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Abstract. Land surface temperature (LST) is a key variable within the Earth’s climate system and a necessary input parameter 9 

required by numerous land-atmosphere models. It can be directly retrieved from satellite thermal infrared (TIR) observations, 10 

which contain many invalid pixels mainly caused by cloud contamination. To investigate the spatial and temporal variations 11 

of LST in China, long-term, high-quality, and spatiotemporally continuous LST datasets (i.e., all-weather LST) are urgently 12 

needed. Fusing satellite TIR LST and reanalysis datasets is a viable route to obtain long time-series all-weather LST. Among 13 

satellite TIR LSTs, the MODIS LST is the most commonly used and a few corresponding all-weather LST products have been 14 

reported recently. However, the publicly reported all-weather LSTs were not available during the temporal gaps of MODIS 15 

between 2000 and 2002. In this study, we generated a daily (four observations per day) 1-km all-weather LST dataset for the 16 

Chinese landmass and surrounding areas–TRIMS LST, which begins on the first day of the new millennium (January 1, 2000). 17 

We used the Enhanced Reanalysis and Thermal infrared remote sensing Merging (E-RTM) method to generate the TRIMS 18 

LST dataset with the temporal gaps being filled, which had not been achieved by the original RTM method. Specifically, we 19 

developed two novel approaches, i.e., the Random-Forest based Spatio-Temporal Merging (RFSTM) approach and Time-20 

Sequential LST-based Reconstruction (TSETR) approach, respectively, to produce Terra/MODIS-based and Aqua/MODIS-21 

based TRIMS LSTs during the temporal gaps. We also conducted a thorough evaluation of the TRIMS LST. A comparison 22 

with the GLDAS and ERA5-Land LST demonstrates that the TRIMS LST has similar spatial patterns but higher image quality, 23 

more spatial details, and no evident spatial discontinuities. The results outside the temporal gap show consistent comparisons 24 

of TRIMS LST with MODIS LST and AATSR LST, with mean bias deviation (MBD) of 0.09 K/0.37 K and standard deviation 25 

of bias (STD) of 1.45 K/1.55 K. Validation based on in-situ LST at 19 ground sites indicate that the TRIMS LST has a mean 26 

bias error (MBE) ranging from -2.26 K to 1.73 K and a root mean square error (RMSE) ranging from 0.80 K to 3.68 K. There 27 

is no significant difference between the clear-sky and cloudy conditions. For the temporal gap, it is observed that RFSTM and 28 

TSETR perform similarly to the original RTM method. Additionally, the differences between Aqua and Terra remain stable 29 

throughout the temporal gap. The TRIMS LST has already been used by scientific communities in various applications such 30 

as soil moisture downscaling, evapotranspiration estimation, and urban heat island modeling. The TRIMS LST is freely and 31 

conveniently available at https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 2021).  32 



2 

 

 33 

1 Introduction 34 

Land surface temperature (LST) is a key variable related to the energy exchange at the interface between the land surface and 35 

the atmosphere. It is the result of the thermal feedback of various ground surfaces to incident solar radiation and atmospheric 36 

downward radiation. Therefore, it is a necessary input parameter required by numerous land-atmosphere models (Jiang and 37 

Liu, 2014; Li et al., 2013b, 2023c). LST has been widely used in a variety of studies, such as surface evapotranspiration (ET) 38 

estimation (Anderson et al., 2011; Ma et al., 2022), urban heat island (UHI) modeling (Alexander, 2020; Liao et al., 2022), 39 

drought monitoring (Zhang et al., 2017), and ecological assessment (Sims et al., 2008).  40 

In the past four decades, especially since the beginning of the new millennium (i.e., 2000), China and its surrounding areas 41 

have experienced rapid economic development and population growth, accompanied by notable changes to the natural 42 

environment (Yang and Huang, 2021). Meanwhile, China has adopted a series of interventions to protect the environment 43 

since the 1980s, such as the Grain for Green Program (Wang et al., 2017), Three-North Shelter Forest Program (Zhai et al., 44 

2023), and Red Lines of Cropland (a policy to ensure that Chinese arable land does not drop below 120 million hectares). 45 

These interventions have played a key role in changing land use/cover and regulating the climate (Chen et al., 2019a). In 46 

addition, with the warming climate, extreme weather and meteorological disasters occur frequently in China and its 47 

surrounding areas (Chen et al., 2019b). Since LST is highly sensitive to land cover change, heat waves, droughts, and 48 

vegetation information (Li et al., 2023a; Su et al., 2023), making it an important indicator of global climate change (Mildrexler 49 

et al., 2018; Peng et al., 2014). Therefore, it is important to investigate the spatial and temporal variations of LST for these 50 

areas, which requires a long-term, high-quality, and spatio-temporally continuous LST dataset. 51 

LST can be obtained through in-situ observations, model simulations, and remote sensing retrievals. However, LST is spatially 52 

and temporally heterogeneous and highly affected by various factors such as land cover, soil type, topography, and climatic, 53 

and meteorological conditions (Liu et al., 2006; Zhan et al., 2013). In-situ observations based on spatial 'point measurement' 54 

are not able to obtain spatially continuous LST, and the current model simulation suffers from coarse spatial resolution. In 55 

contrast, satellite remote sensing, which has the advantages of better spatial continuity, larger coverage, good ability for 56 

repeating observations, and much higher spatial resolution, has become an important way to obtain LST for large areas (Li et 57 

al., 2013b). 58 

Satellite thermal infrared (TIR) remote sensing can directly obtain the regional and global LST efficiently. A series of satellite 59 

TIR LST products are currently available to users. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) 60 

LST products are the most widely used because of their global coverage, long time-series (since February 24, 2000, for Terra 61 

and since July 4, 2002, for Aqua), high quality, and good accuracy (Aguilar-Lome et al., 2019; Sandeep et al., 2021; Wan, 62 

2014). However, they generally have significant spatial absences due to cloud contamination, especially in low and middle 63 

latitudes in China (e.g., the Tibet Plateau and southern China) (Duan et al., 2017), increasing high uncertainties for their 64 
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spatially-continuous applications (Li et al., 2023c). Meanwhile, there is a temporal discontinuity (hereafter termed the temporal 65 

gap) in Terra/Aqua MODIS during 2000-2002, further limiting their long-time applications. 66 

To fill these drawbacks, scholars have developed a variety of methods to generate gapless LST (Jia et al., 2022b; Zhang et al., 67 

2022; Li et al., 2023c; Quan et al., 2023). These methods can be generally divided into three groups, i.e., spatio-temporal 68 

interpolation, surface energy balance (SEB), and multisource data fusion methods (Ding et al., 2023; Li et al., 2023c). The 69 

spatio-temporal interpolation methods take advantage of the temporal and spatial variation patterns inner the LST to get gapless 70 

LST data (Ding et al., 2023). For example, Zhang et al. (2022) proposed a spatio-temporal fitting framework to generate a 1-71 

km spatial resolution dataset from 2003 to 2020 over global land, which is the only seamless LST dataset, to the best of our 72 

knowledge, on Google Earth Engine for free applications. Nevertheless, the results using the spatio-temporal interpolation 73 

methods may contain some uncertainties under cloudy-sky conditions (Martins et al., 2019). The SEB-based methods are a 74 

group of physical methods, that can recover LST under cloudy conditions, considering longwave radiation and solar radiation 75 

as influences on the LST (Jin and Dickinson, 2000). For example, Martins et al. (2019) used the SEB-based method to 76 

successfully fill the missing LST, based on land surface parameters from the European Satellite Application Facility on Land 77 

Surface Analysis (LSA-SAF), to generate the all-weather LST product (MSG All-Sky Land Surface Temperature, MLST-AS). 78 

In addition, a general approach that incorporates the clear-sky LST into the SEB model has recently been developed, based on 79 

the MODIS and Visible Infrared Imaging Radiometer (VIIRS) data, to estimate the LSTs under cloud-contaminated regions 80 

(Jia et al., 2021). 81 

Multisource data fusion methods mainly integrate TIR LST with satellite passive microwave (PMW) observation or reanalysis 82 

data to generate seamless all-weather LST and have been widely used. PMW data can be used for estimating all-weather LST 83 

retrievals because they are less affected by the atmosphere and clouds (Holmes et al., 2009; Zhou et al., 2017). However, there 84 

are limitations in obtaining all-weather LST from PMW observations. First, the spatial resolution of PMW data differs 85 

significantly from TIR, such as the Advanced Microwave Scanning Radiometer 2 (AMSR2) with ~10 km spatial resolution. 86 

Second, the spatial coverage of the PMW data is incomplete because there are orbital gaps. Third, the temperature retrieved 87 

from PMW observations contains information from the subsurface, which differs from the TIR LST that exclusively represents 88 

skin temperature (Zhou et al., 2017). Compared with the PMW data, reanalysis data can provide spatially continuous LST and 89 

related surface parameters; thus, it can act as an alternative basis to obtain the all-weather LST (Long et al., 2020; Ding et al., 90 

2022). One typical method is the Reanalysis and Thermal infrared remote sensing Merging (RTM) method proposed by Zhang 91 

et al. (2021) for integrating the Global Land Data Assimilation System assimilation (GLDAS) and Aqua/MODIS LST for the 92 

Tibetan Plateau. The theoretical foundation of the RTM method lies in the temporal component decomposition model of LST 93 

(Zhan et al., 2014; Zhang et al., 2019b). Upon comparing with independent TIR LST and validating in-situ LST, significant 94 

agreement between RTM LST and TIR LST was observed, demonstrating the effectiveness of the RTM method in all weather 95 

conditions. RTM method fully utilizes reanalysis data and TIR data to produce prospective, high-resolution, and reliable LST 96 

records on regional, continental, and global scales for the long term. 97 
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Various all-weather LST datasets using the aforementioned three typical methods have been released in recent years (Duan et 98 

al., 2017; Hong et al., 2022; Jia et al., 2022a; Jia et al., 2022b; Li et al., 2021a; Metz et al., 2017; Muñoz-Sabater et al., 2021; 99 

Yao et al., 2023; Yu et al., 2022). However, all-weather LST datasets with both high temporal resolution (4 observations per 100 

day or higher) and high spatial resolution (1 km or higher) since 2000 for the Chinese landmass and the surrounding areas are 101 

still lacking. 102 

In this study, we proposed the enhanced RTM (E-RTM) method to produce a daily (four observations per day) 1-km all-103 

weather LST dataset for the Chinese landmass and its surrounding areas (19°N–55°N, 72°E–135°E), which was named as the 104 

Thermal and Reanalysis Integrating Moderate-resolution Spatial- seamless LST (TRIMS LST), a successor to the work of 105 

Zhang et al. (2021). The E-RTM method includes three modules (Sect.3). First, the original RTM method was used to produce 106 

the TRIMS LST from DOY 55 of 2000 (DOY 185 of 2002) to DOY365 of 2022. Then, Terra/MODIS-based and 107 

Aqua/MODIS-based TRIMS LST during the temporal gaps were produced, based on the physical properties of the LST time 108 

component decomposition model. Finally, the accuracy of the TRIMS LST was evaluated based on observations from in-situ 109 

sites. 110 

2 Datasets 111 

2.1 Satellite data and reanalysis data 112 

In this study, the main satellite data we used were the 1-km daily MODIS LST/emissivity product (MOD11A1: February 2000 113 

to December 2022; MYD11A1: July 2002 to December 2022) in version 6.1, which was produced based on the generalized 114 

split-window algorithm and has good accuracy for homogeneous surfaces (Wan, 2014). This product was used as a basis data 115 

for producing the TRIMS LST. The other MODIS datasets we used include (1) the 1-km 16-day Normalized Difference 116 

Vegetation Index (NDVI) product (MOD13A2: February 2000 to December 2022), (2) the 500-m daily Normalized Difference 117 

