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Abstract 17 

Our understanding and predictive capability of streamflow processes largely rely on high-18 
quality datasets that depict a river’s upstream basin characteristics. Recent proliferation of large 19 
sample hydrology (LSH) datasets has promoted model parameter estimation and data-driven 20 
analyses of the hydrological processes worldwide, yet existing LSH is still insufficient in terms of 21 
sample coverage, uncertainty estimates, and dynamic descriptions of anthropogenic activities. To 22 
bridge the gap, we contribute the Synthesis of Global Streamflow characteristics, Hydrometeorology, 23 
and catchment Attributes (GSHA) to complement existing LSH datasets, which covers 21,568 24 
watersheds from 13 agencies for as long as 43 years based on discharge observations scraped from 25 
web. In addition to annual and monthly streamflow indices, each basin’s daily meteorological 26 
variables (i.e., precipitation, 2 m air temperature, longwave/shortwave radiation, wind speed, actual 27 
and potential evapotranspiration), daily-weekly water storage terms (i.e., snow water equivalence, 28 
soil moisture, groundwater percentage), and yearly dynamic descriptors of the land surface 29 
characteristics (i.e., urban/cropland/forest fractions, leaf area index, reservoir storage and degree of 30 
regulation) are also provided by combining openly available remote sensing and reanalysis datasets. 31 
The uncertainties of all meteorological variables are estimated with independent data sources. Our 32 
analyses reveal the following insights: (i) the meteorological data uncertainties vary across variables 33 
and geographical regions, and the revealed pattern should be accounted for by LSH users, (ii) ~6% 34 
watersheds shifted between human managed and natural states during 2001-2015, e.g., basins with 35 
environmental recovery projects in Northeast China, which may be useful for hydrologic analysis 36 
that takes the changing land surface characteristics into account, and (iii) GSHA watersheds showed 37 
a more widespread declining trend in runoff coefficient than an increasing trend, pointing towards 38 
critical water availability issues. Overall, GSHA is expected to serve hydrological model parameter 39 
estimation and data-driven analyses as it continues to improve. GSHA v1.1 can be accessed at 40 
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https://doi.org/10.5281/zenodo.8090704 and https://doi.org/10.5281/zenodo. 10433905 10127757.  41 
(Yin et al., 2023).  42 

1 Introduction 43 

Climate change has posed profound challenges to the management of freshwater resources, 44 

specifically riverine floods or water shortages (AghaKouchak et al., 2020; Thackeray et al., 2022). 45 

The urgent need for flood and drought forecasting, water resources planning and management, all 46 

call for high-quality streamflow predictions for basins worldwide to analyse global terrestrial water 47 

conditions in a systematic view (Burges, 1998). The scarcity of hydrological observations has 48 

brought challenges to these predictions (Belvederesi et al., 2022; Hrachowitz et al., 2013), thus the 49 

development of computer models that allow for “modelling everything everywhere” (Beven & 50 

Alcock, 2012) constitutes the backbone of hydrological studies. Existing studies have used 51 

physically-based and data-driven models for streamflow simulation (Lin et al., 2018; Nandi & 52 

Reddy, 2022; Zhang et al., 2020), with efforts to improve accuracy of prediction by combining both 53 

(Cho & Kim, 2022; Razavi & Coulibaly, 2013). Yet the prediction of the magnitude, timing, and 54 

trend of critical streamflow characteristics are still subject to multiple sources of errors and 55 

uncertainties (Bourdin et al., 2012; Brunner et al., 2021).  56 

Streamflow (Q) can be represented by the simple water balance equation involving 57 

precipitation (P), evapotranspiration (ET), and water storage terms (S) denoted as Q = P – ET – ΔS, 58 

yet influencing factors of these components could bring uncertainties that cascade downstream. 59 

Starting from the model assumptions to the data used to represent climate, soil water, ice cover, 60 

topography and land use, as well as the less well-known processes such as human perturbations and 61 

sub-surface flows (Benke et al., 2008; Wilby & Dessai, 2010), these complications impede our 62 

understanding of streamflow processes across scales, which also limits the modelling and predictive 63 

capability for streamflow. Thus, reducing the predictive uncertainties requires high-quality data with 64 

massive samples capable of depicting each of the water balance components, as well as the natural 65 

and anthropogenic factors involved (Gupta et al., 2014). 66 

Efforts have been made to address the need for such kind of high-quality datasets on watershed-67 
scale hydro-climate and environmental conditions during the past couple of decades. One of the 68 
earliest was the most widely used dataset generated for the Model Parameter Estimation Experiment 69 
(MOPEX) project aimed at better hydrological modelling (Duan et al., 2006). Historical hydro-70 
meteorological data and land surface characteristics for over 400 hydrologic basins in the United 71 
States were provided, which was fundamental to the progress in large sample hydrology (LSH) 72 
(Addor et al., 2020; Schaake et al., 2006). Later the dataset was expanded to 671 catchments in the 73 
contiguous United States (CONUS) and benchmarked by model results (Newman et al., 2015). 74 
Based on these studies, the Catchment Attributes and Meteorology for Large-sample Studies 75 
(CAMELS) dataset was developed, providing comprehensive and updated data on topography, 76 
climate, streamflow, land cover, soil, and geology attributes for each catchment (Addor et al., 2017). 77 
The CONUS CAMELS dataset soon became influential in LSH and has since inspired researchers 78 
from Australia (Fowler et al., 2021), Europe (Coxon et al., 2020; Delaigue et al., 2022; Klingler et 79 

https://doi.org/10.5281/zenodo.8090704
https://doi.org/10.5281/zenodo.10127757
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al., 2021), South America (Alvarez-Garreton et al., 2018; Chagas et al., 2020), and China (Hao et 80 
al., 2021) to contribute their regional CAMELS. Another comprehensive regional LSH dataset for 81 
North America named the Hydrometeorological Sandbox - École de Technologies Supérieure 82 
(HYSETS) dataset, was also developed with larger sample size (14425 watersheds) and richer data 83 
sources compared with the CAMELS (Arsenault et al., 2020).  84 

While these datasets are reliable data sources for regional studies, attempts on building global 85 
datasets have become the new norm in the era of big data to boost our analytical and modelling 86 
capability for the terrestrial hydrological processes. The HydroATLAS dataset integrated indices of 87 
hydrology, physiography, climate, land cover, soil, geology, and anthropogenic activity attributes 88 
for 8.5 million global river reaches (Lehner et al., 2022; Linke et al., 2019). A recent work combined 89 
a series of CAMELS datasets with HydroATLAS attributes into a new global community dataset on 90 
the cloud named Caravan, with dynamic hydro-climate variables and comprehensive static 91 
catchment attributes extracted on 6830 watersheds (Kratzert et al., 2023), which represents by far 92 
the most comprehensive synthesis of existing CAMELS. Another global-scale effort, the Global 93 
Streamflow Indices and Metadata archive (GSIM), incorporated dynamic streamflow indices and 94 
attribute metadata for topography, climate type, land cover, etc., for over 35000 gauges (Do et al., 95 
2018; Gudmundsson et al., 2018), and the streamflow indices were updated to allow for trend 96 
analysis (Chen et al., 2023). A recent study filled in the discontinuity and latency of gauge records, 97 
and provided streamflow for over 45,000 gauges with improved data quality (Riggs et al., 2023). 98 
These global-scale datasets have been widely used in data-driven machine learning models (Kratzert 99 
et al., 2019a, 2019b; Ren et al., 2020), physical hydrological models (Aerts et al., 2022; Clark et al., 100 
2021), and parameter estimation and regionalization studies (Addor et al., 2018; Fang et al., 2022).  101 

