
 

 

Dear Dr. Tian, 

Thank you so much for overseeing the review of our manuscript. We would like to 

thank the anonymous reviewers for their positive and constructive comments. The 

manuscript has greatly benefited from their insightful suggestions. We have carefully 

revised our manuscript to account for the recommendations by reviewers. The key 

improvements are as follows.  

1. To enhance the credibility of the method and resulting TRISM LST dataset, we 

significantly improved the manuscript, especially in the Methods, Results, and 

Discussion sections. Specifically, we improved the descriptions of the random forests 

(RF)-based modeling and corresponding core concepts. 

2. In response to the reviewers' suggestions, we added an introduction explaining the 

basic situation of RTM methods. Moreover, we clarified that this work succeeds Zhang 

et al. (2021).  

3. We have refined the validation and comparison sections of the manuscript. Our 

intention with these revisions was to improve the quality of the TRIMS LST dataset 

and enhance the overall readability of the paper.  

We sincerely appreciate the time and effort you put into editing and reviewing the 

manuscript. Your valuable input has played a significant role in improving both the 

dataset and the manuscript. We are looking forward to collaborating with you to bring 

the manuscript closer to publication in Earth System Science Data. 

 

Sincerely yours, 

 

Wenbin Tang, Ji Zhou on behalf of all authors 

School of Resources and Environment 

University of Electronic Science and Technology of China 

Chengdu, Sichuan Province, 611731, China 

Emails: wenbint@std.uestc.edu.cn; jzhou233@uestc.edu.cn 

  



 

 

General Comment: 

The authors responded to certain inquiries I raised, yet the feedback also prompted the 

emergence of further concerns. Kindly review my comments below for clarification. 

Response: Thank you very much for your interest in our study and for providing 

valuable feedback. We greatly appreciate your reminder regarding the methodology 

and comparison sections of the manuscript. We have carefully considered your 

suggestions to further improve these sections, aiming to enhance the quality of TRIMS 

LST and the readability of the paper. Please see our responses below. (The changes are 

highlighted in red color in our revised manuscript.) 

 

Major issues: 

(1) Comment 1 

In the response letter, I highlighted a significant issue pertaining to the application of 

the Terra LST model to Aqua LST. The authors' explanation mentioned that “Firstly, 

the LST of the same pixel at different time points during a given day satisfies the 

standard conditions of similar pixels in the RTM method (Zhang et al., 2021). This 

forms the theoretical foundation for the conversion between Terra/MODIS LST and 

Aqua/MODIS LST (Li et al., 2018).” I'm struggling to grasp the meaning of "satisfied 

the standard condition of similar pixels in the RTM method." Could you provide a 

comprehensive explanation of this concept? Furthermore, it's important for the 

manuscript to explicitly address and rectify such conceptual flaws for future 

enhancements. 

 

Response: Thank you very much for your comment. As a basis for this study, similar 

pixel determination criteria were provided by Zhang et al. (2019) and Zhang et al. 

(2021): (i) they are located within the sliding window; (ii) they have the same land 

cover as the target pixel (the correlation coefficient between the MODIS LST time 

series of target pixel and a similar pixel is over 0.8); and (iii) they are under the same 



 

 

weather condition (clear sky or unclear sky) as the target pixel. 

In the TSETR approach, when calculating the HFC, due to the lack of Aqua/MODIS 

LST, we used the information provided by Terra LST and the corresponding GLDAS 

LST of Terra/Aqua. Accordingly, similar pixels were determined according to the 

following conditions: (i) it should have the same land cover type as M and (ii) the 

R of the Terra-MODIS LST time series corresponding to S and M need to be 

greater than 0.8.  

We have clarified the concept of "similar pixels" in the revised manuscript to avoid 

confusion for readers and users. 

“fM-T2 is constructed as follows. Initially, the correlation image of the target pixel M 

is determined within the T2 period and the following two conditions need to be satisfied 

by the correlation image: (i) the mean bias deviation (MBD) of the DTC estimated from 

its corresponding GLDAS LST (10:00-14:00 and 21:00-3:00 local solar time) should 

be lower than 1 K, and (ii) the difference in the average observation time between the 

GLDAS pixels should not exceed 0.5 h. Using the correlation image, the similar image 

family S of the target pixel M is determined. Subsequently, in the correlation image, 

using similar land cover type criteria, the similar image family S of the target pixel M 

within the GLDAS pixels is identified. S needs to meet the following two conditions: (i) 

it should have the same land cover type as M and (ii) R of the Terra/MODIS LST time 

series corresponding to S and M need to be greater than 0.8.”(Lines 273–280) 

More details and explanations are shown as follows. 

(1) In the original manuscript, as demonstrated in Fig. A, we thought that MODIS LSTs 

at different moments on the same day could satisfy the similar pixel determination 

condition (Zhang et al., 2021). HFC represents the LST change between tavg and tins 

due to the Earth's rotation under clear conditions. So far, there is no available physical 

model to determine HFC from remote sensing observations due to the impossibility of 

satisfying the input requirement of the HFC-involved land surface models. However, 

there is a potential solution. As pointed out by Zhan et al. (2012; 2014), it is reasonable 

to describe HFC using its descriptors through empirical or implicit functions. 