Snow Index (NDSI) product (MOD10A1F: February 2000 to December 2022) (https://modis-snow-ice.gsfc.nasa.gov/), and 118 

(3) the 500-m daily MODIS land surface albedo product (MCD43A3: February 2000 to December 2022) in version 6.1. All 119 

of the above products except MOD10A1F are available at EARTHDATA (https://earthdata.nasa.gov/). To generate and 120 

evaluate the all-weather LST, we also collected (1) the 90-m Shuttle Radar Topography Mission Digital Elevation Model data 121 

(SRTM DEM; http://srtm.csi.cgiar.org), (2) global 1-km daily Maximum Value Composite Synthesis of ‘Satellite Pour 122 

l'Observation de la Terre’ (SPOT) VEGETATION (VGT) Images (VGT-S1) (January 2000 to February 2000) (https://spot-123 

vegetation.com/en) (Toté et al., 2017), (3) 0.05° 8-day Global Land Surface Satellite (GLASS) Albedo product (January 2000 124 

to February 2000) (http://www.glass.umd.edu/Albedo/MIX/) (Feng et al., 2016), (4) the 30-m yearly China Land Cover 125 

Dataset (2000-2015) from Zenodo (CLCD, https://doi.org/10.5281/zenodo.4417810) (Yang and Huang, 2021), and (5) the 1-126 

km daily ENVISAT/AATSR LST product (July 2004–April 2012) (https://climate.esa.int/). 127 

The main reanalysis data we used in this study were the GLDAS data provided by the Goddard Earth Sciences Data and 128 

Information Services Center (GES DISC) (Rodell et al., 2004). GLDAS utilizes an analysis increment, which is obtained 129 
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through the optimal interpolator using the observed-minus-forecast value for the skin temperature calculated by GLDAS. This 130 

analysis increment, along with the bias correction term, is subsequently provided to the land surface models code for energy 131 

budget considerations. The bias correction ensures that the modeled state is continually adjusted towards the observed values, 132 

thereby improving the accuracy of the skin temperature calculations on an incremental, semi-daily, or daily basis (Radakovich 133 

et al., 2001). The accuracy of GLDAS LST has been demonstrated by various studies with MBE ranging from -4.27 K to 8.65 134 

K and RMSE ranging from 3.0 K to 6.02 K (Zhang et al.,2021; Xiao et al.,2023). Specifically, the 0.25° 3-hourly LST from 135 

the GLDAS Noah model between January 2000 and December 2022 was used as another input of the RTM method. In addition, 136 

we also collected the 0.1° hourly ERA5-Land LST datasets (Muñoz-Sabater et al., 2021), and its LST will be compared with 137 

the generated TRIMS LST. 138 

2.2 Ground measurements 139 

Table I shows 19 ground sites that recorded longwave radiation data for different periods. According to geographical locations 140 

and land cover types provided in Table I, it is clear that they are distributed in different climate zones. 141 

 142 
Figure 1: The study area and the selected 19 ground sites. A, B, C, D, E, and F are subareas exhibiting a single land cover type with 143 
no change in T1 and T2 (January 1, 2000 to January 3, 2005). 144 

This indicates that they encompass a wide range of land surface and climatic situations for sufficient validation of the TRIMS 145 

LST. The measurement device at the selected ground station includes a long-wave radiometer and four-component radiometers, 146 

including CNR1, CNR4, and CG4 (Kipp & Zonen, Netherlands; https://www.kippzonen.com/). According to the specifications 147 

of these radiometers, the uncertainties in the daily total for longwave radiation measurements are 3%–10% (Wang et al., 2020). 148 
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With the measured incoming and outgoing longwave radiation, the LST of the land cover type within the field-of-view (FOV) 149 

of the radiometer can be calculated through the radiative transfer equation in the form of the Stephan-Boltzmann's law (Ma et 150 

al., 2023, 2021). Considering the uncertainties of the longwave radiation measurement, the uncertainties of the calculated in-151 

situ LST are approximately 0.6 K–1.2 K (Xu et al., 2013; Yang et al., 2020; Ma et al., 2021). 152 

Spatial representativeness of ground sites has different degrees of influence on the validation of TIR-based LST using in-situ 153 

LST. In this study, to quantify the spatial representativeness, we calculated the standard deviation (STD) of 33 × 33 Landsat 154 

LST within MODIS pixels containing ground sites. Specifically, the Landsat LST is the 30-m Landsat-7 ETM+ Collection 2 155 

Level-2 LST provided by the United States Geological Survey (U.S. Geological Survey, 2021). For the 19 sites, the STD 156 

ranged from 0.64 K to 1.53 K, indicating good to acceptable representativeness of these sites for the validation of a 1-km LST 157 

(Zhang et al., 2021; Duan et al., 2019). Abnormal measurements, caused by short-term disturbances such as instantaneous 158 

shadow from small clouds and birds, were excluded from the ground measured longwave radiation through a quality check. 159 

This quality check involved removing the outgoing or incoming longwave radiation that deviated by more than 3σ (standard 160 

deviations) from their respective one-hour averages (Göttsche et al., 2016). 161 

 162 
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Table I: Details of the 19 selected ground sites and their measurements.  

Site Latitude and 

Longitude 

(°N, °E) 

Elevation 

(m) 

Radiometers Height of 

radiometer 

(m)  

Diameter of 

radiometer’s 

FOV (m) 

Land cover type Period STD of 

30-m 

Landsat 

LST 

(K) 

Source 

Arou (ARO) 38.05, 100.46 3033 CNR4 5 37.32 Subalpine meadow 2013–2021 0.68 HiWATER 

Daman (DAM) 38.86, 100.37 1556 CNR1 12 89.57 Cropland 2013–2021 0.78 HiWATER 

Desert (DET) 42.11, 100.99 1054 CNR4 6 44.78 Desert 2015–2021 0.65 HiWATER 

Dashalong (DSL) 38.84, 98.94 3739 CNR4 6 44.78 Marsh alpine meadow 2013–2021 1.29 HiWATER 

Ebao (EBA) 37.95, 100.92 3294 CNR1 6 44.78 Alpine Meadow 2013–2016 1.00 HiWATER 

Gobi (GOB) 38.92, 100.31 1562 CNR1 6 44.78 Gobi 2013–2015 1.01 HiWATER 

Huazhaizi (HZZ) 38.77, 100.32 1735 CNR1 6 44.78 Desert 2013–2021 0.82 HiWATER 

Sidaoqiao (SDQ) 42.00, 101.14 873 CNR1 10 74.64 Tamarix 2013–2021 1.53 HiWATER 

Shenshawo (SSW) 38.79, 100.49 1555 CNR1 6 44.78 Desert 2014–2015 1.45 HiWATER 

Huailai (HLA) 40.35, 115.79 480 CNR4 5 37.32 Cropland 2013–2020 1.32 HBE 

D105 33.06, 91.95 5039 CNR1 1.34 10.00  Subalpine meadow 2002–2004 1.29 CEOP-

CAMP 

Gaize (GAZ) 32.31, 84.06 4416 CNR1 1.49 11.12 Barren land 2002–2004 1.48 CEOP-

CAMP 

Guantao (GUT) 36.52, 115.13 30 CNR1 15.7 117.19 Cropland 2009–2010 0.71 HHE 

Changbaishan (CBS) 42.40, 128.10 736 CNR1 6* 44.78 Mixed forest 2006 1.33 China Flux 

Daxing (DXI) 39.62, 116.43 20 CNR1 28 208.99 Cropland 2008-2010 1.46 HBE 

Dinghushan (DHS) 23.17, 112.53 300 CNR1 19* 141.82 Broad-leaved evergreen forest 2006 0.67 CERN 

Maqu (MQU) 33.89, 102.14 3423 CNR1 1.5 11.20 Grassland 2010 1.20 NIEER- 

CAS 

Qianyanzhou (QYZ) 26.74, 115.06 75 CNR1 1.8 13.44 Evergreen coniferous forest 2010 1.42 CERN 

Tongyu (TYU) 44.42, 122.87 184 CG4 3 22.39 Cropland 2003–2004 0.64 CEOP-

CAMP 

Note: *this height is the instrument's average height above the tree canopy. The ground sites were operated by different field campaigns or programs. CERN: Chinese Ecosystem Research Network 

(Fu et al., 2010; Pastorello et al., 2020); CEOP-CAMP: the Coordinated Energy and Water Cycle Observation Project (CEOP) and Asia-Australia Monsoon Project (CAMP) (Ma et al., 2006; Liu 165 

et al., 2004); China Flux (Pastorello et al., 2020; Yu et al., 2014; Zhang and Han, 2016); HHE: HaiHe Experiment in the Hai River Basin, China (Guo et al., 2020; Liu et al., 2013b); HiWATER: 

Heihe Watershed Allied Telemetry Experimental Research (Che et al., 2019; Li et al., 2013a; Liu et al., 2011, 2018, 2023); NIEER-CAS: Northwest Institute of Eco-Environment and Resources, 

Chinese Academy of Sciences (Wen et al., 2011). The datasets from HiWATER and HHE were downloaded from the National Tibetan Plateau Data Center (TPDC) (https://data.tpdc.ac.cn/); the 

datasets from China Flux and CERN were downloaded from the China Flux Network (http://www.chinaflux.org/); the datasets from CEOP-CAMP were downloaded from the Earth Observing 

Laboratory of National Center for Atmospheric Research (https://data.eol.ucar.edu/dataset/); and the dataset of MQU was downloaded from the link: http://tpwrr.nieer.cas.cn/. 170 
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3. Methodology 172 

TRIMS LST was generated through the E-RTM method, consisting of three modules depicted in Fig.2. Module I runs the 173 

original RTM method (Zhang et al., 2021) to merge MOD11A1 (MYD11A1) and GLDAS LST, producing daily all-weather 174 

LST at the Terra (Aqua) satellite overpass time from DOY 55 of 2000 (DOY 185 of 2002) to DOY 365 of 2022. Module II 175 

employs a Random-Forest-based Spatio-Temporal Merging (RFSTM) approach to extend the beginning date of the MOD11A1 176 

LST-based all-weather LST to January 1, 2000. Finally, Module III utilizes a Time-Sequential LST-based Reconstruction 177 

(TSETR) approach to extend the beginning date of the MYD11A1 LST-based all-weather LST to January 1, 2000. 178 

3.1 Module I: the RTM method 179 

Details of the RTM method can be found in Zhang et al. (2021). For the convenience of readers, a brief description of RTM is 180 

provided here. In the temporal dimension, the time series of LST can be expressed as: 181 

d avg ins d avg d avg ins cld d ins( ) ( , ) ( , ) ( , )LST t t t LFC t t HFC t t t HFC t t= + +, , , , (1) 182 

where td is the day of the year (DOY); tins is the overpass time of a satellite TIR sensor (i.e., MODIS) and tavg is the average 183 

observation time calculated from tins; LFC is the low-frequency component that represents the intra-annual variation component 184 

of the LST under ideal clear-sky conditions; HFC is the high-frequency component, which represents the sum of the diurnal 185 

LST variation and the weather variation component (WTC) under ideal clear-sky conditions; HFCcld is a correction term 186 

representing the impact on LST triggered by cloud contamination under cloudy conditions; and HFCcld is equal to zero under 187 

clear-sky conditions. 188 

In the RTM method, LFC, HFC, and HFCcld in Eq. (1) are first determined from the MODIS LST and the GLDAS LST. Then, 189 

the optimized models are determined for the three components according to their characteristics and their quality is improved 190 

by inputting their descriptors. Finally, three optimized components are integrated to generate the all-weather LST.  191 

3.2 Module II: the RFSTM approach 192 

The RFSTM approach was developed to predict the all-weather LST during the period of DOY 1-54 2000 during which the 193 

