 2020). 

3.3 Advantages of the proposed rice calendar 

The aforementioned robustly supports the efficacy of the proposed rice calendar in depicting the detailed spatial variation of 

rice phenology across a large area. Thus, it can be considered a reliable gridded rice calendar for monsoon Asia. The use of 460 

remote sensing-based methods provides precise and timely monitoring of the phenological condition and development of 

rice crops. Furthermore, the combination of Sentinel-1 and Sentinel-2 imagery contributes to the spatial explicitness of the 

rice calendar because the Sentinel satellites are considered to open a new era of dense and detailed observations that could 

overcome the long temporal frequency of Landsat images and the spatial resolution limitations of MODIS in mapping rice 

calendars. Moreover, the Sentinel satellites were launched in 2014 and are scheduled to operate until 2030, thereby ensuring 465 

long-term continuous observation of rice phenology (Veloso et al., 2017). 
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A The rice feature-based phenology algorithm (Zhao et al., 2023) was applied to Sentinel-1 and Sentinel-2 images to detect 

gridded rice transplanting and harvest dates (Fig. 2 Step 1 Algorithm a). This algorithm successfully extractsed rice 

transplanting and harvest dates from site to at 0.5 grid-cell scale across monsoon Asia (Zhao et al., 2023). The robustness of 470 

validation at multiple spatial scales (Zhao et al., 2023), combined with reasonable performance in comparison with that of 

other rice calendars (Fig. 9), make the efficacy of the proposed rice calendar even more convincing. Furthermore, the 

proposed rice calendar outperforms the other rice calendars in terms of its algorithm for phenological date extraction. It 

overcomes the problem of overlap between rice croppings associated with census-based methods (such as RiceAtlas rice 

calendar), and does not rely on algorithm with constant threshold values set for large areas, as is the case with other remote 475 

sensing-based methods (such as RICA rice calendar). In contrast, the feature-based this algorithm is not limited by rice 

variety, management, and environmental factors. Instead, the features of flooding around the transplanting date and the most 

yellowness when harvested are extracted from the minimum VH and peak NDYI values, respectively, without threshold 

parameter setting for characterizing rice phenological variations.  

 480 

Detection of the number of rice croppings is another important part of the methodological framework of the proposed rice 

calendar. The fitted Weibull function, implemented in the R package (Fig. 2 Step 1 Algorithm b), automatically detects the 

number of rice croppings based on the shape of the smoothed EVI time series, facilitating rapid and efficient rice calendar 

mapping. The shape-based detection avoids identification of the number of rice croppings based on peak detection or on the 

occurrence of some certain phenological date within the rice season (e.g., flowering date, as in Mishra et al. (2021)). 485 

Additionally, the EVI shape-based detection allows identification of incomplete EVI arcs caused by non-continuous 

observations as one of the rice croppings (Fig. S2b). 

 

Temporal and spatial integration of detected transplanting and harvest dates, as derived from Step 1, pose a great challenge 

owing to flexible agricultural schedules and the availability of satellite imagery. This limitation restricts widespread 490 

application of remote sensing-based rice calendars. In this study, a new algorithm (Fig. 2 Step 2) was proposed to address 

this problem, which has long been a challenge in the preparation of previous rice calendars (Mishra et al., 2021). The use of 

von Mises maximum likelihood estimates produces the average of the transplanting and harvest dates for 18 grids (3 × 3 

grids × 2 years), taking the circular nature of phenological dates into special consideration (Fig. 2 Step 2d). This algorithm is 

of great benefit for application in tropical areas where rice growth continues throughout the year, let alone temperate areas 495 

where rice growth occurs once a year. Additionally, the superiority of this algorithm lies in its ability to consider all rice 

croppings instead of excluding one of the rice cropping seasons through direct averaging based on administrative units. 

Furthermore, this algorithm improves the accuracy of the rice calendar by employing spatio-temporal integration, which 

reduces the presence of abnormal phenological dates. 