 



 

 

 

Fig. A. Scatterplot of Aqua/MODIS LST and Terra/MODIS LST during the daytime. 

The Aqua/Terra MODIS LST results for the four distinct land surface types of sites are 

depicted in Fig. A. To compensate for the limited QYZ data, in-situ LSTs have been 

implemented instead in Fig. A. The findings demonstrate a correlation coefficient 

greater than 0.9 between the time series of both Aqua/MODIS LST and Terra/MODIS 

LST. This is the theoretical foundation for the prior study that converted Terra/MODIS 

LST and Aqua/MODIS LST (Li et al., 2018). Furthermore, the significance of HFC and 

the parameterization scheme anticipates a robust correlation between similar pixels. the 

factors employed to construct the mapping model effectively capture the impact of 

diurnal LST variation (ΔtM) and weather variation (vM). Therefore, our original 

manuscript explored the possibility of estimating Aqua/HFC by utilizing fM-Terra-T1: 

M-Aqua-T1 d ins M M M M d

M d M d M d

M-Terra-T1

M d
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where latM, lonM, DEMM, NDVIM, slpM, αM, ΔtM, and vM are the latitude, longitude, 

DEM, NDVI, slope, albedo, difference between tins and tavg , and the atmospheric water 



 

 

vapour content, respectively; and fM-Terra-T1 is an RF mapping model based on Terra 

MODIS data and its corresponding descriptors in T1.  

(2) However, we have failed to address a significant issue that you have raised due to 

the lack of HFC estimation research: the disparity in timing between Terra and Aqua 

observations that results in distinct fluctuations of LST. The observation window for 

Terra is typically from 10:00 a.m. to 12:00 p.m. local solar time. According to Duan et 

al. (2014a), LST changes linearly within that time. Aqua exhibits a non-linear change 

in LST over the observation period, as depicted by the DTC curves (Duan et al., 2014b; 

Jin and Dickinson, 1999).  

In the original RTM method, the HFC of a similar pixel (S) can be expressed as: 

 
S d ins S S S S S S s-S m-S S S( , ) ( , , , , , , , , , )

where S S W1n

HFC t t lat lon DEM NDVI slp t v   =  +

 

RF   (B) 

where lat, lon, DEM, NDVI, slp, α, θs, θm, Δt, and Δv are latitude, longitude, DEM, 

NDVI, slope, surface albedo, solar zenith angle, MODIS observation angle, difference 

between instantaneous and intraannual average observation time of MODIS, and 

atmospheric water vapor, respectively. If the descriptors in this equation accurately and 

adequately describe the situation, the approximation error ε can be minimized.  

At this stage, the RF, which is built using similar pixels, can be readily employed to 

estimate the HFC of the target pixel M: 
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According to the original RTM method, obtaining HFC requires a defined number of 

Aqua/MODIS LSTs as training samples, which are unfortunately unavailable between 

DOY 1 of 2000 and DOY 184 of 2002. However, TRIMS-Terra LSTs obtained with 

Module I and Module II for the period T1 provide an opportunity to establish a 

transformation relation to obtain the Aqua/HFC. The precision of the HFC estimations 

remains unaffected by the exclusion of solar radiation as the primary contributor to 

warming, as indicated in Eq. (C). This outcome can be attributed to the utilization of 

Aqua MODIS LST during modeling, which directly conveys the highest LSTs that 



 

 

occur during the day. In addition, the temporal gradient of DTC is mostly at its 

minimum during this period. 

When there is no valid Aqua LST available, we can enhance Eq. (A) as follows： 

d
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where ∆LFC characterizes the systematic deviation of the steady state component, 

∆DTC characterizes the warming effect of solar radiation, and the weather effect can 

be characterized by the atmospheric water vapor content. According to Zhang et al. 

(2021), the HFC characterizes the change in LFC with ∆DTC and WTC superimposed 

under ideal clear-sky conditions. The detailed calculation of ∆DTC can be found in 

Zhang et al. (2019). 

(3) Finally, we can analyze how the similar pixel concept is used in all-weather LST 

research. For example, Long et al. (2020) utilized the Enhanced Spatial and Temporal 

Adaptive Reflectance Fusion Model (ESTARFM) (Zhu et al., 2010), which is primarily 

applied to albedo and NDVI products, to generate all-weather LST. According to Zhu 

et al. (2018), ESTARFM is categorized as a weighting model because it assists in 

calculating the value of the target pixel by assigning weights to neighbouring similar 

pixels. First, the target pixel corresponding to the similar pixel is determined, typically 

within a moving window of a particular size. Then, the weight of each similar pixel is 

computed. 

In the spatiotemporal fusion of reflectance and NDVI products, pixels within the 

window with the same land cover type as the target pixel (center pixel) are defined 

as similar pixels. There are two primary methods for determining similar pixels in 

finer-resolution images. The first involves applying an unsupervised clustering 

algorithm to the image, identifying neighboring pixels within the same cluster as the 

central pixel. The second method calculates the reflectance difference between 

neighboring pixels and the central pixel in the fine-resolution image, using specified 

thresholds to identify those that are similar. The thresholds can be determined by the 

standard deviation of a population of pixels from the high-resolution image and the 



 

 

estimated number of land-covering categories present in the image. (Gao et al., 2006; 

Zhu et al., 2010; Long et al., 2020). 

