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Abstract. Ocean color data are essential for developing our understanding of biological and ecological phenomena and 

processes, and also important sources of input for physical and biogeochemical ocean models. Chlorophyll-a (Chl-a) is a 

critical variable of ocean color in the marine environment. Quantitative retrieval from satellite remote sensing is a main way 

to obtain large-scale oceanic Chl-a. However, missing data are a major limitation in satellite remote sensing-based Chl-a 15 

products, due mostly to the influence of cloud, sun glint contamination, and high satellite viewing angles. The common 

methods to reconstruct (gap filling) missing data often consider spatiotemporal information of initial images alone, such as 

data interpolation empirical orthogonal function, optimal interpolation, Kriging interpolation, and extended Kalman filter. 

However, these methods do not perform well in the presence of large-scale missing values in the image and overlook the 

valuable information available from other datasets for data reconstruction. Here we developed a convolutional neural network 20 

(CNN) named OCNET for Chl-a concentration data reconstruction in open ocean areas, considering environmental variables 

that are associated with ocean phytoplankton growth and distribution. Sea surface temperature (SST), salinity (SAL), 

photosynthetically active radiation (PAR), and sea surface pressure (SSP) from reanalysis data and satellite observations were 

selected as the input of OCNET to correlate with the environment and phytoplankton biomass. The developed OCNET model 

achieves good performance in the reconstruction of global open ocean Chl-a concentration data, and captures spatiotemporal 25 

variations of these features. The reconstructed Chl-a data are available online at https://doi.org/10.5281/zenodo.10011908 

(Hong et al., 2023). This study also shows the potential of machine learning in large-scale ocean color data reconstruction and 

offers the possibility to predict Chl-a concentration trends under a changing environment. 
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1. Introduction 30 

Chlorophyll-a (Chl-a), the primary pigment responsible for photosynthesis in plants, plays a vital role in the global carbon 

cycle and serves as a key indicator of the health and productivity of aquatic ecosystems (Righetti et al., 2019; Sun et al., 2021; 

Mouw et al., 2016). Chl-a is a measure of the amount of phytoplankton present in water bodies, and changes in its concentration 

can indicate shifts in the balance of these ecosystems, including the onset of harmful algal blooms or declines in productivity 

(Ho et al., 2019). Accurate and timely measurement of chlorophyll-a concentrations is therefore of paramount importance for 35 

understanding and predicting the carbon fluxes and other elemental cycles in the oceans (Salgado-Hernanz et al., 2019; 

Laufkotter et al., 2016). 

In recent years, satellite remote sensing has become a widely used method for monitoring chlorophyll-a concentrations on a 

global scale (Hu et al., 2012; Hu et al., 2019a; Feng et al., 2021). Satellite sensors can provide synoptic coverage of large areas, 

with a temporal resolution that ranges from daily to monthly. However, there are a lot of missing data in satellite products 40 

caused by cloud, sun glint contamination, and high satellite viewing angles (Feng and Hu, 2016; Mikelsons and Wang, 2019). 

For example, there are over 70% missing data in global daily ocean color products from MODIS-Terra/Aqua and VIIRS-SNPP 

(referring to Figure 1) (Feng and Hu, 2016; Liu and Wang, 2018). In addition, the spatial and temporal resolution of these 

measurements is often limited, and they are subject to various sources of error and uncertainty. These include atmospheric 

effects, such as scattering and absorption of light, which can distort the signal and introduce biases in the measurements (Hu 45 

et al., 2019a; Zheng and Digiacomo, 2017). To address these limitations, it is useful to combine satellite remote sensing data 

with other sources of information, such as in situ measurements, model output, and ancillary data (Nikolaidis et al., 2014). 

Conventional methods for reconstructing missing data, such as data interpolation, DINEOF (Data Interpolating Empirical 

Orthogonal Functions), optimal interpolation, Kriging interpolation, and extended Kalman filter, often rely on the 

spatiotemporal information of the initial images alone (Wang and Liu, 2014; Hilborn and Costa, 2018; Catipovic et al., 2023; 50 

Liu and Wang, 2018). However, these geostatistical methods are not always effective in the presence of large-scale missing 

values and do not take into account the potential contribution of other information to the reconstruction of missing pixels 

(Konik et al., 2019).  

The development of robust and efficient methods for synthesizing and integrating multisource information is becoming 

increasingly important as the availability and diversity of data sources continue to grow (Li et al., 2020). The integration of 55 

multisource information is not a trivial task, as the data sources may have different spatial and temporal scales, resolutions, 

and uncertainties, and may be subject to different biases and errors. These differences can make it challenging to reconcile and 

combine the data in a meaningful and reliable way (Catipovic et al., 2023). With the proliferation of sensors and platforms, 

the volume of data being generated is increasing at an exponential rate, making it difficult to manage and analyze in a traditional 

way. Machine learning techniques, such as convolutional neural networks (CNNs), offer a promising approach for handling 60 

and extracting meaningful insights from this large and complex data stream (Zhang et al., 2018). CNNs are a class of deep 

learning algorithms that have proven to be highly effective for image recognition and analysis tasks. They are particularly well 
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suited to this problem, as they can automatically learn features and patterns from data and can handle large amounts of data 

with high dimensionality and complexity. CNNs have been applied to a wide range of remote sensing applications, including 

the analysis of satellite imagery and the integration of multisource data. A number of studies have demonstrated the 65 

effectiveness of CNNs for analyzing global or regional daily chlorophyll-a products (Cao et al., 2020; Jin et al., 2021; Cen et 

al., 2022; Yussof et al., 2021). Most machine learning-based data reconstruction methods, such as Convolutional Neural 

Networks (CNNs) and Random Forests, predominantly leverage spatiotemporal correlations inherent in the data. They utilize 

valuable spatiotemporal sequences to predict missing regions. Nevertheless, these techniques face significant challenges in 

yielding satisfactory outcomes when confronted with extensive and irregularly distributed missing data. Here we propose a 70 

CNNs-based approach named OCNET for the reconstruction of global daily chlorophyll-a products from multisource 

information. By emphasizing the significance of incorporating spatiotemporal complete environmental variables for 

chlorophyll gap-filling, OCNET demonstrates remarkable data reconstruction performance. 

The OCNET model developed here is an improved version based on the general U-Net. One advantage of U-Net is its ability 

to handle large images while maintaining high-resolution segmentation results (Li et al., 2020; Ronneberger et al., 2015; 75 

Andersson et al., 2021). This is achieved by using skip connections, which allow the network to "skip" certain layers and 

merge higher-resolution information from early layers into the final prediction (Ronneberger et al., 2015; Wagle et al., 2020). 

This helps preserve fine-grained details of the input image and generates more accurate segmentation results (Krug et al., 2017). 

