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Abstract. Precise and continuous monitoring on long-term carbon dioxide (CO2) and methane (CH4) over the globe is of great 12 

importance, which can help study global warming and achieve the goal of carbon neutrality. Nevertheless, the available 13 

observations of CO2 and CH4 from satellites are generally sparse, and current fusion methods to reconstruct their long-term 14 

values on a global scale are few. To address this problem, we propose a novel spatiotemporally self-supervised fusion method 15 

to establish long-term daily seamless XCO2 and XCH4 products from 2010 to 2020 over the globe at grids of 0.25°. A total of 16 

three datasets are applied in our study, including GOSAT, OCO-2, and CAMS-EGG4. Attributed to the significant sparsity of 17 

data from GOSAT and OCO-2, the spatiotemporal Discrete Cosine Transform is considered for our fusion task. Validation 18 

results show that the proposed method achieves a satisfactory accuracy, with the Standard-Deviation of Bias (𝜎) of ~ 1.18 ppm 19 

for XCO2 and 11.3 ppb for XCH4 against TCCON measurements from 2010 to 2020. Meanwhile, the Determination-20 

Coefficient (R2) of XCO2 and XCH4 reach 0.91/0.95 (2010-2014/2015-2020) and 0.9 (2010-2020) after fusion, respectively. 21 

Overall, the performance of fused results distinctly exceeds that of CAMS-EGG4, which is also superior or close to those of 22 

GOSAT and OCO-2. Especially, our fusion method can effectively correct the large biases in CAMS-EGG4 due to the issues 23 

from assimilation data, such as the unadjusted anthropogenic emission inventories for COVID-19 lockdowns in 2020. 24 

Moreover, the fused results present coincident spatial patterns with GOSAT and OCO-2, which accurately display the long-25 

term and seasonal changes of globally distributed XCO2 and XCH4. The daily global seamless gridded (0.25°) XCO2 and 26 

XCH4 from 2010 to 2020 can be freely accessed at http://doi.org/10.5281/zenodo.7388893 (Wang et al., 2022b). 27 
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1 Introduction 28 

As the most abundant greenhouse gases (GHGs) due to human activities, atmospheric carbon dioxide (CO2) and methane 29 

(CH4) play significant roles in climate change and directly contribute to global warming (Meinshausen et al., 2009; Montzka 30 

et al., 2011; Solomon et al., 2010; Yoro and Daramola, 2020; Shine et al., 2005). For decades, the rising anthropogenic surface 31 

emissions of CO2 and CH4 result in their long-term rapid uptrends (Choulga et al., 2021; Moran et al., 2022; Lin et al., 2021; 32 

Petrescu et al., 2021), which have greatly affected the carbon cycle (Battin et al., 2009; Sjögersten et al., 2014) and ecosystem 33 

balance (Liu and Greaver, 2009; Hotchkiss et al., 2015). According to measurements from the Global Greenhouse Gas 34 

Reference Network (https://gml.noaa.gov/ccgg/), annual surface CO2 and CH4 mole fractions break 412 parts per million (ppm) 35 

and 1878 parts per billion (ppb) in 2020, with growths of ~ 68 ppm and 222 ppb since 1985, respectively. To mitigate global 36 

warming, the Paris Agreement (https://unfccc.int/process-and-meetings/the-paris-agreement/) has indicated that the increment 37 

of temperature should not exceed 2 ℃ (preferably to 1.5 ℃) by comparison with the pre-industrial level. This requires all 38 

efforts from the whole society to reach the global peaking of GHGs surface emissions as early as possible, especially for CO2 39 

and CH4, which eventually create a carbon-neutral world by mid-century. Therefore, it is an urgent need to precisely and 40 

continuously monitor atmospheric CO2 and CH4 on a global scale. 41 

To date, remote sensing observations have been extensively adopted in plenty of domains (He et al., 2022c, 2023; Wang et al., 42 

2021, 2022c; Xiao et al., 2022, 2023; Zhou et al., 2022), which also emerged as regular techniques to acquire globe-scale 43 

atmospheric CO2 and CH4 spatial patterns (He et al., 2022a; Buchwitz et al., 2015; Bergamaschi et al., 2013). For instance, the 44 

EnviSat can provide global column-mean dry-air mole fraction of CO2 (XCO2) and CH4 (XCH4) at a coarse resolution of 45 

30×60 km2, with the payload of the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (Burrows et al., 46 

1995; Beirle et al., 2018). The Thermal and Near-Infrared Sensor for carbon Observations - Fourier Transform Spectrometer 47 

onboard the Greenhouse Gases Observing Satellite (GOSAT) (Hamazaki et al., 2005; Velazco et al., 2019) can produce ~ 10-48 

km XCO2 and XCH4 over the globe based on three spectral bands. The Orbiting Carbon Observatory 2/3 (OCO-2/3) (Crisp et 49 

al., 2017; Doughty et al., 2022) carries three-channel grating spectrometers to generate globally covered XCO2 at a much finer 50 

spatial resolution of 1.29×2.25 km2. The Carbon Dioxide Spectrometer named CarbonSpec onboard the TanSat (Liu et al., 51 

2018) of China launched in 2016, which can accurately map high-resolution (~ 2 km) global XCO2 spatial distribution. 52 

As for long-term observations of XCO2 and XCH4, the operational products from GOSAT and OCO-2 are widely applied in 53 

carbon-related applications, such as the computation of carbon fluxes (Fraser et al., 2013; Wang et al., 2019), inferring carbon 54 

sources and sinks (Deng et al., 2014; Houweling et al., 2015), quantifying CO2 and CH4 emissions (Turner et al., 2015; 55 

Hakkarainen et al., 2016), and estimation of terrestrial net ecosystem exchange (Jiang et al., 2022). Nevertheless, large-scale 56 

missing data consists in the XCO2 and XCH4 products from GOSAT and OCO-2, which is attributed to the narrow swath of 57 

their observations (Crisp et al., 2017) and contamination of cloud and aerosol (Taylor et al., 2016). Seamless information of 58 
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XCO2 and XCH4 can help better understand the driving factors of long-term variations for CO2 and CH4 due to surface 59 

emissions and atmospheric transport (Kenea et al., 2023; Liu et al., 2020). In addition, full-coverage XCO2 and XCH4 products 60 

are more useful to analyze carbon source-sink dynamics (Reithmaier et al., 2021; Crosswell et al., 2017) and impacts on climate 61 

changes caused by the elevated CO2 and CH4 (Chen et al., 2021; Le Quéré et al., 2019). Hence, it is significant and essential 62 

to assure the spatiotemporal continuity of XCO2 and XCH4 products from GOSAT and OCO-2, which is conducive to achieving 63 

the goal of carbon neutrality. 64 

A lot of efforts have been made to generate seamless XCO2 and XCH4 products for GOSAT and OCO-2. Initially, interpolation-65 

based methods are widely utilized, such as the fixed rank kriging interpolation (Katzfuss and Cressie, 2011), semantic kriging 66 

interpolation (Bhattacharjee et al., 2014), and space-time kriging interpolation (He et al., 2020; Li et al., 2022). However, the 67 

interpolated results are usually performed at coarse spatial resolutions (e.g., 1°) and tend to show high uncertainties and over-68 

smoothed distribution due to the extreme sparsity of original data. At present, data fusion techniques (He et al., 2022a, b; Zhang 69 

et al., 2022; Zhang and Liu, 2023; Siabi et al., 2019) have emerged as new methods to acquire full-coverage products for 70 