Although the flourishment of LSH datasets has promoted comparative hydrological studies 102 
(Kovács, 1984) and large-scale hydrological modeling and analysis efforts, several challenges are 103 
still standing in the way of realizing the full potential of LSH. As briefly outlined in a recent review 104 
by Addor et al. (2020), current LSH datasets lack common standards, metadata and uncertainty 105 
estimates, and are insufficient in characterising human interventions. More specifically, the 106 
following major critical aspects still need attention from the LSH developers, which we attempt to 107 
address with GSHA (Yin et al., 2023). First, the majority of current datasets (especially those at a 108 
global scale) incorporated only one data source for each variable, while earth observations, 109 
reanalysis, satellite-based estimates are subject to uncertainties (Merchant et al., 2017; Ukhurebor 110 
et al., 2020). These uncertainties were rarely represented and may bring difficulties to the 111 
regionalization of model parameters (Beck et al., 2016), while also resulting in inconsistent 112 
conclusions. Second, anthropogenic activities including land use and land cover (LULC) changes, 113 
dam and reservoir building, etc., are critical drivers of shifts in streamflow statistical moments 114 
(Niraula et al., 2015). However, historical time series of watershed human modifications were rarely 115 
included in LSH datasets, which is particularly problematic for regions with rapid economic growth. 116 
Finally, although the most recent Caravan provided hydroclimate data for global watersheds, the 117 
samples are limited to the existing regional CAMELS which Caravan synthesizes. Therefore, plenty 118 
of room is left to increase data sample size and spatial coverage by revisiting the streamflow data 119 
acquisition process in a more comprehensive way.  120 

To complement existing LSH datasets, we contribute the first version of a synthesis of Global 121 

Streamflow characteristics, Hydrometeorology, and catchment Attributes (GSHA v_1.0) for large-122 

sample river-centric studies. GSHA features the following characteristics: 123 
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l Updated physical and anthropogenic descriptors of global rivers, covering streamflow 124 

characteristics, hydrometeorological variables, and land use land cover changes for 21568 125 

watersheds derived from gauged streamflow records from 13 agencies. 126 

l Streamflow indices for data scarce regions, including those derived from 263 gauges in 127 

China, are included.  128 

l Extended temporal coverage for as long as 43 years (1979-2021), which varies regionally. 129 

l Uncertainty estimates for the meteorological variables. 130 

l Dynamic descriptors for the urban, forest, and cropland fractions, as well as reservoir 131 

storage capacity to improve the representation of human activities in the basin. 132 

With the above features, we expect GSHA to support hydrological model parameter estimation 133 

and data-driven analysis of global streamflow as one of the most comprehensive LSH datasets 134 

regarding sample size, variable dynamics, and uncertainty estimates. Table 1 summarizes the 135 

differences between GSHA and other prominent LSH datasets. Our paper is organized as follows. 136 

Section 2 expands on Table 1 and provides more details of the data included for GSHA. Section 3 137 

introduces the data sources and methodologies involved in creating GSHA. Section 4 highlights the 138 

key features of GSHA by conducting some analyses, followed by conclusions reached in Section 5. 139 

 140 

Table 1 Comparison of GSHA with other LSH datasets. Note that we only include the CONUS 141 
CAMELS dataset to represent regional LSH datasets for this comparison, as other regional CAMELS 142 
share large similarity with CONUS CAMELS. 143 

Factors  CAMELS 

(eg. US) 

HydroATLAS Caravan GSIM GSHA 

Spatial extent Regional  Global  Global  Global  Global  

Sample size 671 8.5 million  6830 35002 21568 

Time span 1980–2015 Static 1981–2020 1806-2016 1979-2021 

Streamflow 

dynamics 

Yes No Yes Yes (statistical 

indices) 

Yes (monthly and 

yearly statistical 

indices) 

Meteorological 

time series 

Yes No Yes No Yes 

Multi data sources 

for meteorological 

variables 

Yes No No No Yes (with 

uncertainty 

estimates) 

Water storage 

dynamics 

No No Only soil 

water 

dynamics 

No  Yes 

Land cover 

dynamics 

No No No  No Yes 

Reservoir 

dynamics 

No No No No Yes  

Static attributes Yes Yes  Yes (from 

HydroATLAS) 

Yes Yes (from 

HydroATLAS) 
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2 Dataset content of GSHA v1 144 

In this section, the data fields, variables, and attributes included in GSHA are described in more 145 

details and summarized in Table 2. For the instructions of the data format, we provide a user manual 146 

along with the dataset (see readme.docx). GSHA includes yearly and monthly streamflow 147 

characteristics derived from daily discharge observations, meteorological variables (including 148 

precipitation, 2-m air temperature, long- and shortwave radiation, wind speed, actual and potential 149 

evapotranspiration (AET and PET)), daily or weekly water storage terms (4 layers of soil moisture, 150 

groundwater, and snow depth water equivalence), daily vegetation index (leaf area index (LAI)), 151 

yearly LULC characteristics (urban, cropland, and forest fraction), and yearly reservoir information 152 

(degree of regulation (DOR) and reservoir capacity). For each meteorological variable, multiple 153 

independent data sources are incorporated to provide uncertainty estimates. Static attributes like 154 

land physiography, soils, and geology are not additionally extracted, as similar efforts have been 155 

made by other researchers, so we directly matched our gauge locations to the HydroATLAS dataset 156 

(Lehner et al., 2022; Linke et al., 2019) by providing the river ID match table. Users can link the 157 

two to obtain these attributes. 158 

Watershed polygons: GSHA includes 21568 watershed polygons delineated from the global 159 

gauges, which are stored as Esri Shapefile format. The ID and agency of each watershed is the same 160 

as the corresponding gauge ID, and the gauge latitude/longitude are in decimal degree. The area 161 

denotes the upstream drainage area of the gauge. Some of the IDs contain characters (such as ‘.’, 162 

‘-’, etc.) inconsistent with the majority of IDs. For the convenience of the users, we unified these as 163 

underscores and stored the new file names as ‘filename’. We also provide independent files 164 

summarizing basic information of the watersheds, including matched MERIT river reach COMID, 165 

upstream area, order and downstream river reach COMID, as well as verification with officially 166 

reported areas of the agencies. 167 

Streamflow indices: GSHA publishes annual and monthly streamflow indices derived from 168 

daily streamflow data, including different percentiles, and mean/median/minimum/maximum. The 169 

frequency and durations of extremely high and low streamflow events are also provided. We also 170 

include numbers of zero observations and valid samples to allow flexible data screening by the users. 171 

The indices are stored as comma-separated values (CSV) files, with each watershed corresponding 172 

to one file. A complementary R package can be used to automatically download many of the gauge 173 

datasets is available at https://github.com/Ryan-Riggs/RivRetrieve (Riggs et al., 2023). 174 