Here we utilized this characteristic of OCNET for global-scale input of big data, and successfully accomplished the task of 

data reconstruction. Given that the input image contains multi-level information elements at the global scale, it places high 80 

demands on how the model extracts feature information and captures its inherent correlations (Moran et al., 2022; Chen et al., 

2019). Another advantage of U-Net is its ability to utilize contextual information from the entire image. Compared to other 

machine learning methods such as multiple linear regression and random forest, U-Net excels in learning complex nonlinear 

relationships between input data and output predictions (Ronneberger et al., 2015; Li et al., 2020). This is due to the use of 

nonlinear activation functions and the ability to learn hierarchical features through convolutional layers. Because artificial 85 

neural networks (ANNs) often face limitations in processing large images and struggle to incorporate global backgrounds into 

their predictions (Catipovic et al., 2023), U-Net outperforms traditional ANNs in various image segmentation tasks. Unlike 

ANNs, U-Net can handle high-resolution images and effectively incorporate global context information into its predictions 

(Andersson et al., 2021; Li et al., 2020).  

In the big-data era, the effective integration and utilization of multisource information on the ocean are of importance for 90 

studying ocean color. The primary objective of this study was to propose the OCNET model which could be trained with 

environmental variables that are associated with ocean phytoplankton growth and distribution, in order to reconstruct high-

quality gap-filled Chl-a data in open oceans. The Chl-a dataset covers the period from 2001 to 2021, with a daily temporal 

resolution and a spatial resolution of 0.25°. Compared to traditional interpolation methods, this approach takes full advantage 

of environmental information mainly provided by ERA5 data, and considers the key factors that influence the growth and 95 

distribution of surface phytoplankton in the oceans. Furthermore, this method is not limited by the size of the ocean region or 
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the temporal span covered by satellite data. By providing reliable environmental information, OCNET enables the retrospective 

analysis of Chl-a concentration data from the pre-satellite era and the prediction of future changes in global marine 

phytoplankton. 

2. Data and methodology 100 

2.1 Training data considerations 

The Ocean-Colour Climate Change Initiative (OCCCI) version 5 and National Oceanic and Atmospheric Administration multi-

sensor DINEOF global gap-filled data (termed as NOAA MSL12 hereafter) are two Chl-a products used in training the OCNET 

model (Table 1). OCCCI's data sources include the Moderate Spectral Resolution Imaging Spectroradiometer (MERIS) sensor 

from the European Space Agency, the SeaWiFS (Sea-viewing Wide Field-of-view Sensor) and MODIS-Aqua (Moderate 105 

Resolution Imaging Spectroradiometer-Aqua) sensors from NASA, and the National Oceanic and Atmospheric 

Administration's VIIRS sensor (Visible and Infrared Imaging Radiometer Suite) (Sathyendranath et al., 2019). Data can be 

obtained starting from 1997. The Multi-Sensor Level-1 to Level-2 (MSL12) is the NOAA official enterprise VIIRS ocean 

color data processing system (Liu and Wang, 2022). The NOAA MSL12 dataset provides near-real-time, gap-free global maps 

of chlorophyll-a concentration by merging data from VIIRS and OLCI-Sentinel-3A satellites and utilizing the DINEOF method 110 

to fill in missing pixels caused by clouds, sun glint, and other factors (Liu and Wang, 2022). The strength of this dataset lies 

in its broader spatial coverage, showcasing more marine features in coastal and inland waters and enhancing data accuracy. In 

addition, Chl-a data from OLCI-Sentinel-3B have not been applied in the production of OCCCI V5 or NOAA MSL12 datasets. 

Therefore, Sentinel-3B data were used for the evaluation and comparison of the final performance of the OCNET model as an 

independent product. 115 

Table 1 Full names, spatiotemporal resolution, temporal coverage, sources, and other information of data used in this study.  

Data Variables Abbreviation Unit 
Temporal 

resolution 

Spatial 

resolution 

Temporal 

coverage 
References 

OCCCI V5 Chlorophyll a Chl-a mg/m3 daily 4km 1997.9.4–2021 
(Sathyendranath 

et al., 2019) 

MODIS-Aqua 
Photosynthetically 

Available Radiation 
PAR einstein/(m2·d) daily 4km 2002.7.4–present 

https://oceancolo

r.gsfc.nasa.gov/l
3 

MODIS-Terra 
Photosynthetically 

Available Radiation 
PAR einstein/(m2·d) daily 4km 2000.2.24–present 

https://oceancolo

r.gsfc.nasa.gov/l
3 

VIIRS-SNPP 
Photosynthetically 

Available Radiation 
PAR einstein/(m2·d) daily 4km 2012.1.2–present 

https://oceancolo

r.gsfc.nasa.gov/l
3 
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OLCI S3B 

NRT 
Chlorophyll a Chl-a mg/m3 daily 4km 2018.5.14–present 

www.star.nesdis.

noaa.gov 

NOAA 

MSL12 
Chlorophyll a Chl-a mg/m3 daily 9km 2018.2.9–present 

(Liu and Wang, 

2022) 

ERA5 Surface Pressure SSP Pa hourly 0.25° 1940.1.1–present 
(Hersbach et al., 
2020) 

ERA5 
Sea Surface 
Temperature 

SST K hourly 0.25° 1940.1.1–present 
(Hersbach et al., 
2020) 

ORAS5 Salinity SAL PSU monthly 0.25° 1958.1.1–present (Zuo et al., 2019) 

ETOPO1 Depth Dep m – 1' – 

(Information and 

Doc/Noaa/Nesdi

s/Ncei National 
Centers for 

Environmental 

Information, 
2009) 

WOA2013 Salinity SAL PSU – 0.25° – 
(Levitus et al., 

2014) 
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Figure 1 Valid data proportion of each satellite-based Chl-a product during 2001‒2021. The global distribution of valid chlorophyll-

a (Chl-a) observations ratio was examined using (a) MODIS-Aqua, (b) MODIS-Terra, (c) VIIRS-SNPP, and (d) OCCCI satellite 

datasets, along with an examination of the (e) temporal variation over their respective coverage periods. 120 

The ocean Chl-a data of the OCCCI product cover more than 20 years. Compared with a single satellite product, OCCCI 

products that integrate multiple sources of data improve data availability by complementing different data sources (referring 

to Figure 1). Due to changes in satellite data sources used in different years, the valid data proportion of OCCCI varies greatly 

in different time periods. In addition, OCCCI has been significantly improved with the introduction of more satellite data. 

However, valid observations from OCCCI are unevenly distributed globally (referring to Figure 1). Missing data on more than 125 

70% of satellite-based products still pose a huge obstacle to the study of ocean color (Feng and Hu, 2016). The NOAA MSL12 

achieved the spatiotemporal continuity of chlorophyll concentration products by the DINEOF method, but NOAA MSL12 are 

only available after February 9, 2018. Given the high coincidence of OCCCI and NOAA MSL12 datasets in the selection of 

satellite sources, these two datasets were selected as the main data sources. Other Chl-a data products from single-mission 
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satellites, such as MODIS-Aqua/Terra and VIIRS-SNPP, which have more severe missing values (referring to Figure 1), were 130 

only used for comparison in this study and were not directly applied. 

