
Dear Editor, 

We sincerely thank you for considering our data description paper for publication in Earth 

System Science Data. We also thank the anonymous referees for their time, insightful 

comments, and recommendations, which helped us improve our manuscript. After carefully 

considering all feedback, we believe that the dataset and the data description paper have 

significantly improved. 

In this revised version, we have reconstructed the dataset with a higher spatial resolution (5 

arcminutes). Additionally, some of the geospatial datasets used in the methodology have been 

replaced with more recent products. We have also updated the manuscript to incorporate the 

suggestions of the anonymous referees. Specifically, we have clarified our model selection 

approach and addressed other methodological aspects that were pointed out. 

Below, we reproduce the comments of Referees #1 and #2, in italics, followed by our 

responses (Author’s Response). 

  

Referee #1 

Resolution Rationale: The manuscript lacks a clear justification for selecting a 0.5-degree 

resolution for mapping. Providing insight into the reasoning behind this choice would 

enhance the manuscript's robustness. 

Author’s Response: We thank the referee for this comment. Our initial choice of resolution 

was influenced by the primary purpose of these maps, which was to support the 

parameterization and evaluation of land surface/vegetation models. These models are 

computationally intensive and generally use a 0.5-degree resolution. However, we 

acknowledge that other uses of the reference maps, as proposed in the manuscript (Lines 385 

and 395), could benefit from a finer resolution. Therefore, we are pleased to offer the set of 

reference maps at a 5-arcminute resolution. Please, note that the line numbers refer to the .pdf 

file of the reviewed manuscript with tracked changes. 

During this process, we revisited the pre-processing of the predictive data and incorporated 

more recent datasets that have been published. Now, all variables, apart from temperature, 

precipitation, and elevation, are sourced from SoilGrids 2.0 [International Soil Reference and 

Information Centre] (Poggio et al., 2021). 

We have added the following text in Section 2.2 to clarify the rationale behind our chosen 

resolution. 

“All spatial raster datasets were downloaded from the sources and used in the 

resolution of 5 arcminutes. While it is possible to obtain the data in a finer resolution, 

the primary intent of the maps presented here is to parametrize and benchmark land 

surface models that simulate terrestrial vegetation. Thus, we opted to produce the 

maps in the resolution of 5 arcminutes. In this resolution, the maps can be easily 

aggregated to satisfy the needs of land surface modelling at the same time enabling 

other possible uses of the reference maps that requires a higher resolution.” 

  



Methodological Explanation: Certain methodological aspects, such as the approach to 

Random Forests model selection and the use of 105 Random Forests models for 108 

observations, require more detailed explanation and justification. The reason for excluding 

primary mineral P and the occluded P forms were not solid. 

Author’s Response: We thank the referee for this comment. Regarding the model selection 

approach, we added the following text in the section 2.3: 

“We chose this selection approach due to the inherent stochasticity in both the 

train/test split phase and the training of Random Forest models. In the former, samples 

from the dataset are randomly assigned to either the training or testing sets. In the 

latter, stochasticity arises from two factors: (i) bootstrap sampling, where each 

decision tree is trained on a random sample (with replacement) from the dataset, and 

(ii) feature randomness during decision tree construction. Unlike standard decision 

tree construction, which uses the feature that provides the most information gain for a 

split (or tree branch), Random Forests build each tree based on a random subset of 

features from the training data. Therefore, by selecting a group of models from a pool, 

we can capture the inherent stochasticity in the models while choosing the most 

accurate ones.”   

Upon revisiting our model selection, we decided to include the Random Forest models trained 

on the occluded P form in the production of the reference maps.  Although the number of 

selected models and their accuracy were lower compared to other P forms, we decided to 

include them due to the positive feedback from the reviewers. As mentioned, the initial choice 

to not include the occluded P in the model fitting was based on the lower number of selected 

models for this P form. Nonetheless, due to the significance of occluded P to the 

understanding of ecological processes in the pan-Amazon region, we decided to include after 

the review. 

Unfortunately, this was not possible for primary mineral P. In our model selection approach, 

all models trained to predict primary mineral P demonstrated very low accuracy values. We 

believe that this is caused by the trace amounts of mineral P form (Calcium bound P) found in 

most of the samples in the fitting dataset. Which in its turn, is related to the lack of 

observations in the most P rich sites. Additionally, the trace amounts of Calcium bound P 

found in the samples are explained by the elevated pH and advanced weathering stages of 

these soils. We have added an explanation for the exclusion of mineral P from model fitting 

and selection in Section 2.3: 

“In our model selection approach, the models fitted for the primary mineral 

phosphorus (P) form demonstrated very low accuracy, with the best cases achieving 

only 15%. Consequently, we did not include the primary mineral P form in the initial 

part of the analysis, which involved model fitting. We attribute this to the extremely 

low values of Calcium-bound P observed in most samples in the fitting dataset. The 

majority of data in the fitting dataset were collected from sites with old, well-

weathered, and acidic soils, characterized by trace amounts of Calcium-bound P. 