GOSAT and OCO-2 at a high spatial resolution, which absorb advantages from multisource data. Generally, these methods 71 

exploited machine learning algorithms to train an end-to-end fusion function with multiple seamless data (e.g., model and 72 

reanalysis) as inputs. For example, Siabi et al. (2019) employed multi-layer perceptron and eight environmental variables (e.g., 73 

net primary productivity and leaf area index) to map full-coverage XCO2 in Iran; He et al. (2022b) established seamless results 74 

over China using the OCO-2 XCO2 product, CarbonTracker model data, and auxiliary co-variates based on the light gradient 75 

boosting machine; Zhang et al. (2022) proposed a geographically weighted neural network to produce full-coverage XCO2 76 

product across China by fusing the datasets from OCO-2, CAMS-EGG4 (reanalysis), and ERA5; and Zhang and Liu (2023) 77 

adopted multiple datasets, e.g., EnviSat, GOSAT, OCO-2, CarbonTracker, and ERA5, and obtained long-term seamless XCO2 78 

product in China through a finely devised neural network. 79 

These data fusion approaches provided high-quality results with seamless distribution and greatly enhance the data availability 80 

for GOSAT and OCO-2. Nevertheless, the application areas of current fused products merely target at local or national scales, 81 

which are insufficient for globe-scale researches. Meanwhile, existing data fusion frameworks are regarded as end-to-end 82 

functions, which lack consideration for spatiotemporal self-correlation of original data (e.g., OCO-2). They normally require 83 

massive auxiliary co-variates (e.g., ERA5) as inputs and consume a large time in training procedures. Moreover, only XCO2 84 

products are taken into account while the data fusion studies for XCH4 products are scarce. In conclusion, it is valuable and 85 

imperative to generate long-term globally distributed seamless XCO2 and XCH4 products for GOSAT and OCO-2 with an 86 

efficient data fusion method, which considers the knowledge of their spatiotemporal self-correlation. 87 

The present study focuses on generating long-term daily global seamless XCO2 and XCH4 products from 2010 to 2020 at the 88 

grids of 0.25° via a spatiotemporally self-supervised fusion method. A total of three datasets are utilized in our study without 89 



4 

 

any auxiliary co-variates, including GOSAT, OCO-2, and CAMS-EGG4. CAMS-EGG4 can provide long-term gridded full-90 

coverage XCO2 and XCH4 datasets over the globe, which is suitable for our fusion task. Since the data from GOSAT and OCO-91 

2 is significantly sparse in space-time domain (see Fig. 1), the fusion procedures are difficult to be performed. By contrast, 92 

frequency domain contains comprehensive information due to its more concentrated signal distribution. Discrete Cosine 93 

Transform (DCT) (Rao and Yip, 2014) is an efficient algorithm to convert signal into frequency domain. In this study, a novel 94 

self-supervised fusion method based on spatiotemporal DCT (S-STDCT) is developed for the fusion task. Details of the S-95 

STDCT fusion method are presented in Section 3. Validation results show that the S-STDCT fusion method achieves a 96 

satisfactory performance. Generally, the accuracy of fused results largely exceeds that of CAMS-EGG4, which is also better 97 

than or close to those of GSOAT and OCO-2. 98 

 99 
Figure 1. An example of daily spatial footprints for (a) GOSAT XCO2, (b) OCO-2 XCO2, and (c) GOSAT XCH4. Red points signify the 100 

available data. Background maps are naturally shaded reliefs over the globe. 101 

This paper arranges the remaining sections as follows. Section 2 describes the data records employed in our study, including 102 

the XCO2 and XCH4 from in-situ stations, GOSAT, and CAMS-EGG4 and XCO2 from OCO-2. Section 3 provides the 103 

specification of the developed S-STDCT fusion method. Section 4 presents the experiment results, which consist of elaborative 104 

validations against in-situ measurements and assessments of spatial distribution on multi-temporal scales. At last, conclusions 105 

and future works are summarized in section 5. 106 

2 Data description 107 

2.1 GOSAT XCO2 and XCH4 products 108 

A famous XCO2 retrieval algorithm devised for GOSAT (Taylor et al., 2022), i.e., the Atmospheric CO2 Observations from 109 

Space (ACOS), employs three infrared spectral bands at ~ 0.76, 1.6, and 2.0 μm, which are denoted as Oxygen-A, CO2 weak, 110 

and CO2 strong, respectively. Regarding XCH4, the latest retrieval algorithm for GOSAT from the University of Leicester is 111 

recently updated, which considers the ratio of XCH4:XCO2 as a proxy (Parker et al., 2020). It is based on the theory that the 112 

impacts from atmospheric scattering and sensor are mostly similar for XCH4 and XCO2 in a shared absorption band at ~ 1.6 113 

µm. The GOSAT XCO2 and XCH4 products are both performed at spatial resolutions of 10.5 km (diameter) over the globe 114 

with revisit times of 3 days. In our study, the scientific data records of “XCO2” in ACOS_L2_Lite_FP (level 2, bias-corrected, 115 

V9r) and “XCH4” in UoL-GHG-L2-CH4-GOSAT-OCPR (level 2, V9) are adopted. Furthermore, the quality assurance (QA) 116 
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records of “XCO2 Quality Flag” and “XCH4 Quality Flag” are exploited to filter bad data. Relevant information of XCO2 and 117 

XCH4 products from GOSAT is shown in Table 1. 118 

Table 1. Detailed information of the datasets considered in this study. 119 

Source Scientific data record Version Spatial resolution 
Temporal 
resolution 

Period 

GOSAT 

XCO2 
V9r 

10.5 km (diameter) 
Daily (~ 13:00 

local time) 

2010-2014 
XCO2 Quality Flag 

XCH4 
V9 2010-2020 

XCH4 Quality Flag 

OCO-2 

XCO2 
V10r 

1.29×2.25 km2 
Daily (~ 13:36 

local time) 