We have selected four environmental variables, i.e., sea surface temperature (SST), salinity (SAL), photosynthetically active 

radiation (PAR), and sea surface pressure (SSP) as the input data for the OCNET model. These variables play a significant 

role in influencing the growth and distribution of marine phytoplankton (Flynn, 2001; Han and Zhou, 2022). SST affects algal 

metabolic rates, enzymatic activity, cell division rates, and growth cycles, among other biological processes (Nelson et al., 135 

2020). Variations in salinity can influence osmoregulation in marine phytoplankton and ion balance within cells (Nelson et al., 

2020). Consequently, SST and SAL are considered pivotal input variables in the OCNET model. Furthermore, from a 

hydrodynamic perspective, changes in wind patterns and ocean currents can also affect the distribution of surface algae. To 

capture this impact, we have chosen to represent changes in ocean surface pressure with the parameter SSP. Therefore, we 

selected reanalysis data ERA5's SSP, SST, and Ocean Reanalysis System 5's SAL as input data for the OCNET model. 140 

In addition to SST and SAL, PAR is a crucial energy source for plant photosynthesis, and its distribution is of great importance 

for studying plant growth and photosynthetic processes (Xing and Boss, 2021). Its spatiotemporal variations can impact the 

photosynthetic efficiency, biomass accumulation, and yield of plants (Righetti et al., 2019). Here we selected PAR data from 

satellite sources, specifically MODIS-Terra/Aqua and VIIRS-SNPP, as part of the model input. To address spatial gaps in 

satellite data and correct biases among different datasets, preprocessing and fusion techniques were applied to the PAR data 145 

from different satellite products (see Section 2.2).  

Both ETOPO1 and WOA13 data were used as auxiliary data for determining the study area and were not input for the OCNET 

model. The ETOPO Global Relief Model is a global digital elevation model developed by the National Geophysical Data 

Center (NGDC), a NOAA department (Information and Doc/Noaa/Nesdis/Ncei National Centers for Environmental 

Information, 2009). It provides elevation data for the Earth's surface and finds applications in areas such as topographic maps, 150 

hydrological models, oceanography, and other related fields. Data of ETOPO1 were selected because of the 1-min resolution 

it offers. ETOPO1 is widely utilized in scientific and research communities due to its high accuracy, serving various purposes 

like mapping, visualization, resource management, and environmental modeling (Moran et al., 2022; Righetti et al., 2019). 

The World Ocean Atlas 2013 (WOA2013) is a comprehensive collection of objectively analyzed climatology data for various 

oceanic parameters, including temperature, salinity, oxygen, phosphate, silicate, and nitrate (Zweng et al., 2013). It was 155 

provided by NOAA’s National Oceanographic Data Center - Ocean Climate Laboratory. Salinity data provided by WOA13 

are often used as a reference to analyze abnormal variations in ocean salinity (Righetti et al., 2019; Li et al., 2017).  

The study area considered here mainly focuses on the middle and low latitudes of the open ocean area, constrained primarily 

due to limitations in satellite data sources. In particular, satellite-based Chl-a products exhibit a substantial number of missing 

values in high latitudes and coastal regions (referring to Figure 1). Additionally, the accuracy of chlorophyll concentration 160 

retrievals is affected mostly by the presence of high concentrations of suspended matter resulting from sediment discharge 

from rivers in coastal areas. To mitigate the influences stemming from complex coastal environments on the analysis of ocean 
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color, we excluded regions from seas shallower than 200 m and from seas with surface salinities below 25, as determined by 

ETOPO1 and WOA2013 datasets, respectively (Righetti et al., 2019). 

2.2 Data preprocessing  165 

For the OCCCI V5 data, we selected its climatology product as the background field. Because the OCCCI climatology data 

only provide valid observations for 12 months, temporal smoothing interpolation was performed to cover each ocean grid cell 

from January 1, 2001, to December 31, 2021. Due to the presence of missing values in both the daily and monthly data products 

of OCCCI V5, it is not suitable for direct use as model input. Therefore, the climatology product without missing values in the 

spatial domain was used to set the Chl-a baseline. 170 

As PAR data from different satellite sources were used in this study, preprocessing and bias correction were applied. The 

overlapping period of MODIS and VIIRS data from 2012 to 2021 was chosen as the reference, using a ratio-based method 

with MODIS-Aqua as the baseline for bias correction. In cases of missing values in the spatial domain, the three different 

products were used for complementarity. If effective observational values were not available, linear spatial interpolation was 

performed. Finally, a spatiotemporally continuous PAR dataset was obtained for model input. 175 

For the reanalysis datasets, as they are already spatiotemporally continuous with a spatial resolution of 0.25°, no additional 

preprocessing is required. The average of the first five levels of SAL data (approximately 5.14 m) from ORAS5 was taken as 

the input. It should be noted that ORAS5 has a spatial resolution of 9 km near the polar regions. However, this study does not 

consider the inversion of Chl-a data in high-latitude areas. Considering the different spatial resolutions of the data, apart from 

the reanalysis data, the other input data for the model in this study were resampled to 0.25° using the nearest interpolation 180 

method. 

When using the data mentioned above as inputs for the OCNET model, normalization is necessary. For environmental variables 

(SST, SSP, SAL, and PAR), normalization was performed according to Eq.1 where the parameters used in the formula were 

pre-calculated (Table 2). Due to the presence of numerous low values in the Chl-a concentration data in open waters, it is first 

natural logarithm transformed and then normalized to achieve a uniform distribution of the input data (Eq.2). 185 

Table 2 Maximum, minimum, and mean values of environmental variables obtained from satellite and reanalysis datasets. 

Variables max min mean units 

SST 310.06 269.17 286.821 K 

SSP 106980 54834 96643 Pa 

PAR 70.329 0 32.2007 einstein/(m2·d) 

SAL 43.467 0 34.169 PSU 

  

N

max min

X X
X

X X





 (1) 
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N

ln( ) 4.61

4.61 2

C
C





 (2) 

where X represents different environmental variables, subscript N represents the normalized variables, subscripts "max" and 

"min" correspond to the maximum and minimum values in Table 2, and �̅� represents the mean. C represents Chl-a data. Values 

of Chl-a concentration lower than 0.01 mg/m3 were all set to 0.01 mg/m3. Actually, the accuracy of satellite retrievals cannot 190 

reach such a small value. 

