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Response to referee comment 1 

Comment: 

The variation of Chl-a concentration in the global ocean surface is influenced by various complex factors, 

which poses challenges to accurately retrieve Chl-a concentration. In this manuscript, the authors selected 

Chl-a data products retrieved from satellite data as a reference, supplemented by reanalysis data to provide 

environmental factor information. By combining the advantages of machine learning in big data analysis 

and simulation, they ultimately reconstructed a global-scale, long-term time series of Chl-a concentration 

dataset. The results show that the OCNET model performs very well in reconstructing Chl-a 

concentrations, accurately capturing the temporal variations of these features. This suggests that the model 

has strong potential for use in large-scale ocean color data reconstruction, and may even be able to predict 

Chl-a concentration trends in response to changes in the environment. 

The dataset is extremely valuable for a wide range of researchers, policymakers, and managers involved 

in the monitoring and management of aquatic ecosystems. This study and its results are really novel and 

impressive to me. 

Overall, I find this study and its results to be highly promising and valuable for the scientific community. 

With the suggested clarifications and improvements, this manuscript has the potential to make a 

significant contribution to the field of Chl-a concentration retrieval and ocean color data reconstruction. 

Response:  

We really appreciate these overall comments and recommendation by this reviewer. Our point-by-point 

responses to the reviewer's comments are given as follows.  

Specific Comments: 

1) Pg. 3, Lines 65-66: Please provide an explanation for the difference between OCNET and the CNNs 

used in previous studies (Cao et al., 2020; Jin et al., 2021; Cen et al., 2022; Yussof et al., 2021). Clarifying 

this distinction would enhance the reader's understanding of the novelty of the OCNET model. 

Response:  

Thanks for this comment. OCNET, a modified U-Net architecture, deviates from the general 

Convolutional Neural Network (CNN) in terms of network structure. Most data reconstruction methods 

based on machine learning, including CNNs and random forest, primarily rely on the spatiotemporal 

correlations within the data, using valuable spatiotemporal sequences to infer missing regions. However, 

such methods struggle to achieve satisfactory results when dealing with extensive, irregularly distributed 

missing data. The OCNET machine learning method proposed in this study draws inspiration from 

oceanic biogeochemical models and incorporates environmental variables that influence the distribution 

of chlorophyll-a concentration into data reconstruction. By learning the impact of environmental factors 

on the variation of chlorophyll-a concentration, it enables long-term and large-scale reconstruction of 

missing data. We will further elaborate on the distinctive features of OCNET in the revised manuscript. 

Modifications: The difference between OCNET and other CNNs mentioned in previous studies were 
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added in lines 65-75. 

2) Pg. 6, Lines 125-126: The authors state that "We have selected three environmental variables, i.e., sea 

surface temperature (SST), salinity (SAL), and photosynthetically active radiation (PAR) as the input data 

for the OCNET model." However, it appears that the input data also contain SSP. Please address this 

discrepancy and provide clarity on whether SSP is included in the input data or not. 

Response:  

Thanks for this comment. In fact, we did select four environmental variables, including SSP, as inputs. 

The three variables mentioned here (SST, SAL, and PAR) are directly related to phytoplankton growth, 

as further explained in the manuscript. SSP primarily reflects the dynamic environmental factors at the 

ocean's surface, which influence the spatial distribution of phytoplankton. To eliminate any potential 

ambiguity, we have made corresponding modifications in the manuscript at the relevant sections. 

Modifications: The description of the input data was clarified in lines 133-141. 

Response to community comment 1 

Comment: 

I agree with reviewer #1 that this dataset has the potential to be extremely valuable (I found it while 

searching for a gapless daily chl dataset to test an idea on), and I thank the authors for making their data 

publicly available. However, I'm leaving this comment to suggest that the authors provide the data as 

netCDF files, perhaps one for each year, which would meet this journal's request that the data be provided 

in a non-proprietary community-established format that is findable, accessible, interoperable, and 

reusable. In the repository linked in the manuscript, the data are provided as 74 .rar files, each containing 

a number of ascii files. Every interested user (including myself, right now) will have to download and 

extract all 74 rar files, then write their own code to read the non-standard format and take a guess at some 

of the missing metadata (e.g., units). 

Response:  

Thank you very much for your suggestions. It is important for us to receive these feedbacks to further 

improve the data set. The new version of the dataset has been re-uploaded. Please refer to 

https://doi.org/10.5281/zenodo.10011908. This version of the dataset consists of one NetCDF file per year. 

Information regarding data format, latitude and longitude, handling of missing values, units, and other 

data specifications has been incorporated into the netCDF files. Subsequent updates to the dataset DOI 

will be provided in the revised manuscript. Thank you once again for your valuable suggestions! 

Modifications: DOI of new version of OCNET dataset was updated in abstract and section 5. 

Response to referee comment 2 

Comment:  

This manuscript describes a large dataset from 2001-2021 for global daily gap filled chlorophyll-a. The 

authors developed a convolutional neural network called OCNET to reconstruct global chlorophyll-a 

concentration in open oceans. This dataset is very useful and important for the scientific community. The 
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manuscript in general is well written, but would benefit from some minor clarifications, and adjustments 

before publication. 

Response: Thanks for thoroughly reviewing the manuscript and making such encouraging comments. It 

is important for us to receive these feedbacks to further improve the data set and the manuscript. 

Comments and issues mentioned in referee comment 2 have been addressed and are illustrated as follows. 

General Comments: 

In line 155, the authors stated that they excluded regions from seas with surface salinities below 25. On 

the other hand, the minimum value of salinity shown in table 2 is 0. How? Please clarify this in the text. 

According to ESSD, the DOI of the dataset and its in-text citation must be given in the abstract 

(https://www.earth-system-science-data.net/submission.html). Please add them. Please Provide more 

details in section 5 (data availability section) about the dataset which is very relevant for a data description 

paper. For example, you can explain how are the data organized in different files (per year or ..), and how 

are the files named (chl_OCNET_.. followed by Date (day, month, year). What are the type of files (“.asc”, 

or “.csv”.. etc) , separator (if any)… etc 

Response:  

Thanks for this comment. When defining the open ocean areas, we used the multi-year mean of WOA2013 

data as the reference and selected regions where salinity is greater than 25 PSU. However, it is important 

to note that the seasonal and interannual variations in salinity in these regions may not always exceed 25 

PSU. It should be emphasized that, to establish the study boundaries, it is not a strict requirement for 

salinity to always exceed 25 PSU, but rather for the mean value to meet this criterion. 

Furthermore, the study utilized salinity data from the Ocean Reanalysis System 5, and according to the 

documentation for this dataset, the minimum salinity value is 0. Therefore, in Table 2, the salinity is 

described as having a minimum value of 0. 

Thanks for the comment about the dataset information. The DOI for the dataset will be added in the 

abstract, and any updates to the dataset will be provided through the same link. Please refer to the 

instructions on the dataset's publishing website for details (the data sets are available online with a DOI: 

https://doi.org/10.5281/zenodo.10011908). 

Initially, the first version of the dataset was released in ASC format with daily data files. Due to the high 

volume of files in the first version, we have opted to release a new version and have converted the data 

into netCDF files. In the second version, each file corresponds to one year of data, and the respective year 

is indicated in the file name. Information regarding data format, latitude and longitude, handling of 

missing values, units, and other data specifications has been incorporated into the netCDF files. 

Modifications: The source of the minimum value is added in title of Table 2. DOI of new version of 

OCNET dataset was updated in abstract and section 5. 

Specific Comments: 

1) Line 15 in the abstract: missing data not “data missing” 

Response:  
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Thanks for this comment. It will be corrected in the revised manuscript. 

2) Line 24 in the abstract: phytoplankton biomass not “phytoplankton mass” 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

3) Line 24-25 in the abstract: The authors state that the “OCNET model achieves good performance in 

the reconstruction of global ocean Chl-a concentration data... etc.”. We don’t know how the model 

perform in polar regions or high latitudes (higher than 25) or coastal areas. It would be more precise to 

use the term “global open ocean”. The sentence should then become as follows: “the OCNET model 

achieves good performance in the reconstruction of global open ocean Chl-a … etc.” 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

4) Line 25 in the abstract: “captures temporal variations”. It is recommended to write spatiotemporal. 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

5) Line 125: “Four” not “three” environmental variables 

Response:  

Thanks for this comment. There is indeed an issue with clarity in the text. What we intended to convey is 

that the study selected three variables that affect the growth of marine phytoplankton, namely SST, SAL, 

and PAR, along with one variable that influences their distribution, namely SSP. SST, SAL, and SSP are 

derived from reanalysis data, while PAR is obtained from satellite data products. To address this, we have 

made appropriate revisions to the data description section from lines 125 to 135 to clarify this point. 

Modifications: The description of the input data was clarified in lines 133-141. 

6) Line 259: add degree (°) to “0.25” 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

7) Please ensure consistency in the terminology used throughout the text and in the figures. For example, 

in line 333 and 341, the terms 'training set,' 'validation set,' and 'test set' are used, while in Figure 6, they 

are referred to as 'training set,' 'validating set,' and 'testing set. 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

Modifications: The terminology used for the training set, validating set, and testing set has been 

standardized throughout the entire manuscript. 