Meteorological variables: The meteorological variables selected are the most influential 175 

drivers for streamflow, which include precipitation, 2-m temperature, ET, radiation and wind speed. 176 

In main-stream land surface models, ET is a diagnostic variable derived from meteorological inputs 177 

and is not considered as meteorological forcing. However, as many hydrological models also use 178 

potential ET as an input variable, and model calibration sometimes involves actual ET (Immerzeel 179 

& Droogers, 2008), we include the two variables and place them into the meteorological variable 180 

category. For each variable, more than one data sources are used to allow for uncertainty analysis, 181 

which is provided on a yearly basis in an independent file.  182 

https://github.com/Ryan-Riggs/RivRetrieve
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Natural water storage terms and land use/land cover change: These include soil moisture, 183 
snow water equivalent, and groundwater percentages. We also include yearly land cover dynamics 184 
(i.e., urban, forest, and cropland fraction changes), as well as dynamically changing reservoir 185 
capacity and degree of regulation (DOR) percentage. Leaf area index (LAI) is also included to 186 
reflect the seasonal changes in vegetation canopy that are also key to the streamflow processes. 187 

Static attributes: GSHA does not extract updated static attributes because HydroATLAS 188 

already made substantial efforts in this regard. Instead, the listed categories are those mostly related 189 

to streamflow prediction from HydroATLAS selected to be included in GSHA files, and we direct 190 

the readers to the ID match table to access the entire 281 static attributes offered by HydroATLAS 191 

(Lehner et al., 2022; Linke et al., 2019). Our user manual, available at the dataset download site, 192 

also provides more information on it. 193 

 194 

Table 2 Fields provided with GSHA. 195 

Category Field Description Unit 
Watershed 
Polygons and 
basic 
information 

Sttn_Nm The ID of the watershed. NaN 
Latitude Latitude of the gauge. Degree 
Longitude Longitude of the gauge. Degree 
Shedarea The area of delineated watershed. Km2 

Agency The agency the gauge belongs to. NaN 
filename The name of the corresponding 

Shapefile in the dataset. 
NaN 

verification Verification of watershed area with 
officially reported area of the 
corresponding agency. If we did not 
access the officially reported area of 
the watershed on the agency 
website, the field would be 
“unverified”. 

NaN 

COMID ID of the MERIT river reach 
matching with the watershed. 

NaN 

uparea Upstream area of the river reach 
included in the MERIT database. 

NaN 

order Stream order of the river reach. NaN 
NextDownID ID of the downstream river reach in 

MERIT. 
NaN 

Category Indices Description Unit/Format 
Streamflow 
indices (yearly) 

percentiles Annual 1, 10, 25, 75, 90, 99 
percentiles of daily streamflow. 

m3/s 

mean Annual mean of daily streamflow. m3/s 
median Annual median of daily streamflow. m3/s 
annual maximum flood 
(AMF) 

Annual maximum of daily 
streamflow. 

m3/s 

AMF occurrence date The date of AMF occurrence. Year/month/day 
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frequency of high-flow 
events 

Number of days in a year with 
streamflow >= 90 percentile flow. 

Days/year 

average duration of 
high-flow events 

Average number of consecutive 
days >= 90 percentile flow. 

Days 

frequency of low-flow 
events 

Number of days in a year with 
streamflow <= 10 percentile flow. 

Days/year 

average duration of 
low-flow events 

Average number of consecutive days 
<= 10 percentile flow. 

Days 

Q=0 days Number of days with runoff=0. Days 
valid observation days Number of days with no missing data. 

(Valid observations refer to non-null 
measurements.) 

Days 

 month with nan>10 
days 

A list of the months with over 10 
days of NaN measurement. 

Month 

Category Indices Description Unit/Format 
Streamflow 
indices 
(monthly) 

percentiles Monthly 1, 10, 25, 75, 90, 99 
percentiles of daily streamflow. 

m3/s 

mean Monthly mean of daily streamflow. m3/s 
median Monthly median of daily streamflow. m3/s 
monthly maximum 
flood (MMF) 

Monthly maximum of daily 
streamflow. 

m3/s 

MMF occurrence date The date of MMF occurrence. Year/month/day 
frequency of high-flow 
events 

Number of days in a month with 
streamflow >= yearly 90 percentile 
flow. 

Days/month 

average duration of 
high-flow events 

Average number of consecutive days 
in the month >= yearly 90 percentile 
flow. 

Days 

frequency of low-flow 
events 

Number of days in a month with 
streamflow <= yearly 10 percentile 
flow. 

Days/month 

average duration of 
low-flow events 

Average number of consecutive days 
in the month <= yearly 10 percentile 
flow. 

Days 

Q=0 days Number of days with runoff=0. Days 
valid observation days Number of days with no missing data.  Days 

Category Variable Data source name Unit 
Meteorological 
Variables 

Precipitation MSWEP mm 
EM-Earth mm 

2 m temperature ERA5 K 
MERRA-2 K 
EUSTACE K 

Actual 
evapotranspiration 

REA mm 
GLEAM mm 
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Potential 
evapotranspiration 

GLEAM mm 
hPET mm 

Radiation (longwave) ERA5 land surface net thermal 
radiation 

W/m2 

 MERRA-2 surface net downward 
longwave flux 

W/m2 

Radiation (shortwave) ERA5 land surface net solar radiation W/m2 
MERRA-2 surface net downward 
shortwave flux 

W/m2 

10 m wind speed (u 
component) 

ERA5 land u-component of wind m/s 
MERRA-2 10 metre eastward wind m/s 

10 m wind speed (v 
component) 

ERA5 land v-component of wind m/s 
MERRA-2 10 metre northward wind m/s 

10 m wind speed  
(actual) 

ERA5 land u- and v-components of 
wind 

m/s 

MERRA-2 10 metre northward and 
eastward wind 

m/s 

Category Variable Data source name Unit 
Water storage 
terms 

Soil moisture layer 1 ERA5 land soil water layer 1 
(0-7 cm, 0cm refers to the surface) 

m3/m3 

Soil moisture layer 2 ERA5 land soil water layer 2 (7-28 
cm) 

m3/m3 

Soil moisture layer 3 ERA5 land soil water layer 3 (28-100 
cm) 

m3/m3 

Soil moisture layer 4 ERA5 land soil water layer 4 (100-
289 cm) 

m3/m3 

Snow water equivalent ERA5 land snow depth water 
equivalent 

m of water 
equivalent 

Ground water GRACE-FO data assimilation % 
Category Variable Data source name Unit 
Land use and 
land cover 

Urban fraction GAUD % 
Forest fraction MCD12Q1 % 
Cropland fraction MCD12Q1 % 
Reservoir capacity GeoDAR Million m3 
DOR GeoDAR % 
LAI CDR LAI NaN 

Category Attribute Column name (directly from 
RiverATLAS) 

Unit  

Static-
Physiography 

Elevation ele_mt_uav m. a.s.l. 
Terrain slope slp_dg_uav degrees (x10) 
Stream gradient sgr_dk_rav decimetres per 

km 
Static-
Hydrology  

Inundation Extent inu_pc_ult % 
Groundwater Table gwt_cm_cav cm 
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Depth 
Static-
Landcover 