Since LST exhibits different characteristics from reflectance and NDVI products, the 

determination conditions for similar pixels in all-weather LST estimation need to be 

targeted and modified. 

 

Reference: 

Duan, S.-B., Li, Z.-L., Tang, B.-H., Wu, H., and Tang, R.: Generation of a time-

consistent land surface temperature product from MODIS data, Remote Sens. 

Environ., 140, 339–349, https://doi.org/10.1016/j.rse.2013.09.003, 2014a. 

Duan, S.-B., Li, Z.-L., Tang, B.-H., Wu, H., Tang, R., Bi, Y., and Zhou, G.: Estimation 

of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial 

Resolution from Clear-Sky MODIS Data, Remote Sens., 6, 3247–3262, 

https://doi.org/10.3390/rs6043247, 2014b. 

Gao, F., Masek, J., Schwaller, M., and Hall, F.: On the blending of the Landsat and 

MODIS surface reflectance: predicting daily Landsat surface reflectance, IEEE 

Transactions on Geoscience and Remote Sensing, 44, 2207–2218, 

https://doi.org/10.1109/TGRS.2006.872081, 2006. 

Jin, M. and Dickinson, R. E.: Interpolation of surface radiative temperature measured 

from polar orbiting satellites to a diurnal cycle: 1. Without clouds, Journal of 

Geophysical Research: Atmospheres, 104, 2105–2116, 

https://doi.org/10.1029/1998JD200005, 1999. 

Long, D., Yan, L., Bai, L., Zhang, C., Li, X., Lei, H., Yang, H., Tian, F., Zeng, C., Meng, 

X., and Shi, C.: Generation of MODIS-like land surface temperatures under all-

weather conditions based on a data fusion approach, Remote Sensing of 

Environment, 246, 111863, https://doi.org/10.1016/j.rse.2020.111863, 2020. 

Zhan, W., Chen, Y., Voogt, J. A., Zhou, J., Wang, J., Ma, W., and Liu, W.: Assessment 

of thermal anisotropy on remote estimation of urban thermal inertia, Remote 

Sensing of Environment, 123, 12–24, https://doi.org/10.1016/j.rse.2012.03.001, 

2012. 



 

 

Zhan, W., Zhou, J., Ju, W., Li, M., Sandholt, I., Voogt, J., and Yu, C.: Remotely sensed 

soil temperatures beneath snow-free skin-surface using thermal observations from 

tandem polar-orbiting satellites: An analytical three-time-scale model, Remote 

Sensing of Environment, 143, 1–14, https://doi.org/10.1016/j.rse.2013.12.004, 

2014. 

Zhang, X., Zhou, J., Göttsche, F.-M., Zhan, W., Liu, S., and Cao, R.: A Method Based 

on Temporal Component Decomposition for Estimating 1-km All-Weather Land 

Surface Temperature by Merging Satellite Thermal Infrared and Passive 

Microwave Observations, IEEE Transactions on Geoscience and Remote Sensing, 

57, 4670–4691, https://doi.org/10.1109/TGRS.2019.2892417, 2019. 

Zhang, X., Zhou, J., Liang, S., and Wang, D.: A practical reanalysis data and thermal 

infrared remote sensing data merging (RTM) method for reconstruction of a 1-km 

all-weather land surface temperature, Remote Sensing of Environment, 260, 

112437, https://doi.org/10.1016/j.rse.2021.112437, 2021. 

Zhu, X., Cai, F., Tian, J., and Williams, T. K.-A.: Spatiotemporal Fusion of Multisource 

Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and 

Future Directions, Remote Sensing, 10, 527, https://doi.org/10.3390/rs10040527, 

2018. 

Zhu, X., Chen, J., Gao, F., Chen, X., and Masek, J. G.: An enhanced spatial and 

temporal adaptive reflectance fusion model for complex heterogeneous regions, 

Remote Sensing of Environment, 114, 2610–2623, 

https://doi.org/10.1016/j.rse.2010.05.032, 2010. 

Zhu, X., Duan, S.-B., Li, Z.-L., Wu, P., Wu, H., Zhao, W., and Qian, Y.: Reconstruction 

of land surface temperature under cloudy conditions from Landsat 8 data using 

annual temperature cycle model, Remote Sensing of Environment, 281, 113261, 

https://doi.org/10.1016/j.rse.2022.113261, 2022. 

 

(2) Comment 2  

At line 227 of the revised manuscript, I interpreted this sentence that RF models in 



 

 

module 2 appear to have been built individually for each pixel. This approach raises 

concerns about potential inefficiencies. How did you manage to ensure that all these 

models do not fall victim to overfitting? Additionally, the reliance on soil moisture data 

as input sparks concerns regarding the true significance of deep soil moisture 

contributions to models (even those from 40 cm deep). To bolster the validity of the 

input data selection, it would be beneficial to include a quantitative analysis in this 

regard. 

 

Response: Thanks very much for your comment. 