Furthermore, we concluded that our set of predictive variables, considering both the 

geographical context and the distribution of sampled sites, was insufficient to generate 

an inference model for primary mineral P. To address this issue, we estimated the size 

of the primary P pool by subtracting the combined total of available, organic, 

inorganic, and occluded P forms from the estimated total P. We interpret this as an 



indication that the information from the set of variables in Table 1 is insufficient to 

generate predictions for the primary P form.” 

  

Temporal Representativeness: The temporal scope of the soil P estimates needs to be 

clarified and discussed. It would be beneficial to address the use of data collected at different 

periods and its potential impact on the results, especially in the context of changing soil 

conditions. 

Author’s Response: The comment raises a crucial point, and we thank the reviewer for 

pointing it out. The creation of the P reference maps assumes that the size of the P forms 

pools remains constant during the sampling process. This significant assumption was not 

mentioned in the previous version of the manuscript. Given the timescales of P 

transformations in soils, we believe this to be a reasonable assumption. Unfortunately, the 

challenges associated with data collection in the Amazon are unparalleled in terms of 

available human and economic resources. This is an impediment to continuous survey 

campaigns aimed at consecutive collections of data in the region. It is also beyond the scope 

of our study to investigate the dynamics of P forms in soils on this spatial scale. We have now 

included this information at the end of subsection 2.1 in the Material and Methods section: 

“The limited number of samples and the spatial gaps in the dataset used for fitting are 

understandable, considering the mobility challenges in the region. Similarly, the 

sample collection is temporally heterogeneous due to these constraints, limiting 

opportunities for repeated sampling over extended periods (Carvalho et al. 2023). The 

reference maps constructed here are based on the assumption that the size of the P 

forms pools in soils remain stable during sampling. This implies that the 

transformation of some P forms into others does not significantly alter the size of the P 

form pools during data collection. Given the geological timescales of P’s 

biogeochemical cycling, we consider this a reasonable assumption. However, 

understanding the dynamics of P forms in soil falls outside the scope of this study.” 

In section 4.3, we propose a potential use for the reference maps in studies investigating the 

dynamics of P forms in soils: 

“The P forms have different residence times ranging from hours to millennia and are 

subject to a complex set of interactions with biotic, edaphic, and climatic 

environmental attributes over time. In this scenario, the presented maps can be useful 

to define initial conditions to dynamic, process-oriented models, for the simulation of 

P cycling in soils (Helfenstein et al. 2018).” 

  

Additionally, the manuscript could be strengthened by: 

High-Resolution Covariate Exploration: Given that many relevant soil P covariates are 

available at finer spatial grids, discussing the potential benefits of reproducing this study with 

higher spatial resolution information would enhance the value of the presented soil P data. 

Author’s Response: We thank the referee for this comment. As previously mentioned, we 

have revisited the pipeline for creating the reference maps and rebuilt it with a finer resolution 



(5 arcminutes). In addition, we have replaced the predictive geospatial data on soil 

physiochemical attributes with more recent products. 

  

Sensitivity to Spatial Support: An exploration of how soil P predictions might vary with 

different spatial support levels would provide valuable insights into the robustness of the 

results. 

Author’s Response: The feedback from the referee is appreciated. We acknowledge that an 

analysis of this nature would require the exclusion or aggregation of some sampled points for 

the training of the Random Forest models. Given the limited number of samples, we chose to 

use a multivariate dissimilarity index. This approach allows us to avoid applying the models 

to data outside the training range, while testing the generality of the selected models using a 

Monte-Carlo cross-validation. In our view, this is the most effective approach, given the 

constraints imposed by the small number of samples and the characteristics of the Random 

Forest algorithm. 

While we agree that some variables in the fitting dataset have different spatial supports (for 

example, pixels for climatic data and soil cores for soil data), it’s important to note that the 

Random Forest algorithm is not a geostatistical interpolation technique. Therefore, its 

requirements and assumptions for application in a geospatial context differ. 

  

Finally, on a minor note, it's important to consistently capitalize "Random Forests" 

throughout the manuscript, as it is the name of the algorithm. 

Author’s Response: We thank the referee for noticing it. We have now ensured that the term 

“Random Forest” is consistently capitalized throughout the manuscript. 

  

Referee #2 

Lack of Innovation in the Fitting Dataset: It is noted that your data sources are primarily 

from Hou et al., 2018, and Quesada et al. (2020). However, it is apparent from 

Supplementary Figure S6 that there is a lack of observation data in the central extensive 

Solimoes Basin. This gap in the dataset should have been addressed or justified in the 

manuscript. 

Author’s Response: We concur with the referee regarding the sparse nature of the sampled 

data. The limitations inherent in data collection across the pan-Amazon region are due to the 

limited mobility options. Many of the sampled sites can only be accessed through lengthy 

journeys along rivers and trails in the heart of the forest (Carvalho et al. 2023). 

In our view, the world’s largest tropical forest has not received the attention it deserves, 

despite the tremendous efforts of scientists who spend considerable amounts of time and risk 

their lives to collect data in the Amazon wilderness. Furthermore, our study’s primary 

objective was to use available data with an alternative statistical method, to overcome the 



challenges encountered by other methods that used the same data to map P forms in the 

region. 