2.3 Model architecture 

Data-driven deep learning algorithms can extract high-level information from multisource input data using multiple non-linear 

processing layers (Li et al., 2020; Cen et al., 2022). In the research of large-scale, long-term, and multi-data scenarios, deep 

learning algorithms excel at discovering data patterns and inherent connections (Li et al., 2020; Andersson et al., 2021). Given 195 

the applicability of CNNs to satellite remote sensing imagery and climate model data, we constructed the global OCNET model 

consisting of 405 regional CNNs. Specifically, each CNN employed in the individual regions was based on the U-Net model 

(referring to Figure 2). U-Net, initially designed for medical image segmentation, is a variant of the CNN (Ronneberger et al., 

2015). Across various applications, U-Net has been consistently proven to be highly effective in terms of learning accuracy 

and pixel-wise mappings (Andersson et al., 2021; Urakubo et al., 2019; Wagner et al., 2019). 200 

Here we applied the OCNET to reconstruct global Chl-a concentration data in open ocean areas, considering environmental 

variables that are associated with ocean phytoplankton growth and distribution. SST, SAL, and SSP from reanalysis data and 

PAR from satellite observations were selected as the input of OCNET to correlate with the environment and phytoplankton 

mass. The whole area considered in this study covers latitude 45° N to 45° S, and longitude 180° W to 180° E. The open ocean 

is divided into 45 horizontal and 9 vertical zones, 405 in total. Each area has a size of 16° × 16° and a side length of 64 grid 205 

cells. There is an 8° overlap in the latitude direction between each pair of adjacent regions at the same latitude. Additionally, 

there is a 6.25° overlap in the longitude direction between each pair of adjacent regions at the same longitude. This is to reduce 

the boundary effect caused by dividing regions for network training separately.  

 

Figure 2 Flowchart of the developed OCNET model in each zone. The OCNET model, comprised of deep learning U-Net models, 210 
receives three monthly averaged variables (SST, SAL, and PAR) and two daily real-time variables (SST and SSP) as input. The 

climatology Chl-a of OCCCI and daily Chl-a data of NOAA MSL12 were treated as background and target set, respectively. 
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Inputs to the network include Chl-a_OCCCI, Chl-a_N, SST, SAL, SSP, PAR and SST_d. Chl-a_OCCCI is the climatology 

data from OCCCI, as the background field of the dataset with only one value per month. Considering the typical monthly 

growth cycle of phytoplankton, we calculated the environmental factors influencing marine algae growth by averaging the 215 

data from the preceding month as input variables. Therefore, SST, SAL, and PAR took the average of one month forward as 

input to OCNET. In addition, the values of SST_d and SSP were also taken as the input of the day, respectively. 

There are totally 405 zones of size 6464 globally. Each zone has its own independent U-Net. Each network undergoes a 

maximum of 100 training steps to ultimately output the network model for each region. First, the input data with a size of 

64×64×7 are passed through the initial convolutional layer, which consists of 64 filters. Each filter has a grid size of 3×3 and 220 

a stride of 1. Subsequently, an activation function is applied to the data, and the dimension of the feature map is reduced to 

half of its original size, resulting in a size of 32×32×64, through a pooling layer operation of size 2×2. After completing this 

initial step, the subsequent operations follow a similar pattern. The feature map undergoes a halving of its spatial dimension 

through pooling, while the number of channels is doubled through convolution. The final feature map obtained from these 

operations has a size of 8×8×512, and it serves as input for the subsequent decoding process. The decoding process mirrors 225 

the encoding process described earlier. It is important to note that the encoding and decoding networks are connected through 

skip connections, enabling the preservation of information that may be lost during downscaling. This U-Net structure facilitates 

the preservation of detailed information from previous layers during the subsequent decoding stage. Finally, the last layer 

consists of a single filter that outputs a feature map with a size of 64×64×1, representing a single channel of data. Finally, by 

inputting environmental information from 2001 to 2021 into the OCNET model, a spatiotemporal continuous dataset of Chl-a 230 

concentration was reconstructed, covering the period from 2001 to 2021. 

2.4 Statistical tests 

2.4.1 Evaluation of OCNET output 

In the simulation performed by OCNET, the data from the year 2021 was selected as the testing set. This portion of the data 

was excluded from model training and validation, and was solely used for evaluating the quality of the final data. The 235 

commonly used evaluation metrics, including CC, bias, and RMSE, were employed for this purpose. The specific formulae 

used for the calculations can be found in Table 3, while the evaluation results are presented in Section 3.2. 

Table 3 Statistical metrics used in evaluating the reconstructed Chl-a (C) against the observed data (Cg) from the NOAA MSL12 

during the testing period. An overbar donates the mean during evaluation periods. N denotes the number of data pairs. Cov denotes 

the covariance and σ is the standard deviation.   240 

Performance Score Score symbol Equation  

Pearson's correlation coefficient CC 
g

g

cov( , )
CC

( ) ( )

C C

C C 
  (3) 

Bias Bias 
g

g

( )
BIAS

C C

C





 (4) 
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Root mean square error RMSE 
2

g( )
RMSE

C C

N



  (5) 

2.4.2 Evaluation using the ETC method 

Due to the lack of enough and reliable in-situ measurements for the assessment of global ocean Chl-a, the extended triple 

collocation (ETC) method was used to indirectly evaluate the quality of OCNET model output data (Mccoll et al., 2014). The 

ETC method uses exactly the same assumptions as the triple collocation (TC) method. The TC method utilizes three mutually 

independent datasets to assess the relative errors of the data without requiring the knowledge of the true value. This method 245 

was initially developed by Stoffelen (1998) and has been widely used for soil moisture assessment (Dorigo et al., 2010; Miralles 

et al., 2010). The ETC method, improved by Mccoll et al. (2014) from the TC method, provides the correlation coefficient as 

another performance index. The ETC method has also been extensively applied, such as in the evaluation of sea surface 

temperature data (Gentemann, 2014). 

Because the Sentinel-3B data are not used in the OCCCI and NOAA MSL12 datasets, it was selected as an independent dataset 250 

for evaluation. Chl-a data products from Sentinel-3B, NOAA MSL12 and OCNET were used in ETC method. Considering the 

available time period of Sentinel-3B data, the evaluation covers the period from June 7, 2019, to December 31, 2021. Due to 

the presence of numerous missing values in the Sentinel-3B data products, grid cells with severe missing values, i.e., grid cells 

with fewer than 30 valid days, were excluded, and the remaining grid cells were retained for evaluation. It should be noted that 

since OCNET was trained using NOAA MSL12 as the target set, they cannot be considered mutually independent datasets. 255 

This evaluation mainly utilizes Sentinel-3B data as a third-party source to validate the reliability of the OCNET model. It is 

possible that the results of the ETC in some grid cells may yield a negative square of the correlation coefficient or root mean 

square error. This can happen if the sample size is too small, or if one of the assumptions of ETC is violated. In the final 

presentation of results, these grid cells were excluded. 