8) Line 346-347: I recommend that you use “compared to” instead of “while”. The statement would 
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become: “Based on the results of the OCNET model, regions 2, 3, and 5 show larger decreasing 

magnitudes, compared to other regions, which also exhibit a decreasing trend.” 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

9) Line 369-370: I recommend that you use “compared to” instead of “while”. The statement would then 

be: “From the results of bias, the training set shows a clear tendency of underestimation (Fig. 7d), 

compared to the validation and testing sets, which exhibit a less pronounced underestimation. 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

10) Line 372: global open ocean Chl-a concentration instead of “global Chl-a concentration” 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

11) I recommend that you change all statements starting with: “it can be seen” or “it can be observed” 

and ending with (figure #) to: “By referring to figure #”, or “Figure # indicates/shows …. Etc”. Below 

are some examples:  

Line 387-388: “It can be seen that the output data of the OCNET model show a similar 

distribution to NOAA MSL12 data in the global tCC distribution (Fig.8(a‒b))”  

Line 332: “it can be seen that the model performs well (Fig.6) 

Response:  

Thanks for this comment. It will be corrected in the revised manuscript. 

Modifications: The statements ending with (figure #) were changed into “referring to figure #”, or “Figure 

# indicates/shows …. Etc” everywhere. 

12) Line 335-336, the authors stated that OCNET performed well but shows poor performance in 

individual regions, and stated that “region 9, being mostly near the American continent, is heavily 

influenced by human activities, and the satellite data quality in coastal areas is also poorer...”. Then, in 

their conclusion (Line 510-512), the authors concluded that “the model's performance was somewhat 

weaker in the eastern Pacific region compared to other areas. This may be due to specific climate 

characteristics that have a significant impact on phytoplankton growth and distribution or low quality of 

satellite-based dataset in this region”. Isn’t region 9 supposed to be the eastern Pacific? If yes, then please 

state the same reasons in both statements, and provide more details or examples on such climate 

characteristics that are specific to the eastern Pacific. 

Response:  

Thanks for this comment. In these two sentences, there is indeed a lack of clarity in our statements. In 

fact, the summaries of these two sections refer to slightly different regions. Region 9 encompasses parts 

of the Eastern Pacific and the western North Atlantic, all of which are close to the American continent. 
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However, when we mention that "the model performs poorly in the eastern tropical Pacific," it actually 

refers to the "eastern tropical Pacific," which is closer to the equator (as shown in Figure 7) and should 

be clarified in the revised manuscript. 

Since the OCNET model proposed in the study does not consider the influence of human activities in 

coastal areas, the poor performance of the model in the coastal regions near the American continent could 

likely be attributed to human activities. On the other hand, the model's poor performance in the "eastern 

tropical Pacific" region may be more likely to be affected by specific climate characteristics. These unique 

climate variations might not be captured by the OCNET model within the relatively short training time 

span (2018-2021). In fact, the results of the OCNET model for Region 9 during the period of 2018-2021 

closely align with the satellite-merged OCCCI dataset. This suggests that OCNET performs well only 

within the time frame covered by the target dataset NOAA MSL12, and it exhibits poorer performance in 

earlier periods (2001-2017). 

There are several studies that focus on anomalies in the eastern tropical Pacific. For example, Geng et al. 

suggest that increased sea surface temperature variability due to global warming may manifest in the 

eastern Pacific earlier than central Pacific. Duteil et al. discuss the important impact of future changes in 

atmospheric synoptic variability (ASV) on ocean properties and primary productivity in the eastern 

tropical Pacific.  

Regarding the issue of the model's poor performance in this particular region, we plan to conduct further 

analysis and exploration in future work. Once again, we appreciate your feedback! 

Modifications: In the conclusion section, “eastern Pacific” was changed into “eastern tropical Pacific”. 

The citations for the two mentioned articles have also been included in the manuscript. 

13) Figure 6 shows the evaluation indices of the training, testing and validating sets. Meanwhile, there is 

no indication to which dataset correspond the evaluation metrics shown in table 4. Although can be 

inferred by comparison, I recommend that you indicate in the text or table caption that they correspond 

to the training set. Readers shouldn’t guess. 

Response:  

Thanks for the comment. We indeed omitted an explanation of the datasets included in the evaluation 

metrics in Table 4. The median values in these metrics represent the median of all evaluation results, 

including those from the training set, validation set, and test set. Since Figure 6 already provides separate 

visualizations of the evaluation results for the training set, validation set, and test set using box plots, 

Table 4 only shows the overall evaluation summary. We have added an explanation to the title of Table 4 

to clarify this. 

Modifications: The explanation of evaluation metrics in Table 4 was added in lines 339-340. 

14) Several References lack DOI. Please add the corresponding DOI. Below are some examples of 

references lacking DOI: 

Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., 

Milligan,A. J., Falkowski, P. G., Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary 

ocean productivity, Nature, 444, 752-755, 2006. Chen, S., Hu, C., Barnes, B. B., Xie, Y., Lin, G., and Qiu, 
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Z.: Improving ocean color data coverage through machine learning, Remote Sensing of Environment, 222, 

286-302, 2019. Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V., Brockmann, 

C., Chauhan, P., Choi, J.-k., Chuprin, A., Ciavatta, S., Cipollini, P., Donlon, C., Franz, B., He, X., Hirata, 

T., Jackson, T., Kampel, M., Krasemann, H., Lavender, S., Pardo-Martinez, S., Mélin, F., Platt, T., 

Santoleri, R., Skakala, J., Schaeffer, B., Smith, M., Steinmetz, F., Valente, A., and Wang, M.: Satellite 

Ocean Colour: Current Status and Future Perspective, Frontiers in Marine Science, 6, 485 2019. 

Response:  

Thanks for the comment. The DOI of all references will be modified in the revised manuscript. 

A list of modifications in the manuscript 

Modification position is referred to the marked-up manuscript 

Comment Modification 
Modification 

position 

Modifications based on RC1 

RC1 General comment None None 

RC1 Specific(1) 
The difference between OCNET and 

other CNNs mentioned in previous 

studies were added in section 1 

P3, L68-L74 

RC1 Specific(2) 
The description of the input data was 

clarified in section 2.1 
P7, L134-L142 

Modifications based on CC1 

CC1 General comment 

The new version of the dataset has been re-

uploaded as netCDF files. Please refer to 

https://doi.org/10.5281/zenodo.10011908. 

None 

Modifications based on RC2 

RC2 General comment1 None None 

RC2 General comment2 

The source of the minimum value is added 

in title of Table 2. The new version of the 

dataset has been re-uploaded as netCDF files 

and the DOI is updated in the revised 

manuscript. 

(https://doi.org/10.5281/zenodo.10011908) 

P1, L27 

P8, L189-L190 

P25, L525 

P27, L618-L619 

RC2 Specific(1) 
"data missing" was changed into "missing 

data" 
P1, L15 

RC2 Specific(2) 
"phytoplankton mass" was changed into 

"phytoplankton biomass" 
P1, L25 
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RC2 Specific(3) 
"global ocean" was changed into "global 

open ocean" 
P1, L25 

RC2 Specific(4) 
"tenporal" was changed into 

"spatiotemporal" 
P1, L26 

RC2 Specific(5) 
The description of the input data was 

clarified in section 2.1 
P7, L134-L142 

RC2 Specific(6) The unit degree (°) was added P12, L271 

RC2 Specific(7) 

The terminology used for the training set, 

validating set, and testing set has been 

standardized throughout the entire 

manuscript. 

Everywhere 

RC2 Specific(8) "while" was changed into "compared to" P18, L364 

RC2 Specific(9) "while" was changed into "compared to" P20, L389 

RC2 Specific(10) 
"global Chl-a" was changed into "global 

open ocean Chl-a" 
P20, L391-L392 

RC2 Specific(11) 

The statements ending with (figure #) were 

changed into “referring to figure #”, or 

“Figure # indicates/shows …. Etc” 

everywhere. 

Everywhere 

RC2 Specific(12) 

In the results section and conclusion section, 

“eastern Pacific” was changed into “eastern 

tropical Pacific”. The citations for the two 

mentioned articles have also been included 

in the manuscript. 

P20, L381 

P21, L411-L412 

P25, L535-L538 

RC2 Specific(13) 
The explanation of evaluation metrics in 

Table 4 was added. 
P17, L346-L347 

RC2 Specific(14) 
The DOI of all references was added in the 

revised manuscript. 
References 
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Abstract. Ocean color data are essential for developing our understanding of biological and ecological phenomena and 

processes, and also important sources of input for physical and biogeochemical ocean models. Chlorophyll-a (Chl-a) is a 

critical variable of ocean color in the marine environment. Quantitative retrieval from satellite remote sensing is a main way 

to obtain large-scale oceanic Chl-a. However, missing data missing is area a major limitation in satellite remote sensing-based 15 

Chl-a products, due mostly to the influence of cloud, sun glint contamination, and high satellite viewing angles. The common 

methods to reconstruct (gap filling) missing data often consider spatiotemporal information of initial images alone, such as 

data interpolation empirical orthogonal function, optimal interpolation, Kriging interpolation, and extended Kalman filter. 