Land Cover Classes glc_cl_cmj NaN 
Potential Natural 
Vegetation Classes 

pnv_cl_cmj NaN 

Wetland Extent wet_pc_u01-u09 % 
Glacier Extent gla_pc_use % 
Permafrost Extent prm_pc_use % 

Static-Soil & 
geology 

Clay Fraction in Soil cly_pc_uav % 
Silt Fraction in Soil slt_pc_uav % 
Sand Fraction in Soil snd_pc_uav % 
Lithological Classes lit_cl_cmj NaN 
Soil Erosion ero_kh_uav kg/hectare per 

year 

3 Data sources and methodology 196 

3.1 Technical workflow in creating GSHA 197 

The creation of GSHA starts from revisiting the data compilation process for the stream 198 

gauging observations from 13 international agencies. The general workflow of GSHA data 199 

production processes is illustrated in Figure 1, which consists of watershed delineation, variable 200 

extraction from both grid and non-grid data sources, and uncertainty analysis.  201 

First, we delineated the upstream watersheds using gauge locations. Calibration of gauge 202 
longitudes and latitudes were conducted to match the gauges with the MERIT river network exactly. 203 
The delineated watersheds were selected and manually checked using standards of area, topology 204 
correctness, and observation data lengths. The selected watersheds went on to be overlayed with 205 
grid and non-grid variable data sources for to obtain GSHA variables. 206 
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 207 
Figure 1 General workflow of GSHA. The yellow parallelograms are the input datasets, the blue ones 208 

are the final outputs of GSHA dataset, and the pink ones are the results in the process. The black 209 
quadrilaterals represent the extraction and calculation processes, and the red dotted rectangles illustrate 210 

different modules of the extraction process. 211 

3.2 Gauge-based streamflow indices 212 

As shown in Table 3, in total streamflow data from 36497 gauges were initially scraped from 213 
the web and from the Chinese National Real-time Rain and Water Situation Database. For gauges 214 
located within ~100 m of each other, those with fewer years of measurements were removed, 215 
assuming that they are redundant with one another. The gauge measurements were converted to a 216 
consistent unit (m3/s) and then manually compared with GRDC measurements to ensure accurate 217 
unit conversion (Riggs et al., 2023). Gauge databases compiled in this study are available through 218 
a variety of web interfaces, except for the Chinese Hydrology Project (CHP) data which is provided 219 
by the authors of the dataset (Henck et al 2010, Schmidt et al 2011), and processed into annual scale 220 
data that meets the requirements of the synthesis dataset.  221 
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Chinese N
ational Real -tim

e Rain and W
ater Situation D

atabase  

U
.S. G

eological Survey 2022 (U
SG

S) 

Thailand Royal Irrigation D
epartm

ent 2022 (RID
) 

Spain A
nnuario de A

foros, 2022 (A
FD

)  

Japanese W
ater Inform

ation System
 2022 (M

LIT) 

India W
ater Resources Inform

ation System
 2022 (IW

RIS) 

The G
lobal Runoff D

ata Centre 2022 (G
RD

C)  

Chinese H
ydrology Project (CH

P) 

Chile Center for Clim
ate and Resilience Research 2022(CCRR)  

Canada N
ational W

ater D
ata A

rchive 2022 (H
Y

D
AT)  

Brazil N
ational W

ater A
gency 2022 (A

N
A

)  

A
ustralian Bureau of M

eteorology 2022 (BO
M

) 

A
rcticN

ET 2022 

Source 

Table 3 G
auge data sources used in this analysis.  N

1 and N
2 refers to num

bers of gauges w
ith observations after 1979 and used in G

SH
A

. The starting and ending years (Y
1 and Y

2)  of 

G
SH

A gauges for each agency are listed.  

527 

16951 

126 

1138 

1023 

547 

6345 

112 

481 

3771 

1343 

4017 

116  

N
1  

263 

9069 

73 

889 

751 

261 

4004 

26 

392 

2222 

1172 

2340 

106 

N
2 

2000 

1979 

1980 

1979 

1979 

1979 

1979 

1979 

1979 

1979 

1979 

1979 

1979 

Y
1  

2019  

2021  

1999  

2018  

2019  

2020  

2021  

1987  

2020  

2021  

2021  

2021  

2003  

Y
2  

http://xxfb.m
w

r.cn/sq_zdysq.htm
l  

https://w
aterdata.usgs.gov/nw

is/rt 

http://hydro.iis.u -tokyo.ac .jp/G
A

M
E-T/G

A
IN

- T/routine/rid-

river/disc_d.htm
l 

http://datos.gob.es/es/catalogo/e00125801 -anuario- de-

aforos/resource/4836b826 -e7fd -4a41 -950c- 89b4eaea0279  

w
w

w
1.river.go.jp/  

https://indiaw
ris.gov.in/w

ris/#/RiverM
onitoring  

(https://portal.grdc.bafg.de/applications/public.htm
l?publicuser=PublicU

ser  

(H
enck et al 2010, Schm

idt et al 2011)  

https://explorador.cr2.cl/  

w
w

w.canada.ca/en/environm
ent -clim

ate- change/services/w
ater-

overview
/quantity/m

onitoring/survey/data -products - services/national -

archive -hydat.htm
l  

w
w

w.snirh.gov.br/hidrow
eb/serieshistoricas  

w
w

w.bom
.gov.au/w

aterdata/  

w
w

w.r -arcticnet.sr.unh.edu/v4.0/A
llD

ata/index.htm
l 

U
R

L / Provider  
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3.3 Watershed delineation 222 

The watershed delineation process was built upon a vector-based global river network dataset 223 
(Lin et al., 2021), which is delineated from the 90-m Multi-Error-Removed Improved Terrain 224 
(MERIT) digital elevation model (DEM) (Yamazaki et al., 2017) and the flow direction and flow 225 
accumulation rasters (Yamazaki et al., 2019). The locations of the gauges may contain locational 226 
errors and direct delineation will result into erroneous watershed boundaries; therefore, gauge 227 
location correction was conducted by relocating the gauges to the nearest MERIT-based river reach 228 
vertices. The adjusted gauge points were used as the watershed outlets, where the contributing areas 229 
were extracted by dissolving all upstream catchments based on the topology provided by MERIT 230 
Basins (Lin et al., 2019). Since the area threshold of MERIT Basins is 25 km2, we did not include 231 
watersheds smaller than this threshold. Considering the spatial heterogeneity of very large basins, 232 
we excluded watersheds ≥50,000 km2 from the dataset. To ensure GSHA supports studies with 233 
sufficiently long records, only watersheds with >5 years of observations since 1979 were selected. 234 
For gauges sharing the same watershed, the one with better data quality (i.e., longer measurement 235 
records and more valid observation days) was used. If the two gauges share the same quality, we 236 
only included the furthest downstream gauge. Eventually, the selection processes resulted in 21568 237 
valid watersheds out of 35970 gauges initially scraped from the web plus 527 gauges from the 238 
Chinese National Real-time Rain and Water Situation Database (Figure 2). 239 