The calculation method is based on Eq.6-Eq.11, where Cij represents the covariance between the i-th and j-th data points. The 260 

calculated correlation coefficient (tCC) and root mean square error (tRMSE) based on the TC method are denoted as ρ and σ, 

respectively. It should be noted that the magnitude of the tCC and tRMSE only reflects the relative performance as opposed to 

the absolute values. 

t,1 11 12 13 23/C C C C  
 

(6) 

t,2 22 21 23 13/C C C C  
 

(7) 

t,3 33 31 32 21/C C C C  
 

(8) 

,1 12 13 11 23/t C C C C  
 

(9) 

,2 13 23 12 23 22 13sign( ) /t C C C C C C  
 

(10) 
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,3 12 23 13 23 33 12sign( ) /t C C C C C C  
 

(11) 

3. Results 

3.1 Spatial variations and trends in global Chl-a estimates during 2001–2021  265 

We have developed high-quality gap-filled Chl-a data in open oceans using the OCNET model. The dataset covers the time 

period from 2001 to 2021 and has a spatial resolution of 0.25°, with a daily temporal resolution. We applied the natural 

logarithm transformation to the Chl-a concentration values when generating global maps (referring to Figure 3). This 

transformation was necessary due to the relatively low Chl-a concentrations in most sea areas but the relatively high 

concentrations in areas experiencing algal blooms. There are high chlorophyll concentrations in the sea areas near the west 270 

coast of Africa (~2.2 mg/m3), the east coast of Asia (~1.1 mg/m3), and the west coast of the Americas (~2.3 mg/m3), which 

indicates a higher likelihood of algal blooms in these regions. Chl-a concentrations near the equator and in regions above 30° 

latitude are higher than in open ocean regions between 10° and 20° latitude. In addition, oceanic regions far from the continents, 

such as the Pacific Ocean, Indian Ocean, and Atlantic Ocean, exhibit low chlorophyll concentration distributions (less than 

0.05 mg/m3). This also suggests a higher possibility of algal blooms in coastal areas to some extent. 275 

 

Figure 3 Natural logarithm of the OCNET model output Chl-a during 2001‒2021. Light blue represents land areas. White denotes 

areas that are not considered in this study. 

To ensure spatial continuity in the global Chl-a concentration product, the data underwent regional processing before being 

input into the OCNET model. Subsequently, overlapping region processing and image stitching were performed, resulting in 280 

a seamless global Chl-a concentration product without noticeable discontinuity or fragmentation. Although the OCNET model 

was trained separately for each region, the final results obtained after adequate data preprocessing and sufficient training steps 
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were consistent and globally continuous. This outcome further highlights the effectiveness of the OCNET model in global data 

reconstruction. 

 285 

Figure 4 Global Chl-a trends from OCNET over the period Jan 2001–Dec 2021. Regions with significant trends (p<0.05) are marked 

with black dots.  

Trends in Chl-a concentration in the global ocean area from 2001 to 2021 according to the output of the OCNET model were 

derived (referring to Figure 4). To emphasize regions exhibiting clear trends, data in this section were not subjected to natural 

logarithm transformation and was magnified instead (please note the unit is 10-2 mg·m-3·decade-1). In general, the sea areas 290 

closer to continental land exhibit more significant trends (referring to Figure 4). Although the sea areas near the west coast of 

Africa show high chlorophyll concentrations (referring to Figure 3), the two hemispheres, northern and southern, exhibit 

different trend patterns. Specifically, the sea areas on the western side of the northern hemisphere of Africa show a clear 

upward trend in chlorophyll concentration (~4×10-2 mg·m-3·decade-1), while the sea areas on the western side of the southern 

hemisphere show a significant downward trend (~-8×10-2 mg·m-3·decade-1). The sea areas near North America predominantly 295 

exhibit a noticeable downward trend (~-5×10-2 mg·m-3·decade-1). The islands around the northern part of South America show 

a pronounced decrease in chlorophyll concentration (~-5×10-2 mg·m-3·decade-1), while the sea areas on the western side exhibit 

distinct increasing or decreasing trends at different latitudes. The chlorophyll concentration variation around Japan in eastern 

Asia shows the most significant trend. The sea areas near Japan demonstrate a decrease in chlorophyll concentration at lower 

latitudes and an increase at higher latitudes. In general, there are more areas in the open oceans worldwide where Chl-a 300 

concentration shows a decreasing trend than areas where it shows an increasing trend. 

3.2 Temporal variations in Chl-a estimates in different ocean regions  

To facilitate the analysis and evaluation of regional data, we divided the study area into 10 regions based on latitude, longitude, 

and the ranges of oceans (referring to Figure 5). The division of sea areas considered the characteristics of the regions and the 

influence of ocean currents, taking into account the division of biogeochemical provinces (Reygondeau et al., 2013). To avoid 305 
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excessive complexity resulting from overly detailed regional divisions, a final selection of 10 regions was determined. This 

study calculated and presented the Chl-a concentration products for these 10 regions in a 20-year time series. Due to the 

OCNET model's target dataset being NOAA MSL12, the output results of the OCNET model are consistent with NOAA 

MSL12 after February 9, 2018. However, the results of the OCNET model are noticeably lower than the results of OCCCI V5, 

particularly in regions 2, 4, 6, 7, 8, and 9 (referring to Figure 5). The primary reason for this systematic bias is the discrepancy 310 

between the NOAA MSL12 data and the OCCCI V5 data products. 
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Figure 5 Global open ocean was divided into 10 regions in this study, and the temporal variations of Chl-a from 2001 to 2021 are 

shown for each region. The blue line represents the output results of the OCNET model, the red line represents the results from 

OCCCI V5, the green line represents the results from NOAA MSL12 data, and the dark dashed line represents the linear fit of 315 
OCNET. The trends of OCCCI V5 and the OCNET model outputs during 2001 to 2021 are indicated with their respective color 
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labels in the top left corner of the temporal variation plot. For comparison purposes, we only consider and display calculations based 

on grid cells with valid values from OCCCI V5. 

The long-term Chl-a concentration trends in most regions are relatively small, with changes within 0.001 mg/m3 per year, 

except for Region 3 (referring to Figure 5). In terms of seasonal variations, regions 3, 5, and 9 exhibit larger intra-annual 320 

fluctuations. On the other hand, regions 4, 7, and 8, which encompass a wider range of low Chl-a concentrations (referring to 

Figure 3), show smaller seasonal fluctuations. It is worth noting that OCCCI V5 and OCNET show significant deviations in 

Region 9, where there are higher Chl-a concentrations (particularly during the period from 2010 to 2015). Considering that 

Region 9 mainly covers the sea areas surrounding the Americas, it is likely influenced by human activities. Additionally, the 

satellite retrieval of Chl-a concentration data in this region is of poorer quality due to high sediment concentrations and turbidity 325 

near the coastline. This partially explains the significant interannual variability observed in OCCCI V5 products for Region 9. 