Terra MODIS LST was not available. It is based on the fact that (i) the LST of a pixel in the temporal dimension is strongly 194 

affected by the meteorological conditions as well as the underlying surface and (ii) the LST of many pixels at a certain time 195 

are closely related to their underlying surfaces (Ma et al., 2021). Therefore, RFSTM has two stages, namely, the temporal stage 196 

and the spatial stage. 197 

 198 
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` 199 
Figure 2: Flowchart of the E-RTM method. Note that the date in this figure is in the format of YYYY+DOY. 200 
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In the temporal stage, the daily LST (LSTT) of a pixel Q in a certain period is modeled as: 201 
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, (2) 202 

where the subscript T denotes the temporal stage; the function fT expresses the mapping in temporal dimensions from 203 

descriptors to LST; XT denotes the matrix including LST descriptors’ time series (PT,i, i=1, 2, ..., m); and n is the number of 204 

days within the temporal gap of Terra MODIS LST. 205 

We used the mapping function fT to predict the 1-km all-weather LST, since the MODIS LST is not available as a reference 206 

for reconstruction and it is impossible to identify the different weather conditions (e.g., clear-sky and cloudy conditions). 207 

However, the relationship between LST and its descriptors cannot be analytically expressed currently. Fortunately, machine 208 

learning has been reported to be effective in enhancing the spatial resolution of remote sensing images. Specifically, the random 209 

forest (RF) algorithm has shown good performance in mapping the correlation between LST with finer resolution and its 210 

descriptors with coarser resolution (Xiao et al., 2023; Li et al., 2021a; Xu et al., 2021; Zhao and Duan, 2020; Yoo et al.,2020). 211 

Therefore, the RF algorithm was employed here to realize fT. The temporal descriptors of LST include the net longwave 212 

radiation, downwelling long-wave radiation, soil moisture/ temperature profile (e.g., surface, 0–10 cm, and 10–40 cm in 213 

GLDAS NOAH model-based data), canopy surface water, snow depth water equivalent, surface skin temperature, wind-speed, 214 

and air temperature. The training period for fT with RF was set as DOY 55 of 2000 to DOY 55 of 2005, and the prediction 215 

period for LSTT was from DOY 1 of 2000 to DOY 55 of 2000. 216 

Considering that LST varies in both spatial and temporal dimensions, the spatial descriptors of LST should also be considered. 217 

In the spatial stage, the LST (LSTS) at td in the prediction period is expressed as: 218 

S S S,1 d S,2 d S, df [ ( ) ( ) ... ( )]kN t N t N t=LST , (3) 219 

where the subscript S denotes the spatial stage; the function fS expresses the mapping in spatial dimensions from the descriptors 220 

to LST; k is the number of spatial descriptors of LST; and NS denotes the 1-km spatial descriptor of LST (NS, i, i=1, 2, ..., k). 221 

The spatial descriptors of LST include the DEM, latitude, and albedo. The selected descriptors in the spatial stage are all from 222 

the ancillary data with a 1 km resolution. Albedo serves as a descriptor that informs about land surface, including factors such 223 

as vegetation growth, surface/sub-surface moisture distribution, and land surface cover type. We used GLASS albedo data as 224 

a substitution in the prediction step to fill the temporal gaps in MODIS LST because these temporal gaps are also effective in 225 

other MODIS products (including the MODIS albedo). Specifically, the GLASS albedo data is the best substitution for MODIS 226 

albedo data that we can find since they are strongly correlated with each other and have close accuracies according to existing 227 

studies (He et al., 2014; Wang et al., 2014; Chen et al., 2017; Lu et al., 2021). 228 
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To involve all spatio-temporal LST descriptors and guarantee the best performance of the output, the LST (LSTT and LSTS) 229 

need to be merged to derive the final 1-km LST (LSTM): 230 

M M T, S f ( )=LST LST LST , (4) 231 

where fM denotes the RF-based mapping which indicates the contributions to the LSTM from LSTT and LSTS, respectively. 232 

For a single 1-km pixel, the RF-based regression contribution function is trained using LSTT (obtained by Eq. 2), LSTS 233 

(obtained by Eq. 3), and TRIMS LST in the training period. Then, fC is applied to estimate the 1-km all-weather LST in the 234 

prediction period via Eq. (4). 235 

3.3 Module III: the TSETR approach  236 

The TSETR approach was developed to estimate the all-weather LST during the period from DOY 1 of 2000 to DOY 184 of 237 

2002 during which the Aqua/MODIS LSTs were not available (with a temporal gap of 915 days). Previous studies have shown 238 

that it is possible to convert between the Terra/MODIS LST and Aqua/MODIS LST, considering land cover types, geolocation, 239 

and season (Coops et al., 2007). Therefore, Terra/MODIS LST from 2000-2002 could be transformed into Aqua/MODIS LST 240 

(Li et al., 2018). Since the Terra/MODIS LST (MOD11A1) is available as a reference in the temporal gap, we generated an 241 

all-weather LST based on the TSETR approach, which is reconstruction rather than prediction. 242 

According to Eq. (1), the LST time series can be decomposed into LFC, HFC, and HFCcld under all weather conditions. 243 

Therefore, the TSETR approach has three stages. In the first stage, we need to estimate the LFC during the temporal gap at the 244 

Aqua overpass time. In this case, the temporal gap period was set as T1, and DOY 185 of 2002 to DOY 3 of 2005 was set as 245 

T2 (Fig.3). According to the analytical expression and physical meaning of LFC, there are no underlying trends of change 246 

within the three annual parameters (Tavg, A and ω) except for the periodic variation in the LST, which means that the LFC is 247 

cyclic-stationary over a short period (Bechtel, 2015; Weng and Fu, 2014; Zhu et al., 2022). Once the three annual parameters 248 

are determined, the LFC can be calculated for a given day.  249 

Therefore, in the TSETR approach, we assume that the LFC differences (∆LFC) between the Terra and Aqua overpass times 250 

in T1 and T2 are also cyclic-stationary. In T2, the LFC at the Terra/MODIS and Aqua/MODIS pixels are determined separately. 251 

In T1, the LFC at the Aqua overpass time of the pixel M can be expressed as: 252 

'

M-Aqua-T1 d avg M-Terra-T1 d avg M d avg

' ' '

M d avg M-Aqua-T2 d avg M-Terra-T2 d avg

( , ) ( , ) ( , )

( , ) ( , ) ( , )

LFC t t LFC t t LFC t t

LFC t t LFC t t LFC t t

 = + 

 = −

, (5) 253 

where td is a specific day in T1; t’d is a specific day corresponding to td in T2; LFCM-Aqua-T1(td,tavg) and LFCM-Terra-T1(td,tavg) 254 

denote the LFC corresponding to the Aqua/Terra overpass time in T1, respectively; and LFC M-Aqua-T2(t’d,tavg) and LFC M-Terra-255 

T2(t’d,tavg) denote the LFC corresponding to the Aqua and Terra overpass time in T2, respectively.  256 
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 257 
Figure 3: Schematic diagram for estimating LFC at daytime Aqua overpass time in T1. 258 

HFC is estimated in the original RTM method using a nonlinear mapping established by multiple descriptors. In the second 259 

stage of E-RTM, the HFC within T1 at the Aqua overpass time can be estimated by using its descriptors through RF (Xu et 260 

al., 2021). With Module I and Module II, we have obtained TRIMS-Terra LST in T1. However, it is unfeasible to directly 261 

model an RF mapping based on Terra/MODIS LST and its corresponding descriptors in T1. An important concern that needs 262 

to be addressed is the timing discrepancy between Terra and Aqua observations, which results in distinct variations in the 263 

pattern of LST changes. When there is no valid Aqua/MODIS LST available, we have made improvements to the procedure 264 

for calculating the HFC in the original RTM method as follows: 265 

d M M M d M d M d M d

M-Aqua-T1 d ins-Aqua-T1 M-Terra-T1 d ins-Terra-T1 M-Terra-Aqua-T1

M-Terra-Aqua-T1 ins M-T2 M M

M M-Aqua d ins avg

f ( , , ( ), ( ), ( ), ( ), )

( , ) ( , )

( , ) ,

( , , )

t g DEM NDVI t slp t t v t

HFC t t HFC t t HFC

HFC t LFC DTC

DTC DTC t t t



= + 

 =  

 =  − M-Terra d ins avg( , , )DTC t t t








, (6) 266 

where ∆LFC characterizes the systematic deviation of the steady state component; gM is geospatial code (Yang et al.,2022); 267 

DEMM, NDVIM, slpM, αM, ΔtM, and vM are the DEM, NDVI, slope, albedo, difference between tins and tavg, and the atmospheric 268 

water vapour content, respectively; ∆DTC characterizes the warming effect of solar radiation, and the weather effect can be 269 

characterized by the atmospheric water vapor content. According to Zhang et al. (2021), the HFC characterizes the change in 270 

LFC with ∆DTC and WTC superimposed under ideal clear-sky conditions. The detailed calculation of ∆DTC can be found in 271 

Zhang et al. (2019).  272 



13 

 

fM-T2 is constructed as follows. Initially, the correlation image of the target pixel M is determined within the T2 period and the 273 

following two conditions need to be satisfied by the correlation image: (i) the mean bias deviation (MBD) of the DTC estimated 274 

from its corresponding GLDAS LST (10:00-14:00 and 21:00-3:00 local solar time) should be lower than 1 K, and (ii) the 275 

difference in the average observation time between the GLDAS pixels should not exceed 0.5 h. Using the correlation image, 276 

the similar image family S of the target pixel M is determined. Subsequently, in the correlation image, using similar land cover 277 

type criteria, the similar image family S of the target pixel M within the GLDAS pixels is identified. S needs to meet the 278 

following two conditions: (i) it should have the same land cover type as M and (ii) R of the Terra/MODIS LST time series 279 

corresponding to S and M need to be greater than 0.8. 280 

In the third stage, we need to estimate the HFCcld within the temporal gap period at the Aqua overpass time. HFCcld is 281 

essentially an atmospheric correction term and it is obtained from the GLDAS LST in the RTM method. According to the 282 

parameterization scheme of the RTM method, the clear-sky MODIS pixels and their corresponding GLDAS LST are the 283 

necessary inputs for the estimation of HFCcld. It is not possible to obtain HFCcld directly in this stage due to the lack of 284 

Aqua/MODIS in T1. 285 

Inspired by the Temporal Component Decomposition (TCD) method (Zhang et al., 2019b) and other methods integrating 286 

PMW and TIR LST (Parinussa et al., 2016; Zhang et al., 2020), the initial value of the 1-km HFCcld can be expressed as: 287 

cld-M-G-Auqa-T1 d ins M-G-Auqa-T1 d ins d avg d insM-Auqa-T1 M-Auqa-T1( , ) ( ) ( , ) ( )HFC t t LST t t LFC t t HFC t t= − −, , , (7) 288 

where HFCcld-M-G-Aqua-T1 is the initial 1-km HFCcld of M; and LSTM-G-Aqua-T1 is the initial 1-km LST of M under all-weather 289 

conditions.  290 

Based on the findings of Yao et al. (2023), we established the method for acquiring the initial 1-km all-weather LST. Initially, 291 

the GLDAS LST that corresponded to the Aqua overpass time is corrected for systematic bias using the cumulative distribution 292 

function matching (Xu and Cheng., 2021). In the T1 period, since Aqua/MODIS LST is unavailable, we employed MODIS 293 

LST from 2003-2022 to guarantee an adequately large sample size of MODIS LST. We then downscaled the GLDAS LST to 294 

1 km through the following two steps. 295 

(i) Calculating the LST differences between the MODIS and GLDAS: 296 

M-G-Auqa-T1 d ins G-Auqa-T1 d ins M-Auqa-T1 d ins

M-Auqa-T1 d ins d insM-Auqa-T1 M-Auqa-T1 d ins

( , ) ( , ) ( , )

( , ) ,( ) ( , )

LST t t LST t t LST t t

LST t t t tLFC HFC t t

 −

=

=


+

, (8) 297 

where LSTG-Aqua-T1 is GLDAS LST; LSTM-Aqua-T1 is ideal MODIS clear-sky LST. LSTM-G-Aqua-T1 is an LST difference image. 298 