2015-2017 
XCO2 Quality Flag 

XCO2 
V11r 2018-2020 

XCO2 Quality Flag 

CAMS-EGG4 

CO2 column-mean molar 
fraction 

- 0.75° 3 hours 2010-2020 
CH4 column-mean molar 

fraction 

2.2 OCO-2 XCO2 product 120 

Apart from GOSAT, the ACOS XCO2 retrieval algorithm is also applied to OCO-2 observations (Kiel et al., 2019), which 121 

utilizes the same bands of the Oxygen-A, CO2 weak, and CO2 strong. OCO-2 provides a global XCO2 product at a high spatial 122 

resolution of 1.29×2.25 km2 with a revisit time of 16 days. After 2015, the XCO2 product from OCO-2 is used for fusion 123 

instead of GOSAT due to its more observation counts and better accuracy. In this study, the scientific data record of “XCO2” 124 

in OCO2_L2_Lite_FP (level 2, bias-corrected) is applied in the fusion with CAMS-EGG4 using the developed method. 125 

Moreover, the QA record of “XCO2 Quality Flag” is adopted to filter bad data. Since the OCO-2 XCO2 product of the latest 126 

version (V11r) is still on processing, both data of V10r and V11r are considered in our study. Related information of XCO2 127 

product from OCO-2 is given in Table 1. 128 

2.3 CAMS-EGG4 GHGs reanalysis datasets 129 

CAMS-EGG4 is recent globally distributed operational GHGs reanalysis datasets supported by the European Centre for 130 

Medium-range Weather Forecasts (Agusti-Panareda et al., 2022). It assimilates the forecasts from the Integrated Forecasting 131 

System with multiple satellite products, which include Envisat, GOSAT, and Metop-A/B (August et al., 2012), via physical 132 

and chemistry principles. The CAMS-EGG4 can generate long-term gridded seamless XCO2 and XCH4 datasets and related 133 

fields at spatial and temporal resolutions of 0.75º and 3 hours, respectively. Unfortunately, there are a few limitations in CAMS-134 

EGG4, such as the uncorrected anthropogenic emissions for COronaVIrus Disease 2019 (COVID-19) lockdowns, which are 135 

scheduled to be fixed by the official team in the future (Agusti-Panareda et al., 2022). It is worth noting that the XCO2 and 136 

XCH4 products from GOSAT and OCO-2 employed in this paper are not assimilated in CAMS-EGG4. In our study, the 137 

scientific data records of “CO2 column-mean molar fraction” and “CH4 column-mean molar fraction” are exploited for the 138 

fusion with GOSAT and OCO-2 through the developed method. Details of CAMS-EGG4 datasets are provided in Table 1. 139 
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2.4 TCCON measurements 140 

In our study, the XCO2 and XCH4 measurements provided by an international in-situ network, which is named after TCCON 141 

(Wunch et al., 2011) (https://tccondata.org/), are utilized to validate the fused results. The in-situ measurements of TCCON 142 

are extensively used in the validation for XCO2 and XCH4 products from GOSAT, OCO-2, and CAMS-EGG4 (Hong et al., 143 

2022; Yoshida et al., 2013; Wunch et al., 2017; Wu et al., 2018; Agusti-Panareda et al., 2022). Figure 2 depicts the spatial 144 

locations of TCCON stations, with the marks of white-edged red circles. The measurements of version GGG2020 (Laughner 145 

et al., 2022) from 29 stations around the world are adopted. Specific information of the stations is listed in Table 2. 146 

 147 

Figure 2. Spatial locations of in-situ stations from TCCON used in the present study. The background map is a naturally shaded relief over 148 

the globe. 149 

3 Methodology 150 

3.1 Data pre-processing 151 

Data pre-processing is an important procedure to ensure the rationality and reliability of fused results. In this study, the values 152 

of “QA=0” in XCO2 and XCH4 from GOSAT and OCO-2 are discarded, which filters the bad data. Besides, the CAMS-EGG4 153 

XCO2 and XCH4 at a temporal resolution of 3 hours are averaged in a single day to produce daily datasets. Finally, the spatial 154 

resolutions of XCO2 and XCH4 from GOSAT, OCO-2, and CAMS-EGG4 ought to be adjusted to the same value. A globally 155 

covered grid of 721×1441 (0.25º) is employed in our study. The XCO2 and XCH4 from GOSAT, OCO-2, and CAMS-EGG4 156 

are re-gridded to 0.25° using the area-weighted aggregation (Wang et al., 2021) and Inverse Distance Weighted (Mueller et al., 157 

2004) interpolation, respectively. 158 
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Table 2. Detailed information of TCCON in-situ stations adopted in our study. No.: number. 159 

No. Site name Latitude Longitude Location Start date End date 

1 bremen01 53.10 8.85 Europe 2010-01-01 2020-12-31 
2 burgos01 18.53 120.65 Asia 2017-03-03 2020-04-30 
3 easttroutlake01 54.36 -104.99 North America 2016-10-03 2020-12-31 
4 edwards01 34.96 -117.88 North America 2013-07-20 2020-12-31 
5 eureka01 80.05 -86.42 North America 2010-07-24 2020-07-07 
6 fourcorners01 36.80 -108.48 North America 2013-03-16 2013-10-03 
7 garmisch01 47.48 11.06 Europe 2010-01-01 2020-12-31 
8 hefei01 31.90 119.17 Asia 2016-01-08 2020-12-31 
9 indianapolis01 39.86 -86.00 North America 2012-08-23 2012-12-01 

10 izana01 28.31 -16.50 Atlantic Ocean 2014-01-02 2020-12-31 
11 jpl02 34.20 -118.18 North America 2011-05-19 2018-05-14 
12 karlsruhe01 49.10 8.44 Europe 2014-01-15 2020-12-31 
13 lauder01 36.60 -97.49 Oceania 2010-01-01 2010-02-19 
14 lauder02 -45.04 169.68 Oceania 2013-01-02 2018-09-30 
15 lauder03 -45.04 169.68 Oceania 2018-10-02 2020-12-31 
16 lamont01 -45.04 169.68 North America 2010-01-01 2020-12-31 
17 manaus01 -3.21 -60.60 South America 2014-09-30 2015-07-27 
18 nicosia01 35.14 33.38 Asia 2019-09-03 2020-12-31 
19 nyalesund01 78.92 11.92 Arctic Ocean 2010-01-01 2020-12-31 
20 orleans01 47.96 2.11 Europe 2010-01-01 2020-12-31 
21 paris01 48.85 2.36 Europe 2014-09-23 2020-12-31 
22 parkfalls01 45.94 -90.27 North America 2010-01-01 2020-12-31 
23 pasadena01 34.14 -118.13 North America 2012-09-20 2020-12-31 
24 reunion01 -20.90 55.48 Indian Ocean 2015-03-01 2020-07-18 
25 rikubetsu01 43.46 143.77 Asia 2014-06-24 2020-12-31 
26 saga01 33.24 130.29 Asia 2011-07-28 2020-12-31 
27 sodankyla01 67.37 26.63 Europe 2018-03-05 2020-12-31 
28 tsukuba02 36.05 140.12 Asia 2014-03-28 2020-12-31 
29 xianghe01 39.80 116.96 Asia 2018-06-14 2020-12-31 