(1) To address concerns about inefficiency, it should be noted that although training a 

per-pixel RF model is a relatively quick process, implementing it by looping through 

the entire study area (4255*5213 pixels) in code would consume significant time. 

Therefore, a multi-threading technique is essential for processing. Using Matlab as an 

example, pixel positions in the image matrix are linearly indexed to enable the 

conditions for the operation of 'parfor' to be met. On a PC platform configured in this 

manner (as displayed in Table R1), the processing time for a year's worth of data is 

approximately 16 hours when implementing ‘parfor’ as opposed to 'for'. It is essential 

to note that, for this specific application of pixel-by-pixel metamodelling, the 

constraints imposed by the computer's memory size are of greater significance. This is 

because the data for a specific image pixel is relatively minimal, and consequently does 

not require extensive computational resources. 

 

 

 

 

 

 

Table R1: Hardware information of the computer 

CPU Inter (R) Xeon(R) Platinum 8179M CPU@2.40GHz (2 



 

 

processors) 

Kernel: 52 

Logical Processors: 52 

L1 Cache: 3.2 M 

L2 Cache: 52.0 M 

L3 Cache: 71.5 M 

RAM 96.0 G (+105G virtual memory) 

 

Any machine learning algorithm is susceptible to overfitting. TRIMS LST products 

were developed by training numerous RF models, which have regularly demonstrated 

indications of overfitting. To provide a clearer response, I found the subsequent 

paragraph on the personal website of Leo Breiman, RF's creator:  

‘Random forests does not overfit. You can run as many trees as you want’ 

(https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#remarks).  

RF is not susceptible to overfitting and mainly depends on three random procedures. 

Firstly, the decision tree samples are chosen at random. Secondly, the decision tree's 

eigenvalues are randomly selected. Finally, fission is determined by selecting a random 

one from the N best directions during the tree generation process. As the number of 

trees generated by a Random Forest approaches infinity, the large number theorem 

theoretically proves that the training and testing errors converge. However, the 

generation of an infinite number of decision trees is impractical, and the presence of 

noise in actual data cannot be overlooked. Therefore, the overfitting of results will be 

affected to different degrees due to the challenge of setting model parameters within 

the same runtime. 

(2) To mitigate overfitting, as previously noted, we implemented a hyperparameter 

approach to determine the optimum parameters of our RF model. The two-fold 

objective of this method is to prevent overfitting and enhance operational efficiency. 

To determine the most effective parameters, we undertake a two-step process. Initially, 

we specify a comprehensive range for every hyperparameter requiring optimization. As 



 

 

an illustration, we might stipulate a range extending from 10 to 5000 for the "n 

estimators" hyperparameter. Subsequently, we utilize an optimization algorithm to 

explore the ideal value of each hyperparameter inside this range. This requires 

conducting numerous cross-validations for every parameter combination in the given 

range and choosing the combination with the greatest mean score as the optimal 

parameter. 

(3) To answer your question about the contribution of soil moisture (particularly 40cm 

below the surface). We use the Mean Decrease Accuracy (MDA) technique to 

determine the significance of a variable. This is achieved by randomly swapping the 

value of a feature in permuted out-of-bag (OOB) data and then recalculating the 

prediction to determine the importance of the feature. This is done by measuring the 

level to which the regression accuracy decreases (Biau and Scornet, 2016).  

For the regression process, MDA is expressed as: 

( )( ) ( )( )
ti

2 21 1
( )

j j
ii

T
j k k

r k i i k i i

t k X D kX Dt

MDA j R X y R X y
T D 

  
= − − −  

    
      （E） 

Where T represents the number of randomly generated trees, Xi denotes the input data, 

yi corresponds to the output regression result, Xi
j refers to the input data after the j-th 

random feature exchange, Dt signifies the OOB sample set of the random tree t, Dt
j 

denotes the sample set after the j-th random feature exchange, and R(Xi) predicts the 

output corresponding to Xi. 

Eq. (E) indicates the degree to which the precision of the model regression reduces 

following the haphazard substitution of data on the j-th dimension (feature) of the 

sample, applying OOB data for each tree. If the accuracy reduces more after this 

random substitution exercise, the feature is deemed more significant. MDAr(j) 

represents the increase in the OOB sample mean square error (MSE) when feature j is 

randomly replaced. 

Compared to the mean decrease in impurity (MDI) (Louppe et al., 2013; Li et al., 2021), 

MDA is a relatively slow method. The time taken to run the MDA is much greater than 

the time taken for random forest training. To achieve our objective and reduce the time 



 

 

required, we adopted the following strategy to implement the MDA method: 100,000 

land pixels were randomly selected and their corresponding RF models were 

constructed. The MDA results of the RF model corresponding to all pixels are shown 

in Fig. B. 

Based on the experimental findings, it could be concluded that soil moisture has a minor 

impact and can be disregarded when reducing data. Conversely, soil temperature has a 

significant effect. Fig. B reveals that the highest seven components of the MDA score 

contribute over 97%. Consequently, if the reader or user wishes to replicate our 

methodology in the same zone, selecting solely the top seven ranked factors for 

modeling is practicable. 

 

Fig. B. MDA results of RF models. 