 500 
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The advantages of the above-mentioned algorithms (Fig. 2 Step 1, Step 2) largely contribute to the production of a gridded 

rice calendar. The proposed rice calendar fills the gaps in relatively finer-scale rice calendars with continental coverage using 

remote sensing methods. The proposed rice calendar provides spatially explicit rice phenology with continental coverage 

through remote sensing methods. The major difference between the proposed rice calendar and the RICA rice calendar lies 

in the use of a feature-based algorithm with VH and NDYI, which allows the proposed rice calendar to theoretically estimate 505 

rice phenology more accurately. Zhao et al. (2023) demonstrated that VH can accurately capture the start of paddy water 

logging, and NDYI is a good indicator of rice maturity stage. The proposed rice calendarIt presents a highly patchy map of 

rice phenological information (Figs. 6 and 10a). The 0.5° resolution of the proposed rice calendar is finer than that of other 

rice calendars, including the RiceAtlas, RICA at sub-national scale, and SAGE derived from sub-national data. This 

improvement greatly reduces the bias error caused by assigning averaged rice phenology to administrative units, as rice 510 

phenology can vary considerably within large administrative units (Franch et al., 2022). Furthermore, the proposed rice 

calendar displays the detailed distribution of rice paddy fields (Figs. 6 and 10a), in contrast to previous rice calendars that 

covered entire administrative areas, irrespective of the small proportion of rice cultivation (Figs. S56–S78 and 10b–d). 

3.4 Uncertainty 

Although the potential and advantages of the proposed gridded rice calendar for monsoon Asia have been highlighted, some 515 

uncertainties remain. One challenge is the limited experimental periods on which the calendar is based, specifically during 

2019–2020. While it was facilitated by the GEE and Google Colaboratory, generating detailed detection for two years (127 × 

184 = 23,368 grids × 2 years) still requires large computation power. Additionally, errors can arise from the spatial and 

temporal integration of transplanting and harvest dates. The grouping process, in particular, poses a risk of assigning single 

rice cropping seasons from two years into different groups, potentially overestimating the number of rice croppings. 𝑉𝑎𝑟 520 

parameter, derived from the mle.vonmises function (Eqs. (129) and (1411)), is prone to bias, requiring bias-corrected 

estimates when the sample size is less than 16 (Best and Fisher, 1981). To address these issues, a 3 × 3 pixel window was 

used over two years to produce 18 values, highlighting the need to balance window size and sample size in spatio-temporal 

integration. The accuracy of reference rice calendars should also be considered, as they may rely on data from various 

sources and administrative scales (Laborte et al., 2017). Overlapping phenological dates between rice cropping seasons 525 

(Figs. S6–S8) can introduce further uncertainty. Furthermore, the complexity of multiple crop cropping systems can lead to 

an overestimation of rice croppings numbers. The growth of the other crop exhibits a similar pattern of a mono-peaked EVI 

time series and flood irrigation before sowing, similar to rice (Ahmad and Iram, 2023). Examples include the middle rice 

cropping system (rice with wheat, barley, or rapeseed cropping systems) in East and Central China (Chen et al., 2020) and 

the rice–wheat cropping systems on the Indo-Gangetic Plain (Abrol, 1997; Dhanda et al., 2022).  530 

 

(1) Limited experimental periods. The proposed gridded rice calendar was produced based on detection during the 

period 2019–2020. Although implementation of rice calendar mapping was facilitated by the GEE and Google CoLaboratory 
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platforms, generating detailed detection for two years (127 × 184 = 23,368 grids × 2 years) still requires large computational 

power. Increasing effort should be made in this regard, allowing for the use of a long-term time series of satellite images to 535 

detect rice phenological dates. This, consequently, could result in a more stable and representative rice calendar, while 

reducing the effects of climate change and/or agricultural schedule adjustments on rice calendar mapping. 

(2) Errors produced through the spatial and temporal integration of detected transplanting and harvest dates. The 

proposed algorithm implemented spatial and temporal integration of detected transplanting and harvest dates (Fig. 2 Step 2), 

which has often been underappreciated in the process of mapping rice calendars. However, one of the processes, i.e., 540 

grouping (Fig. 2 Step 2c), poses the risk of assigning single rice cropping seasons from two years into different groups. 

Despite great effort having been made to overcome this problem, the possibility of overestimating the number of rice 

croppings remains. The 𝑉𝑎𝑟 parameter (indicating variance) derived from the mle.vonmises function (Eqs. (129) and (1411)) 

is seriously biased and requires bias-corrected estimates when the sample size is less than 16 (Best and Fisher, 1981). For 

this reason, a 3 × 3 pixel window was used over the course of two years to produce 18 values. The selection of window size 545 

can produce different phenological date values. Therefore, there is need to balance both the window size and the sample size 

in the spatio-temporal integration of detected phenological dates.  