3.2 Spatiotemporally self-supervised fusion method 160 

Since the sparsity of data from GOSAT and OCO-2 is significant in space-time domain (see Fig. 1), it is difficult to perform 161 

fusion procedures for them. In contrast, frequency domain is more suitable because of its concentrated signal distribution. DCT 162 

is an efficient algorithm to transform signal into frequency domain (Rao and Yip, 2014), which has been widely applied in 163 

image compression (Cintra and Bayer, 2011), geophysical data filtering (El-Mahallawy and Hashim, 2013), and remote sensing 164 

data reconstruction (Wang et al., 2012, 2022a; Fredj et al., 2016; Pham et al., 2019). In our study, a novel self-supervised fusion 165 

method based on spatiotemporal DCT, i.e., S-STDCT, is developed for the fusion task, which fully adopts the spatiotemporal 166 

knowledge of self-correlation in GOSAT and OCO-2 products. 167 

3.2.1 Spatiotemporal DCT 168 

A total of eight types of DCT are proposed, among which the second type (type-II) is commonly utilized due to its simple 169 

calculation and broad application range (Rao and Yip, 2014). Hence, the type-II DCT is considered in this study. The 170 

spatiotemporal DCT is a 3-dimensional form (hereafter STDCT), which can be expressed as Eq. (1): 171 



8 

 

𝑋(𝑢, 𝑣, 𝑤) =  𝑐(𝑢)𝑐(𝑣)𝑐(𝑤) 𝑥(𝑖, 𝑗, 𝑡)𝑐𝑜𝑠
(𝑖 + 0.5)𝜋

𝑀
𝑢 𝑐𝑜𝑠

(𝑗 + 0.5)𝜋

𝑁
𝑣 𝑐𝑜𝑠

(𝑡 + 0.5)𝜋

𝑃
𝑤 ,                       (1) 172 

where 𝑐(𝑢) =

⎩
⎨

⎧ , 𝑢 = 0

, 𝑢 ≠ 0

, 𝑐(𝑣) =

⎩
⎨

⎧ , 𝑣 = 0

, 𝑣 ≠ 0

, 𝑐(𝑤) =

⎩
⎨

⎧ , 𝑤 = 0

, 𝑤 ≠ 0

; x indicates the original 3-dimensional tensor; M, N, 173 

and P stand for the counts of rows (latitude), columns (longitude), and temporal sequences (days), which equal 721 (0.25°, 174 

global grids), 1441 (0.25°, global grids), and days of a year (365 or 366), respectively; i, j, and t represent the row, column, 175 

and temporal sequence, respectively (i ∈ [0, M-1], j ∈ [0, N-1], and t ∈ [0, P-1]); X signifies the transformed 3-dimensional 176 

tensor; u, v, and w denote the transformed coordinates in frequency domain, which share the same ranges with i, j, and t (e.g., 177 

u ∈ [0, M-1]), respectively. The inverse transformation of STDCT (hereafter ISTDCT) is provided in Eq. (2): 178 

𝑥(𝑖, 𝑗, 𝑡) =  𝑐(𝑢)𝑐(𝑣)𝑐(𝑤) 𝑋(𝑢, 𝑣, 𝑤)𝑐𝑜𝑠
(𝑖 + 0.5)𝜋

𝑀
𝑢 𝑐𝑜𝑠

(𝑗 + 0.5)𝜋

𝑁
𝑣 𝑐𝑜𝑠

(𝑡 + 0.5)𝜋

𝑃
𝑤 ,                       (2) 179 

3.2.2 Self-supervised fusion scheme with spatiotemporal knowledge 180 

It has been documented that the XCO2 and XCH4 products derived from remote sensing satellites generally present better 181 

accuracy compared to reanalysis datasets (Agusti-Panareda et al., 2022; He et al., 2022a; Parker et al., 2020). Therefore, the 182 

brand new XCO2 and XCH4 products from GOSAT and OCO-2 are regarded as the criteria (or ground truths), which will be 183 

fused with CAMS-EGG4 datasets. At first, a spatially and temporally varying function relationship (see Eq. (3)) is 184 

hypothesized between GOSAT/OCO-2 and CAMS-EGG4 XCO2/XCH4 values. 185 

𝑋𝐺 = 𝑓(𝑋𝐺𝑐, 𝑅𝑜𝑤, 𝐶𝑜𝑙, 𝑇𝑖𝑚𝑒),                                                                                                                                                                 (3) 186 

where XGs denotes the XCO2/XCH4 values from GOSAT/OCO-2; XGc indicates the XCO2/XCH4 values from CAMS-EGG4; 187 

Row, Col, and Time represent the row (or latitude), column (or longitude), and temporal sequence, respectively. To conveniently 188 

solve this problem, Eq. (3) is simplified into the scalar product form of XGc and a spatially and temporally varying tensor 189 

(defined as 𝛿), as shown in Eq. (4): 190 

𝑋𝐺 = 𝑋𝐺𝑐 ∗ 𝛿(𝑅𝑜𝑤, 𝐶𝑜𝑙, 𝑇𝑖𝑚𝑒),                                                                                                                                                              (4) 191 

Afterward, the factor (i.e., 𝛿) can be acquired using the XCO2/XCH4 values at the grids where the GOSAT/OCO-2 and CAMS-192 

EGG4 data are both available. In our study, a self-supervised fusion scheme is introduced to solve Eq. (4) based on the 193 

spatiotemporal knowledge of self-correlation in GOSAT and OCO-2 products. Due to the large sparsity of data from GOSAT 194 

and OCO-2 in space-time domain, the STDCT is applied for the fusion task. 195 

Inspired by previous studies adopting the STDCT (Garcia, 2010; Wang et al., 2012, 2022a; Fredj et al., 2016; Pham et al., 196 

2019), the S-STDCT fusion method searches for the spatially and temporally varying tensor, i.e., 𝛿, that minimizes Eq. (5), 197 

including a residual (left) and a smoothing (right) term. 198 
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E 𝛿 = 𝜑 ∗ (𝛿 − 𝛿) + 𝜀 ∇ 𝛿 ,                                                                                                                                                       (5) 199 

where ‖ ‖ signifies the Euclidean norm; 𝜑 represents the binary mask showing the data is whether available or not; 𝜀 and 200 