However, these methods do not perform well in the presence of large-scale missing values in the image and ignore overlook 

the potential of other valuable information on available from other datasets missing pixels in thefor data reconstruction. Here 20 

we developed a convolutional neural network (CNN) named OCNET for Chl-a concentration data reconstruction in open ocean 

areas, considering environmental variables that are associated with ocean phytoplankton growth and distribution. Sea surface 

temperature (SST), salinity (SAL), photosynthetically active radiation (PAR), and sea surface pressure (SSP) from reanalysis 

data and satellite observations were selected as the input of OCNET to correlate with the environment and phytoplankton  

biomassmass. The developed OCNET model achieves good performance in the reconstruction of global open ocean Chl-a 25 

concentration data, and captures spatiotemporal temporal variations of these features. The reconstructed Chl-a data are 

available online at https://doi.org/10.5281/zenodo.10011908 (Hong et al., 2023). This study also shows the potential of 

machine learning in large-scale ocean color data reconstruction and offers the possibility to predict Chl-a concentration trends 

under a changing environment. 

Key words. Chlorophyll-a; U-Net; Satellite remote sensing; Data reconstruction 30 

https://doi.org/10.5281/zenodo.10011908
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Introduction 

Chlorophyll-a (Chl-a), the primary pigment responsible for photosynthesis in plants, plays a vital role in the global carbon 

cycle and serves as a key indicator of the health and productivity of aquatic ecosystems (Righetti et al., 2019; Sun et al., 2021; 

Mouw et al., 2016). Chl-a is a measure of the amount of phytoplankton present in water bodies, and changes in its concentration 

can indicate shifts in the balance of these ecosystems, including the onset of harmful algal blooms or declines in productivity 35 

(Ho et al., 2019). Accurate and timely measurement of chlorophyll-a concentrations is therefore of great paramount importance 

for understanding and predicting the carbon fluxes and other elemental cycles in the oceans (Salgado-Hernanz et al., 2019; 

Laufkotter et al., 2016). 

In recent years, satellite remote sensing has become a widely used method for monitoring chlorophyll-a concentrations on a 

global scale (Hu et al., 2012; Hu et al., 2019a; Feng et al., 2021). Satellite sensors can provide synoptic coverage of large areas, 40 

with a temporal resolution that ranges from daily to monthly. However, there are a lot of missing data in satellite products 

caused by cloud, sun glint contamination, and high satellite viewing angles (Feng and Hu, 2016; Mikelsons and Wang, 2019). 

For example, there are over 70% missing data in global daily ocean color products from MODIS-Terra/Aqua and VIIRS-SNPP  

((Fig.1)referring to Figure 1)  (Feng and Hu, 2016; Liu and Wang, 2018). In addition, the spatial and temporal resolution of 

these measurements is often limited, and they are subject to various sources of error and uncertainty. These include atmospheric 45 

effects, such as scattering and absorption of light, which can distort the signal and introduce biases in the measurements (Hu 

et al., 2019a; Zheng and Digiacomo, 2017). To address these limitations, it is useful to combine satellite remote sensing data 

with other sources of information, such as in situ measurements, model output, and ancillary data (Nikolaidis et al., 2014). 

Conventional methods for reconstructing missing data, such as data interpolation, DINEOF (Data Interpolating Empirical 

Orthogonal Functions), optimal interpolation, Kriging interpolation, and extended Kalman filter, often rely on the 50 

spatiotemporal information of the initial images alone (Wang and Liu, 2014; Hilborn and Costa, 2018; Catipovic et al., 2023; 

Liu and Wang, 2018). However, these geostatistical methods are not always effective in the presence of large-scale missing 

values and do not take into account the potential contribution of other information to the reconstruction of missing pixels 

(Konik et al., 2019).  

The development of robust and efficient methods for synthesizing and integrating multisource information is becoming 55 

increasingly important as the availability and diversity of data sources continue to grow (Li et al., 2020). The integration of 

multisource information is not a trivial task, as the data sources may have different spatial and temporal scales, resolutions, 

and uncertainties, and may be subject to different biases and errors. These differences can make it challenging to reconcile and 

combine the data in a meaningful and reliable way (Catipovic et al., 2023). With the proliferation of sensors and platforms, 

the volume of data being generated is increasing at an exponential rate, making it difficult to manage and analyze in a traditional 60 

way. Machine learning techniques, such as convolutional neural networks (CNNs), offer a promising approach for handling 

and extracting meaningful insights from this large and complex data stream (Zhang et al., 2018). CNNs are a class of deep 

learning algorithms that have proven to be highly effective for image recognition and analysis tasks. They are particularly well 
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suited to this problem, as they can automatically learn features and patterns from data and can handle large amounts of data 

with high dimensionality and complexity. CNNs have been applied to a wide range of remote sensing applications, including 65 

the analysis of satellite imagery and the integration of multisource data. A number of studies have demonstrated the 

effectiveness of CNNs for analyzing global or regional daily chlorophyll-a products (Cao et al., 2020; Jin et al., 2021; Cen et 

al., 2022; Yussof et al., 2021). Most machine learning-based data reconstruction methods, such as Convolutional Neural 

Networks (CNNs) and Random Forests, predominantly leverage spatiotemporal correlations inherent in the data. They utilize 

valuable spatiotemporal sequences to predict missing regions. Nevertheless, these techniques face significant challenges in 70 

yielding satisfactory outcomes when confronted with extensive and irregularly distributed missing data. Here we propose a 

CNNs-based approach named OCNET for the reconstruction of global daily chlorophyll-a products from multisource 

information. By emphasizing the significance of incorporating spatiotemporal complete environmental variables for 

chlorophyll gap-filling, OCNET demonstrates remarkable data reconstruction performance. 

The OCNET model developed here is an improved version based on the general U-Net. One advantage of U-Net is its ability 75 

to handle large images while maintaining high-resolution segmentation results (Li et al., 2020; Ronneberger et al., 2015; 

Andersson et al., 2021). This is achieved by using skip connections, which allow the network to "skip" certain layers and 

merge higher-resolution information from early layers into the final prediction (Ronneberger et al., 2015; Wagle et al., 2020). 

This helps preserve fine-grained details of the input image and generates more accurate segmentation results (Krug et al., 2017). 

Here we utilized this characteristic of OCNET for global-scale input of big data, and successfully accomplished the task of 80 

data reconstruction. Given that the input image contains multi-level information elements at the global scale, it places high 

demands on how the model extracts feature information and captures its inherent correlations (Moran et al., 2022; Chen et al., 

2019). Another advantage of U-Net is its ability to utilize contextual information from the entire image. Compared to other 

machine learning methods such as multiple linear regression and random forest, U-Net excels in learning complex nonlinear 

relationships between input data and output predictions (Ronneberger et al., 2015; Li et al., 2020). This is due to the use of 85 

nonlinear activation functions and the ability to learn hierarchical features through convolutional layers. Because artificial 

neural networks (ANNs) often face limitations in processing large images and struggle to incorporate global backgrounds into 

their predictions (Catipovic et al., 2023), U-Net outperforms traditional ANNs in various image segmentation tasks. Unlike 

ANNs, U-Net can handle high-resolution images and effectively incorporate global context information into its predictions 

(Andersson et al., 2021; Li et al., 2020).  90 

In the big-data era, the effective integration and utilization of multisource information on the ocean are of importance for 

studying ocean color. The primary objective of this study was to propose the OCNET model which could be trained with 

environmental variables that are associated with ocean phytoplankton growth and distribution, in order to reconstruct high-

quality gap-filled Chl-a data in open oceans. The Chl-a dataset covers the period from 2001 to 2021, with a daily temporal 

resolution and a spatial resolution of 0.25°. Compared to traditional interpolation methods, this approach takes full advantage 95 

of environmental information mainly provided by ERA5 data, and considers the key factors that influence the growth and 

distribution of surface phytoplankton in the oceans. Furthermore, this method is not limited by the size of the ocean region or 
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the temporal span covered by satellite data. By providing reliable environmental information, OCNET enables the retrospective 

analysis of Chl-a concentration data from the pre-satellite era and the prediction of future changes in global marine 

phytoplankton. 100 

2. Data and methodology 

2.1 Training data considerations 

The Ocean-Colour Climate Change Initiative (OCCCI) version 5 and National Oceanic and Atmospheric Administration multi-

sensor DINEOF global gap-filled data (termed as NOAA MSL12 hereafter) are two Chl-a products used in training the OCNET 

model (Table 1). OCCCI's data sources include the Moderate Spectral Resolution Imaging Spectroradiometer (MERIS) sensor 105 

from the European Space Agency, the SeaWiFS (Ocean Observation Wide Field Sea-viewing Wide Field-of-view Sensor) and 

MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer-Aqua) sensors from NASA, and the National Oceanic and 

Atmospheric Administration's VIIRS sensor (Visible and Infrared Imaging Radiometer Suite) (Sathyendranath et al., 2019). 