One pixel in GLDAS LST corresponds to 625 (25 × 25) pixels in MODIS LST. The LST differences are calculated as GLDAS 299 

LST minus 625-pixel average MODIS LST. LST difference image was then directly resampled to 1 km. 300 

(ii) Downscaling of GLDAS LST: 301 

M-G-Auqa-T1 d ins M-G-Auqa-T1 d ins M-Auqa-T1 d ins
( , ) ( , ) ( , )LST t t LST t t LST t t=  + , (9) 302 

where LSTM-G-Aqua-T1 is the initial 1-km downscaled GLDAS LST. The heterogeneity of the underlying land surface within a 303 

0.25° grid is reflected by MODIS LST, and the downscaled GLDAS LST also exhibits the same characteristic. This is based 304 
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on the hypothesis that the spatial variations in MODIS LST are the same as that of GLDAS LST. However, LSTM-G-Aqua and 305 

HFCcld-M-G-Aqua-T1 in the results of Eq. (9) may still contain systematic errors due to inadequate downscaling (Eq. 8). Therefore, 306 

a convolutional implementation of a sliding window was used here to reduce the systematic error contained in HFCcld-M-G-Aqua-307 

T1 (Chen et al., 2011; Wu et al., 2015; Zhang et al., 2019b). 308 

The schematic diagram of the convolutional implementation of the sliding window is shown in Fig.4. To fully reduce the 309 

systematic bias, the size of the sliding window should be slightly larger than a GLDAS pixel (26 × 26 km2). According to 310 

Zhang et al. (2019, 2021), HFCcld after optimization of M (i.e., HFCcld after eliminating the systematic errors) can be obtained 311 

by convolving the HFCcld of the surrounding similar pixels by combining geological factors (e.g., land cover type, spatial 312 

distance, and topography). This method is based on the interrelationship of different LSTs: neighboring HFCcld are correlated 313 

in a limited spatial domain. Previous studies have shown that the approaches analogous to the convolutional implementation 314 

of sliding windows have a good ability to improve both the accuracy and the image quality of the merged LST (Ding et al., 315 

2022; Long et al., 2020; Zhang et al., 2019b). Similar pixels (termed as S) need to meet the following criteria: (i) they are 316 

within the same sliding window as the target pixel, and (ii) their land cover type does not differ from the target pixel. Therefore, 317 

the target pixel itself is also a reference pixel. Eventually, the HFCcld of the target pixel can be expressed as: 318 

cld-M-Aqua-T1 d ins Scld-S d ins

1

( , ) ( , )
ii

n

i

HFC t t wHFC t t
=

=  , (10) 319 

where n is the number of similar pixels; HFCcld-S denotes HFCcld-M-Aqua-T1 of the similar pixels; and ws is the contribution of 320 

similar pixels to M, which can be expressed as: 321 

i i i i i i i

i i i

S S S S S S S

S S S

1

2 2

S S M S M

S S M

S S M

 =  ( )

(1/ ) 1/

( ) ( )
i n n

i i

i i

n

n

i

w D H N D H N

D d d

d x x y y

H DEM DEM

N NDVI NDVI

=

    


 =



= − + −


= −


= −





,  (11) 322 

where DS, HS, and NS are the differences between the similar pixels and M in terms of the spatial distance, DEM, and NDVI, 323 

respectively. 324 
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 325 

Figure 4: Schematic of the HFCcld convolutional optimization. 326 

3.4 Implementation of E-RTM 327 

A detailed description of the implementation process of the RTM method is provided by Zhang et al. (2021) and it is only 328 

briefly described in this section. Here, Module II and Module III's implementation is explained in detail. 329 

Stage Ⅰ: Data preprocessing and spatio-temporal matching 330 

In this stage, the data are preprocessed and spatio-temporal matching. First, valid MODIS LSTs are selected with the following 331 

two standards: (i) the quality control of the pixel was flagged as “good” and (ii) the view angle of the pixel was lower than 332 

60°. Second, the selected temporal descriptors from GLDAS data were temporally interpolated using the cubic spline function 333 

to observe the time of MODIS LST for temporal matching. Third, the observation times for cloudy pixels and temporal gaps 334 

were recovered using a 16-day revisiting period. Fourth, the 90-m DEM, 500-m albedo, and 500-m NDSI were upscaled to 1 335 

km to match the MODIS LST. Fifth, the GLDAS water vapor was extended to 1 km by cubic convolution interpolation. During 336 

the temporal gap (DOY 1–54 2000), SPOT VGT served as the NDVI, GLASS albedo was extended to a 1 km resolution using 337 

cubic convolution interpolation, and the NDSI was determined by taking the average of the corresponding days in 2001 and 338 

2002. The 16-day 1-km NDVI is temporally interpolated to daily resolution. The daily missing albedo caused by the cloud is 339 

filled up through Statistics-based Temporal Filter (Liu et al., 2013a). In addition, all data are spatially matched. 340 

 341 
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Stage ⅠI: Implementation of the RTM 342 

(i) For the target MODIS pixel, its annual-scale LST time series are extracted and fitted to obtain the LFC component. 343 

(ii) The HFC components of all comparable pixels are estimated. 344 

(iii) To create a mapping model of the HFC components and corresponding spatial descriptors, a machine-learning approach 345 

is implemented. 346 

(iv) The trained mapping model is utilized to determine the HFC under clear-sky conditions. 347 

(v) Bias correction of the GLDAS LST to match that of the MODIS LST. 348 

(vi) Calculate the HFCcld present in the GLDAS LST. 349 

(vii) Estimate the HFCcld of the target pixel. 350 

(viii) To achieve the estimation of LST under clear-sky conditions. (LFC+HFC). 351 

(ix) Implement the estimation of LST under cloudy conditions. (LFC+HFC+ HFCcld). 352 

(x) Repeat the above steps for every pixel of MODIS LST to achieve the fusion of TIR LST and GLDAS LST. 353 

 354 

Figure 5: Implementation flow of the RTM method 355 

 356 
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Stage ⅠII: Implementation of the RFSTM 357 

(i) For a single 1-km pixel, training the RF regression relationship (i.e., fT) between TRIMS-Terra LST and the temporal 358 

descriptors from GLDAS data via Eq. (2). The RF parameters were set as follows: n estimators=85, max depth=18, max 359 

features=3, and min samples leaf=1. In the temporal stage of RFSTM, all-weather samples from 2000 to 2005 were compiled. 360 

Two-thirds of the samples are used for model training and the remaining are for model validation (Breiman, 2001). 361 

(ii) For a specific day (td), using the 1-km NDVI (Sobrino et al.,2004) and NDSI to classify the study area into several subareas, 362 

including thick vegetation (NDVI>0.5), sparse vegetation (0.2≤NDVI≤0.5), barren land areas (NDVI<0.2), and snow-ice areas 363 

(NDSI>0.1) (Zhang et al., 2019a) and water (NDVI<0). Then, for each subarea, the spatial descriptors of LST are input into 364 

fS via Eq. (3). The RF parameters were set as follows: n estimators=420, max depth=43, max features=9, and min samples 365 

leaf=1.Note that fS with RF is trained with the 1-km LST and spatial descriptors of a day, with the same observation time as td 366 

and the smallest difference in the number of days between td. 367 

(iii) For a single 1-km pixel, train the RF-based regression contribution function (i.e., fM in Eq. 4) using LSTT, LSTS, and 368 

TRIMS-Aqua LST under clear-sky conditions. Then, estimate the 1-km TRIMS-Aqua LST during the period of DOY 1-54 369 

2000 by applying fM to clear-sky and cloudy conditions, respectively. 370 

 371 

Stage IV: Implementation of the TSETR 372 

(i) For a single Aqua-MODIS pixel M in T1, determine its LFC in Eq. (5) using Aqua/MODIS LST (T2) and Terra/MODIS 373 

LST (T1 and T2). 374 

(ii) Train the RF measuring (fM-T2) between all of ∆HFC and its descriptors (see section 3.3) of all similar pixels. The RF 375 

measuring function tools are also provided by the MATLAB platform. The RF parameters were set as follows: n estimators = 376 

100, max depth = 20, max feature = 4, min samples leaf = 1. Determine the reconstructed HFC of M through Eq. (6) by 377 

applying the descriptors of HFC in M to fM-T2. 378 

(iii) Implement the bias correction for GLDAS LST of the target GLDAS grid by using cumulative distribution function 379 

matching. Then, downscale the GLDAS LST to 1 km through Eqs. (8) and (9). 380 

(iv) Determine the initial 1-km HFCcld of M through Eq. (7). Finally, determine the HFCcld of M through Eqs. (10) and (11). 381 

3.5 Evaluation strategies 382 

As can be seen from Fig. 2, TRIMS LST can be divided into two parts according to the period of data coverage: data within 383 

the temporal gap period and data outside the temporal gap period. There are differences in the evaluation strategies within the 384 

two periods due to the different availability of validation data. 385 

For outside the temporal gap period, the TRIMS LST was compared with LSTs derived from two reanalysis datasets (i.e., 386 

GLDAS and the independent ERA5-Land) and retrievals from two different satellite TIR sensor (i.e., MODIS and the 387 

independent AATSR). In comparing different LSTs, samples with time differences greater than five minutes were excluded 388 
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(Freitas et al., 2010; Göttsche et al., 2016; Jiang and Liu, 2014). The quantitative metrics used in comparison analyses include 389 

the MBD, STD of bias, and coefficient of determination (R2). Then, the TRIMS LST was validated under different weather 390 

conditions based on in-situ LST from the ground sites listed in Table I. The three metrics used the mean bias error (MBE), 391 

root-mean-square-error (RMSE), and R2. 392 

During the temporal gap period, the TRIMS LST was tested using three methods. Firstly, the results of the original RTM 393 

method were cross-referenced and validated empirically with RFSTM and TSETR. In 2003, RFSTM was utilized to merge 394 

GLDAS LST and Terra/MODIS LST, resulting in a 1-km all-weather LST. Additionally, the TSETR method was employed 395 

to generate TRIMS-Aqua LST for the periods of 2003–2005 and 2013–2015. For the actual data generated for the period 2000-396 

2002, specifically Aqua LST, the similarity of the TRIMS LST time series was quantified to examine the reliability of TRIMS 397 

LST during the Aqua/MODIS temporal gap. The time series angle (TSA), inspired by the spectral angle that is widely used to 398 

measure the similarity between spectral curves (Kruse et al., 1993), was used to quantify the similarity of the TRIMS LST 399 

time series. The TSA is defined as: 400 

TRIMS-Aqua TRIMS-Terra1

TRIMS-Aqua TRIMS-Terra

cos
−

=


LST LST

LST LST
,(12) 401 

where θ is the TSA (unit: degree); LSTTRIMS-Aqua and LSTTRIMS-Terra are time series of TRIMS-Aqua and TRIMS-Terra LSTs, 402 

respectively. From this formula, we know that a smaller TSA denotes higher similarity. 403 

Based on the CLCD described in Section 2.1, six subareas with a single land cover type and no land cover change in T1 and 404 

T2 (January 1, 2000 to January 3, 2005) were selected to extract the corresponding TRIMS-Terra and TRIMS-Aqua LST time 405 

series. These six subareas (Fig.1) were recorded as A (82.30°N–83.16°N, 39.63°E–40.03°E, barren land), B (124.73°N–406 

125.17°N, 51.51°E–51.95°E, forest), C (111.84°N–112.30°N, 42.47°E–42.85°E, grassland), D (100.78°N–101.53°N, 39.92°E 407 