Furthermore, both OCCCI V5 and NOAA MSL12 products have instances of unusually high Chl-a values, such as in regions 

7 and 10 for OCCCI V5, and Region 4 for NOAA MSL12. These abnormally high Chl-a concentrations, which surpass typical 

values for the respective years, could be due to algal blooms or satellite data quality issues. Overall, from the long-term trends, 

most regions show small magnitudes of change, with more regions exhibiting a decreasing trend. 330 

3.3 Evaluation of OCNET’s performance  

The target dataset for the OCNET model is the NOAA MSL12 data product with a time span from February 9, 2018, to 

December 31, 2021. Details of model construction are explained in Section 2.3, where the data were divided into training, 

validation, and testing sets in a ratio of 7:1.5:1.5. Three statistical metrics, i.e., CC, bias, and RMSE, were selected to evaluate 

the training performance of the OCNET model (Figure 6 and Table 4) for different regions (referring to Figure 5). 335 
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Figure 6 Boxplot of evaluation results of the OCNET model in each region. 

Table 4 Chl-a concentration change rates for each region from three datasets and the median values of evaluation metrics (including 

the training set, validating set, and testing set) for the OCNET model. 

Region 

Change rate (×10-4 mg·m-3·year-1) Evaluation Index 

OCNET OCCCI 
NOAA 

MSL12 
CC Bias RMSE 

1 -3.5  -1.1  -103.3  0.73  -0.06  0.03  

2 -7.1  -1.9  -1.5  0.78  -0.08  0.04  

3 -13.3  -16.7  -91.2  0.75  -0.07  0.04  

4 -4.0  7.1  -17.6  0.72  -0.08  0.04  

5 -5.9  -4.9  -94.4  0.76  -0.09  0.04  

6 -3.5  -8.6  3.5  0.66  -0.09  0.02  

7 -3.1  3.2  -26.0  0.71  -0.06  0.04  

8 -0.8  1.0  6.1  0.63  -0.03  0.02  

9 -1.6  -6.1  -96.0  0.56  -0.07  0.04  
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10 -3.5  -9.1  -29.8  0.64  -0.08  0.03  

From the daily evaluation, it is shown that the model performs well (referring to Figure 6). The median values of CC for the 340 

training set are mostly above 0.6. The performance of the validating set and the testing set is similar, but individual regions 

show poor performance. For example, in the validating set, the median values of CC for regions 6, 9, and 10 are around 0.4 

and 0.5, and for region 9 in the testing set, the median value of CC is around 0.4. This corroborates the findings in Section 3.1 

that region 9, being mostly near the American continent, is heavily influenced by human activities, and the satellite data quality 

in coastal areas is also poorer. In terms of bias, the performance of the training set is excellent, with biases within a small range 345 

for each region. The boxplot ranges for the validating set and the testing set also fluctuate within 0.2. It is worth noting that, 

due to the low Chl-a concentrations in most marine areas, the calculated biases are defined as relative biases (with the 

denominator being the mean of the target dataset). Therefore, it is possible to have higher biases in regions with low Chl-a 

concentrations. For the RMSE, both the training set, validating set, and testing set are below 0.2, with most of them below 0.1, 

indicating excellent performance. Regions 6 and 8 have the lowest RMSE values. This may be because regions 6 and 8 mostly 350 

cover low Chl-a concentration offshore areas with minimal seasonal fluctuations (referring to Figure 5). 

According to the results of the Chl-a concentration rate of change in each region, it can be observed that most regions show 

relatively small trends as Table 4 shows. Most regions exhibit a decreasing trend, which is consistent with the conclusions of 

existing related studies (Le Grix et al., 2021; Beaulieu et al., 2013; Signorini et al., 2015). Based on the results of the OCNET 

model, regions 2, 3, and 5 show larger decreasing magnitudes, compared to the other regions, which also exhibit a decreasing 355 

trend. According to the results of OCCCI, except for regions 4, 7, and 8, which show small increasing trends, the other regions 

demonstrate a decreasing trend, with regions 3, 6, 9, and 10 showing more pronounced declines. As for NOAA MSL12, except 

for regions 6 and 8, which show an upward trend, the other regions display a decreasing trend. Due to the relatively short time 

series of NOAA MSL12, it cannot reflect long-term trend characteristics. It can be seen that NOAA MSL12 shows a significant 

decrease in Chl-a concentration in regions 1, 3, 5, 7, 9, and 10. This overall decline exhibited by NOAA MSL12 directly 360 

influences the training results of the OCNET model. Therefore, OCNET and OCCCI share similarities in long-term trends but 

may have differences in individual regions. 
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Figure 7 Evaluation results of OCNET based on the NOAA MSL12 dataset. a), c), and e) represent the global distribution maps of 

CC, RMSE, and bias from February 9, 2018, to December 31, 2021, respectively. b), d), and f) display the density distributions of 365 
the evaluation results for CC, RMSE, and bias across the training, validating, and testing sets, respectively. Note that RMSE took 

logarithm base 10. 

From the comparison results with the target data NOAA MSL12, the OCNET model has effectively learned the relationship 

between environmental data and Chl-a concentration variations (referring to Figure 7). At the global scale, the overall 

performance of CC is good, with most regions above 0.7. Regions with lower CC are mainly concentrated in the eastern 370 

tropical Pacific, where the OCNET model output shows apparent systematic biases compared to OCCCI (referring to Figure 

5). Due to the low mean Chl-a concentration in Region 8 (referring to Figure 3), the RMSE and BIAS of Region 8 are better 

than other regions. The preliminary evaluation results in Region 8 suggest that OCNET's performance is not as good as in 

other areas. This may be related to the specific climate characteristics or low satellite data quality in that region. The complex 

factors ultimately result in OCNET's less optimal learning effect in Region 8. For the density distribution maps of the 375 

evaluation results for the training, validation, and testing sets, the performance of the training set is generally excellent. The 

performance of the validation and testing sets is comparable. From the results of bias, the training set shows a clear tendency 

of underestimation (referring to Figure 7d), compared to the validating and testing sets, which exhibit a less underestimation 

but less pronounced. This may be due to the smoothing effect of OCNET on some abnormally high values in the satellite data 

(Section 3.2). In summary, the evaluation results indicate that OCNET performs exceptionally well in the reconstruction of 380 

global open ocean Chl-a concentration data. 
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3.4 Extended triple collocation evaluation 

Output of the OCNET model, NOAA MSL12, and Sentinel-3B's Chl-a concentration data were selected for the ETC evaluation 

method. It should be noted that the Sentinel-3B dataset was considered independent of the other two datasets, while output of 

OCNET is not independent of the NOAA MSL12 dataset. Therefore, the evaluation results are biased towards OCNET and 385 

NOAA MSL12 data and may underestimate Sentinel-3B data. The purpose of the ETC method evaluation here was to 

demonstrate the quality of OCNET output data compared to NOAA MSL12 data. The low absolute values of the evaluation 

results do not necessarily imply that Sentinel-3B dataset is unreliable. Additionally, due to algorithmic reasons, grid cells with 

outlier data were excluded. To highlight relevant information, Figure 8 only includes the results of Sentinel-3B data in the 

interval distributions (e) and (f) while omitting the global distribution of the metrics (which mostly perform worse). It should 390 

be noted that tCC and tRMSE mentioned in Section 3.4 are different from those in Section 3.3. The metrics in Section 3.4 can 

only reflect the relative ranking. 