∇  indicate a smoothing factor and the Laplace operator, respectively. This equation can be solved by iterations via Eq. (6): 201 

𝛿 = 𝛾𝐼𝑆𝑇𝐷𝐶𝑇 𝜌 ∗ 𝑆𝑇𝐷𝐶𝑇(𝜑 ∗ 𝛿 − 𝛿 + 𝛿) + (1 − 𝛾)𝛿,                                                                                                                (6) 202 

where 𝛾 is a relaxation factor to accelerate convergence; 𝜌 indicates a 3-dimensional filter related to the smoothing term, 203 

which is defined in Eq. (7): 204 

𝜌(𝑑 , 𝑑 , 𝑑 ) =
1

1 + 𝜀 ∑ 2 1 − cos
(𝑑 − 1)𝜋

𝑛

,                                                                                                                               (7) 205 

Here, 𝑑  represents the dth value along the kth dimension (k = 1, 2, and 3); 𝑛  denotes the size of 𝛿 along the kth dimension. 206 

Namely, 𝑑 , 𝑑 , and 𝑑  stand for u, v, and w (see Eq. (1)), respectively. In this study, the number of total iterations, 𝛾, and 207 

𝜀 are empirically configured to 100, 1.5, and a range from 103 to 10-1 (spaced with 100 intervals), respectively. It is worth 208 

noting that 𝛿 is initialized through the spatiotemporal nearest neighbor interpolation. More details about the solution steps 209 

can be found in Garcia (2010). 210 

 211 

Figure 3. Density scatter-plots of the in-situ validation results for (a, d, and g) CAMS-EGG4, (b and h) GOSAT, (e) OCO-2, and (c, f, and 212 

i) fused results. Black dotted and red full lines stand for the 1:1 and fitted lines, respectively. Color ramps show the normalized densities of 213 

data points. X: TCCON data; Y: CAMS-EGG4/GOSAT/OCO-2/fused data. Unit: ppm/ppb to XCO2/XCH4 for RMSE, 𝜇, and 𝜎. 214 
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3.3 Evaluation schemes 215 

In our study, the evaluation schemes include in-situ validations and assessments of spatial distribution. To be specific, the 216 

GOSAT, OCO-2, CAMS-EGG4, and fused XCO2 and XCH4 are validated against TCCON measurements, which consists of 217 

the comparisons for overall and individual in-situ stations. The spatial distribution of the GOSAT, OCO-2, CAMS-EGG4, and 218 

fused XCO2 and XCH4 are assessed on multi-temporal scales, i.e., multi-year mean, seasonal, and annual. A total of four metrics 219 

are exploited, covering the Determination-Coefficient (R2), Root-Mean-Square-Error (RMSE), Mean-Bias (𝜇), and Standard-220 

Deviation of Bias (𝜎). The significance levels of p < 0.01 are applied in the computations of all metrics. 221 

 222 
Figure 4. Scatter-plots of the in-situ validation results for (a, d, and g) CAMS-EGG4, (b and h) GOSAT, (e) OCO-2, and (c, f, and i) fused 223 

results on edwards01. Black dotted and red full lines stand for the 1:1 and fitted lines, respectively. X: TCCON data; Y: CAMS-224 

EGG4/GOSAT/OCO-2/fused data. Unit: ppm/ppb to XCO2/XCH4 for RMSE, 𝜇, and 𝜎. 225 

4 Experiment results and discussions 226 

4.1 Overall in-situ validation 227 

As displayed in Fig. 2, the XCO2 and XCH4 measurements from 29 TCCON in-situ stations are adopted for the validation, 228 

which evenly distribute over the globe. In this study, TCCON measurements of ± 1 hour on the satellite overpass times (~ 229 
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13:00 and 13:36 local time, see Table 2) are co-matched with the CAMS-EGG4/GOSAT/OCO-2/fused data around each station 230 

with a diameter of 2°. Figure 3 depicts the overall in-situ validation results for the CAMS-EGG4, GOSAT, OCO-2, and fused 231 

results. The amounts of data points (N) are sufficient (e.g., 1337 for OCO-2 XCO2 and 5402 for GOSAT XCH4) to support the 232 

reliability of validation results. 233 

 234 
Figure 5. Scatter-plots of the in-situ validation results for (a, d, and g) CAMS-EGG4, (b and h) GOSAT, (e) OCO-2, and (c, f, and i) fused 235 

results on sodankyla01. Black dotted and red full lines stand for the 1:1 and fitted lines, respectively. X: TCCON data; Y: CAMS-236 

EGG4/GOSAT/OCO-2/fused data. Unit: ppm/ppb to XCO2/XCH4 for RMSE, 𝜇, and 𝜎. 237 

As shown in Fig. 3, the XCO2 from OCO-2 and XCH4 from GOSAT perform better than those from CAMS-EGG4, with larger 238 

R2, smaller RMSE, and smaller 𝜎. After fusion, the XCO2 (2015-2020) and XCH4 (2010-2020) present a greatly superior 239 

accuracy compared to CAMS-EGG4, of which the RMSE (𝜎) improvements are 0.443 (0.444) ppm and 3.752 (1.792) ppb for 240 

XCO2 and XCH4, respectively. Meanwhile, the accuracy of the fused results is higher than and close to those of OCO-2 XCO2 241 

and GOSAT XCH4, respectively. These suggest that the proposed fusion method achieves a satisfactory result. Furthermore, 242 

the performance of XCO2 from GOSAT is similar to that of CAMS-EGG4. However, the fused XCO2 (2010-2014) shows 243 

higher accuracy by comparison with both CAMS-EGG4 and GOSAT, indicating the spatiotemporally local fusion ability of S-244 

STDCT. In conclusion, our fusion method can successfully fuse the data from CAMS-EGG4 and satellites, which effectively 245 
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generates GOSAT-like and OCO-2-like values. 246 

Table 3. Metrics of the individual in-situ validation results for CAMS-EGG4, GOSAT, and fused XCO2. The best and second metrics are 247 

denoted with bold and underlined fonts. CAMS: CAMS-EGG4; AF: after fusion. Unit: ppm for RMSE and 𝜎. 248 