–40.44°E, barren land), E (98.14°N–98.61°N, 33.92°E–34.25°E, grassland), and F (91.73°N–92.22°N, 31.7°E–32.01°E, 408 

grassland). Then, the TSA was calculated to quantify the similarity between the TRIMS-Terra and TRIMS-Aqua LST time 409 

series. 410 

Finally, we evaluated percentage of valid pixels in TRIMS LST and MODIS LST to prove the continuity of TRIMS LST 411 

during the temporal gaps. Furthermore, we analysed the fluctuations in LST during the connectivity period (February and 412 

March 2000 for Terra; June and July 2002 for Aqua) to demonstrate the uninterrupted TRIMS LST sequence at the conclusion 413 

of the filled duration. 414 
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4. Results and discussion 415 

4.1 Comparison of the TRIMS LST with reanalysis data 416 

With the E-RTM method, TRIMS LST products from January 1 2000 to December 31 2022 were generated. The spatial 417 

resolution was 1 km. The temporal resolution was four observations per day, which is the same as the Terra/MODIS and 418 

Aqua/MODIS. Fig. 6 shows the daytime TRIMS-Aqua LST on DOY 1, 91, 181, and 271 as examples.  419 

Fig. 6 shows that the TRIMS-Aqua LST has a similar spatial pattern as the GLDAS LST since the latter is an input for the 420 

former. Good agreement in the spatial pattern in different seasons can also be observed between TRIMS-Aqua LST and the 421 

independent ERA5-Land LST. A careful observation of Fig. 6 demonstrates that the TRIMS LST is spatially seamless and its 422 

spatial patterns are as expected. Southern China as well as southeast Asia and the south Asian subcontinent in low latitudes 423 

are warm in all seasons because of additional absorbed solar radiation. The Tibetan Plateau, with much higher elevation and 424 

regions in high latitudes, is much cooler than other regions. In spring (DOY 1), summer (DOY 181), and autumn (DOY 271), 425 

northwestern China, where the dominant land cover type is barren land, is much warmer than other regions. Further comparison 426 

indicates that TRIMS LST is generally slightly warmer than the GLDAS LST and the ERA5-Land LST. For example, on DOY 427 

1 of 2000, the LST is generally below 278 K in the eastern Tibetan Plateau, while the GLDAS LST and the ERA5-Land LST 428 

are approximately 3–5 K lower. In the generation scheme of the TRIMS LST, the MODIS LST, which is generally warmer 429 

than the LST provided by reanalysis data, is an important input as well as a reference to ‘calibrate’ the GLDAS LST. This 430 

induces the ‘merged’ TRIMS LST to be warmer than the GLDAS LST as well as the ERA5-Land LST. 431 

To further examine the image quality of the TRIMS-Aqua LST, Fig. 7 shows the daytime TRIMS-Aqua LST, GLDAS LST, 432 

and ERA5-Land LST of the subarea shown in Fig. 6 at the Aqua overpass time in 2000. Compared with the GLDAS LST and 433 

the ERA5-Land LST, the TRIMS LST offers more spatial details because of its much higher spatial resolution. Thus, one can 434 

see clear terrain-induced temperature variations. Furthermore, Fig. 7 shows that no evident spatial discontinuities exist in the 435 

TRIMS LST, indicating the E-RTM method performs satisfactorily in addressing the spatial scale mismatch between the 436 

MODIS LST and GLDAS LST (Zhang et al., 2021). 437 

4.2 Comparison of the TRIMS LST with satellite TIR LST products 438 

The daily TRIMS LST was compared with the independent ENVISAT/AATSR LST (from 2004 to 2012) and the Terra/Aqua 439 

MODIS LST (from 2000 to 2021 for Terra and from 2002 to 2021 for Aqua). Note that the AATSR and MODIS only have 440 

clear-sky LST. The density plots are shown in Fig. 8. To facilitate the data processing and presentation, 1%/1‰ matched 441 

TRIMS-AATSR/MODIS pairs were randomly extracted. Fig. 8 indicates good consistency between the TRIMS LST and 442 

AATSR/MODIS LST. Compared with AATSR, the overall MBD/STD values of TRIMS were 0.37 K/1.55 K and -0.44 K/1.22 443 

K for daytime and nighttime, respectively; compared with MODIS, the overall MBD/STD values were 0.09 K/1.45 K and -444 

0.03 K/1.17 K for daytime and nighttime, respectively. Fig. 8 also shows that better agreements exist during nighttime because 445 

of lower thermal heterogeneity. 446 
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 447 

 448 
Figure 6: Spatial patterns of the daytime TRIMS-Aqua LST, GLDAS LST, and ERA5-Land LST on four selected days in 2000.  449 
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 450 
Figure 7: The daytime TRIMS-Aqua LST, GLDAS LST, and ERA5-Land LST of the subarea (shown in Fig.6) in 2000. 451 

 452 



22 

 

 453 

Figure 8: Density plots between the TRIMS LST and the AATSR/MODIS LST. 454 
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 455 
Figure 9: Histograms of the MBD and STD to compare the TRIMS LST and the AATSR LST. 456 

To further examine the deviation of the TRIMS LST from the AATSR/MODIS LST, the MBD and STD values were calculated 457 

for each day. Fig. 9 shows the corresponding histograms. For AATSR, the daily daytime MBD and STD were mainly 458 

concentrated in the ranges of 0 K–0.60 K and 1.05 K–1.15 K, respectively; the daily nighttime MBD and STD were mainly 459 

concentrated in the ranges of -0.40 K to 1.0 K and 0.75 K to 1.15 K, respectively. The positive deviation and negative deviation 460 

were consistent with those in Fig. 9 (a) and Fig. 9 (b). For the MODIS case, the daytime MBD was concentrated between -0.6 461 

K and 1.0 K, and STD was concentrated between 1.0 K and 2.50 K; the nighttime MBD was concentrated between -0.6 K and 462 

0.3 K, and STD was concentrated between 0.9 K and 1.50 K (Fig. 10). As shown above, it should be concluded that the daily 463 

differences between the long-term TRIMS LST and AATSR/MODIS LST remain stable. 464 

 465 

4.3 Validation against in-situ LST outside the temporal gap 466 

The TRIMS LST was quantitatively validated against the in-situ LST. Remove anomalies caused by transient environmental 467 

factors based on 3σ (standard deviation) filtering (Göttsche et al., 2016; Yang et al., 2020). It should be noted that the results 468 

for all sites can be found in Tables B1 and B2. The nineteen ground sites were divided into four groups according to locations 469 
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and land cover types (Group Ⅰ: ARO, D105, DSL, EBA, and MQU; Group Ⅱ: DET, GAZ, GOB, HZZ, and SSW; Group Ⅲ: 470 

DAM, DXI, GUT, HLA, and TYU; Group Ⅳ: CBS, DHS, QYZ, and SDQ). Table II and Table III show the validation results 471 

of TRIMS LST against the in-situ LST under different sky conditions. In addition, the validation results of the clear-sky 472 

MODIS LST are provided for comparison.  473 

 474 

 475 

Figure 10: Histograms of the MBD and STD to compare the TRIMS LST and the MODIS LST. 476 

Table II: R2, MBE, and RMSE of the daytime validation for different groups.  477 

Group Land cover type Condition Amounts TRIMS LST MODIS LST 

MBE (K) RMSE (K) R2 MBE (K) RMSE (K) R2 

I Grassland Clear-sky 5370 0.26 2.15 0.95 0.61 2.37 0.95 

Cloudy 6972 0.41 2.18 0.96 – – – 

II Desert or barren land Clear-sky 5930 0.46 2.30 0.98 0.79 2.53 0.98 

Cloudy 5698 0.43 2.26 0.98 – – – 
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III Cropland Clear-sky 5738 0.02 2.11 0.97 -0.21 2.52 0.95 

Cloudy 7570 0.04 2.11 0.97 – – – 

IV Forest Clear-sky 3170 0.55 2.46 0.97 0.72 2.38 0.98 

Cloudy 3655 0.68 2.27 0.98 – – – 

 478 
Table III: R2, MBE, and RMSE of the nighttime validation for different groups. 479 

Group Land cover type Condition Amounts TRIMS LST MODIS LST 

MBE (K) RMSE (K) R2 MBE (K) RMSE (K) R2 

I Grassland Clear-sky 8175 -0.70 1.65 0.98 -0.99 1.69 0.98 

Cloudy 5254 -0.13 1.64 0.97 – – – 

II Desert or barren land Clear-sky 6095 -0.64 1.43 0.99 -0.67 1.53 0.99 

Cloudy 5244 -1.17 1.85 0.99 – – – 

III Cropland Clear-sky 5314 -0.83 1.76 0.98 -0.75 1.60 0.98 

Cloudy 7243 -0.60 1.74 0.98 – – – 

IV Forest Clear-sky 2800 -0.98 1.92 0.98 -0.97 2.09 0.98 

Cloudy 3332 -0.94 1.90 0.99 – – – 

 480 

Under clear-sky conditions, the TRIMS LST had an accuracy close to that of the MODIS LST as shown in Table II and Table 481 

III. The MBE of the TRIMS LST ranged from -0.98 K to 0.68 K and the RMSE was 1.43 K to 2.46 K. The RMSE of the 482 

TRIMS LST under clear-sky conditions is lower than that of the MODIS LST, except for Group IV. The RMSEs of the MODIS 483 

LST were reduced by 0.22 K (Group Ⅰ), 0.23 K (Group Ⅱ), and 0.41 K (Group Ⅲ), respectively. The nighttime results were 484 

generally better than the daytime results, with an average RMSE of 1.74 K. The R2 of the TRIMS LST for the four groups of 485 

sites was higher than 0.95 under clear-sky conditions, indicating that the TRIMS LST is in good agreement with the in-situ 486 

LST. The improved accuracy of the TRIMS LST may be due to the reduction of the systematic bias of the original MODIS 487 

LST in the E-RTM method by extracting the LFC and HFC (Ding et al., 2022). 488 

Under cloudy conditions, the accuracy of TRIMS LST is slightly lower compared to clear-sky conditions, resulting in a 0.35 489 

K increase in the overall RMSE. For TRIMS LST under cloudy conditions, the accuracy is marginally below that under clear-490 

sky conditions, and the overall RMSE increased by 0.35 K. For the four groups of sites, the MBE values of TRIMS LST were 491 

-0.13 K (Group Ⅰ), -1.17 K (Group Ⅱ), -0.60 K (Group Ⅲ), and -0.94 K (Group IV), revealing that the TRIMS LST is 492 

underestimated under cloudy conditions. According to the parameterization scheme of the E-RTM method, the accuracy of 493 

the estimated HFCcld under cloudy conditions is affected by the GLDAS LST, which has a negative deviation from the MODIS 494 

LST as shown in Section 4.1. In contrast, Although the GLDAS LST is bias-corrected, uncertainty may still exist, which is 495 
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ultimately detrimental to the accurate recovery of the LST for the cloud-contaminated region. Overall, the validation results 496 

indicate that TRIMS LST has good accuracy under cloudy conditions as well as under clear-sky conditions. 497 

For ground sites in Group III with a dominant land cover type of desert or barren land, the nighttime validation shows that the 498 

TRIMS-Aqua LST is systematically underestimated, with an MBE of -1.17 K to -0.64 K. After checking the calculated STD, 499 

we believe the spatial scale mismatch between the ground site and the pixel is not the main reason for the systematic 500 

underestimation. Further examination shows that the clear-sky MODIS LST is significantly underestimated: the MBEs of 501 

Aqua/MODIS LST are -1.88 K, -1.03 K, -1.33 K, and -0.60 K for GOB, HZZ, SSW, and GAZ, respectively. Such a cold bias 502 

in arid and semiarid regions is also been reported by Li et al. (2019) for the MYD11 LST product. The above results indicate 503 

that the accuracy of TRIMS LST is largely dependent on the used MODIS LST. 504 

Reanalysis LST was also validated against in-situ LST (Fig. 11). GLDAS LST is generally underestimated compared to in-505 

situ LST, with MBE of -0.29 K and RMSE of 5.86 K. Under clear-sky and cloudy conditions, the GLDAS LST exhibits MBE 506 

values of 0.03 K and -0.62 K, respectively. On the other hand, ERA5-Land LST is overestimated compared with in-situ LST, 507 

with MBE of 1.60 K and RMSE of 6.37 K. This indicates that the accuracy of the ERA5-Land LST is lower than that of the 508 