 240 
Figure 2 Spatial distribution of the GSHA gauges (n=21568). Watershed areas are represented by the 241 
tint of colours. Gauges of different agencies are represented with separate colours and are plotted in 242 
individual frames (except for USGS gauges in two frames to incorporate Alaska). The agency names and 243 
the upper-left coordinates (longitude, latitude) of each frame are also shown in the figure. 244 
 245 

The GSHA watersheds are unevenly distributed across the globe, more than half of which are 246 

located in North America (USGS, HYDAT, and a large proportion of GRDC gauges, Figure 3a). 247 
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Europe, Australia, and South America also have relatively good coverage, while Asia and Africa 248 

show the lowest gauge densities. The majority of the gauged watersheds are of medium sizes ranging 249 

from 250 to 2500 km2, although for some agencies it does not show the same distribution (Figure 250 

3d). For instance, ANA (South America), IWRIS (India), and arcticnet (Northern Eurasia) 251 

watersheds are generally larger, while the Chinese National Real-time Rain and Water Situation 252 

Database provides more gauges with smaller drainage areas. Due to the maintenance difficulties, 253 

the number of functioning gauges is declining for agencies like GRDC, but the lack of data in recent 254 

years (Figure 3c) is mainly due to latency issues. USGS, BOM, and ANA provide a stable number 255 

of observations for the 1980-2021 period (Figure 3c) with high proportions of valid observations 256 

each year (Figure 3b), while observational periods from arcticnet and China contain relatively fewer 257 

valid samples (Figure 3b) and shorter time spans (Figure 3c). 258 

 259 
Figure 3 Summary statistics of the GSHA gauges. This includes (a) proportions of gauges from 260 

different agencies, (b) box plots for proportions of valid observations for each agency, (c) proportion of 261 
valid observation for each year by agency and (d) distributions of watershed areas for each agency 262 

(kernel density estimation lines, left y-axis) and all gauges (blue histogram, right y-axis). The colour 263 
legend in subplot (a) applies to all four subplots. In subfigure (a) the 0.11% label corresponds to CHP, 264 
and the legend goes counter clockwise in the pie chart. In subfigure (c), CHP bars are at the bottom of 265 

the plot, and the legend goes from bottom to the top of the bars. 266 

3.4 Meteorological variables, water storage terms, and land surface characteristics 267 

After watershed delineation, publicly available grid or non-grid data were obtained and 268 
overlaid to derive the meteorological, water storage terms, and land surface characteristics. The data 269 
sources used for GSHA are listed in Table 4. We prioritized the use of multi-source fusion datasets 270 
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with relatively high quality surveyed from literature when creating GSHA.  271 

3.4.1 Meteorology datasets 272 

For precipitation, the Multi-Source Weighted-Ensemble Precipitation (MSWEP) that merged 273 
gauge measurements (CPC Unified), grid data (GPCC), satellite products (CMORPH, GSMaP-274 
MVK, and TMPA 3B42RT), and reanalysis data (ERA-Interim and JRA-55) with sample density 275 
and comparative performance considered (Beck et al., 2017; Beck et al., 2019) are included. Another 276 
precipitation dataset is the Ensemble Meteorological Dataset for Planet Earth (EM-Earth) 277 
deterministic estimates, which merged a station-based Serially Complete Earth (SC-Earth) 278 
removing the temporal discontinuities in raw station observations and ERA5 estimates (Tang et al., 279 
2022).  280 

For 2-m air temperature, the EUSTACE global land station daily air temperature dataset 281 
(EUSTACE) statistically merged station and satellite observations to obtain global daily near‐282 
surface air temperature (Brugnara et al., 2019) is included. Other datasets used for 2-m temperature 283 
extraction are the reanalysis datasets Modern-Era Retrospective analysis for Research and 284 
Applications Version 2 (MERRA-2) (Gelaro et al., 2017) and the fifth generation of European 285 
Reanalysis (ERA5) dataset land component (Muñoz-Sabater et al., 2021).   MERRA-2, produced 286 
by NASA’s Global Modelling and Assimilation Office (GMAO), used the Goddard Earth Observing 287 
System (GEOS) model and analysis scheme and assimilated the latest observations. ERA5 288 
reanalysis was developed by the European Centre for Medium-Range Weather Forecasts (ECMWF)  289 
using the Carbon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land 290 
(CHTESSEL) driven by the downscaled meteorological forcing from the ERA5 climate reanalysis 291 
(Hersbach et al., 2020). These reanalysis datasets are also used in extracting long- and shortwave 292 
radiation, as well as u- and v-components of wind. 293 

For AET, the REA dataset, which used the reliability ensemble averaging (REA) method to 294 
merge ERA5, Global Land Data Assimilation System Version 2 (GLDAS2), and MERRA-2 is used 295 
(Lu et al., 2021). Another AET data source is the product of the Global Land Evaporation 296 
Amsterdam Model (GLEAM) based on satellite observations of surface net radiation and near-297 
surface air temperature (Martens et al., 2017). For PET, GLEAM is also incorporated. Another PET 298 
dataset for GSHA is an hourly PET at 0.1° resolution for the global land surface (hPET) calculated 299 
from ERA5-land wind speed, air and dew point temperature, net radiation components, and surface 300 
air pressure (Singer et al., 2021). 301 

3.4.2 Water storage term datasets 302 

ERA5-land data is also applied in extracting soil moisture for 4 soil layers, as well as snow 303 
water equivalence. For groundwater, an assimilation dataset from NASA's Gravity Recovery and 304 
Climate Experiment (GRACE) and its follow-on mission (GRACE-FO) is used (Li et al., 2019). 305 
The dataset merged water storage derived from GRACE satellite products into ECMWF Integrated 306 
Forecasting System meteorological data-forced NASA's Catchment land surface model (CLSM). 307 
The data is represented as groundwater drought indicator (GWI), which is the percentage of 308 
groundwater storage estimates from the GRACE data assimilation relative to the climatology 309 
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(representing historical conditions), at weekly time scales from 2003-2021. 310 

3.4.3 Land surface characteristic datasets 311 

Global urban development for 1985-2015 is represented as the urban fraction in each watershed 312 
using the global annual urban dynamics (GAUD) at 30-m resolution. The dataset was derived from 313 
Landsat surface reflectance based on the Normalized Urban Areas Composite Index (NUACI) (Liu 314 
et al., 2020). For forest and cropland fractions, the Terra and Aqua combined Moderate Resolution 315 
Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) land cover dataset, is used 316 
(Friedl et al., 2010). It covers 2001-2020 with a resolution of 500 m, and the categories used for 317 
GSHA are the International Geosphere–Biosphere Programme classification (IGBP) forests and 318 
croplands. Another land cover is vegetation, which is represented by LAI obtained from the National 319 
Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) of Advanced Very 320 
High-Resolution Radiometer (AVHRR) product, which relied on artificial neural networks and 321 
AVH09C1 surface reflectance product (Claverie et al., 2016). 322 