Site name 
R2 RMSE 𝜎 

CAMS GOSAT AF CAMS GOSAT AF CAMS GOSAT AF 

bremen01 0.91 0.85 0.92 2.810 1.732 1.533 1.376 1.757 1.189 
edwards01 0.87 0.66 0.89 0.974 1.669 0.826 0.833 1.400 0.774 

fourcorners01 0.88 0.91 0.86 1.237 0.867 0.844 0.848 0.590 0.801 
garmisch01 0.91 0.86 0.93 2.141 1.575 1.070 1.275 1.592 1.067 

jpl02 0.89 0.86 0.90 1.535 1.299 1.075 0.961 1.299 0.918 
saga01 0.90 0.91 0.93 1.362 1.494 1.333 1.313 1.201 1.065 

lauder02 0.83 0.70 0.87 0.584 1.095 0.606 0.585 1.088 0.600 
lamont01 0.79 0.88 0.88 1.928 0.986 0.976 1.327 0.973 0.976 
orleans01 0.89 0.75 0.91 2.105 1.666 0.964 1.144 1.440 0.964 

parkfalls01 0.92 0.86 0.93 2.088 1.703 1.138 1.309 1.697 1.137 
pasadena01 0.70 0.74 0.75 1.260 1.296 1.642 1.261 1.287 1.177 
sodankyla01 0.96 0.81 0.96 2.308 1.678 0.998 1.018 1.619 0.925 
tsukuba02 0.80 0.82 0.78 1.179 1.651 1.494 1.157 1.263 1.202 

Table 4. Metrics of the individual in-situ validation results for CAMS-EGG4, OCO-2, and fused XCO2. The best and second metrics are 249 

denoted with bold and underlined fonts. CAMS: CAMS-EGG4; AF: after fusion. Unit: ppm for RMSE and 𝜎. 250 

Site name 
R2 RMSE 𝜎 

CAMS OCO-2 AF CAMS OCO-2 AF CAMS OCO-2 AF 

bremen01 0.91 0.99 0.93 1.718 1.126 1.476 1.678 1.066 1.459 
burgos01 0.91 0.95 0.94 1.324 0.715 0.933 1.144 0.709 0.823 

edwards01 0.94 0.95 0.97 1.551 1.194 0.880 1.413 1.067 0.792 
easttroutlake01 0.92 0.87 0.94 1.334 1.802 1.195 1.303 1.812 1.196 

eureka01 0.94 0.93 0.97 2.081 2.224 1.427 1.436 1.555 1.171 
garmisch01 0.91 0.93 0.96 1.586 1.569 1.019 1.579 1.354 1.010 

hefei01 0.88 0.97 0.91 1.447 1.163 1.283 1.450 0.735 1.192 
izana01 0.96 0.88 0.99 1.215 1.413 0.576 1.209 1.417 0.555 

jpl02 0.75 0.89 0.76 2.151 1.146 1.525 1.221 0.885 1.174 
saga01 0.89 0.95 0.94 1.890 1.087 1.263 1.873 1.090 1.254 

karlsruhe01 0.89 0.93 0.93 1.747 1.327 1.375 1.749 1.318 1.376 
lauder02 0.96 0.89 0.97 1.213 1.000 0.492 0.518 0.993 0.469 
lauder03 0.94 0.72 0.94 1.288 1.064 0.565 0.863 1.070 0.538 
nicosia01 0.79 0.91 0.94 2.319 0.731 0.862 1.133 0.661 0.641 

nyalesund01 0.94 0.93 0.97 1.942 2.233 1.664 1.573 1.707 1.446 
lamont01 0.92 0.97 0.96 1.505 0.956 0.964 1.489 0.794 0.929 
orleans01 0.92 0.93 0.96 1.450 1.144 1.108 1.361 1.121 1.007 

parkfalls01 0.93 0.96 0.95 1.518 1.210 1.160 1.518 1.211 1.160 
pasadena01 0.91 0.93 0.95 1.689 1.543 1.382 1.581 1.329 1.160 

paris01 0.89 0.92 0.93 1.910 1.418 1.451 1.867 1.433 1.437 
reunion01 0.96 0.97 0.97 1.276 0.878 0.874 0.827 0.886 0.812 

rikubetsu01 0.90 0.96 0.93 1.688 1.023 1.320 1.667 1.033 1.293 
sodankyla01 0.94 0.90 0.97 1.539 1.674 1.241 1.427 1.669 1.232 
tsukuba02 0.92 0.94 0.93 1.429 1.169 1.276 1.322 1.134 1.265 
xianghe01 0.61 0.89 0.73 2.513 1.411 1.960 2.487 1.430 1.959 

251 
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Table 5. Metrics of the individual in-situ validation results for CAMS-EGG4, GOSAT, and fused XCH4. The best and second metrics are 252 

denoted with bold and underlined fonts. CAMS: CAMS-EGG4; AF: after fusion. Unit: ppb for RMSE and 𝜎. 253 

Site name 
R2 RMSE 𝜎 

CAMS GOSAT AF CAMS GOSAT AF CAMS GOSAT AF 

bremen01 0.84 0.90 0.87 19.397 15.328 14.969 12.507 9.868 10.938 
burgos01 0.80 0.89 0.89 10.981 10.455 8.096 9.194 6.136 7.216 

edwards01 0.83 0.88 0.89 15.170 13.413 11.173 9.960 9.099 8.049 
fourcorners01 0.40 0.71 0.51 14.732 7.714 9.847 9.711 6.710 8.777 
garmisch01 0.83 0.85 0.89 16.693 13.258 12.267 11.568 11.643 9.577 

hefei01 0.54 0.56 0.66 22.072 15.377 16.814 16.165 13.370 13.826 
jpl02 0.81 0.88 0.86 16.989 9.679 9.788 11.288 8.840 9.604 

saga01 0.85 0.92 0.89 11.299 9.089 9.311 10.091 8.422 9.147 
karlsruhe01 0.70 0.80 0.81 13.688 11.913 10.042 11.564 11.370 9.177 

lauder02 0.66 0.84 0.65 18.460 8.632 11.323 11.390 6.923 10.189 
lauder03 0.46 0.76 0.57 16.568 8.531 12.166 10.965 6.491 9.347 
lamont01 0.82 0.94 0.88 11.762 12.204 9.497 11.494 7.015 9.460 
orleans01 0.80 0.88 0.88 18.341 13.734 13.305 12.038 9.690 9.395 

parkfalls01 0.79 0.87 0.84 17.107 14.892 13.784 13.396 10.548 11.519 
pasadena01 0.82 0.90 0.88 12.658 8.396 8.845 10.544 8.094 8.802 

paris01 0.75 0.73 0.84 12.313 13.077 9.578 10.319 11.437 8.383 
reunion01 0.51 0.41 0.73 18.245 13.846 10.092 10.221 11.427 7.432 

rikubetsu01 0.60 0.81 0.72 21.166 20.160 18.250 15.263 11.481 12.759 
sodankyla01 0.84 0.83 0.87 23.494 15.701 18.806 12.164 12.682 10.917 
tsukuba02 0.77 0.86 0.83 11.726 8.165 8.704 9.401 7.623 8.424 
xianghe01 0.63 0.69 0.63 14.851 15.840 15.266 14.734 13.752 14.736 