Data can be obtained starting from 1997. The Multi-Sensor Level-1 to Level-2 (MSL12) is the NOAA official enterprise VIIRS 

ocean color data processing system (Liu and Wang, 2022). The NOAA MSL12 dataset provides near-real-time, gap-free global 110 

maps of chlorophyll-a concentration by merging data from VIIRS and OLCI-Sentinel-3A satellites and utilizing the DINEOF 

method to fill in missing pixels caused by clouds, sun glint, and other factors (Liu and Wang, 2022). The strength of this dataset 

lies in its broader spatial coverage, showcasing more marine features in coastal and inland waters and enhancing data accuracy. 

In addition, Chl-a data from OLCI-Sentinel-3B have not been applied in the production of OCCCI V5 or NOAA MSL12 

datasets. Therefore, Sentinel-3B data were used for the evaluation and comparison of the final performance of the OCNET 115 

model as an independent product. 

Table 1 Full names, spatiotemporal resolution, temporal coverage, sources, and other information of data used in this study.  

Data Variables Abbreviation Unit 
Temporal 

resolution 

Spatial 

resolution 

Temporal 

coverage 
References 

OCCCI V5 Chlorophyll a Chl-a mg/m3 daily 4km 1997.9.4–2021 
(Sathyendranath 

et al., 2019) 

MODIS-Aqua 
Photosynthetically 

Available Radiation 
PAR einstein/(m2·d) daily 4km 2002.7.4–present 

https://oceancolo

r.gsfc.nasa.gov/l
3 

MODIS-Terra 
Photosynthetically 

Available Radiation 
PAR einstein/(m2·d) daily 4km 2000.2.24–present 

https://oceancolo

r.gsfc.nasa.gov/l
3 

VIIRS-SNPP 
Photosynthetically 

Available Radiation 
PAR einstein/(m2·d) daily 4km 2012.1.2–present 

https://oceancolo

r.gsfc.nasa.gov/l
3 
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OLCI S3B 

NRT 
Chlorophyll a Chl-a mg/m3 daily 4km 2018.5.14–present 

www.star.nesdis.

noaa.gov 

NOAA 

MSL12 
Chlorophyll a Chl-a mg/m3 daily 9km 2018.2.9–present 

(Liu and Wang, 

2022) 

ERA5 Surface Pressure SSP Pa hourly 0.25° 1940.1.1–present 
(Hersbach et al., 
2020) 

ERA5 
Sea Surface 
Temperature 

SST K hourly 0.25° 1940.1.1–present 
(Hersbach et al., 
2020) 

ORAS5 Salinity SAL PSU monthly 0.25° 1958.1.1–present (Zuo et al., 2019) 

ETOPO1 Depth Dep m – 1' – 

(Information and 

Doc/Noaa/Nesdi

s/Ncei National 
Centers for 

Environmental 

Information, 
2009) 

WOA2013 Salinity SAL PSU – 0.25° – 
(Levitus et al., 

2014) 
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Figure 1 Valid data proportion of each satellite-based Chl-a product during 2001‒2021. The global distribution of valid chlorophyll-

a (Chl-a) observations ratio was examined using (a) MODIS-Aqua, (b) MODIS-Terra, (c) VIIRS-SNPP, and (d) OCCCI satellite 120 
datasets, along with an examination of the (e) temporal variation over their respective coverage periods. 

The ocean Chl-a data of the OCCCI product cover more than 20 years. Compared with a single satellite product, OCCCI 

products that integrate multiple sources of data improve data availability by complementing different data sources (Fig.1) 

( referring to Figure 1). Due to changes in satellite data sources used in different years, the valid data proportion of OCCCI 

varies greatly in different time periods. In addition, OCCCI has been significantly improved with the introduction of more 125 

satellite data. However, Figure 1 shows that valid observations from OCCCI are unevenly distributed globally (referring to 

Figure 1Figure 1) (Fig.1d). And mMissing data on more than 70% of satellite-based products still pose a huge obstacle to the 

study of ocean color (Feng and Hu, 2016). The NOAA MSL12 achieved the spatiotemporal continuity of chlorophyll 

concentration products by the DINEOF method, but NOAA MSL12 are only available after February 9, 2018. Given the high 

coincidence of OCCCI and NOAA MSL12 datasets in the selection of satellite sources, these two datasets were selected as the 130 
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main data sources. Other Chl-a data products from single-mission satellites, such as MODIS-Aqua/Terra and VIIRS-SNPP, 

which have more severe missing values ( (Fig.1)referring to Figure 1), were only used for comparison in this study and were 

not directly applied. 

We have selected three four environmental variables, i.e., sea surface temperature (SST), salinity (SAL), and 

photosynthetically active radiation (PAR), and sea surface pressure (SSP) as the input data for the OCNET model. These 135 

variables play a significant role in influencing the growth and distribution of marine phytoplankton (Flynn, 2001; Han and 

Zhou, 2022). SST and SAL are two important environmental factors influencing marine phytoplankton growth . SST affects 

algal metabolic rates, enzymatic activity, cell division rates, and growth cycles, among other biological processes (Nelson et 

al., 2020). Variations in salinity can influence osmoregulation in marine phytoplankton and ion balance within cells (Nelson 

et al., 2020). Consequently, SST and SAL are considered pivotal input variables in the OCNET model. Furthermore, from a 140 

hydrodynamic perspective, changes in wind patterns and ocean currents can also affect the distribution of surface algae. To 

capture this impact, we have chosen to represent changes in ocean surface pressure with the parameter SSP. Therefore, we 

selected reanalysis data ERA5's SSP, SST, and Ocean Reanalysis System 5's SAL as input data for the OCNET model. 

In addition to SST and SAL, PAR is a crucial energy source for plant photosynthesis, and its distribution is of great importance 

for studying plant growth and photosynthetic processes (Xing and Boss, 2021). Its spatiotemporal variations can impact the 145 

photosynthetic efficiency, biomass accumulation, and yield of plants (Righetti et al., 2019). Here we selected PAR data from 

satellite sources, specifically MODIS-Terra/Aqua and VIIRS-SNPP, as part of the model input. To address spatial gaps in 

satellite data and correct biases among different datasets, preprocessing and fusion techniques were applied to the PAR data 

from different satellite products (see Section 2.2).  

Both ETOPO1 and WOA13 data were used as auxiliary data for determining the study area and were not input for the OCNET 150 

model. The ETOPO Global Relief Model is a global digital elevation model developed by the National Geophysical Data 

Center (NGDC), a NOAA department (Information and Doc/Noaa/Nesdis/Ncei National Centers for Environmental 

Information, 2009). It provides elevation data for the Earth's surface and finds applications in areas such as topographic maps, 

hydrological models, oceanography, and other related fields. Data of ETOPO1 were selected because of the 1-min resolution 

it offers. ETOPO1 is widely utilized in scientific and research communities due to its high accuracy, serving various purposes 155 

like mapping, visualization, resource management, and environmental modeling (Moran et al., 2022; Righetti et al., 2019). 

The World Ocean Atlas 2013 (WOA2013) is a comprehensive collection of objectively analyzed climatology data for various 

oceanic parameters, including temperature, salinity, oxygen, phosphate, silicate, and nitrate (Zweng et al., 2013). It was 

provided by NOAA’s National Oceanographic Data Center - Ocean Climate Laboratory. Salinity data provided by WOA13 

are often used as a reference to analyze abnormal variations in ocean salinity (Righetti et al., 2019; Li et al., 2017).  160 

The study area considered here mainly focuses on the middle and low latitudes of the open ocean area, constrained primarily 

due to limitations in satellite data sources. In particular, Figure 1 indicates that satellite-based Chl-a products exhibit a 

substantial number of missing values in high latitudes and coastal regions (referring to Figure 1Figure 1) (Fig.1). Additionally, 

the accuracy of chlorophyll concentration retrievals is affected mostly by the presence of high concentrations of suspended 
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matter resulting from sediment discharge from rivers in coastal areas. To mitigate the influences stemming from complex 165 

coastal environments on the analysis of ocean color, we excluded regions from seas shallower than 200 m and from seas with 

surface salinities below 25, as determined by ETOPO1 and WOA2013 datasets, respectively (Righetti et al., 2019). 

2.2 Data preprocessing  

For the OCCCI V5 data, we selected its climatology product as the background field. Because the OCCCI climatology data 

only provide valid observations for 12 months, temporal smoothing interpolation was performed to cover each ocean grid cell 170 

from January 1, 2001, to December 31, 2021. Due to the presence of missing values in both the daily and monthly data products 

of OCCCI V5, it is not suitable for direct use as model input. Therefore, the climatology product without missing values in the 

spatial domain was used to set the Chl-a baseline. 

As PAR data from different satellite sources were used in this study, preprocessing and bias correction were applied. The 

overlapping period of MODIS and VIIRS data from 2012 to 2021 was chosen as the reference, using a ratio-based method 175 

with MODIS-Aqua as the baseline for bias correction. In cases of missing values in the spatial domain, the three different 

products were used for complementarity. If effective observational values were not available, linear spatial interpolation was 

performed. Finally, a spatiotemporally continuous PAR dataset was obtained for model input. 

For the reanalysis datasets, as they are already spatiotemporally continuous with a spatial resolution of 0.25°, no additional 

preprocessing is required. The average of the first five levels of SAL data (approximately 5.14 m) from ORAS5 was taken as 180 

the input. It should be noted that ORAS5 has a spatial resolution of 9 km near the polar regions. However, this study does not 

consider the inversion of Chl-a data in high-latitude areas. Considering the different spatial resolutions of the data, apart from 

the reanalysis data, the other input data for the model in this study were resampled to 0.25° using the nearest interpolation 

method. 