3.4.4 Dams and reservoirs 323 

The newly published Georeferenced global Dams And Reservoirs (GeoDAR) dataset that 324 
documented the dam and reservoir construction years is used for building the temporally varying 325 
watershed reservoir capacity and DOR. GeoDAR georeferenced the International Commission on 326 
Large Dams (ICOLD) World Register of Dams (WRD), and geo-matched multi-source regional 327 
registers and geocoding descriptive attributes through the Google Maps API (Wang et al., 2022). 328 
The reservoir capacities are used together with the mean annual streamflow to obtain the DOR based 329 
on equation 𝑑𝑜𝑟 = 𝑆𝐶/𝑄!"#$, where 𝑆𝐶 refers to reservoir storage capacity and 𝑄!"#$ is the 330 
mean annual streamflow in the corresponding year. 331 

3.4.5 Static variables 332 

We matched GSHA river IDs and HydroATLAS river reach IDs to link the static attributes. 333 
HydroATLAS includes 56 variables for hydrology, physiography, climate, land cover & use, soils 334 
& geology, and anthropogenic influences for over 8.5 million river reaches globally. 335 

 336 
Table 4 Data sources used for the GSHA variables. 337 

Category Dataset Resolution Interval Reference 
Meteorology MSWEP 0.25° Daily (Beck et al., 2017; Beck et al., 

2019) 
EM-Earth 0.1° Daily (Tang et al., 2022) 
ERA5-land 0.1° Hourly (Muñoz-Sabater, 2019) 
MERRA-2 0.5°* 0.625° Hourly (GMAO, 2015) 
EUSTACE 0.25° Daily (Brugnara et al., 2019) 
REA 0.25° Daily (Lu et al., 2021) 
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GLEAM 0.25° Daily (Martens et al., 2017; 
Miralles et al., 2011) 

hPET 0.1° Daily (Singer et al., 2021) 

Water 
storage terms 

ERA5-land 0.1° Hourly (Muñoz-Sabater, 2019) 
GRACE-FO 
data assimilation 

0.25° Weekly (Li et al., 2019; Zaitchik et 
al., 2008) 

Land surface GAUD 30 m Yearly  (Huang, 2020) 
MCD12Q1 500 m Yearly  (Friedl et al., 2019) 
CDR Leaf Area 
Index 

0.05° Daily  (Vermote et al., 2019) 

Dam and 
reservoir 

GeoDAR NaN 
(polygon) 

Yearly (Wang et al., 2022) 

Static 
Attributes 

HydroATLAS NaN (line) NaN (static) (Lehner et al., 2022; Linke et 
al., 2019) 

3.5 Variable extraction methods 338 

For grid data with relatively coarse spatial resolutions (≥0.05°), we used an area-weighted 339 
approach to extract the variable (Addor et al., 2017) based on the proportion of the grid area 340 
contained in the basin boundary, while for high-resolution grid data, we extracted the arithmetic 341 
mean directly. Figure 4 shows the area-weighted average approach we used for grid data with spatial 342 
resolution ≥0.05° to reduce the influence of watershed area on data uncertainty (Tang et al., 2022). 343 
The grid data (4a) and the quality-controlled watersheds (4b) were overlayed and all grids 344 
intersecting with the watershed were obtained (4c). For each intersected grid, the proportion of the 345 
polygon in the grid was calculated as the weight (dark blue, 4d); the product of the weight and the 346 
corresponding grid value was calculated over all intersected grids (4e) and were summed up as the 347 
weighted average (4f). For wind, the u- and v-wind components were first used to calculate wind 348 
speed, then the basin average was calculated with the weighted average approach. For grid data with 349 
a spatial resolution of <0.05°, the area-weighted approach was not adopted as it offers limited gains 350 
while becoming computationally too expensive. For reservoirs, we used the reservoir polygons in 351 
GeoDAR, which were spatially joined to GSHA watershed polygons. All the intersected reservoirs 352 
were considered contributory to the management of the corresponding watershed and were used to 353 
calculate the total reservoir storage capacity and degree of regulation.  354 
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 355 
Figure 4 Determination of the area weights in extracting gridded data to GSHA watershed 356 

polygons. This weighted approach is applied to data at a resolution of ≥0.05° but not for data at a finer 357 
spatial resolution due to computational costs. 358 

3.6 Uncertainty estimates 359 

We also provided uncertainty estimates of the meteorological variables by calculating the long-360 
term mean of each dataset in each watershed, where the discrepancy between the maximum and 361 
minimum among the data sources (𝑋!#% and 𝑋!&$) as a percentage of their mean (𝑋+)	was used 362 
in the uncertainty estimation (see Eq. 1): 363 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = '!"#('!$%
')

∗ 100%,      (1) 364 

 365 

3.7 Validation 366 

After delineation, we validated our watershed areas with officially reported watershed areas 367 
from BOM, HYDAT, and GRDC by matching GSHA watersheds by their agency IDs. We set the 368 
criteria of mismatched watersheds as (1) the area difference being over ±20% of the officially 369 
reported area, and (2) the area ratio being less than 0.1 or over 10 times the reported areas. Since 370 
not all agency websites reported watershed areas, thus we added a flag field in the attributes as 371 
“unverified”, “verified match”, and “verified mismatch” to allow users to filter the watersheds 372 
flexibly and avoid putting the samples in the dataset under an unfair standard. 373 

Postprocessing of the extracted variables includes the unification of units and manual quality 374 
checks. For streamflow characteristics, we validated three of our indices against GSIM for its global 375 
coverage, including the mean annual streamflow, 10th and 90th percentiles. The spatial joint between 376 
GSHA and GSIM gauges in a 10 km buffer zone was performed, and only the GSIM gauge with a 377 
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minimum distance and watershed area difference ≤5% to a GSHA gauge was considered. Pairs 378 
with 0 measurements were excluded and 9835 pairs were involved eventually. We plotted the scatter 379 
plot of GSHA-GSIM mean flow, 10-th and 90-th percentiles, and compared the fitting line to the 1:1 380 
line, with correlation coefficients calculated (see Section 4.1). 381 

We also validated precipitation, potential ET, and 2 m air temperature with the regional 382 
CAMELS-US dataset. We compared the Daymet meteorological variables of CAMELS and the 383 
mean of GSHA variables for validation. Since we included ERA5 data for most of our variables 384 
directly or indirectly as the data source, while Caravan consistently used ERA5, we did not use 385 
Caravan for the global validation as it is not considered as fully independent from GSHA. The 386 
spatial match was the same as we did for GSIM which resulted in 906 pairs. This number was larger 387 
than the total CAMELS gauge numbers as some gauges might be repeatedly paired due to location 388 
bias of the USGS gauges and MERIT river networks, as well as the adjacency between gauges of 389 
different agencies. Similarly, scatter plots and correlation coefficients are provided for assessment. 390 

3.8 Watershed classification and change detection 391 

We classified the watersheds as natural and human-managed to analyse the influence of human 392 

water management. A watershed is classified as a natural watershed if it satisfies the following: (1) 393 

DOR is smaller than 10%; (2) the urban extent is less than 5%; and (3) the sum of urban and cropland 394 

fractions is smaller than 10% (L. Yang et al., 2021; Zhang et al., 2023). The classification was 395 

performed for 2001-2015, and the changing patterns of the watersheds are divided into six categories: 396 