GLDAS LST. Notably, this discrepancy is more pronounced under clear-sky conditions. The results of the comparison with 509 

MODIS LST are shown in Fig. 12. GLDAS LST is underestimated relative to MODIS LST with a small deviation, while 510 

ERA5-Land LST is overestimated relative to MODIS LST with a large deviation. 511 

4.4 Validation of TRIMS-Aqua LST and TRIMS-Terra LST during the temporal gap 512 

During the T1 period, there are no independent in-situ LST measurements available. Observations of D105 and GAZ began 513 

on DOY275 (October 2) of 2002. To investigate the generalization ability of the RFSTM in the temporal dimension, the method 514 

is implemented as follows: For 2003, the GLDAS LST and Terra/MODIS LST are also merged to generate 1-km TRIMS-515 

Terra LST. This study utilized the TSETR method to reconstruct the TRIMS-Aqua LST over 915 days. To ensure a 516 

comprehensive analysis, TRIMS-Aqua LST for the years 2003 (DOY1)–2005 (DOY185) and 2013 (DOY1) – 2015 (DOY185) 517 

were generated using the TSETR method. This allowed for the inclusion of a significant number of independent ground sites 518 

for validation purposes. 519 

Table IV shows the results of the comparison between the TRIMS-Terra LST generated by the RFSTM-based method and the 520 

TRIMS-Terra LST generated by the RTM-based method. The TRIMS-Terra LST generated by the RTM method and the 521 

TRIMS-Terra LST generated by the RFSTM method have similar accuracies for the sites. The MBEs differ by no more than 522 

0.50 K and the RMSEs differ by no more than 1.2 K. However, the RFSTM method is slightly less accurate than the TRIMS-523 

Terra LST generated by the RTM method. It is important to note that the RFSTM method is only used in this study to generate 524 

data for 54 days, which has a relatively smaller impact on the overall accuracy of TRIMS LST. 525 

 526 

 527 
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 528 
Figure 11: Density plots between the reanalysis LST and in-situ LST. 529 

 530 
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 531 

Figure 12: Histograms of the MBD to compare reanalysis LST and MODIS LST. 532 

 533 

Table IV: MBE and RMSE from validation results of TRIMS-Terra LST with the in-situ LST 534 

Site Condition TRIMS-Terra LST (RTM) TRIMS-Terra LST (RFSTM) 

Daytime Nighttime Daytime Nighttime 

MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K) 

D105 All 1.63 3.15 -1.05 1.94 1.75 3.30 -1.55 2.20 

Clear-sky 1.78 2.17 -1.17 2.04 1.85 3.34 -2.37 2.66 

Cloudy 1.54 3.25 -0.88 1.78 1.04 3.44 -0.40 1.29 

GZA All 0.93 2.61 -0.78 1.76 1.26 3.10 -1.95 2.26 

Clear-sky 0.79 2.51 -0.68 1.70 0.94 2.72 -1.26 2.10 

Cloudy 1.11 3.71 -0.94 1.85 1.61 4.20 -1.47 2.35 

 535 

Combining the results of Table IV and Table V, it can be observed that the TRIMS-Aqua LST generated by the TSETR method 536 

and the TRIMS-Aqua LST generated by the RTM method exhibit similar accuracies at the sites. The differences in MBE and 537 

RMSE between these two methods are not significant, with the MBE differing by no more than 0.40 K and the RMSE differing 538 

by no more than 0.70 K. These findings demonstrate that the TSETR method maintains high accuracy and stability when 539 

generating data over longer periods. Based on this, it can be concluded that the TRIMS-Aqua LST in the T1 period 540 

reconstructed using the TSETR method is reasonably accurate. 541 

Table IV and Table V demonstrate the reliability of RFSTM and TSETR. Fig. 13 further shows the quantification results of 542 

the similarity between the TRIMS-Aqua LST and TRIMS-Terra LST time series during the temporal gaps. Overall, the trends 543 

in the time series of TRIMS-Terra and TRIMS-Aqua LST are very consistent, and they generally have a high degree of 544 
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similarity. The daytime time series shows that the TRIMS-Aqua LST is generally higher than the TRIMS-Terra LST, while 545 

the opposite is observed for the nighttime. In particular, for subareas E and F, the TRIMS-Aqua LST shows a significant 546 

systematic deviation from the TRIMS-Terra LST during nighttime. The distribution of the curves in Fig. 13 reveals that the 547 

daytime LST time series had more large fluctuations, while the nighttime variation is more subdued. The TSA is lower at 548 

nighttime than daytime, indicating that the time series similarity between the TRIMS-Aqua LST and the TRIMS-Terra LST is 549 

higher at nighttime. In addition, the TRIMS-Terra and TRIMS-Aqua LST are slightly more similar in the T1 than in T2 among 550 

these six regions. This situation is as expected since the TRIMS-Aqua LST in T1 is derived from a mapping created by the 551 

data at the Terra overpass time. The differences in the TSA between T1 and T2 ranged from 0.0080 to 0.0710. The mean 552 

differences are 0.0465 (daytime) and 0.0433(nighttime). The above results indicate that the similarity of the LST time series 553 

of T1 and T2 is relatively close. This finding demonstrates that the difference between TRIMS LST at the Aqua and Terra 554 

overpass times is stable in T1. 555 

 556 

 557 

Table V: MBE and RMSE from validation results of TRIMS-Aqua LST with the in-situ LST 558 

Site Condition TRIMS-Aqua LST (RTM) TRIMS-Aqua LST (TSETR) 

Daytime Nighttime Daytime Nighttime 

MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K) MBE (K) RMSE (K) 

ARO All -0.53 2.14 0.58 1.77 -0.75 2.38 0.64 2.17 

Clear-sky -0.47 2.11 0.52 1.74 -0.63 2.35 0.75 2.25 

Cloudy -0.57 2.16 0.70 1.81 -0.87 2.34 0.88 1.85 

DAM All -0.24 2.06 0.55 1.81 -0.38 2.47 0.60 1.84 

Clear-sky -0.28 2.03 0.52 1.81 -0.45 2.61 0.53 2.03 

Cloudy -0.23 2.09 0.56 1.82 -0.30 2.73 0.76 2.32 

D105 All 0.80 2.67 -1.01 1.77 1.11 2.31 -1.15 1.88 

Clear-sky 1.55 3.05 -0.94 1.71 1.87 3.22 -1.37 1.86 

Cloudy 0.59 2.54 -1.09 1.85 0.45 1.96 -0.63 1.22 

GZA All -0.74 2.73 -0.67 1.51 -0.93 3.01 -1.08 2.09 

Clear-sky -0.60 2.61 -0.65 1.48 -0.98 2.74 -0.68 1.83 

Cloudy -0.93 2.89 -0.73 1.60 -1.05 3.29 -0.94 2.24 

GOB All -0.34 2.60 0.21 1.87 -0.62 2.77 0.47 2.15 

Clear-sky 1.88 2.41 1.64 1.93 1.77 2.76 1.66 2.04 
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Cloudy -2.31 2.75 -1.51 1.79 -2.63 2.84 -1.79 2.45 

SDQ All -0.27 2.41 0.93 1.78 -0.59 2.75 1.23 2.40 

Clear-sky -0.18 2.37 0.97 1.80 -0.19 2.09 1.26 2.19 

Cloudy -0.39 2.46 0.87 1.74 -0.81 2.88 1.17 2.37 

 559 

 560 

 561 

Figure 13: TRIMS-Terra and TRIMS-Aqua LSTs from January 1, 2000, to January 3, 2005, and statistics of the time series similarity. 562 

Meanwhile, we determined percentage of valid pixels in TRIMS LST and MODIS LST, respectively (Fig. 14). The findings 563 

reveal that TRIMS LST is spatio-temporally continuous during the temporal gaps. The percentage of valid pixels in MODIS 564 

LST ranges from approximately 10% to 70%, exhibiting substantial seasonal fluctuations. The rise in water vapour, heightened 565 

convection, and increased cloud cover during summers could account for the reduced number of effective pixels. This condition 566 
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also clarifies why in most circumstances, fewer valid pixels are evident throughout the daytime than at nighttime. By 567 

comparison, the number of valid pixels in TRIMS LST changes moderately over time. Approximately 1‰ pixels were left 568 

unoccupied for a few days, likely due to the unavailability of reference groups and corresponding pixels within the search 569 

window during the determination of HFCcld for these pixels. However, the percentage of valid pixels almost reached 100% 570 

following the combination of the RFSTM and the TSETR approach. This phenomenon is a quantitative demonstration of the 571 

success of the E-RTM method in recovering unspecified LSTs during the temporal gaps. 572 

 573 

Figure 14. Percentage of valid pixels in MODIS LST and TRIMS LST in 2000 (a) and 2002 (b). 574 

Finally, our analysis focused on examining the temporal variations in LST during the connectivity period (February and March 575 

2000 for Terra; June and July 2002 for Aqua). The outcomes reveal that there is no interruption in the sequence at the 576 

conclusion of the filled duration (Fig.15). 577 

 578 

Figure 15. MBD and STD for daytime MODIS LST compared to nighttime MODIS LST. 579 
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During the connectivity period, we calculated MBD and STD for daytime MODIS LST compared to nighttime MODIS LST. 580 

The MBD and STD for MODIS LST exhibited large fluctuations between dates, whereas the MBD/STD of TRIMS LST 581 

showed smoother overall trends with less fluctuation between dates. This is attributed to the consideration of LFC as the 582 

primary base element in the E-RTM method, particularly during the temporal gap when valid MODIS LST data is lacking. 583 

The trends in MBD/STD for TRIMS LST and MODIS LST are generally consistent outside of the temporal gaps. Specifically, 584 

between 24 February and 31 March 2000, MBD/STD demonstrated a general upward trend, while between 3 July and 31 July 585 

2002, it showed an overall downward trend. Importantly, the trend of MBD/STD changes before and after the connecting dates 586 

is continuous without abrupt changes or breaks, as depicted in Fig. D, indicating uninterrupted LST time series during the 587 

temporal gaps. 588 

 589 

4.5 Advantages of the TRIMS LST 590 

Recently, several all-weather LST datasets have been released by the scientific communities (see Appendix C). An all-weather 591 

LST product series with a temporal resolution from 15 min (Martins et al., 2019) to monthly (Metz et al., 2017; Zhao et al., 592 

2020a; Hong et al., 2022; Yao et al., 2023), a spatial resolution from 1 km to 0.5°, and a spatial coverage from a specific region 593 

(Qinghai-Tibet Plateau, China, Asia, Europe and Africa) to globe has been preliminarily formed. All-weather LST products 594 

based on MODIS LST interpolation (Zhang et al., 2022) or fusion with other multi-source data (Xu and Cheng. 2021; Zhang 595 

and Cheng. 2020b; Zhang et al. 2020c; Zhang et al., 2021; Yu et al. 2022) dominate the field. TRIMS LST similarly belongs 596 

to this group. Overall, the uniqueness or advantages of the TRIMS LST are in three main areas: 597 

First, the TRIMS LST demonstrates comparable or better accuracy than existing publicly released all-weather/spatially 598 

seamless LST datasets. A thorough comparison with satellite TIR LST products has indicated the effectiveness of TRIMS LST, 599 

with MBD ranging from -1.5 K to 1 K and STD ranging from 1 K to 3 K, thus confirming its accuracy and consistency (Fig. 600 