When using the data mentioned above as inputs for the OCNET model, normalization is necessary. For environmental variables 185 

(SST, SSP, SAL, and PAR), normalization was performed according to Eq.1 where the parameters used in the formula were 

pre-calculated (Table 2). Due to the presence of numerous low values in the Chl-a concentration data in open waters, it is first 

natural logarithm transformed and then normalized to achieve a uniform distribution of the input data (Eq.2). 

Table 2 Maximum, minimum, and mean values of environmental variables obtained for therom satellite and reanalysis datasets 

environmental variables. 190 

Variables max min mean units 

SST 310.06 269.17 286.821 K 

SSP 106980 54834 96643 Pa 

PAR 70.329 0 32.2007 einstein/(m2·d) 

SAL 43.467 0 34.169 PSU 
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N

max min

X X
X

X X





 (1) 

N

ln( ) 4.61

4.61 2

C
C





 (2) 

where X represents different environmental variables, subscript N represents the normalized variables, subscripts "max" and 

"min" correspond to the maximum and minimum values in Table 2, and �̅� represents the mean. C represents Chl-a data. Values 

of Chl-a concentration lower than 0.01 mg/m3 were all set to 0.01 mg/m3. Actually, the accuracy of satellite retrievals cannot 

reach such a small value. 195 

2.3 Model architecture 

Data-driven deep learning algorithms can extract high-level information from multisource input data using multiple non-linear 

processing layers (Li et al., 2020; Cen et al., 2022). In the research of large-scale, long-term, and multi-data scenarios, deep 

learning algorithms excel at discovering data patterns and inherent connections (Li et al., 2020; Andersson et al., 2021). Given 

the applicability of CNNs to satellite remote sensing imagery and climate model data, we constructed the global OCNET model 200 

consisting of 405 regional CNNs. Specifically, each CNN employed in the individual regions was based on the U-Net model 

(referring to  (Fig.2)as Figure 2 shows). U-Net, initially designed for medical image segmentation, is a variant of the CNN 

(Ronneberger et al., 2015). Across various applications, U-Net has been consistently proven to be highly effective in terms of 

learning accuracy and pixel-wise mappings (Andersson et al., 2021; Urakubo et al., 2019; Wagner et al., 2019). 

Here we applied the OCNET to reconstruct global Chl-a concentration data in open ocean areas, considering environmental 205 

variables that are associated with ocean phytoplankton growth and distribution. SST, SAL, and SSP from reanalysis data and 

PAR from satellite observations were selected as the input of OCNET to correlate with the environment and phytoplankton 

mass. The whole area considered in this study covers latitude 45° N to 45° S, and longitude 180° W to 180° E. The open ocean 

is divided into 45 horizontal and 9 vertical zones, 405 in total. Each area has a size of 16° × 16° and a side length of 64 grid 

cells. There is an 8° overlap in the latitude direction between each pair of adjacent regions at the same latitude. Additionally, 210 

there is a 6.25° overlap in the longitude direction between each pair of adjacent regions at the same longitude. This is to reduce 

the boundary effect caused by dividing regions for network training separately.  
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Figure 2 Flowchart of the developed OCNET model in each zone. The OCNET model, comprised of deep learning U-Net models, 

receives three monthly averaged variables (SST, SAL, and PAR) and two daily real-time variables (SST and SSP) as input. The 215 
climatology Chl-a of OCCCI and daily Chl-a data of NOAA MSL12 were treated as background and target set, respectively. 

Inputs to the network include Chl-a_OCCCI, Chl-a_N, SST, SAL, SSP, PAR and SST_d. Chl-a_OCCCI is the climatology 

data from OCCCI, as the background field of the dataset with only one value per month. Considering the typical monthly 

growth cycle of phytoplankton, we calculated the environmental factors influencing marine algae growth by averaging the 

data from the preceding month as input variables. Therefore, SST, SAL, and PAR took the average of one month forward as 220 

input to OCNET. In addition, the values of SST_d and SSP were also taken as the input of the day, respectively. 

There are totally 405 zones of size 6464 globally. Each zone has its own independent U-Net. Each network undergoes a 

maximum of 100 training steps to ultimately output the network model for each region. First, the input data with a size of 

64×64×7 are passed through the initial convolutional layer, which consists of 64 filters. Each filter has a grid size of 3×3 and 

a stride of 1. Subsequently, an activation function is applied to the data, and the dimension of the feature map is reduced to 225 

half of its original size, resulting in a size of 32×32×64, through a pooling layer operation of size 2×2. After completing this 

initial step, the subsequent operations follow a similar pattern. The feature map undergoes a halving of its spatial dimension 

through pooling, while the number of channels is doubled through convolution. The final feature map obtained from these 

operations has a size of 8×8×512, and it serves as input for the subsequent decoding process. The decoding process mirrors 

the encoding process described earlier. It is important to note that the encoding and decoding networks are connected through 230 

skip connections, enabling the preservation of information that may be lost during downscaling. This U-Net structure facilitates 

the preservation of detailed information from previous layers during the subsequent decoding stage. Finally, the last layer 

consists of a single filter that outputs a feature map with a size of 64×64×1, representing a single channel of data. Finally, by 

inputting environmental information from 2001 to 2021 into the OCNET model, a spatiotemporal continuous dataset of Chl-a 

concentration was reconstructed, covering the period from 2001 to 2021. 235 

2.4 Statistical tests 

2.4.1 Evaluation of OCNET output 

In the simulation performed by OCNET, the data from the year 2021 was selected as the testing set. This portion of the data 

was excluded from model training and validation, and was solely used for evaluating the quality of the final data. The 
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commonly used evaluation metrics, including CC, bias, and RMSE, were employed for this purpose. The specific formulae 240 

used for the calculations can be found in Table 3, while the evaluation results are presented in Section 3.2. 

Table 3 Statistical metrics used in evaluating the reconstructed Chl-a (C) against the observed data (Cg) from the NOAA MSL12 

during the testing period. An overbar donates the mean during evaluation periods. N denotes the number of data pairs. Cov denotes 

the covariance and σ is the standard deviation.   

Performance Score Score symbol Equation  

Pearson's correlation coefficient CC 
g

g

cov( , )
CC

( ) ( )

C C

C C 
  (3) 

Bias Bias 
g

g

( )
BIAS

C C

C





 (4) 

Root mean square error RMSE 
2

g( )
RMSE

C C

N



  (5) 

2.4.2 Evaluation using the ETC method 245 

Due to the lack of enough and reliable in-situ measurements for the assessment of global ocean Chl-a, the extended triple 

collocation (ETC) method was used to indirectly evaluate the quality of OCNET model output data (Mccoll et al., 2014). The 

ETC method uses exactly the same assumptions as the triple collocation (TC) method. The TC method utilizes three mutually 

independent datasets to assess the relative errors of the data without requiring the knowledge of the true value. This method 

was initially developed by Stoffelen (1998) and has been widely used for soil moisture assessment (Dorigo et al., 2010; Miralles 250 

et al., 2010). The ETC method, improved by Mccoll et al. (2014) from the TC method, provides the correlation coefficient as 

another performance index. The ETC method has also been extensively applied, such as in the evaluation of sea surface 

temperature data (Gentemann, 2014). 

Because the Sentinel-3B data are not used in the OCCCI and NOAA MSL12 datasets, it was selected as an independent dataset 

for evaluation. Chl-a data products from Sentinel-3B, NOAA MSL12 and OCNET were used in ETC method. Considering the 255 

available time period of Sentinel-3B data, the evaluation covers the period from June 7, 2019, to December 31, 2021. Due to 

the presence of numerous missing values in the Sentinel-3B data products, grid cells with severe missing values, i.e., grid cells 

with fewer than 30 valid days, were excluded, and the remaining grid cells were retained for evaluation. It should be noted that 

since OCNET was trained using NOAA MSL12 as the target set, they cannot be considered mutually independent datasets. 

This evaluation mainly utilizes Sentinel-3B data as a third-party source to validate the reliability of the OCNET model. It is 260 

possible that the results of the ETC in some grid cells may yield a negative square of the correlation coefficient or root mean 

square error. This can happen if the sample size is too small, or if one of the assumptions of ETC is violated. In the final 

presentation of results, these grid cells were excluded. 

The calculation method is based on Eq.6-Eq.11, where Cij represents the covariance between the i-th and j-th data points. The 

calculated correlation coefficient (tCC) and root mean square error (tRMSE) based on the TC method are denoted as ρ and σ, 265 
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respectively. It should be noted that the magnitude of the tCC and tRMSE only reflects the relative performance as opposed to 

the absolute values. 

t,1 11 12 13 23/C C C C  
 

(6) 

t,2 22 21 23 13/C C C C  
 

(7) 

t,3 33 31 32 21/C C C C  
 

(8) 

,1 12 13 11 23/t C C C C  
 

(9) 

,2 13 23 12 23 22 13sign( ) /t C C C C C C  
 

(10) 

,3 12 23 13 23 33 12sign( ) /t C C C C C C  
 

(11) 

3. Results 

3.1 Spatial variations and trends in global Chl-a estimates during 2001–2021  

We have developed high-quality gap-filled Chl-a data in open oceans using the OCNET model. The dataset covers the time 270 

period from 2001 to 2021 and has a spatial resolution of 0.25°, with a daily temporal resolution. We applied the natural 

logarithm transformation to the Chl-a concentration values when generating global maps (referring to (Fig.3)as Figure 3 shows). 