(1) natural (N) when the watershed remained natural for all 15 years; (2) human managed (H) when 397 

the watershed remained human managed for all 15 years; (3) natural to human managed (NH) when 398 

the watershed was first natural in 2001, but changed to and maintained human managed later; and 399 

(4) human managed to natural (HN) when the watershed was first human managed in 2001, but 400 

changed to and maintained natural later.  401 

4 Results 402 

As previous studies have already revealed the spatial patterns of the LSH hydrometeorological 403 
variables both locally and globally, here we put the spatial patterns of GSHA meteorological 404 
variables and streamflow indices in Appendix A, while we focus on using the Results section to 405 
reveal the uniqueness of GSHA. These include a technical validation of GSHA, uncertainty analysis, 406 
and the temporal change of watershed human management levels. 407 

4.1 Technical validation 408 

The validation result figures of watershed areas are in Appendix B since we focused more on 409 
the variables and already added the validity results in the dataset as “unverified”, “verified match”, 410 

and “verified mismatch” fields in the dataset. Under our criterion of filtering “mismatch” watersheds, 411 
1.9% of BOM watersheds, 4.7% of HYDAT watersheds and 8.9% of GRDC watersheds are 412 
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mismatched. After removing these watersheds, correlation coefficients between GSHA and the 413 
agencies can reach 0.99, which verified the correctness of our watershed delineation and data 414 
extraction approach.  415 

Figure 5 illustrates the validation results of GSHA. Figures 5a–5c show streamflow indices 416 
as validated against GSIM globally, and Figures 5d–5f show meteorological variables as validated 417 
against Daymet from CONUS CAMELS. For streamflow indices, precipitation, and temperature, 418 
the correlation coefficients exceed 0.95 (significance p<0.01), and the fitting lines are close to the 419 
1:1 line, indicating high consistencies between GSHA and the reference datasets. For PET, however, 420 
the coefficient is low, at only 0.573 (significance p<0.05), and the CAMELS PET is generally higher 421 
than GSHA ensemble, which is possibly ascribed to the high uncertainty among PET datasets that 422 
is yet to be fully resolved (Singer et al., 2021) (see Appendix C). Note that the gauge pairing might 423 
bring a small proportion of wrong pairs for some very close gauges, and differences in temporal 424 
ranges of GSHA and GSIM might cause some discrepancies for observed streamflow. 425 

 426 
Figure 5 Validation of GSHA with GSIM streamflow characteristics ((a), (b) and (c)), and 427 
CAMELS meteorological variables ((d), (e) and (f)). ‘Corr’ in the subfigure is the Pearson correlation 428 
coefficient. The red line is the 1:1 line, while the orange dotted line is the fitting line of the scatter points. 429 
The colour bar represents density of the sample points. The unit of X and Y axes in (a), (b). and (c) is 430 
long10 m3/s. 431 

4.2 Uncertainty patterns for the GSHA meteorological variables 432 

Figure 6 shows the distributions of the uncertainties for different variables, and the colour bars 433 
are unified to allow for comparisons between different variables.  434 
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 435 

Figure 6 Global patterns of the uncertainty for the GSHA meteorological variables (in percentage). 436 
This includes the uncertainty (a) for precipitation (mm/day), (b) 2-m temperature (K), (c) longwave 437 
radiation (W/m2), (d) shortwave radiation (W/m2), (e) evapotranspiration (mm/day), and (f) wind speed 438 
(m/s), and (g) the uncertainty histogram for precipitation, (h) 2-m temperature, (i) longwave radiation, 439 
(j) shortwave radiation, (k) evapotranspiration, and (l) wind speed.  440 

 441 

Generally, among all variables, air temperature (Figures 6b & 6h) shows the minimum 442 

uncertainty (<5%), suggesting high consistency of air temperature estimates from different datasets. 443 

The uncertainty for wind speed (Figure 6f) is the highest among all variables. Uncertainties for 444 

other variables show strong spatial variability. For example, uncertainties for precipitation are high 445 

in high-latitude or mountainous areas like the Rocky Mountains, northern Europe, the Alps, and the 446 

Andes areas (Figure 6a). This is reasonable because limited accessibility to in-situ observations and 447 

the misestimation of snow (Schreiner‐McGraw & Ajami, 2020) can contribute to precipitation 448 
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estimation errors, while the data sources show relatively high consistency (𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ≤25%) in 449 

other parts of the world (Figure 6g). For radiation, as solar/shortwave radiation is largely affected 450 

by sky conditions, uncertainties are high in regions with less clear sky, including south-west China 451 

and its surrounding areas, high latitude regions of the northern hemisphere, and Europe (Brun et al., 452 

2022). These places are also subject to high thermal/longwave radiation uncertainties for similar 453 

reasons (Figure 6c). Land cover including vegetation and artificial surface, is another factor 454 

influencing surface net radiation through the albedo effect (Hu et al., 2017), thus for heavily 455 

vegetated and urbanized areas, such as the Amazon region and east coastal Australia, uncertainties 456 

for both longwave and shortwave fluxes are also relatively high. Nevertheless, Figures 6i & 6j 457 

demonstrate that for the majority of watersheds, radiation uncertainties are < 25%, indicating that 458 

the radiation data sources are generally consistent with each other. ET uncertainties are generally 459 

larger than the above variables (Figures 6e & 6k), and are particularly prominent in dry areas of the 460 

globe, e.g., central North America, northern Andes, central Asia, and Australia’s grasslands and 461 

deserts. It is also prominent in agriculture intensive regions like India and the northern part of China 462 

(Sörensson & Ruscica, 2018), where agricultural irrigation may be the contributing factor to the ET 463 

uncertainty. The spatial distributions of wind speed do not seem to show clear regional patterns 464 

(Figure 6f), and uncertainty values of wind speed are generally larger over the majority of 465 

watersheds (Figure 6l). Nevertheless, the uncertainties are low in Appalachia and northern Europe, 466 

and are high in most parts of Brazil, the Andes, Africa, eastern and southern parts of Asia, as well 467 

as Australia (Figure 6f). As we already selected relatively high-quality datasets for the variables, 468 

these areas might be calling for more attention by the LSH developers, while providing possible 469 

explanations for the inconsistencies in interpreting results or understanding the challenges in 470 

estimating model parameters by the LSH users. 471 
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 472 

Figure 7 Relationship between variable uncertainties and watershed areas. The markers indicate 473 
mean values of the variable uncertainties in watersheds smaller than the corresponding x-axis value. The 474 
error bars represent the range between 25 and 75 percentiles of the uncertainty values. 475 
 476 