 

Figure 8 Evaluation results based on the ETC evaluation method. Global distribution map of the tCC of Chl-a for a) OCNET and 

b) NOAA MSL12. Global distribution map of the tRMSE of Chl-a for c) OCNET and d) NOAA MSL12. Interval distribution of e) 395 
tCCs and f) tRMSEs for the three products was calculated using the ETC method. 

By referring to Figure 8(a‒b), the output data of the OCNET model show a similar distribution to NOAA MSL12 data in the 

global tCC distribution, with most regions above 0.7. In the interval distribution (referring to Figure 8e), the proportion of 
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OCNET model output data exceeding 0.8 is approximately 12%, slightly lower than NOAA MSL12's 14%. Regions with 

poorer tCC evaluation results are mainly distributed in the eastern tropical Pacific where there are significant missing values 400 

in tCC, and the performance of OCNET is slightly lower than other regions. It should be noted that in the ocean areas near the 

American continent, there is a prevalent occurrence of tCC values below 0.5. This is similar to the evaluation results in Section 

3.3, where the training performance for Region 9 is also slightly lower than other regions (referring to Figure 7). Additionally, 

in the southern hemisphere region of the Atlantic Ocean, OCNET seems to exhibit higher tCC values in the middle compared 

to the northern and southern sides, which is a different characteristic from the NOAA MSL12 dataset. 405 

By referring to Figure 8f, from the results of tRMSE, the model output of OCNET is slightly better than NOAA MSL12 data. 

Specifically, NOAA MSL12 exhibits poorer tRMSE performance in the sea area near the west coast of Africa. This area is 

also characterized by high Chl-a concentration and significant interannual variations (referring to Figure 3 and Figure 4). While 

OCNET exhibits similar high tRMSE values in the ocean areas near the western side of Africa as NOAA MSL12, the 

distribution range is smaller compared to NOAA MSL12. Additionally, in the ocean areas near South America, both OCNET 410 

and NOAA MSL12 show small-scale high tRMSE values. It is worth mentioning that even for Sentinel-3B, the majority of 

tRMSE values are concentrated below 0.4. This may be related to the fact that most of the ocean Chl-a concentrations are 

relatively low. 

4. Discussion 

4.1 Factors affecting the distribution of marine phytoplankton 415 

We focused on the surface chlorophyll-a (Chl-a) concentration as an indicator of the distribution of phytoplankton in the ocean 

surface layer. The distribution of marine phytoplankton is influenced by various factors, including light, temperature, nutrients, 

salinity, hydrodynamic conditions, and biological interactions (Behrenfeld et al., 2006; Ducklow et al., 2022; Feng et al., 2021). 

Among them, light, temperature, salinity, and hydrodynamics are directly reflected in the input data of the OCNET model. 

However, the influences of nutrients and biological interactions are more complex. Different phytoplankton communities 420 

require different major nutrients such as nitrogen, phosphorus, and silicon (Powell et al., 2015; Takeda, 1998). The biological 

interactions also include predation by zooplankton and the impact of human activities in coastal areas. Due to the lack of 

publicly available reliable quantitative data on these two aspects, they are not considered in this study.  

Considering the correlation between SST, SAL, and PAR with the growth cycle of phytoplankton, when creating input data 

samples for the OCNET model, the mean values from one-month prior were selected as variables. However, hydrodynamic 425 

conditions have real-time effects on the distribution of planktonic algae, so SSP and SST were taken as daily values for input. 

It is worth mentioning that surface wind speed variations also have a direct impact on the movement of surface phytoplankton 

in the ocean. However, wind speed not only includes direction and magnitude, but it also fluctuates significantly in both 

direction and magnitude within a day. Therefore, simply taking daily averages as model inputs would not suffice. Additionally, 
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selecting too many variables can lead to overfitting or poor training performance due to limitations in the quantity of sample 430 

data. 

According to the result of OCNET model (referring to Figure 3), regions with higher Chl-a concentration are generally located 

near continents. From the perspective of hydrodynamic conditions, hydrological factors such as water currents, ocean currents, 

and tides have a significant influence on the distribution and aggregation of phytoplankton. They affect the horizontal migration, 

vertical mixing, and nutrient transport of phytoplankton. The nearshore waters have relatively low seawater velocity, coupled 435 

with features such as coastlines, underwater ridges, and archipelagos, which to some extent contribute to the retention and 

aggregation of phytoplankton. In addition, river inflows into the ocean often bring abundant nutrients (Slomp, 2011; Wang et 

al., 2016), creating favorable conditions for the growth of phytoplankton (Liu et al., 2022). 

Global variations in ocean temperature also have an important impact on the growth of phytoplankton. With the continued 

increase in global sea temperatures, temperature anomalies can also lead to anomalies in Chl-a concentration (Liu et al., 2022; 440 

Gruber et al., 2021; Le Grix et al., 2021). Global ocean warming results in more pronounced stratification of the ocean, altering 

the depth of the mixed layer and reducing vertical mixing between the surface layer and the cold, nutrient-rich layer below 

(Liu et al., 2022; Le Grix et al., 2021). The reduction in nutrients ultimately leads to a decrease in Chl-a concentration in the 

ocean surface layer. However, the declining trend in Chl-a concentration over the 20 years does not necessarily indicate a 

reduction in algal blooms. On the contrary, the frequency of extreme events associated with algal blooms may be continuously 445 

increasing due to the influence of climate change (Feng et al., 2021; Dai et al., 2023). 