 

 

 

Reference: 

Biau, G. and Scornet, E.: A random forest guided tour, TEST, 25, 197–227, 



 

 

https://doi.org/10.1007/s11749-016-0481-7, 2016. 

Li, B., Liang, S., Liu, X., Ma, H., Chen, Y., Liang, T., and He, T.: Estimation of all-

sky 1 km land surface temperature over the conterminous United States, Remote 

Sensing of Environment, 266, 112707, https://doi.org/10.1016/j.rse.2021.112707, 2021. 

Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P.: Understanding variable 

importances in Forests of randomized trees, in: Advances in Neural Information 

Processing Systems, 2013. 

 

(3) Comment 3  

Figure 10 presents the temporal continuity analysis, but the inclusion of the annual 

cycle seems to obscure the clarity of the data series. I propose incorporating figures that 

focuses solely on anomaly variations after removing the annual cycles. More critically, 

it is advisable to specify the connection period (around March 2000 for Terra and July 

2022 for Aqua) for meticulous analysis, particularly to demonstrate the absence of 

series disruptions at the conclusion of the filled temporal span. 

Response:Thanks very much for your comments. 

This will significantly enhance the quality of the article and manuscript. After thorough 

consideration, we decided to retain Fig. 10. Additionally, to better illustrate the atypical 

changes in the data and establish that there is no gap in the sequence at the end of the 

temporal gap (around March 2000 for Terra and about July 2002 for Aqua), we have 

included the subsequent findings and analyses. 

(1) we determined percentage of valid pixels in TRIMS LST and MODIS LST, 

respectively (Fig.C). The findings reveal that TRIMS LST is spatio-temporally 

continuous during the temporal gaps. 



 

 

 

Fig. C. Percentage of valid pixels in MODIS LST and TRIMS LST in 2000 (a) and 2002 (b). 

The percentage of valid pixels in MODIS LST ranges from approximately 10% to 70%, 

exhibiting substantial seasonal fluctuations. The rise in water vapour, heightened 

convection, and increased cloud cover during summers could account for the reduced 

number of effective pixels. This condition also clarifies why in most circumstances, 

fewer valid pixels are evident throughout the daytime than at nighttime. By comparison, 

the number of valid pixels in TRIMS LST changes moderately over time. 

Approximately 1‰ pixels were left unoccupied for a few days, likely due to the 

unavailability of reference groups and corresponding pixels within the search window 

during the determination of HFCcld for these pixels. However, the percentage of valid 

pixels almost reached 100% following the combination of the RFSTM and TSETR 

approach. This phenomenon is a quantitative demonstration of the success of the E-

RTM method in recovering unspecified LSTs during the temporal gaps. 

(2) Our analysis focused on examining the temporal variations in LST during the 

connectivity period (February and March 2000 for Terra; June and July 2002 for Aqua). 

The outcomes reveal that there is no interruption in the sequence at the conclusion of 

the filled duration (Fig.D). 



 

 

 

Fig. D. MBD and STD for daytime LST compared to nighttime. 

During the connectivity period, we calculated MBD and STD for daytime LST 

compared to nighttime. The MBD and STD for MODIS LST exhibited large 

fluctuations between dates, whereas the MBD/STD of TRISM LST showed smoother 

overall trends with less fluctuation between dates. This is attributed to the consideration 

of LFC as the primary base element in the E-RTM method, particularly during the 

temporal gap when valid MODIS LST data is lacking. The trends in MBD/STD for 

TRIMS LST and MODIS LST are generally consistent outside of the temporal gaps. 

Specifically, between 24 February and 31 March 2000, MBD/STD demonstrated a 

general upward trend, while between 3 July and 31 July 2002, it showed an overall 

downward trend. Importantly, the trend of MBD/STD changes before and after the 

connecting dates is continuous without abrupt changes or breaks, as depicted in Fig. D, 

indicating uninterrupted LST time series during the temporal gaps. 

Tech issues: 

(4) Comment4  

Will this dataset keep updating, or it will stop at 2022? 

Response: Thanks very much for your comment. We will annually update the TRIMS 

LST dataset to the public, as long as relevant inputs of our model are available. We 

have added relevant descriptions in the revised manuscript. 

“The TRIMS LST dataset will be made publicly available on an annual basis, contingent 

on availability of pertinent input data for the model.” (Lines 619–620) 

It is noteworthy that the Terra and Aqua satellites are anticipated to be decommissioned 



 

 

in 2026 as they age, resulting in a reduction in orbital altitudes and significant 

deviations between equator crossing times and those established during launch (Fig. E). 

As a result, it will be necessary to consider alternative satellite data, such as VIIRS, to 

replace MODIS in 2025 and beyond. 

 

Fig. E. Terra’s equator crossing time (in UTC Mean Local Time) (https://terra.nasa.gov/). 

 

(5) Comment 5  

Line 18: remove ‘i.e.,’ 

Response: Thanks very much for your comment. We have corrected it in the revised 

manuscript (Page 1, Line 18). 

 

(6) Comment 6  

Line 25: typo ‘and/AATSR’ 

Response: 

Thanks very much for your comment. We have corrected it in the revised manuscript 

(Page 1, Line 25). 

 



 

 

(7) Comment 7 

Line 38: suggest replacing the citation ‘Jiang and Liu 2014’ to an actual land surface 

modeling study that used LST products. 