 254 
Figure 6. Scatter-plots of the time series for daily CAMS-EGG4, GOSAT, OCO-2, fused, and TCCON data on garmisch01. The first and 255 

second numbers in the bracket represent 𝜇 and 𝜎, respectively. Unit: ppm/ppb to XCO2/XCH4 for 𝜇 and 𝜎. 256 
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4.2 Individual in-situ validation and time series 257 

Figure 4, 5, and Table 3-5 show the individual in-situ validation results for the CAMS-EGG4, GOSAT, OCO-2, and fused 258 

results on each TCCON in-situ station. It is worth noting that only the stations where the individual validation results are 259 

significant (p-level < 0.01) for all datasets (i.e., CAMS-EGG4, GOSAT, OCO-2, and the fused results) are presented. Since 260 

the space of text is limited, two stations named edwards01 and sodankyla01 are selected as examples (see Fig. 4 and 5), which 261 

locate in North America and Europe, respectively. As can be seen, the fused results achieve the best performance compared to 262 

CAMS-EGG4, GOSAT, and OCO-2 on edwards01 and sodankyla01, with the R2 ranging from 0.87 to 0.97. Especially, the 263 

large overestimation of XCO2 for CAMS-EGG4 on sodankyla01 (𝜇 = 2.071 ppm) is well mitigated after fusion (𝜇 = 0.377 264 

ppm), even for the poor data availability of GOSAT (N = 11). This indicates the strong universality of the proposed fusion 265 

method. The valid individual validation results on all stations are given in Table 3-5. It can be observed that the performance 266 

of the fused results exceeds those of CAMS-EGG4 and GOSAT/OCO-2 for almost all stations and ~ 70 % of stations, 267 

respectively. 268 

 269 
Figure 7. Scatter-plots of the time series for daily CAMS-EGG4, GOSAT, OCO-2, fused, and TCCON data on lauder02. The first and second 270 

numbers in the bracket represent 𝜇 and 𝜎, respectively. Unit: ppm/ppb to XCO2/XCH4 for 𝜇 and 𝜎. 271 
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 272 
Figure 8. Heat maps of the biases between daily (a) CAMS-EGG4/(b) fused/(c) GOSAT and TCCON XCO2 over time and latitude. Color 273 

ramps stand for the biases of XCO2. Background colors (grey) indicate the missing data. 274 



16 

 

 275 

Figure 9. Heat maps of the biases between daily (a) CAMS-EGG4/(b) fused/(c) OCO-2 and TCCON XCO2 over time and latitude. Color 276 

ramps stand for the biases of XCO2. Background colors (grey) indicate the missing data. 277 
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 278 

Figure 10. Heat maps of the biases between daily (a) CAMS-EGG4/(b) fused/(c) GOSAT and TCCON XCH4 over time and latitude. Color 279 

ramps stand for the biases of XCO2. Background colors (grey) indicate the missing data. 280 

Figure 6 and 7 demonstrate the time series for daily CAMS-EGG4, GOSAT, OCO-2, fused, and TCCON data on individual 281 

in-situ stations. Similarly, two stations, i.e., garmisch01 and lauder02, are regarded as examples, which locate in Europe and 282 

Oceania, respectively. As depicted in Fig. 6, the XCO2 from CAMS-EGG4 is markedly overestimated on garmisch01 from 283 

2010 to 2014 and in 2020. After fusion, the XCO2 presents an equal trend compared to TCCON measurements over time, with 284 

smaller 𝜇 (0.096 and 0.139 ppm) and 𝜎 (1.067 and 1.01 ppm). In the meantime, the overestimation of CAMS-EGG4 XCH4 285 
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is also mitigated on garmisch01 through our fusion method. Regarding lauder02, Figure 7 shows that CAMS-EGG4 generates 286 

underestimated XCO2 (2015-2019) and overestimated XCH4. The 𝜇 and 𝜎 of the fused results (e.g., 4.952 and 10.189 ppb 287 

for XCH4) are significantly improved on lauder02. 288 

 289 

Figure 11. Annual (a and g) GOSAT, (d) OCO-2, (b, e, and h) CAMS-EGG4, and (c, f, and i) fused XCO2/XCH4 over the globe. Color 290 

ramps stand for the values of XCO2 and XCH4. 291 

4.3 Uncertainty analyses 292 

Figure 8-10 display the biases between daily CAMS-EGG4/fused/GOSAT/OCO-2 and TCCON data over time and latitude. 293 

As observed in Fig. 8 and 9, a large overestimation generally exists in the CAMS-EGG4 XCO2 from 2010 to 2014 and in 2020, 294 

especially before 2013 and in 2020 (> 3 ppm). These are attributed to the considerable errors in the satellite data assimilated 295 

(2010-2014) and that anthropogenic emissions are not modified for COVID-19 lockdowns in 2020 (Agusti-Panareda et al., 296 

2022). After fusion, the biases of XCO2 are well improved for most TCCON in-situ stations from 2010 to 2014 and in 2020, 297 

whose patterns are similar to those of GOSAT and OCO-2 XCO2, respectively. This indicates that the proposed fusion method 298 

can effectively correct the biases in CAMS-EGG4 due to the issues from assimilation data. Meanwhile, CAMS-EGG4 299 

generates distinctly underestimated XCO2 from 2016 to 2019 on the stations of latitude < 40° N, which is also mitigated via 300 

the S-STDCT fusion method (see Fig. 10). Moreover, the CAMS-EGG4 XCH4 frequently presents a large positive bias (> 30 301 

ppb), while the fused XCH4 only enhances the performance on the stations of latitude < 50° N. The improvements for other 302 

stations require our further efforts in the future. 303 
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 304 

Figure 12. Daily fused (a-f) XCO2 and (g-i) XCH4 over the globe. Color ramps stand for the values of XCO2 and XCH4. 305 

 306 

Figure 13. Daily (a-c) GOSAT, (d-f) OCO-2 XCO2, and (g-i) GOSAT XCH4 over the globe. Color ramps stand for the values of XCO2 and 307 

XCH4. 308 
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4.4 Assessment of spatial distribution on multi-temporal scales 309 

Figure 11 demonstrates the comparisons of annual GOSAT, OCO-2, CAMS-EGG4, and fused XCO2/XCH4 over the globe. A 310 

total of three years are selected, including 2011, 2017, and 2016. As can be seen, the fused results present coincident spatial 311 

patterns with GOSAT and OCO-2, even if the annual GOSAT and OCO-2 data are greatly sparse. Particularly, the large 312 

overestimation and underestimation of CAMS-EGG4 XCO2 in 2011 and 2017 are significantly modified after fusion, 313 

respectively, which are mutually confirmed with the descriptions in Section 4.3. 314 