In conclusion, understanding and studying these influencing factors are crucial for comprehending the ecological and 

biogeochemical processes of marine phytoplankton. A thorough investigation of the interactions among these factors can lead 

to better predictions and explanations of the growth and distribution patterns of phytoplankton. Subsequent research can further 

focus on the impact of human activities in coastal areas on the growth of marine phytoplankton. 450 

4.2 Uncertainty in ocean color data from satellite remote sensing 

Satellite remote sensing is one of the important technologies to obtain long-term and large-scale ocean color data (Groom et 

al., 2019). However, there is uncertainty in the satellite data inversion process, degrading the accuracy (Groom et al., 2019; 

Hu et al., 2019a; Jiang and Wang, 2013). The first factor is the influence of atmospheric correction algorithms. The selection 

of models and parameters can affect the satellite data during the atmospheric correction process. In addition, coastal areas and 455 

inland lakes closer to land often have more turbid waters, and the presence of high concentrations of suspended particles in 

complex water environments makes it more difficult for satellites to accurately retrieve water color information from the water 

surface (Lian et al., 2021; Wang et al., 2021; Zheng and Digiacomo, 2017). Furthermore, weather and environmental factors 

such as clouds and fog can partially or completely obscure the target water areas, posing important challenges to satellite data 

acquisition (Zheng and Digiacomo, 2017; Wang et al., 2021). 460 

In practical applications, in-situ measurements are typically used to calibrate and fit parameters for satellite data (Hu et al., 

2012). However, obtaining a large amount of continuous shipborne measurement data is challenging, and publicly available 
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in-situ data often suffer from problems such as inconsistent formats, varying measurement standards, complex composition of 

research institutions, and unclear data quality. Therefore, the application of in-situ data is limited for studying large-scale, 

long-term time series of Chl-a concentration variations. In this study, to further demonstrate the data quality of OCNET outputs 465 

comparable to NOAA MSL12, an indirect evaluation method using ETC was employed. The evaluation results not only 

confirmed the excellent training performance of the OCNET model but also indicated significant differences among different 

satellite products, as evidenced by the low evaluation indicators for Sentinel-3B (referring to Figure 7). Therefore, when 

applying satellite products of Chl-a concentration data, it is important to carefully select and correct for biases (Krug et al., 

2017). It should be noted that the global distribution map of ETC evaluation results shows a significant number of missing 470 

values (referring to Figure 7). These missing values primarily stem from data gaps in Sentinel-3B and issues within the 

algorithm itself, resulting in negative squared evaluation metrics. Short data sequences or data that do not conform to the 

algorithm's underlying assumptions can lead to unusable results from the ETC algorithm. The final result analysis is based 

solely on grid cells with valid values. 

The main purpose of our study was to address the serious issue of spatial missing values in existing satellite datasets. It should 475 

be noted that the satellite-derived water color data itself still have errors that are difficult to correct (Wang et al., 2021). To 

improve accuracy, algorithms can be applied to differentiate different concentrations, such as OCx and CI algorithms (Hu et 

al., 2012), or specific parameter fitting can be performed for different regions (Li et al., 2019). However, the accuracy of 

satellite sensors, resolution, and other factors still influence the inversion accuracy. The accuracy of satellite data is not the 

focus of this study. Nevertheless, satellite data can still provide important references for algal blooms on a global scale (Wang 480 

et al., 2021; Feng et al., 2021). An anomaly algorithm can also be used to reduce the impact of systematic biases (Wang et al., 

2021; Stumpf, 2001). It may be beneficial to employ machine learning techniques for anomaly of Chl-a concentration, enabling 

better prediction of extreme events. 

4.3 Applications of OCNET in the future 

The variation of Chl-a concentration in the global ocean surface is influenced by various complex factors, which poses 485 

challenges to accurately retrieve Chl-a concentration. We selected Chl-a data products retrieved from satellite data as a 

reference, supplemented by reanalysis data to provide environmental factor information. By combining the advantages of 

machine learning in big data analysis and simulation, we ultimately reconstructed a global-scale, long-term time series of Chl-

a concentration dataset. 

It is worth noting that this study intentionally excluded coastal regions in the selection of the study region, due mostly to the 490 

poor performance of satellite data in coastal regions. Currently, most satellite data algorithms for Chl-a retrieval are based on 

the absorption peak of Chl-a in the blue spectral band (Hu et al., 2019b; Hu et al., 2012). This approach is highly applicable in 

open waters but can be significantly affected by interference in coastal regions, particularly in cases of high suspended matter 

concentration or colored dissolved organic matter (CDOM) (Blondeau-Patissier et al., 2014). Although adjustments can be 

made to the retrieval algorithms based on localized measurements, there is significant variability in water composition across 495 
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different coastal regions. This has resulted in poor performance of current satellite retrieval algorithms for estimating global 

Chl-a concentrations in coastal areas (Dai et al., 2023). 

The performance of OCNET in coastal areas is primarily limited by the quality of the input satellite data. The construction of 

the OCNET model can be affected if the training-set quality is poor or severely lacking. However, OCNET has demonstrated 

its potential application in open waters. In regional calculations, OCNET can effectively capture the interrelationships among 500 

various environmental factors in different zones and apply them to the reconstruction of Chl-a concentrations. There have also 

been successful studies applying machine learning to analyze Chl-a concentration variations at the regional scale (Chen et al., 

2019; Roussillon et al., 2023), further demonstrating the potential application of machine learning methods in coastal areas. In 

the future, if reliable water color data from coastal areas can be obtained with a certain time span and spatiotemporal continuity 

for training OCNET, the reconstruction of Chl-a concentrations in coastal regions may also yield favorable results. 505 

Overall, OCNET is capable of surpassing traditional machine learning methods such as multiple linear regression and random 

forest, as well as traditional artificial neural networks, because it can learn complex nonlinear relationships and incorporate 

global context into its predictions. This is of great significance for in-depth understanding and analysis of variable changes 

under the complex environmental influences in the context of big data. 

5. Data availability 510 

The reconstructed Chl-a data are archived and available at https://doi.org/10.5281/zenodo.10011908 (Hong et al., 2023). 

6. Conclusion 

We developed the OCNET model for the purpose of reconstructing global ocean Chlorophyll-a (Chl-a) concentration data. 

Chl-a is an important indicator of the health and productivity of marine ecosystems, and accurate measurements of Chl-a 

concentrations are essential for understanding the dynamics of these systems. The OCNET model is based on a convolutional 515 

neural network and considers a variety of environmental variables that are known to influence the growth and distribution of 

ocean phytoplankton, which are the primary producers of Chl-a. 

Our results show that the OCNET model performs very well in reconstructing Chl-a concentrations, accurately capturing the 

temporal variations of these features. This suggests that the model has strong potential for use in large-scale ocean color data 

reconstruction, and may even be able to predict Chl-a concentration trends in response to changes in the environment. However, 520 

we did observe that the model's performance was somewhat weaker in the eastern tropical Pacific region compared to other 

areas. This may be due to specific climate characteristics that have a significant impact on phytoplankton growth and 

distribution (Geng et al., 2022; Duteil and Park, 2023) or low quality of satellite-based dataset in this region. The model's 

performance in the eastern tropical Pacific region requires further improvement in future work. 
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Overall, the OCNET model represents an important step forward in the use of machine learning techniques for predicting and 525 

reconstructing Chl-a concentrations. The model's strong performance in all regions of the globe suggests that it could be a 

valuable tool for understanding and predicting the dynamics of marine ecosystems on a global scale. OCNET and other 

machine learning tools will help us better understanding and predicting the change of marine phytoplankton under climate 

change. It is hoped that the results of this study will be of interest and relevance to a wide range of researchers, policymakers, 

and managers involved in the monitoring and management of aquatic ecosystems. 530 
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