8, Fig. 9, and Fig. 10). Furthermore, in-situ LST evaluations show MBE ranging from -1.64 K to 2.88 K and RMSE ranging 601 

from 1.82 K to 3.48 K (Table II and Table III). Interestingly, no significant difference is observed between clear-sky and 602 

cloudy conditions, indicating the robustness of TRIMS LST across various situations. Furthermore, the RTM technique was 603 

utilized at four top-quality stations and the nearby region (11x11 km): Evora, Gobabeb, KIT-Forest, and Lake Constance 604 

(Meng et al., 2023). The TRIMS LST has performed favorably in validating results across different land cover types, including 605 

barren land, savannas, and forests, with an RMSE range of 1.90 K to 3.10 K. Additionally, over water site, TRIMS LST has 606 

an RMSE of 1.60 K. Thus, based on the results of this study, TRIMS LST can be considered a reliable source of LST.  607 

Second, the method employed in this study effectively overcomes the issue of boundary effects in reconstructing the all-608 

weather process due to the large differences in spatial resolution between different data sources (Zhang et al., 2021; Quan et 609 

al., 2023). This is achieved through the utilization of the E-RTM method, which is based on a temporal decomposition model 610 

of LST. With this model, the LFC and HFC components can be directly determined from high-resolution MODIS and ancillary 611 

remote sensing data (Eq. 1). Consequently, only spatial downscaling of HFCcld is required, eliminating the need for direct 612 
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downscaling of the GLDAS LST. This method reduces the possibility of insufficient spatial downscaling. Additionally, the E-613 

RTM method considers the relationship between LSTs of neighboring pixels, resulting in decreased errors during spatial 614 

downscaling (Fig. 4). 615 

Third, TRIMS LST offers advantages in effectively recovering LST information and preserving temporal integrity under 616 

cloudy conditions. With a spatial resolution of 1 km, TRIMS LST covers both daytime and nighttime LST from 2000 to 2022, 617 

which is comparable in spatio-temporal resolution to other published seamless LST datasets (Appendix C). The TRIMS LST 618 

dataset will be made publicly available on an annual basis, contingent on availability of pertinent input data for the model. The 619 

E-RTM method effectively recovers temperature information under clouds, ensuring clear physical meaning and high accuracy 620 

and image quality of TRIMS LST. Moreover, TRIMS LST extends the all-weather LST coverage of the MODIS temporal gap. 621 

This enhances the completeness of long-time series LST datasets, creating a unique and valuable collection. 622 

 623 

4.6 Literature-reported applications of the TRIMS LST 624 

TRIMS LST has already been utilized by the scientific communities in various applications (Fig. 16). A literature survey 625 

indicates that there have been 36 related papers published by journals (as of October 26, 2023), including leading journals such 626 

as Remote Sensing of Environment, Agricultural Water Management, and Science of the Total Environment. Typical 627 

applications include the estimation of soil moisture and surface evapotranspiration as well as the modeling of urban heat islands 628 

and urban thermal environments. A few typical applications are listed below. 629 

Satellite TIR LSTs are important input data for obtaining SM estimates with high resolution and high spatial coverage. 630 

However, most satellite TIR LST products can only be used under clear-sky conditions. The availability of all-sky LST 631 

products provides an important opportunity to obtain SMs with spatial seamlessness. Zhang et al. (2023) combined the use of 632 

ERA5-Land and TRIMS LST for the fine-scale assessment of soil moisture in China. They used the model based on 0.1° ERA5 633 

Land and SM data for 1-km TRIMS LST and finally obtained a daily/1-km SM dataset with satisfactory accuracy. Benefiting 634 

from the effective recovery of LST under cloudy conditions, this SM dataset has quasi-full spatial coverage. In addition, Hu 635 

et al. (2022) also used the TRIMS LST as input data to construct a soil moisture downscaling model for the Tibetan Plateau. 636 

The TRIMS LST was found to successfully overcome the challenges of satellite TIR remote sensing detection due to 637 

temporal/spatial gaps and false detections due to clouds and topography. Based on the downscaled soil moisture, they further 638 

published the daily 0.05°×0.05° land surface soil moisture dataset of the Qilian Mountain area (northern and northwestern 639 

Tibetan Plateau) from 2019–2021 (SMHiRes, V2) (Hu et al., 2022; Qu et al., 2021; Chai et al., 2021, 2022a, b). 640 

 641 
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 642 

Figure 16: Statistics of applications based on TRIMS LST (AT: Air temperature; CC: Climate change; ET: Evapotranspiration; 643 
FS: Frozen soil; IHS: Industrial heat sources; Others: Active layer thickness, Lake Area, Land desertification, and LST downscaling; 644 
PP: Plant Phenology; SFT: Soil freeze/thaw; SM: Soil moisture; TIREP: Thermal Infrared Earthquake Prediction; UHI: Urban 645 
heat island; UTE: Urban Thermal Environment).  646 

LST can also be used to investigate the soil freeze/thaw cycles. Li et al. (2023) used the TRIMS LST to obtain thawing degree 647 

days and freezing degree days to calculate the soil thermal conductivity and improved the output of the temperature at the top 648 

of the permafrost model. Due to the characteristics of TRIMS LST: high spatial and temporal resolution, the above two metrics 649 

can be easily obtained on a spatial scale of 1 km. In addition, the TRIMS LST was also used to evaluate the impact of the LST 650 

on the classification accuracy of different remote-sensed or model-based freeze/thaw datasets (Li et al., 2022). 651 

Based on the TRIMS LST, Li et al. (2021b) investigated the spatial and temporal variations of surface UHI (SUHI) intensity 652 

(SUHII). The positive performance of the TRIMS LST in obtaining the LST under cloudy conditions enabled the examination 653 

of the SUHI intensity of 305 Chinese cities, especially the cities located in southern China, where clouds frequently appear. 654 

Furthermore, Liao et al. (2022) quantified the clear-sky bias of the SUHI intensity by using the MODIS LST based on the 655 

TRIMS LST. They emphasized the importance of investigating the SUHI phenomenon under cloudy conditions. 656 

5. Data availability 657 

TRIMS LST is available for free and easy access through TPDC: https://doi.org/10.11888/Meteoro.tpdc.271252 (Zhou et al., 658 

2021).  659 
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6. Conclusions 660 

A long-term 1-km daily all-weather LST dataset is the basis for supporting many applications related to land surface processes 661 

and climate change. Although some all-weather LST datasets have been released, especially in the last two years, users still 662 

lack such data for the period of 2000–2002, during which the MODIS LST is not available. In this study, we report a daily 1-663 

km all-weather LST dataset for the Chinese landmass and surrounding areas – TRIMS LST. In contrast to many all-weather 664 

LST products, the TRIMS LST begins on the first day of the new millennium (i.e., January 1, 2000).  665 

TRIMS LST is produced based on the E-RTM method. The primary input resources are the Terra/Aqua MODIS LST and 666 

GLDAS LST. The TRIMS LST was comprehensively evaluated thoroughly from four aspects, including comparison with 667 

satellite and reanalysis LSTs, validation against the in-situ LST, and similarity quantification for the TRIMS-Terra and 668 

TRIMS-Aqua LST time series. The results outside the temporal gap period indicate that the TRIMS LST agrees well with the 669 

original MODIS and GLDAS LST and the independent ERA5 and AATSR LST but with more spatial details and better 670 

spatiotemporal completeness. Validation of TRIMS LST using the in-situ LST at 19 ground sites shows that the MBE was -671 

2.26 K to 1.73 K and the RMSE was 0.80 K to 3.68 K, with slightly better accuracy than the MODIS LST and no obvious 672 

difference under different weather conditions. The results within the temporal gap period show that RFSTM and TSETR have 673 

similar accuracy performance to the original RTM method, with MBE differences not exceeding 0.40 K and RMSE differences 674 

not exceeding 0.7 K. The stability of the TRIMS LST differences for T1 at the Aqua and Terra overpass times is also a side 675 

effect of the excellent quality. 676 

The TRIMS LST has already been released to the scientific communities. A series of applications, such as soil moisture 677 

estimation/downscaling, surface evapotranspiration estimation, and UHI modeling, have been reported. The TRIMS LST was 678 

found to successfully address the cloud contamination of satellite TIR LST with good accuracy, long time series, and spatio-679 

temporal completeness. The TRIMS LST will be continuously updated to satisfy the latest requirements of users. 680 

 681 
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Appendix A: List of abbreviations 

Advanced Along-Track Scanning Radiometer AATSR 

Advanced Microwave Scanning Radiometer 2 AMSR2 

the Coordinated Energy and Water Cycle Observation Project (CEOP) and Asia-Australia Monsoon Project (CAMP) CEOP-CAMP 

Chinese Ecosystem Research Network CERN 

30-m yearly China land cover dataset (2000-2015) CLCD 

Day of the year DOY 

the Enhanced Reanalysis and Thermal infrared remote sensing Merging method E-RTM 

Evapotranspiration  ET 

Field-of-view  FOV 

Goddard Earth Sciences Data and Information Services Center  GES DISC 

Global Land Data Assimilation System assimilation GLDAS 

Global Land Surface Satellite GLASS 

HaiHe Experiment in the Hai River Basin, China HHE 

Heihe Watershed Allied Telemetry Experimental Research HiWATER 

Land surface temperature LST 

Mean bias deviation MBD 

Mean bias error MBE 

MSG All-Sky Land Surface Temperature MLST-AS 

Moderate Resolution Imaging Spectroradiometer MODIS 

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences NIEER-CAS 

Normalized Difference Snow Index NDSI 

Normalized Difference Vegetation Index NDVI 

Passive microwave PMW 

Random-Forest-based Spatio-Temporal Merging approach RFSTM 

Root mean square error RMSE 

Soil moisture SM 

‘Satellite Pour l'Observation de la Terre’ (SPOT) VEGETATION (VGT) SPOT VGT 

Shuttle Radar Topography Mission Digital Elevation Model data SRTM DEM 

Standard deviation STD 

Surface UHI SUHI 

Surface UHI intensity SUHII 

Thermal infrared remote sensing TIR 

the National Tibetan Plateau Data Center TPDC 
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the Thermal and Reanalysis Integrating Moderate-resolution Spatial- seamless LST TRIMS LST 

Time series angle TSA 

Time-Sequential LST-based Reconstruction approach TSETR 

Urban heat island  UHI 

Visible Infrared Imaging Radiometer  VIIRS 

 

Appendix B: Validation results of the TRIMS LST and the MODIS LST with the in-situ LST 

Table B1: MBE and RMSE from validation results of the daytime TRIMS LST and MODIS LST with in-situ LST 685 

Site Condition Sample size TRIMS LST MODIS LST 

MBE (K) RMSE (K) MBE (K) RMSE (K) 

MOD MYD MOD MYD MOD MYD MOD MYD MOD MYD 

ARO Clear-sky 1418 1029 0.43 0.48 2.30 1.87 0.74 0.57 2.95 2.38 

Cloudy 1228 1541 0.33 0.61 2.04 1.95 – – – – 

DAM Clear-sky 1363 1297 0.97 0.26 1.92 1.98 0.98 0.27 2.31 2.50 

Cloudy 1432 1492 0.67 0.18 1.81 2.07 – – – – 

DET Clear-sky 1191 1180 1.73 1.45 2.45 2.49 1.73 1.88 2.70 2.70 

Cloudy 830 896 1.70 1.45 2.67 2.43 – – – – 

DSL Clear-sky 1109 814 -0.01 -0.33 1.82 1.72 0.00 -0.32 2.38 2.28 

Cloudy 1198 1144 -0.01 0.48 1.91 1.65 – – – – 

EBA Clear-sky 410 289 0.63 0.59 2.06 1.90 0.65 0.53 2.38 2.31 

Cloudy 472 580 0.74 0.61 2.01 1.80 – – – – 

GOB Clear-sky 363 350 -0.58 -1.88 1.73 2.41 -0.61 -1.89 2.25 2.74 

Cloudy 368 390 -0.96 -1.65 1.72 2.71 – – – – 

HZZ Clear-sky 1046 975 1.06 -1.03 1.84 2.06 1.05 -1.04 2.40 3.14 

Cloudy 1219 1354 0.59 -0.66 1.78 2.05 – – – – 

SDQ Clear-sky 1507 1466 0.82 0.23 2.57 2.05 0.81 0.39 3.16 2.57 

Cloudy 1147 1132 0.86 0.37 2.49 2.23 – – – – 

SSW Clear-sky 191 174 -0.42 -1.33 2.09 2.08 -0.43 -1.35 3.10 2.51 

Cloudy 194 203 -1.23 -1.77 2.36 2.45 – – – – 
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HLA Clear-sky 1121 946 -0.79 -0.85 2.30 2.18 -0.74 -0.71 2.76 2.60 