This transformation was necessary due to the relatively low Chl-a concentrations in most sea areas but the relatively high 

concentrations in areas experiencing algal blooms. It can be observed thatBy referring to Figure 3, tThere are high chlorophyll 

concentrations in the sea areas near the west coast of Africa (~2.2 mg/m3), the east coast of Asia (~1.1 mg/m3), and the west 275 

coast of the Americas (~2.3 mg/m3), which indicates a higher likelihood of algal blooms in these regions. Chl-a concentrations 

near the equator and in regions above 30° latitude are higher than in open ocean regions between 10° and 20° latitude. In 

addition, oceanic regions far from the continents, such as the Pacific Ocean, Indian Ocean, and Atlantic Ocean, exhibit low 

chlorophyll concentration distributions (less than 0.05 mg/m3). This also suggests a higher possibility of algal blooms in coastal 

areas to some extent. 280 
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Figure 3 Natural logarithm of the OCNET model output Chl-a during 2001‒2021. Light blue represents land areas. White denotes 

areas that are not considered in this study. 

To ensure spatial continuity in the global Chl-a concentration product, the data underwent regional processing before being 

input into the OCNET model. Subsequently, overlapping region processing and image stitching were performed, resulting in 285 

a seamless global Chl-a concentration product without noticeable discontinuity or fragmentation. Although the OCNET model 

was trained separately for each region, the final results obtained after adequate data preprocessing and sufficient training steps 

were consistent and globally continuous. This outcome further highlights the effectiveness of the OCNET model in global data 

reconstruction. 

 290 

Figure 4 Global Chl-a trends from OCNET over the period Jan 2001–Dec 2021. Regions with significant trends (p<0.05) are marked 

with black dots.  

Trends ofin in Chl-a concentration in the global ocean area from 2001 to 2021 according to the output of the OCNET model 

were derived (referring to Figure 4Fig.4). To emphasize regions exhibiting clear trends, data in this section were not subjected 
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to natural logarithm transformation and was magnified instead (please note the unit is 10-2 mg·m-3·decade-1). It can be observed 295 

thatBy referring to Figure 4, iIn general, the sea areas closer to continental land exhibit more significant trends (referring to 

Figure 4). Although the sea areas near the west coast of Africa show high chlorophyll concentrations ( (Fig.3)referring to 

Figure 3), the two hemispheres, northern and southern, exhibit different trend patterns. Specifically, the sea areas on the western 

side of the northern hemisphere of Africa show a clear upward trend in chlorophyll concentration (~4×10-2 mg·m-3·decade-1), 

while the sea areas on the western side of the southern hemisphere show a significant downward trend (~-8×10-2 mg·m-300 

3·decade-1). The sea areas near North America predominantly exhibit a noticeable downward trend (~-5×10-2 mg·m-3·decade-

1). The islands around the northern part of South America show a pronounced decrease in chlorophyll concentration (~-5×10-

2 mg·m-3·decade-1), while the sea areas on the western side exhibit distinct increasing or decreasing trends at different latitudes. 

The chlorophyll concentration variation around Japan in eastern Asia shows the most significant trend. The sea areas near 

Japan demonstrate a decrease in chlorophyll concentration at lower latitudes and an increase at higher latitudes. In general, 305 

there are more areas in the open oceans worldwide where Chl-a concentration shows a decreasing trend than areas where it 

shows an increasing trend. 

3.2 Temporal variations in Chl-a estimates in different ocean regions  

To facilitate the analysis and evaluation of regional data, we divided the study area into 10 regions based on latitude, longitude, 

and the ranges of oceans (referring to  (Fig.5)as Figure 5 shows). The division of sea areas considered the characteristics of 310 

the regions and the influence of ocean currents, taking into account the division of biogeochemical provinces (Reygondeau et 

al., 2013). To avoid excessive complexity resulting from overly detailed regional divisions, a final selection of 10 regions was 

determined. This study calculated and presented the Chl-a concentration products for these 10 regions in a 20-year time series 

(Fig.5). Due to the OCNET model's target dataset being NOAA MSL12, the output results of the OCNET model are consistent 

with NOAA MSL12 after February 9, 2018. However,  it can be observedFigure 5 indicates that the results of the OCNET 315 

model are noticeably lower than the results of OCCCI V5, particularly in regions 2, 4, 6, 7, 8, and 9 (referring to Figure 5). 

The primary reason for this systematic bias is the discrepancy between the NOAA MSL12 data and the OCCCI V5 data 

products. 
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Figure 5 Global open ocean was divided into 10 regions in this study, and the temporal variations of Chl-a from 2001 to 2021 are 320 
shown for each region. The blue line represents the output results of the OCNET model, the red line represents the results from 

OCCCI V5, the green line represents the results from NOAA MSL12 data, and the dark dashed line represents the linear fit of 

OCNET. The trends of OCCCI V5 and the OCNET model outputs during 2001 to 2021 are indicated with their respective color 
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labels in the top left corner of the temporal variation plot. For comparison purposes, we only consider and display calculations based 

on grid cells with valid values from OCCCI V5. 325 

It can be observed thatBy referring to Figure 5, tThe long-term Chl-a concentration trends in most regions are relatively small, 

with changes within 0.001 mg/m3 per year, except for Region 3 (referring to Figure 5). In terms of seasonal variations, regions 

3, 5, and 9 exhibit larger intra-annual fluctuations. On the other hand, regions 4, 7, and 8, which encompass a wider range of 

low Chl-a concentrations ( (Fig.3)referring to Figure 3), show smaller seasonal fluctuations. It is worth noting that OCCCI V5 

and OCNET show significant deviations in Region 9, where there are higher Chl-a concentrations (particularly during the 330 

period from 2010 to 2015). Considering that Region 9 mainly covers the sea areas surrounding the Americas (Fig.5), it is likely 

influenced by human activities. Additionally, the satellite retrieval of Chl-a concentration data in this region is of poorer quality 

due to high sediment concentrations and turbidity near the coastline. This partially explains the significant interannual 

variability observed in OCCCI V5 products for Region 9. Furthermore, both OCCCI V5 and NOAA MSL12 products have 

instances of unusually high Chl-a values, such as in regions 7 and 10 for OCCCI V5, and Region 4 for NOAA MSL12. These 335 

abnormally high Chl-a concentrations, which surpass typical values for the respective years, could be due to algal blooms or 

satellite data quality issues. Overall, from the long-term trends, most regions show small magnitudes of change, with more 

regions exhibiting a decreasing trend. 

3.3 Evaluation of OCNET’s performance  

The target dataset for the OCNET model is the NOAA MSL12 data product with a time span from February 9, 2018, to 340 

December 31, 2021. Details of model construction are explained in Section 2.3, where the data were divided into training, 

validation, and testing sets in a ratio of 7:1.5:1.5. Three statistical metrics, i.e., CC, bias, and RMSE, were selected to evaluate 

the training performance of the OCNET model (Fig.Figure 6 and Table 4) for different regions (referring to Fig.Figure 5). 
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Figure 6 Boxplot of evaluation results of the OCNET model in each region. 345 

Table 4 Chl-a concentration change rates for each region from three datasets and the median values of evaluation metrics (including 

the training set, validating set, and testing set) for the OCNET model. 

Region 

Change rate (×10-4 mg·m-3·year-1) Evaluation Index 

OCNET OCCCI 
NOAA 

MSL12 
CC Bias RMSE 

1 -3.5  -1.1  -103.3  0.73  -0.06  0.03  

2 -7.1  -1.9  -1.5  0.78  -0.08  0.04  

3 -13.3  -16.7  -91.2  0.75  -0.07  0.04  

4 -4.0  7.1  -17.6  0.72  -0.08  0.04  

5 -5.9  -4.9  -94.4  0.76  -0.09  0.04  

6 -3.5  -8.6  3.5  0.66  -0.09  0.02  

7 -3.1  3.2  -26.0  0.71  -0.06  0.04  

8 -0.8  1.0  6.1  0.63  -0.03  0.02  

9 -1.6  -6.1  -96.0  0.56  -0.07  0.04  
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10 -3.5  -9.1  -29.8  0.64  -0.08  0.03  

From the daily evaluation, it is shown that Figure 6 showsit can be seen that the model performs well (referring to Figure 6) 

(Fig.6). The median values of CC for the training set are mostly above 0.6. The performance of the validation validating set 

and the testing set is similar, but individual regions show poor performance. For example, in the validatingvalidation set, the 350 

median values of CC for regions 6, 9, and 10 are around 0.4 and 0.5, and for region 9 in the testing set, the median value of 