(3) Accuracy of reference rice calendars. Although the proposed rice calendar showed reasonable performance in 

comparison with that of the other rice calendars, it should consider the accuracy of the reference rice calendars. In particular, 

when evaluating transplanting and harvest dates against the RiceAtlas rice calendar, it is worth noting that the phenological 550 

dates were sourced from census data, databases, publications, and report compilations (Laborte et al., 2017). Another 

concern regarding the RiceAtlas rice calendar is the overlap of phenological dates between rice cropping seasons. 

Additionally, the RiceAtlas, RICA, and SAGE rice calendars are based on the administrative scale, resulting in large spatial 

coverage with only one recorded phenological date and number of rice croppings (Figs. S5–S7). It should also be mentioned 

that some rice calendars, e.g., SAGE, are poorly documented and do not record triple croppings (Sacks et al., 2010). 555 

(4) Overestimation of number of rice croppings caused by complex pattern of multiple-crop cropping systems. 

Complex patterns of multiple-crop cropping systems refer to the cultivation of rice and other crops on the same land within a 

year, e.g., the middle rice cropping system (rice with wheat, barley, or rapeseed cropping systems) in East and Central China 

(Chen et al., 2020), and the rice–wheat cropping systems on the Indo-Gangetic Plain (Abrol, 1997; Dhanda et al., 2022). In 

such systems, the growth of the other crop exhibits a similar pattern of a mono-peaked EVI time series and flood irrigation 560 

before sowing, as is the case with rice (Ahmad and Iram, 2023). This similarity of the signal often leads to misinterpretation 

of the other crop as another rice cropping. Although wheat cropping was manually excluded in this study in its primary 

cultivation areas (e.g., middle–lower reaches of the Indo-Gangetic Plain), some other areas might be affected by this 

problem. Additionally, ratoon rice, excluded in this study by the parameter setting of the fitted Weibull function, might still 

be recognized in some circumstances as another rice cropping, making its total exclusion difficult (Fig. 3). 565 
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These uncertainties do not obscure the fact that this is a novel gridded rice calendar that provides more detailed rice 

phenology information, and could be input into ecosystem models for GHG emission evaluation and production prediction. 

With the continued efforts of the research community to increase the spatio-temporal resolution of earth observational data, 

integrated use of the new rice paddy field distribution map, and implementation of new tools for improved analysis of huge 570 

satellite images, it should become feasible to produce more precise rice calendars at finer scale. Meanwhile, the 

methodological framework developed in this study for mapping the proposed rice calendar provides robust reference for 

mapping other crop calendars. 

4 Data availability 

The developed rice calendar described in the manuscript will be is available at the Global Environmental Database (GED) 575 

once the curation process is complete, but is temporarily available at 

https://db.cger.nies.go.jp/MD/10.17595/2023XXXX.001.html.en https://www.nies.go.jp/doi/10.17595/20230728.001-e.html 

(Zhao and Nishina, 2023) during the review process of this manuscript.  

5 Code availability 

The code for getting VH/EVI/NDYI time series data from Sentinel-1 and Sentinel-2 images, extracting the transplanting and 580 

harvest dates from smoothed VH/EVI/NDYI time series data, and spatial and temporal integration of detected transplanting 

and harvest dates can be found at https://db-test.cger.nies.go.jp/DL/10.17595/20230728.001.html.en (Zhao and Nishina, 

2023). 

 

6 Conclusions 585 

Given the absence of an updated global/continental-scale rice calendar that can explicitly depict spatial gridded transplanting 

date and harvest date information, and the number of rice croppings, this study developed a new gridded rice calendar for 

monsoon Asia with spatially explicit fine detail of rice phenology using a new methodological framework based on Sentinel-

1 and Sentinel-2 images. Combination of a feature-based algorithm and a fitted Weibull function facilitates extraction of the 

transplanting and harvest dates and detection of number of rice croppings, respectively. Subsequently, the detected 590 

transplanting and harvest dates were subjected to temporal and spatial integration to produce the rice calendar. The proposed 

rice calendar was found sufficiently robust to map rice phenology more finely than that presented in other commonly used 

rice calendars, showing small Bias and improvement in both MAE and RMSE in terms of detection of transplanting and 

https://db.cger.nies.go.jp/MD/10.17595/2023XXXX.001.html.en
https://www.nies.go.jp/doi/10.17595/20230728.001-e.html
https://db-test.cger.nies.go.jp/DL/10.17595/20230728.001.html.en
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harvest dates. The proposed rice calendar could be used for global research on climate change and crop security, and the 

methodological framework could serve as a basis for producing large-scale mapping calendars for other crops.  595 
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