Cloudy 1084 1159 -0.68 -0.75 2.68 1.81 – – – – 

D105 Clear-sky 92 44 1.61 1.28 3.68 2.53 1.36 0.67 4.09 2.71 

Cloudy 178 138 1.29 0.61 3.94 2.74 – – – – 

GAZ Clear-sky 220 240 0.74 -0.60 2.12 2.17 0.47 -0.55 2.37 2.82 

Cloudy 89 157 1.15 -0.85 2.11 1.96 – – – – 

CBS Clear-sky 54 56 0.49 1.38 2.41 3.41 0.85 1.49 2.39 3.43 

Cloudy 220 262 0.76 1.59 2.42 3.43 – – – – 

DXI Clear-sky 246 226 0.83 0.30 2.13 1.79 0.80 0.28 2.33 2.00 

Cloudy 547 562 0.81 0.54 2.19 1.79 – – – – 

DHS Clear-sky 23 21 0.38 0.77 1.37 1.53 0.30 0.74 0.74 1.18 

Cloudy 292 299 0.42 0.47 1.51 1.22 – – – – 

MQU Clear-sky 101 64 0.15 -1.50 2.43 2.85 0.12 -1.47 3.05 3.13 

Cloudy 77 117 0.05 -1.35 2.27 2.99 – – – – 

GUT Clear-sky 69 63 -0.22 0.02 2.10 2.25 -0.29 -0.07 2.20 2.25 

Cloudy 310 303 -0.28 0.60 1.83 2.22 – – – – 

QYZ Clear-sky 26 19 0.95 1.01 3.00 3.17 0.73 0.90 2.35 2.14 

Cloudy 139 177 0.71 0.91 2.71 3.35 – – – – 

TYU Clear-sky 211 196 0.37 -0.88 2.56 2.14 0.31 -0.90 3.01 2.63 

Cloudy 333 348 0.19 -0.58 2.63 2.03 – – – – 

 

Table B2: MBE and RMSE from validation results of the nighttime TRIMS LST and MODIS LST with the in-situ LST.  

Site Condition Sample size TRIMS LST MODIS LST 

MBE (K) RMSE (K) MBE (K) RMSE (K) 

MOD MYD MOD MYD MOD MYD MOD MYD MOD MYD 

ARO Clear-sky 1617 1757 -0.72 -0.53 1.87 1.67 -0.70 -0.60 2.09 1.90 

Cloudy 1196 1078 -0.68 -0.63 1.62 1.76 – – – – 

DAM Clear-sky 853 973 -0.80 -0.58 2.14 1.70 -0.82 -0.81 2.23 1.87 

Cloudy 1643 1673 -0.86 -0.52 1.98 1.64 – – – – 

DET Clear-sky 1325 1476 -0.08 0.17 0.83 0.90 -0.08 0.16 0.86 0.97 
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Cloudy 679 630 0.42 -0.23 0.80 0.83 – – – – 

DSL Clear-sky 1109 1646 -0.90 -0.84 1.82 1.50 -0.45 -0.42 1.92 1.78 

Cloudy 1198 797 -1.13 0.44 1.91 1.24 – – – – 

EBA Clear-sky 566 621 -0.61 -0.60 1.65 2.00 -0.58 -0.64 1.77 2.19 

Cloudy 443 404 -0.55 -0.64 1.56 1.68 – – – – 

GOB Clear-sky 467 381 -1.60 -1.65 2.05 1.93 -1.62 -1.65 1.96 1.96 

Cloudy 376 321 -2.04 -1.51 2.26 1.79 – – – – 

HZZ Clear-sky 772 944 -1.29 -0.94 1.86 1.46 -1.28 -0.93 2.03 1.65 

Cloudy 1348 1296 -1.77 -1.36 2.32 1.86 – – – – 

SDQ Clear-sky 1557 1286 -0.79 -0.94 2.61 2.33 -1.02 -0.93 2.68 2.44 

Cloudy 1112 981 -1.06 -0.94 2.70 2.15 – – – – 

SSW Clear-sky 172 164 -2.26 -1.87 2.53 2.11 -2.27 -1.86 2.59 2.15 

Cloudy 195 190 -1.95 -1.79 2.29 2.00 – – – – 

HLA Clear-sky 1042 1038 -0.82 -0.73 2.24 1.61 -0.85 -0.73 2.34 1.75 

Cloudy 1066 989 -0.85 -0.87 2.24 1.55 – – – – 

D105 Clear-sky 131 167 -1.07 -0.92 2.39 2.57 -1.05 -1.12 2.58 2.69 

Cloudy 95 121 -1.05 -1.10 2.81 2.74 – – – – 

GAZ Clear-sky 289 265 -0.63 -0.68 1.85 1.35 -0.68 -0.57 1.90 1.39 

Cloudy 124 86 -0.75 -0.69 1.80 1.32 – – – – 

CBS Clear-sky 95 98 -1.07 -0.55 2.81 2.21 -1.00 -0.50 2.79 2.26 

Cloudy 190 208 -1.00 -0.33 3.31 2.37 – – – – 

DXI Clear-sky 334 349 -1.10 -1.45 3.43 3.06 -1.65 -1.44 3.51 3.13 

Cloudy 454 446 -1.15 -1.42 3.77 2.58 – – – – 

DHS Clear-sky 53 53 -0.82 -0.74 1.97 2.31 -0.74 -0.89 1.83 2.22 

Cloudy 264 262 -0.81 -0.89 2.35 2.30 – – – – 

MQU Clear-sky 85 81 0.68 0.78 2.23 2.41 0.76 0.70 2.16 2.40 

Cloudy 105 90 0.81 0.76 2.32 2.53 – – – – 

GUT Clear-sky 122 126 -0.90 -0.76 2.14 1.80 -0.94 -0.78 2.19 1.81 

Cloudy 237 230 -0.93 -0.70 2.49 1.78 – – – – 
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QYZ Clear-sky 32 28 -0.90 -0.91 3.00 2.09 -1.16 -0.80 2.62 1.88 

Cloudy 145 175 -1.13 -0.88 3.49 2.37 – – – – 

TYU Clear-sky 235 242 -1.12 -0.78 2.65 2.26 -0.94 -0.75 2.69 2.25 

Cloudy 258 273 -1.13 -0.79 2.91 2.37 – – – – 
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Appendix C: Summary of publicly available all-weather/all-sky/gap-free LST products. 

Product  Spatial resolution Temporal resolution Spatial coverage Temporal coverage Download links References 

All-weather 1 km land 

surface temperature 

products for China 

1 km 1 observation per day China 2002-2011 
http://www.geodata.cn

/index.html 
Duan et al. (2017) 

Global monthly 

reconstructed minimum, 

average, and maximum 

LST data (2003–2016) 

5.6 km Monthly Mean Global 2003-2016 

 

http://doi.org/10.5281/

zenodo.1115666 

Metz et al. (2017) 

Daily 1-km all-weather 

land surface temperature 

dataset for Western China 

V1 

1 km  2 observations per day 
65.00°-108°E, 

45.00°-22°N 
2003-2018 

https://data.tpdc.ac.cn 

(Expired) 

Zhang et al. (2019b, 

2020a) 

MSG Land Surface 

Temperature - All Sky 

(MLST-AS) (LSA-005) 

3-5 km 15 min 
Europe and 

Africa  
2020-Now 

https://landsaf.ipma.pt/

en 
Martins et al. (2019) 

1 km seamless land 

surface temperature 

dataset of China (2002–

2020) (2002–2020) 

1 km 2 observations per day China 2002-2020 https://data.tpdc.ac.cn 

Xu and Cheng. 

(2021); 

 Zhang and Cheng. 

(2020b);  

Zhang et al. (2020c) 

A combined Terra and 

Aqua MODIS land surface 

temperature and 

meteorological station 

data product for China 

(2003–2017) 

5.6 km Monthly Mean China 2003-2017 https://data.tpdc.ac.cn Zhao et al. (2020a) 

Daily 1-km all-weather 

land surface temperature 

dataset for Western China 

(TRIMS LST-TP; 2000–

2022) V2 

1 km  4 observations per day 
72.00°-104°E,  

45.00°-20°N 
2000-2022 https://data.tpdc.ac.cn Zhang et al. (2021) 

Daily 1-km all-weather 

land surface temperature 

dataset for the Chinese 

landmass and its 

surrounding areas  

(TRIMS LST; 2000–2022) 

1 km 4 observations per day 
72.00°-135°E, 

19.00°-55°N 
2000-2022 https://data.tpdc.ac.cn Zhang et al. (2021) 



42 

 

Worldwide continuous 

gap-filled MODIS land 

surface temperature 

dataset 

1 km 2 observations per day Global 2002-Now 

https://shilosh.users.ea

rthengine.app/view/co

ntinuous-lst 

Shiff et al. (2021) 

Global daily 

0.05°spatiotemporal 

continuous land surface 

temperature dataset 

 (2002–2020) 

0.05° 4 observations per day Global 2002-2020 https://data.tpdc.ac.cn Yu et al. (2022) 

A global seamless 1 km 

resolution daily land 

surface temperature 

dataset (2003–2020) 

1 km 2 observations per day Global 2003-2020 
https://doi.org/10.2538

0/iastate.c.5078492 
Zhang et al. (2022) 

Global spatiotemporally 

seamless Tdm products 

ranging from 2003 to 2019 

(GADTC products) 

0.5° Daily mean Global 2003-2019 
https://doi.org/10.5281

/zenodo.6287052 
Hong et al. (2022) 

0.02° seamless hourly land 

surface temperature 

dataset over East Asia 

(2016–2021) 

0.02° Hourly East Asia 2016-2021 

http://data.tpdc.ac.cn/z

h-hans/data/06414391-

abd4-4d28-a844-

bd036a0b8c55/ 

Dong et al. (2022); 

Zhou and Cheng. 

(2020) 

The diurnal all-sky ABI 

LST product 
2 km Hourly 

contiguous US 

and Mexico 
2017-2021 

http://glass.umd.edu/al

lsky_LST/ABI/ 
Jia et al. (2022a) 

Global Hourly, 5-km, All-

sky Land Surface 

Temperature (GHA-LST) 

5 km Hourly Global 2011-2021 

https://doi.org/10.5281

/zenodo.6981704; 

glass.umd.edu/allsky_

LST/GHA-LST 

Jia et al. (2022b) 

Daily 1km all-sky time-

consistent land surface 

temperature dataset over 

the Tibetan Plateau 

(2001–2018) 

1 km Daily 
Qinghai Tibet 

Plateau 
2001-2018 

https://data.tpdc.ac.cn/

zh-

hans/data/3eb11507-

6742-4f16-bda2-

8ea10e0c1606 

Zhao. (2023) 
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690 

Global seamless and high-

resolution temperature 

dataset (GSHTD) 

1 km Monthly Mean Global 2001-2020 

https://cjgeodata.cug.e

du.cn/#/pageDetail?id

=97 

Yao et al. (2023) 

High-resolution all-sky 

land surface temperature 

over Europe 

1 km Hourly Europe 2018–2019 
https://doi.org/10.5281

/zenodo.7026612 
Rains et al. (2022) 
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