CC is around 0.4. This corroborates the findings in Section 3.1 that region 9, being mostly near the American continent, is 

heavily influenced by human activities, and the satellite data quality in coastal areas is also poorer. In terms of bias, the 

performance of the training set is excellent, with biases within a small range for each region. The boxplot ranges for the 

validationvalidating set and the testing set also fluctuate within 0.2. It is worth noting that, due to the low Chl-a concentrations 355 

in most marine areas, the calculated biases are defined as relative biases (with the denominator being the mean of the target 

dataset). Therefore, it is possible to have higher biases in regions with low Chl-a concentrations. For the RMSE, both the 

training set, validation validating set, and testtesting set are below 0.2, with most of them below 0.1, indicating excellent 

performance. Regions 6 and 8 have the lowest RMSE values. This may be because regions 6 and 8 mostly cover low Chl-a 

concentration offshore areas with minimal seasonal fluctuations ((Fig.5)referring to Figure 5). 360 

According to the results of the Chl-a concentration rate of change in each region, it can be observed that most regions show 

relatively small trends (as Table 4 shows). Most regions exhibit a decreasing trend, which is consistent with the conclusions 

of existing related studies (Le Grix et al., 2021; Beaulieu et al., 2013; Signorini et al., 2015). Based on the results of the OCNET 

model, regions 2, 3, and 5 show larger decreasing magnitudes, while compared to the other regions, which also exhibit a 

decreasing trend. According to the results of OCCCI, except for regions 4, 7, and 8, which show small increasing trends, the 365 

other regions demonstrate a decreasing trend, with regions 3, 6, 9, and 10 showing more pronounced declines. As for NOAA 

MSL12, except for regions 6 and 8, which show an upward trend, the other regions display a decreasing trend. Due to the 

relatively short time series of NOAA MSL12, it cannot reflect long-term trend characteristics. It can be seen that NOAA 

MSL12 shows a significant decrease in Chl-a concentration in regions 1, 3, 5, 7, 9, and 10. This overall decline exhibited by 

NOAA MSL12 directly influences the training results of the OCNET model. Therefore, OCNET and OCCCI share similarities 370 

in long-term trends but may have differences in individual regions. 
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Figure 7 Evaluation results of OCNET based on the NOAA MSL12 dataset. a), c), and e) represent the global distribution maps of 

CC, RMSE, and bias from February 9, 2018, to December 31, 2021, respectively. b), d), and f) display the density distributions of 375 
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the evaluation results for CC, RMSE, and bias across the training, validationvalidating, and testing sets, respectively. Note that 

RMSE took logarithm base 10. 

From the comparison results with the target data NOAA MSL12 (Fig.7), the OCNET model has effectively learned the 

relationship between environmental data and Chl-a concentration variations (referring to Figure 7). At the global scale, the 

overall performance of CC is good, with most regions above 0.7. Regions Regions with lower CC are mainly concentrated in 380 

the eastern tropicalcentral Pacific, where the OCNET model output shows apparent systematic biases compared to OCCCI 

(referring to Figure 5) (Fig.7a). Due to the lower mean Chl-a concentration in Region 8 ((Fig.3)referring to Figure 3), theits 

RMSE and bias BIAS of Region 8performance are also better than other regions (Fig.7 (c-e)). The preliminary evaluation 

results in Region 8 suggest that OCNET's performance is not as good as in other areas. This may be related to the specific 

climate characteristics or low satellite data quality in that region. The complex factors ultimately result in OCNET's less 385 

optimal learning effect in Region 8. For the density distribution maps of the evaluation results for the training, validation, and 

testing sets, the performance of the training set is generally excellent. The performance of the validation and testing sets is 

comparable. From the results of bias, the training set shows a clear tendency of underestimation (referring to Figure 7d) 

(Fig.7d), while compared to the validation validating and testing sets, which also exhibit some a less underestimation but less 

pronounced. This may be due to the smoothing effect of OCNET on some abnormally high values in the satellite data (Section 390 

3.2). In summary, the evaluation results indicate that OCNET performs exceptionally well in the reconstruction of global open 

ocean Chl-a concentration data. 

3.4 Extended triple collocation evaluation 

Output of the OCNET model, NOAA MSL12, and Sentinel-3B's Chl-a concentration data were selected for the ETC evaluation 

method (Fig.8). It should be noted that the Sentinel-3B dataset was considered independent of the other two datasets, while 395 

output of OCNET is not independent of the NOAA MSL12 dataset. Therefore, the evaluation results are biased towards 

OCNET and NOAA MSL12 data and may underestimate Sentinel-3B data. The purpose of the ETC method evaluation here 

was to demonstrate the quality of OCNET output data compared to NOAA MSL12 data. The low absolute values of the 

evaluation results do not necessarily imply that Sentinel-3B dataset is unreliable. Additionally, due to algorithmic reasons, grid 

cells with outlier data were excluded. To highlight relevant information, Fig.8Figure 8 only includes the results of Sentinel-400 

3B data in the interval distributions (e) and (f) while omitting the global distribution of the metrics (which mostly perform 

worse). It should be noted that tCC and tRMSE mentioned in Section 3.4 are different from those in Section 3.3. The metrics 

in Section 3.4 can only reflect the relative ranking. 
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Figure 8 Evaluation results based on the ETC evaluation method. Global distribution map of the tCC of Chl-a for a) OCNET and 405 
b) NOAA MSL12. Global distribution map of the tRMSE of Chl-a for c) OCNET and d) NOAA MSL12. Interval distribution of e) 

tCCs and f) tRMSEs for the three products was calculated using the ETC method. 

By referring to Figure 8(a‒b), It can be seen that the output data of the OCNET model show a similar distribution to NOAA 

MSL12 data in the global tCC distribution (Fig.8(a‒b)), with most regions above 0.7. In the interval distribution 

(Fig.8e)(referring to Figure 8e), the proportion of OCNET model output data exceeding 0.8 is approximately 12%, slightly 410 

lower than NOAA MSL12's 14%. Regions with poorer tCC evaluation results are mainly distributed in the central eastern 

tropical Pacific  Ocean where there are significant missing values in tCC, and the performance of OCNET is slightly lower 

than other regions. It should be noted that in the ocean areas near the American continent, there is a prevalent occurrence of 

tCC values below 0.5. This is similar to the evaluation results in Section 3.3, where the training performance for Region 9 is 

also slightly lower than other regions (Fig.7)(referring to Figure 7). Additionally, in the southern hemisphere region of the 415 

Atlantic Ocean, OCNET seems to exhibit higher tCC values in the middle compared to the northern and southern sides, which 

is a different characteristic from the NOAA MSL12 dataset. 

By referring to Figure 8f, From from the results of tRMSE, the model output of OCNET is slightly better than NOAA MSL12 

data. Specifically, NOAA MSL12 exhibits poorer tRMSE performance in the sea area near the west coast of Africa. This area 

is also characterized by high Chl-a concentration and significant interannual variations  ((referring to Fig.3ure 3 and Figure 4).  420 

Fig.4). While OCNET exhibits similar high tRMSE values in the ocean areas near the western side of Africa as NOAA MSL12, 
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the distribution range is smaller compared to NOAA MSL12. Additionally, in the ocean areas near South America, both 

OCNET and NOAA MSL12 show small-scale high tRMSE values. It is worth mentioning that even for Sentinel-3B, the 

majority of tRMSE values are concentrated below 0.4. This may be related to the fact that most of the ocean Chl-a 

concentrations are relatively low. 425 

4. Discussion 

4.1 Factors affecting the distribution of marine phytoplankton 

We focused on the surface chlorophyll-a (Chl-a) concentration as an indicator of the distribution of phytoplankton in the ocean 

surface layer. The distribution of marine phytoplankton is influenced by various factors, including light, temperature, nutrients, 

salinity, hydrodynamic conditions, and biological interactions (Behrenfeld et al., 2006; Ducklow et al., 2022; Feng et al., 2021). 430 

Among them, light, temperature, salinity, and hydrodynamics are directly reflected in the input data of the OCNET model. 

However, the influences of nutrients and biological interactions are more complex. Different phytoplankton communities 

require different major nutrients such as nitrogen, phosphorus, and silicon (Powell et al., 2015; Takeda, 1998). The biological 

interactions also include predation by zooplankton and the impact of human activities in coastal areas. Due to the lack of 

publicly available reliable quantitative data on these two aspects, they are not considered in this study.  435 

Considering the correlation between SST, SAL, and PAR with the growth cycle of phytoplankton, when creating input data 

samples for the OCNET model, the mean values from one-month prior were selected as variables. However, hydrodynamic 

conditions have real-time effects on the distribution of planktonic algae, so SSP and SST were taken as daily values for input. 

It is worth mentioning that surface wind speed variations also have a direct impact on the movement of surface phytoplankton 

in the ocean. However, wind speed not only includes direction and magnitude, but it also fluctuates significantly in both 440 

direction and magnitude within a day. Therefore, simply taking daily averages as model inputs would not suffice. Additionally, 

selecting too many variables can lead to overfitting or poor training performance due to limitations in the quantity of sample 

data. 

According to the result of OCNET model (referring to Figure 3), it can be observed that regions with higher Chl-a concentration 

are generally located near continents (Fig.3). From the perspective of hydrodynamic conditions, hydrological factors such as 445 

water currents, ocean currents, and tides have a significant influence on the distribution and aggregation of phytoplankton. 