We have addressed this issue by adding a paragraph to Section 2.1 in the manuscript. We 

kindly ask to the referee #2 to check our response to the issue “Temporal Representativeness”, 

pointed by the referee #1. 

  

Resolution Insufficiency: The manuscript does not provide a clear justification for selecting 

a 0.5-degree resolution for mapping. Given the availability of higher-resolution climate data 

and other relevant soil physicochemical properties at finer resolutions, the choice of such a 

coarse resolution for a relatively small study area requires further explanation. 

Author’s Response: We value the referee's suggestion and have taken it into consideration. 

Our original choice for a half-degree resolution was based on the anticipated use of the 

reference maps for the parameterization and evaluation of land surface/vegetation models. We 

agree that, given the relatively small study area, the initial choice of spatial resolution was not 

optimal. To address this issue, we have reconstructed the reference maps at a finer spatial 

resolution of five arcminutes. Additionally, we have incorporated more recent datasets of soil 

physiochemical properties. All geospatial datasets with soil properties are now sourced from 

SoilGrids 2.0 [International Soil Reference and Information Centre] (Poggio et al., 2021). We 

have added a sentence in Section 2.2 to clarify the rationale behind our chosen resolution. The 

referee #2 can find it in the response to the first point addressed by the referee #1, “Resolution 

Rationale”. 

  

Lack of Methodological Innovation: The manuscript mentions suboptimal model 

performance in high-altitude regions. It would be beneficial to explore the possibility of 

stratifying the analysis, perhaps by altitude or dominant vegetation types. This would 

demonstrate the flexibility of the Random Forest methodology. Additionally, if there is a lack 

of representative data in the central part of the study area, consider leveraging transfer 

learning techniques with data from other similar terrains globally. 

Author’s Response: We acknowledge and appreciate the referee's point of view on this 

matter. However, we would like to clarify that we did not claim that we observed suboptimal 

model performance at high altitudes. The model’s performance was evaluated using 

appropriate metrics (accuracy, R2, MAE) and a Monte-Carlo cross-validation. The limited 

number of observations in these high elevation environments prevented us from applying the 

fitted models in areas where the predictive variables showed high multivariate dissimilarity 

between the fitting dataset and the predictive dataset. 

The exclusion of some areas in the maps is related to a well-known limitation of the method 

applied. The Random Forest algorithm can be inaccurate when data outside the ranges used in 

the training phase is used for testing or prediction. We observed, a posteriori, that the areas 

excluded after using the Dissimilarity Index (DI) are characterized by high elevation. 

Due to the small number of sampled points, especially in the most elevated areas, we believe 

that a stratified analysis is not an optimal approach as it would require us to train the models 



on even smaller subsets of data. Moreover, including a categorical variable defining elevation 

would be redundant, because elevation is already in the dataset. 

Regarding the dominant vegetation type, most of the sampled points in the fitting dataset are 

in forests. A categorical variable defining vegetation type would be severely unbalanced and 

uninformative. Finally, as shown using the DI, despite the small number of observations in the 

Solimões basin, the region is well represented in terms of all variables when compared to the 

most elevated areas. 

Nonetheless, new data collection campaigns throughout the study area could improve future 

studies. 

  

Insufficient Model Validation: The manuscript could benefit from a comparison of 

simulation results with other relevant data sources such as the World Soil Information 

database, especially when using inputs from various soil databases. This would enhance the 

robustness of your findings. 

Author’s Response: We appreciate the referee’s comment, but we find it unclear. The World 

Soil Information database does not provide maps of P forms in soil that could be used to 

evaluate our maps. This database is now the source for a subset of the covariates used in 

constructing the P maps at the new resolution of five arcminutes. As the World Soil 

Information database represents the state-of-the-art in terms of geospatial soil datasets, we 

consider that the application of the models using outdated soil datasets would not be of great 

benefit. 

  

Temporal Representativeness: The temporal scope of your soil P estimates should be 

clarified and discussed, especially considering data collected at different time periods. 

Exploring the temporal variation of soil P and its relationship with climate change would add 

depth to your study. 

Author’s Response: We kindly ask Referee #2 to refer to our response to the same issue 

raised by Referee #1. In that response, we clarified the caveats related to the temporal scope 

of data collection and stated the main assumption that the size of the P pools did not change 

significantly during the data acquisition period. 

While we agree that the temporal variability of P in soil and its relationship with climate 

change is an important topic, discussing the impacts of climate change on the dynamics of P 

forms would require a different methodological approach. Therefore, we believe that this 

topic is outside the scope of this study. 

  

Sensitivity Analysis: It is crucial to conduct sensitivity analyses to assess how soil P 

predictions might vary with different spatial support levels. This would provide valuable 

insights into the robustness of your results. 



Author’s Response: We thank the referee for this comment. We kindly ask Referee #2 to 

refer to our response to the same issue raised by Referee #1 regarding sensitivity to spatial 

support. 
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