Response: Thanks very much for your comment. We have corrected it in the revised 

manuscript (Page 2, Lines 38-39). 

 

(8) Comment 8  

Line 105: The introduction section should clarify this work is the succession of Zhang 

et al 2021 and basic introduction of the original RTM paper should be given. 

Response: Thanks very much for your comment. The RTM method merged reanalysis 

data and TIR data to produce all-weather LST data, corresponding with a temporal 

component decomposition process. We have added relevant descriptions in the revised 

manuscript. 

“The theoretical foundation of the RTM method lies in the temporal component 

decomposition model of LST (Zhan et al., 2014; Zhang et al., 2019b). Upon comparing 

with independent TIR LST and validating in-situ LST, significant agreement between 

RTM LST and TIR LST was observed, demonstrating the effectiveness of the RTM 

method in all weather conditions. RTM method fully utilizes reanalysis data and TIR 

data to produce prospective, high-resolution, and reliable LST records on regional, 

continental, and global scales for the long term.” (Lines 93–97) 

“In this study, we proposed the enhanced RTM (E-RTM) method to produce a daily 

(four observations per day) 1-km all-weather LST dataset for the Chinese landmass and 

its surrounding areas (19°N–55°N, 72°E–135°E), which was named as the Thermal 

and Reanalysis Integrating Moderate-resolution Spatial- seamless LST (TRIMS LST), 

a successor to the work of Zhang et al. (2021).” (Lines 103–110) 

(9) Comment 9  

Line 123: what is daily synthesis variable. 



 

 

Response: Thanks very much for your comment. The daily synthesis variable means 

daily Maximum Value Composite Synthesis of NDVI. We have improved this 

description in the revised manuscript.  

“(2) global 1-km daily Maximum Value Composite Synthesis of ‘Satellite Pour 

l'Observation de la Terre’ (SPOT) VEGETATION (VGT) Images (VGT-S1) (January 

2000 to February 2000) (https://spot-vegetation.com/en) (Toté et al., 2017)” (Lines 

122-124) 

More details on the relevant dataset can be found from the data product's websites 

(https://services.terrascope.be/collectioncatalogue/srv/eng/catalog.search#/metadata/u

rn:ogc:def:EOP:VITO:VGT_S1) 

‘GT-S1 products (daily synthesis) are composed of the 'Best available' ground 

reflectance measurements of all segments received during one day for the entire surface 

of the Earth. This is done for each of the images covering the same geographical area. 

The areas distant from the equator have more overlapping parts so the choice for the 

best pixel will be out of more data. These products provide data from all spectral bands, 

the NDVI and auxiliary data on image acquisition parameters.’ 

‘VGT-S1 products are MVC or Maximum Value Composite Syntheses. The pixels 

selected for the syntheses are based on the selection of the maximum NDVI value, to 

ensure coverage of all landmasses worldwide with a minimum effect of cloud cover. 

The pixel brightness count is the ground area's reflectance (corrected for atmospheric 

effects); pixels in the sea area are set to 0. A map of computed normalized difference 

vegetation index values (NDVI image plane) is also supplied with the product. The 

products provide data from all spectral bands (SWIR, NIR, RED, BLUE), the NDVI, 

auxiliary data on image acquisition parameters and spectral band quality information.’ 

 

 (https://docs.terrascope.be/#/DataProducts/SPOT-VGT/Level3/Level3): 

‘The SPOT-VGT Level 3 data (VGT-S products) are available as 1-day (S1) and 10-day 

(S10) TOC reflectance and NDVI syntheses. VGT S1 products are composed of the 'best 

available' surface reflectance measurements of all segments received during one day 

over nearly the entire Earth’s surface. This is done for each image covering the same 



 

 

geographical area. High-latitude areas are more frequently observed and thus have 

more overlapping parts, so for these areas, the best observation is selected from 

multiple observations. The S1 product provides data from all spectral bands (B0, B2, 

B3, and SWIR), the NDVI, and auxiliary data on image acquisition parameters. VGT-

S1 products are MVC or Maximum Value Composite Syntheses. The pixels selected for 

the syntheses are based on the selection of the maximum NDVI value, to ensure 

coverage of all landmasses worldwide with a minimum effect of cloud cover. The pixel 

brightness count is the ground area's reflectance (corrected for atmospheric effects); 

pixels in the sea area are set to 0. A map of computed normalized difference vegetation 

index values (NDVI image plane) is also supplied with the product. The products 

provide data from all spectral bands (SWIR, NIR, RED, BLUE), the NDVI, auxiliary 

data on image acquisition parameters, and spectral band quality information.’ 

 

(10) Comment 10 

Line 124: why GLASS albedo is only used for prediction period, if so, the difference 

of albedo products for the training and prediction period will affect the results as there 

are clear bias in different albedo products. 

Response: Thanks very much for your comment. We used GLASS albedo data as a 

substitution in the prediction step to fill the temporal gaps in MODIS LST because these 

temporal gaps are also effective in other MODIS products (including the MODIS 

albedo). Specifically, the GLASS albedo data is the best substitution for MODIS albedo 

data that we can find since they are strongly correlated with each other and have close 

accuracies according to existing studies.  