They affect the horizontal migration, vertical mixing, and nutrient transport of phytoplankton. The nearshore waters have 

relatively low seawater velocity, coupled with features such as coastlines, underwater ridges, and archipelagos, which to some 

extent contribute to the retention and aggregation of phytoplankton. In addition, river inflows into the ocean often bring 

abundant nutrients (Slomp, 2011; Wang et al., 2016), creating favorable conditions for the growth of phytoplankton (Liu et al., 450 

2022). 

Global variations in ocean temperature also have an important impact on the growth of phytoplankton. With the continued 

increase in global sea temperatures, temperature anomalies can also lead to anomalies in Chl-a concentration (Liu et al., 2022; 
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Gruber et al., 2021; Le Grix et al., 2021). Global ocean warming results in more pronounced stratification of the ocean, altering 

the depth of the mixed layer and reducing vertical mixing between the surface layer and the cold, nutrient-rich layer below 455 

(Liu et al., 2022; Le Grix et al., 2021). The reduction in nutrients ultimately leads to a decrease in Chl-a concentration in the 

ocean surface layer. However, the declining trend in Chl-a concentration over the 20 years does not necessarily indicate a 

reduction in algal blooms. On the contrary, the frequency of extreme events associated with algal blooms may be continuously 

increasing due to the influence of climate change (Feng et al., 2021; Dai et al., 2023). 

In conclusion, understanding and studying these influencing factors are crucial for comprehending the ecological and 460 

biogeochemical processes of marine phytoplankton. A thorough investigation of the interactions among these factors can lead 

to better predictions and explanations of the growth and distribution patterns of phytoplankton. Subsequent research can further 

focus on the impact of human activities in coastal areas on the growth of marine phytoplankton. 

4.2 Uncertainty in ocean color data from satellite remote sensing 

Satellite remote sensing is one of the important technologies to obtain long-term and large-scale ocean color data (Groom et 465 

al., 2019). However, there is uncertainty in the satellite data inversion process, degrading the accuracy (Groom et al., 2019; 

Hu et al., 2019a; Jiang and Wang, 2013). The first factor is the influence of atmospheric correction algorithms. The selection 

of models and parameters can affect the satellite data during the atmospheric correction process. In addition, coastal areas and 

inland lakes closer to land often have more turbid waters, and the presence of high concentrations of suspended particles in 

complex water environments makes it more difficult for satellites to accurately retrieve water color information from the water 470 

surface (Lian et al., 2021; Wang et al., 2021; Zheng and Digiacomo, 2017). Furthermore, weather and environmental factors 

such as clouds and fog can partially or completely obscure the target water areas, posing important challenges to satellite data 

acquisition (Zheng and Digiacomo, 2017; Wang et al., 2021). 

In practical applications, in-situ measurements are typically used to calibrate and fit parameters for satellite data (Hu et al., 

2012). However, obtaining a large amount of continuous shipborne measurement data is challenging, and publicly available 475 

in-situ data often suffer from problems such as inconsistent formats, varying measurement standards, complex composition of 

research institutions, and unclear data quality. Therefore, the application of in-situ data is limited for studying large-scale, 

long-term time series of Chl-a concentration variations. In this study, to further demonstrate the data quality of OCNET outputs 

comparable to NOAA MSL12, an indirect evaluation method using ETC was employed. The evaluation results not only 

confirmed the excellent training performance of the OCNET model but also indicated significant differences among different 480 

satellite products, as evidenced by the low evaluation indicators for Sentinel-3B (referring to Figure 7) (Fig.7). Therefore, 

when applying satellite products of Chl-a concentration data, it is important to carefully select and correct for biases (Krug et 

al., 2017). It should be noted that the global distribution map of ETC evaluation results shows a significant number of missing 

values (Fig.7) (referring to Figure 7). These missing values primarily stem from data gaps in Sentinel-3B and issues within the 

algorithm itself, resulting in negative squared evaluation metrics. Short data sequences or data that do not conform to the 485 
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algorithm's underlying assumptions can lead to unusable results from the ETC algorithm. The final result analysis is based 

solely on grid cells with valid values. 

The main purpose of our study was to address the serious issue of spatial missing values in existing satellite datasets. It should 

be noted that the satellite-derived water color data itself still have errors that are difficult to correct (Wang et al., 2021). To 

improve accuracy, algorithms can be applied to differentiate different concentrations, such as OCx and CI algorithms (Hu et 490 

al., 2012), or specific parameter fitting can be performed for different regions (Li et al., 2019). However, the accuracy of 

satellite sensors, resolution, and other factors still influence the inversion accuracy. The accuracy of satellite data is not the 

focus of this study. Nevertheless, satellite data can still provide important references for algal blooms on a global scale (Wang 

et al., 2021; Feng et al., 2021). An anomaly algorithm can also be used to reduce the impact of systematic biases (Wang et al., 

2021; Stumpf, 2001). It may be beneficial to employ machine learning techniques for anomaly of Chl-a concentration, enabling 495 

better prediction of extreme events. 

4.3 Applications of OCNET in the future 

The variation of Chl-a concentration in the global ocean surface is influenced by various complex factors, which poses 

challenges to accurately retrieve Chl-a concentration. We selected Chl-a data products retrieved from satellite data as a 

reference, supplemented by reanalysis data to provide environmental factor information. By combining the advantages of 500 

machine learning in big data analysis and simulation, we ultimately reconstructed a global-scale, long-term time series of Chl-

a concentration dataset. 

It is worth noting that this study intentionally excluded coastal regions in the selection of the study region, due mostly to the 

poor performance of satellite data in coastal regions. Currently, most satellite data algorithms for Chl-a retrieval are based on 

the absorption peak of Chl-a in the blue spectral band (Hu et al., 2019b; Hu et al., 2012). This approach is highly applicable in 505 

open waters but can be significantly affected by interference in coastal regions, particularly in cases of high suspended matter 

concentration or colored dissolved organic matter (CDOM) (Blondeau-Patissier et al., 2014). Although adjustments can be 

made to the retrieval algorithms based on localized measurements, there is significant variability in water composition across 

different coastal regions. This has resulted in poor performance of current satellite retrieval algorithms for estimating global 

Chl-a concentrations in coastal areas (Dai et al., 2023). 510 

The performance of OCNET in coastal areas is primarily limited by the quality of the input satellite data. The construction of 

the OCNET model can be affected if the training-set quality is poor or severely lacking. However, OCNET has demonstrated 

its potential application in open waters. In regional calculations, OCNET can effectively capture the interrelationships among 

various environmental factors in different zones and apply them to the reconstruction of Chl-a concentrations. There have also 

been successful studies applying machine learning to analyze Chl-a concentration variations at the regional scale (Chen et al., 515 

2019; Roussillon et al., 2023), further demonstrating the potential application of machine learning methods in coastal areas. In 

the future, if reliable water color data from coastal areas can be obtained with a certain time span and spatiotemporal continuity 

for training OCNET, the reconstruction of Chl-a concentrations in coastal regions may also yield favorable results. 
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Overall, OCNET is capable of surpassing traditional machine learning methods such as multiple linear regression and random 

forest, as well as traditional artificial neural networks, because it can learn complex nonlinear relationships and incorporate 520 

global context into its predictions. This is of great significance for in-depth understanding and analysis of variable changes 

under the complex environmental influences in the context of big data. 

5. Data availability 

The reconstructed Chl-a data are archived and available at 

https://doi.org/10.5281/zenodo.10011908https://doi.org/10.5281/zenodo.8105194 (Hong et al., 2023). 525 

6. Conclusion 

We developed the OCNET model for the purpose of reconstructing global ocean Chlorophyll-a (Chl-a) concentration data. 

Chl-a is an important indicator of the health and productivity of marine ecosystems, and accurate measurements of Chl-a 

concentrations are essential for understanding the dynamics of these systems. The OCNET model is based on a convolutional 

neural network and considers a variety of environmental variables that are known to influence the growth and distribution of 530 

ocean phytoplankton, which are the primary producers of Chl-a. 

Our results show that the OCNET model performs very well in reconstructing Chl-a concentrations, accurately capturing the 

temporal variations of these features. This suggests that the model has strong potential for use in large-scale ocean color data 

reconstruction, and may even be able to predict Chl-a concentration trends in response to changes in the environment. However, 

we did observe that the model's performance was somewhat weaker in the eastern tropical Pacific region compared to other 535 

areas. This may be due to specific climate characteristics that have a significant impact on phytoplankton growth and 

distribution (Geng et al., 2022; Duteil and Park, 2023) or low quality of satellite-based dataset in this region. The model's 

performance in the eastern tropical Pacific region requires further improvement in future work. 

Overall, the OCNET model represents an important step forward in the use of machine learning techniques for predicting and 

reconstructing Chl-a concentrations. The model's strong performance in all regions of the globe suggests that it could be a 540 

valuable tool for understanding and predicting the dynamics of marine ecosystems on a global scale. OCNET and other 

machine learning tools will help us better understanding and predicting the change of marine phytoplankton under climate 

change. It is hoped that the results of this study will be of interest and relevance to a wide range of researchers, policymakers, 

and managers involved in the monitoring and management of aquatic ecosystems. 
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