Figure 12 illustrates the examples of daily fused XCO2 and XCH4 over the globe, consisting of three days in three years. As 315 

shown, the fused results display detailed information on atmospheric CO2 and CH4, which clearly indicate their regional and 316 

global spatial patterns. In addition, incoherent or factitious spatial distribution is not observed in the fused XCO2 and XCH4. 317 

Figure 13 then provides the corresponding daily XCO2 and XCH4 from GOSAT and OCO-2 over the globe. It is worth noting 318 

that the daily satellite XCO2 and XCH4 are mapped via footprints due to their significant sparse coverage, which are nearly 319 

invisible at grids of 0.25°. As expected, the fused results present identical spatial distribution compared to XCO2 and XCH4 320 

from GOSAT and OCO-2. This suggests the robustness and reliability of the proposed fusion method. 321 

Figure 14 depicts the multi-year mean fused global XCO2 and XCH4 from 2010 to 2020. Generally, the spatial patterns of 322 

XCO2 and XCH4 are divided by the equator. The high values of XCO2 and XCH4 mainly distribute over Asia, e.g., China and 323 

India, which is attributed to the large anthropogenic emissions (Kenea et al., 2023; Liu et al., 2020; Turner et al., 2015; 324 

Hotchkiss et al., 2015). In the meantime, considerable natural emissions, e.g., wildfires (Arora and Melton, 2018), also can 325 

obviously increase the XCO2 values, such as in central Africa and northern South America. Figure 15 and 16 illustrate the 326 

seasonal fused XCO2 and XCH4 from 2010 to 2020 over the globe, respectively. As displayed, seasonal changes of global 327 

XCO2 and XCH4 spatial patterns are clearly reflected in the fused results. Compared to XCH4, the global spatial patterns of 328 

XCO2 vary more drastically. This is likely driven by the spatiotemporal heterogeneity of meteorological fields (Liu et al., 2011) 329 

and different emission sources of CO2 and CH4. 330 

 331 

Figure 14. Multi-year mean fused (a) XCO2 and (b) XCH4 from 2010 to 2020 over the globe. Color ramps stand for the values of XCO2 and 332 

XCH4. 333 
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 334 

Figure 15. Seasonal fused XCO2 from 2010 to 2020 over the globe. The color ramp stands for the value of XCO2. (a) DJF, (b) MAM, (c) 335 

JJA, and (d) SON denote Dec. to Feb., Mar. to May., Jun. to Aug., and Sep. to Nov., respectively. 336 

 337 

Figure 16. Seasonal fused XCH4 from 2010 to 2020 over the globe. The color ramp stands for the value of XCH4. (a) DJF, (b) MAM, (c) 338 

JJA, and (d) SON denote Dec. to Feb., Mar. to May., Jun. to Aug., and Sep. to Nov., respectively. 339 

Figure 17 and 18 map the annual fused global XCO2 and XCH4 from 2010 to 2020, respectively, including their trends. As 340 
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observed in Fig. 17, the CO2 levels continuously increase from 2010 to 2020, with the mean XCO2 values ranging from ≤ 341 

386 to ≥ 416 ppm. However, the trends of XCO2 only present small spatial differences (~ 0.2 ppm per year), of which the 342 

large growth rates primally distribute along the equator, especially for China (≥ 2.5 ppm per year). It is worth noting that the 343 

growth rates of XCO2 are relatively slight (≤ 2.3 ppm per year) in northern South America compared to other regions. This is 344 

likely caused by the effects from the carbon sequestration of forests (Chazdon et al., 2016). Besides, the XCH4 values also 345 

notably rise from 2010 to 2020, of which the maximum is not less than 2008 ppb in 2020 (see Fig. 18). The large growth rates 346 

of XCH4 are majorly discovered over southern Asia and northern Europe. 347 

5 Data availability 348 

The fused results can be freely accessed at http://doi.org/10.5281/zenodo.7388893 (Wang et al., 2022b). The daily global 349 

seamless gridded (0.25°) XCO2 and XCH4 from 2010 to 2020 are stored in the netCDF4 format with a file size of ~ 3.5 MB 350 

for each day. The units of XCO2 and XCH4 are ppm and ppb, respectively. 351 

 352 
Figure 17. Annual fused (a-k) XCO2 and (l) its trend from 2010 to 2020 over the globe. Color ramps stand for the values of XCO2 and its 353 

trend. ppm/yr: ppm per year. 354 
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 355 
Figure 18. Annual fused (a-k) XCH4 and (l) its trend from 2010 to 2020 over the globe. Color ramps stand for the values of XCH4 and its 356 

trend. ppb/yr: ppb per year. 357 

6 Conclusions 358 

In our study, a novel spatiotemporally self-supervised fusion method, i.e., S-STDCT, is proposed to acquire long-term daily 359 

seamless globally distributed XCO2 and XCH4 products from 2010 to 2020 at the grids of 0.25°. A total of three datasets are 360 

adopted, which include GOSAT, OCO-2, and CAMS-EGG4. Since the data from GOSAT and OCO-2 is greatly sparse in 361 

space-time domain, the algorithm for frequency domain (the STDCT) is applied in the fusion task. Validation results show that 362 

the S-STDCT fusion method performs well over the globe, with the 𝜎 of ~ 1.18 ppm for XCO2 and 11.3 ppb for XCH4 against 363 

TCCON measurements during 2010-2020. Meanwhile, the R2 of fused XCO2 and XCH4 reach 0.91/0.95 (2010-2014/2015-364 

2020) and 0.9 (2010-2020), respectively. Generally, the accuracy of fused results is distinctly superior to that of CAMS-EGG4, 365 

which also exceeds or equals those of GSOAT and OCO-2. Particularly, the proposed fusion method effectively modifies the 366 

large biases in CAMS-EGG4 caused by the issues from assimilation data, such as the uncorrected anthropogenic emission 367 

inventories for COVID-19 lockdowns in 2020. Besides, the spatial patterns of fused results remain coincident with GOSAT 368 

and OCO-2, which can accurately display the long-term and seasonal changes of global XCO2 and XCH4 spatial distribution. 369 
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The long-term (2010-2020) daily global seamless gridded (0.25°) fused results are available at 370 

http://doi.org/10.5281/zenodo.7388893 (Wang et al., 2022b). 371 

Overall, the developed fusion method generates high-quality full-coverage XCO2 and XCH4 datasets over the globe from 2010 372 

to 2020. However, it only considers the global spatiotemporal knowledge of self-correlation in GOSAT and OCO-2 products 373 

without attention to local spatiotemporal information. Meanwhile, the spatial resolution and available period of fused results 374 

should be further enhanced, which are devised as 0.1° and more than 20 years (e.g., 2000-2020), respectively. To fix these 375 

issues, we will spare no effort to work on our future works. 376 
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