We have added corresponding descriptions in the revised manuscript to clarify it. 

“We used GLASS albedo data as a substitution in the prediction step to fill the temporal 

gaps in MODIS LST because these temporal gaps are also effective in other MODIS 

products (including the MODIS albedo). Specifically, the GLASS albedo data is the 

best substitution for MODIS albedo data that we can find since they are strongly 



 

 

correlated with each other and have close accuracies according to existing studies (He 

et al., 2014; Wang et al., 2014; Chen et al., 2017; Lu et al., 2021).” (Lines 224–228) 

More details and explanations are shown as follows. 

(1) We acknowledge that the GLASS albedo and MODIS albedo datasets are different 

in retrieval algorithms and sensors onboard satellites (Qu et al., 2014). However, the 

GLASS albedo product was produced since 1981 from AVHRR and MODIS data, 

which is consistent with MODIS albedo data in spatotemporal resolutions and spatial 

coverage (Liang et al., 2013). Global albedo maps derived from AVHRR and MODIS 

are available at a resolution of 0.05° (~5 km) every 8 days. Meanwhile, albedo data at 

1 km resolution in sinusoidal projection derived from MODIS observations are 

provided at the same temporal resolution.  

(2) The GLASS albedo product showed comparable accuracy with that of MODIS 

albedo products when evaluated using ground measurements and MODIS albedo 

products (He et al., 2013; Liu et al., 2013b; He et al., 2014). Specifically, GLASS albedo 

products display acceptable precision within the terrestrial region of Chinese landmass 

and the surrounding areas.  

For example, Wang et al. (2014) aggregated the Landsat TM albedo to a resolution of 

1 km and compared it with the GLASS albedo at 1 km. The GLASS albedo showed an 

absolute error of less than 0.0163, thus demonstrating its dependability for most 

applications. Chen et al. (2017) compared and analyzed the spatial distribution 

continuity and ratio of the high-quality retrievals over the Tibetan Plateau of MODIS 

and GLASS. They found that (i) the GLASS land surface albedo product was superior 

to that of the MODIS land surface albedo in terms of both spatial distribution continuity 

and the ratio of the high-quality retrievals; (ii) these two products have high consistency 

with land surface albedo ground measurements during most of the retrieval periods and 

rather accurately reflect the abnormal changing processes of land surface albedo; (iii) 

the patchy snow is an important factor affecting the accuracies of these two products 

when performing a comparison with the ground measurements; (iii) the algorithm of 

the GLASS land surface albedo has a great advantage over that of the MODIS land 



 

 

surface albedo under snow conditions. Lu et al. (2021) validated and analyzed the errors 

of GLASS, the GlobAlbedo, the Quality Assurance for Essential Climate Variables 

(QA4ECV) project, the MCD43GF, and the CM SAF Albedo dataset from the AVHRR 

data (CLARA-SAL) against the Chinese Ecosystem Research Network (CERN) 

measurements at different spatiotemporal scales over China from 2005 to 2015. The 

results showed that LSA estimated by GLASS agrees well with the CERN 

measurements on a continental scale. The GLASS product was characterized by an R2 

of 0.80, an RMSE of 0.09, and an MAE of 0.06. 

(3) As GLASS Albedo is solely utilized in the RFSTM method, we employed the 

RFSTM method to merge the GLDAS and Terra/MODIS LST from 2003 to generate 

1-km TRIMS-Terra LST. Results illustrated that TRIMS-Terra LST generated by the 

RTM method and RFSTM method were highly correlated with each other (Figure R1) 

and showed close accuracies (Table R2). MBEs have a difference of less than 0.50 K, 

and RMSEs have a difference of less than 1.2 K. Overall, the RFSTM method is slightly 

less accurate than the TRIMS-Terra LST generated by the RTM method. It is to be 

observed that the RFSTM method was only used to generate LST for 54 days, which 

has a relatively smaller impact on the overall accuracy of TRIMS LST. 

Table R2: MBE, and RMSE from validation results of TRIMS-Terra LST with the in-situ LST 

Site Condition 

TRIMS-Terra LST (RTM) TRIMS-Terra LST (RFSTM) 

Daytime Nighttime Daytime Nighttime 

MBE 

(K) 

RMSE 

(K) 

MBE 

(K) 

RMSE 

(K) 

MBE 

(K) 

RMSE 

(K) 

MBE 

(K) 

RMSE 

(K) 

D105 

All 1.63 3.15 -1.05 1.94 1.75 3.3 -1.55 2.20 

clear 1.78 2.17 -1.17 2.04 1.85 3.34 -2.37 2.66 

cloudy 1.54 3.25 -0.88 1.78 1.04 3.44 -0.40 1.29 

GZA 

All 0.93 2.61 -0.78 1.76 1.26 3.10 -1.95 2.26 

clear 0.79 2.51 -0.68 1.70 0.94 2.72 -1.26 2.10 

cloudy 1.11 3.71 -0.94 1.85 1.61 4.20 -1.47 2.35 
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(11) Comment 11  

Section 2.2: any resources and information for accessing the ground measurement 

networks? 

Response: Thanks very much for your comment. The links to download ground 

measurements have been provided in the manuscript (Page 7, Line 165–170). 

(12) Comment 12  

Line 211 and 212: duplicated statements, suggest double the manuscript for typos. 

Response: Thanks very much for your comment. It has been corrected in the revised 

manuscript (Page 10, Lines 215-216). 

(13) Comment 13  

It is good to summarize the available all-weather LST products; however, if the authors 

try to include such summary, a complete literature review should be done. Some 

products, e.g., high resolution LST over Europe (Rains et al. 2022), 2-km hourly 

product over the US (Jia et al. 2022), and hourly LST over China 

(https://data.tpdc.ac.cn/zh-hans/data/06414391-abd4-4d28-a844-bd036a0b8c55/) 
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Zhang, Xiaodong, et al. "A practical reanalysis data and thermal infrared remote 

sensing data merging (RTM) method for reconstruction of a 1-km all-weather land 

surface temperature." Remote Sensing of Environment 260 (2021): 112437. 

 

Response: Thanks very much for your comment. It is not our focus to summarize 

current all-weather LST offerings in this article. Instead, we have provided a table in 

Appendix C with all the currently available all-weather/all-sky/gap-free LST products 

that we can find for comparison. We have also emphasized the advantages of our 

TRIMS LST dataset compared to existing all-weather/gap-free LST datasets in Section 

4.5. 

‘Recently, several all-weather LST datasets have been released by the scientific 

communities (see Appendix C). An all-weather LST product series with a temporal 

resolution from 15 min (Martins et al., 2019) to monthly (Metz et al., 2017; Zhao et al., 

2020a; Hong et al., 2022; Yao et al., 2023), a spatial resolution from 1 km to 0.5°, and 

a spatial coverage from a specific region (Qinghai-Tibet Plateau, Asia, Europe and 

Africa) to globe has been preliminarily formed. All-weather LST products based on 

MODIS LST interpolation (Zhang et al., 2022) or fusion with other multi-source data 

(Xu and Cheng. 2021; Zhang and Cheng. 2020b; Zhang et al. 2020c; Zhang et al., 2021; 

Yu et al. 2022) dominate the field. TRIMS LST similarly belongs to this group. Overall, 

the uniqueness or advantages of TRIMS LST are in three main areas:’(Lines 592–598) 

 

‘First, the TRIMS LST demonstrates comparable or better accuracy than existing 

publicly released all-weather/spatially seamless LST datasets. A thorough comparison 

with satellite TIR LST products has indicated the effectiveness of TRIMS LST, with MBD 

ranging from -1.5 K to 1 K and STD ranging from 1 K to 3 K, thus confirming its 

accuracy and consistency (Fig. 8, Fig. 9, and Fig. 10). Furthermore, in-situ LST 

evaluations show MBE ranging from -1.64 K to 2.88 K and RMSE ranging from 1.82 K 

to 3.48 K (Table II and Table III). Interestingly, no significant difference is observed 

between clear-sky and cloudy conditions, indicating the robustness of TRIMS LST 

across various situations. Furthermore, the RTM technique was utilized at four top-



 

 

quality stations and the nearby region (11x11 km): Evora, Gobabeb, KIT-Forest, and 

Lake Constance (Meng et al., 2023). The TRIMS LST has performed favorably in 

validating results across different land cover types, including barren land, savannas, 

and forests, with an RMSE range of 1.90 K to 3.10 K. Additionally, over water site, 

TRIMS LST has an RMSE of 1.60 K. Thus, based on the results of this study, TRIMS 

LST can be considered a reliable source of LST.’(Line 599–608). 

 

‘Second, the method employed in this study effectively overcomes the issue of boundary 

effects in reconstructing the all-weather process due to the large differences in spatial 

resolution between different data sources (Zhang et al., 2021; Quan et al., 2023). This 

is achieved through the utilization of the E-RTM method, which is based on a temporal 

decomposition model of LST. With this model, the LFC and HFC components can be 

directly determined from high-resolution MODIS and ancillary remote sensing data (Eq. 

1). Consequently, only spatial downscaling of HFCcld is required, eliminating the need 

for direct downscaling of the GLDAS LST. This method reduces the possibility of 

insufficient spatial downscaling. Additionally, the E-RTM method considers the 

relationship between LSTs of neighboring pixels, resulting in decreased errors during 

spatial downscaling (Fig. 4).’(Line 609–616) 

 

‘Third, TRIMS LST offers advantages in effectively recovering LST information and 

preserving temporal integrity under cloudy conditions. With a spatial resolution of 1 

km, TRIMS LST covers both daytime and nighttime LST from 2000 to 2022, which is 

comparable in spatio-temporal resolution to other published seamless LST datasets 

(Appendix C). The TRIMS LST dataset will be made publicly available on an annual 

basis, contingent on availability of pertinent input data for the model. The E-RTM 

method effectively recovers temperature information under clouds, ensuring clear 

physical meaning and high accuracy and image quality of TRIMS LST. Moreover, 

TRIMS LST extends the all-weather LST coverage of the MODIS temporal gap. This 

enhances the completeness of long-time series LST datasets, creating a unique and 

valuable collection.’(Lines 617–623) 
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