Apart from the spatial patterns above, we also investigated the emergent patterns of the 477 
uncertainties. Existing studies indicate small basins can show larger uncertainties due to coarse 478 
resolution data inputs (Kauffeldt et al., 2013), while sub-grid variabilities might be offset by 479 
averaging over large watersheds. As we plotted the uncertainty against watershed areas in Figure 7, 480 
it verifies that for most variables, the uncertainty declines as the watershed area increases. Figure 7 481 
also reveals some interesting patterns which were rarely discussed in existing studies. For example, 482 
the most obvious decline of data uncertainty with area came from ET (green). ET is highly 483 
dependent on and significantly affected by land surface spatial heterogeneity, thus it benefits the 484 
most from spatial averaging for large river basins. Longwave radiation uncertainty (red) experiences 485 
a moderate decline, likely due to its linkage with land surface complexity and cloud conditions. 486 
Shortwave radiation and precipitation uncertainty show a similar decline pattern (blue and purple), 487 
which is possibly related to their strong ties to cloud covers. Temperature has a low uncertainty, and 488 
its relationship to watershed area is also not obvious. Wind speed uncertainty only declines slightly 489 
as the area increases, and this may be because wind speed uncertainty can be traced back more to 490 
the atmospheric circulation patterns instead of land surface conditions, thus showing a non-491 
prominent relationship with watershed area. Overall, GSHA provides uncertainty estimates that 492 
capture these prominent patterns, which can be helpful to hydrologic modellers and users. 493 
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4.3 Natural and human managed watersheds and changing patterns 494 

We also demonstrate the other key features of GSHA by categorizing global watersheds into 495 
natural and human-managed, and more prominently their temporal shifts in Figure 8. Overall, the 496 
majority of human-managed watersheds are located in the US, Europe, and other regions with 497 
intensive industrial or agricultural activities such as East and South Asia (Figures 8a and 8b). 498 
During 2001-2015, 46.89% of the watersheds remained natural, while another 47.62% under human 499 
management in 2001 remained in the category throughout the study period (Figure 8d). Generally, 500 
the northern hemisphere has a larger proportion of human-managed watersheds, while watersheds 501 
in the less populated and urbanized southern hemisphere largely remain natural.  502 

Noticeably, 4.36% of GSHA watersheds switched from natural to human-managed (1011 503 
watersheds), and the remaining 1.13% changed back to natural states from human managed during 504 
2001-2015. For instance, watersheds in the middle and lower Yangtze River area and the north-505 
eastern China show a shift from human-managed to natural state, where ecological restoration 506 
projects were in place (Qu et al., 2018; Zhang et al., 2015). Although the time span of GSHA LULC 507 
dynamics restricted the change detection for developed countries as their urbanizations and 508 
infrastructure developments have long been completed, and for fast emerging economies after 2015, 509 
the time series were also missing; nevertheless, the changing human activities captured by GSHA 510 
may be helpful to understand the streamflow changes including flood characteristics (Yang et al., 511 
2021; Zhang et al., 2022).  512 

 513 

Figure 8 Classification of natural and human managed watersheds in 2001 (a) and 2015 (b). 514 
Changes in watershed categories are illustrated by (c) and (d). H and N in (c) and (d) represent 515 

watersheds that maintained human managed or natural from 2001-2015; NH and HN represent those 516 
changing from natural to human managed and from human managed to natural, respectively. 517 

 518 

We further used several examples to illustrate the changing status of GSHA watersheds (Figure 519 

9). Figures 9a and 9b show a watershed located in Northeast China, where the rapid increase in 520 
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cropland shifted the watershed from natural states to human-managed in recent years. Figures 9c 521 

and 9d correspond to a mountainous area in Sichuan Province, China, which became human-522 

managed due to the construction of a reservoir in 2006. For another case in Northeast China 523 

(Figures 9e and 9f) and a USGS case (Figures 9g and 9h), the watersheds shifted from human-524 

managed to natural, which is mainly manifested by the reduction in cropland fraction due to the 525 

environmental policy. For instance, afforestation during 2000-2010 in Changbai Mountains where 526 

the watershed in Figures 9e and 9f is located, significantly increased the forest cover and might 527 

bring a decline in human disturbance in the form of land use (Zhang & Liang, 2014). These results 528 

highlight the shifting watershed status that would require further attention from LSH users, which 529 

is encapsulated in GSHA v1.0 and will be continuously improved in the future. 530 

  531 
Figure 9 Cases for shifting status of the watershed classification. (a) and (b) correspond to 532 

11420270_China, and (c) and (d) correspond to 60532350_China, both of which changed from natural 533 
to human managed category. (e) and (f) represent11605400_China, and (g) and (h) correspond to 534 
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06332515_USGS watershed changing from human managed to natural watershed. 535 

4.4 Changing runoff coefficient patterns derived from GSHA 536 

Finally, we also analysed the global pattern in the trend of runoff coefficient (RC) as a brief 537 
demonstration on what GSHA can offer out of its many potential usages. RC is defined as 𝑅/𝑃, 538 
where R denotes runoff (mm) and P denotes precipitation (mm). Figure 10a shows that regions with 539 
high RC (i.e., a large proportion of rainfall goes into rivers instead of being evaporated or consumed) 540 
are in east Asia and North America, most parts of Europe, the west coast of North America and the 541 
Amazon, in general agreement with the aridity patterns across the globe. For arid/semiarid areas 542 
and places with intense water use (e.g., western US, eastern Brazil, Australia, Africa), RC is low, 543 
meaning most of the precipitation does not reach the gauged river. 544 

We found that RC generally remained stable for the past decades (i.e., grey dots in Figure 545 

10b; >80% of the gauges did not observe a statistically significant trend), while 4252 watersheds 546 

observed a statistically significant trend in RC at 95% level (5690 watersheds at 90% level). Among 547 

them, decreasing RC is more widespread than increasing RC. The most pronounced decreasing 548 

trends are observed in Europe, India, eastern Brazil, Chile, eastern Australia, and the Euphrates and 549 

Tigris, which largely correspond to regions with known intense agricultural, industrial, and 550 

residential water use that may have reduced the river water. We note that the global RC trend patterns 551 

were different from a recent study that showed mostly increasing RC in the high-latitudes, central 552 

North America, eastern Australia, and Europe (Xiong et al., 2022). Given Xiong et al. (2022) used 553 

estimated runoff while we used runoff directly from gauge observations, it is likely that the 554 

concerning water availability issues in the context of increasing human water use may not be fully 555 

captured by existing studies. Regional studies also tend to show inconsistent results. For example, 556 

a study based on models incorporating climate change and land use change but ignoring human 557 

water consumptions suggested that deforestation and urbanization generally increase RC (Lucas-558 

Borja et al., 2020), while another study identified a significant decreasing trend for RC by focusing 559 

on cases with intense irrigational water use (Banasik and Hejduk, 2012). These collectively preclude 560 

a clear identification of consistent RC trends (Velpuri and Senay, 2013) and a clear causal factor 561 

attribution analysis given the complexity of the anthropogenic factors. As such, GSHA may offers 562 

a new path to fill in the gap of disentangling the influences of large-scale water use on decreasing 563 

RC.  564 
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 565 
Figure 10 Patterns of runoff coefficient (a) and its trend (b). Only watersheds with statistically 566 

significant trend (p<0.05) are shown with colours in (b); the small and large sized points represent 95% 567 
(p<0.05) and 90% significance level (p<0.1), respectively. Note that the temporal coverage is different 568 
for different gauges; readers can refer to the GSHA temporal coverage for interpreting the patterns. The 569 

figure illustrates 18987 GSHA watersheds. Watersheds with less than 10 years of indices calculated 570 
from over 250 valid observations per year, as well as with runoff coefficient trend over 20 per decade, 571 

are not demonstrated in subfigure b. 572 

5 Conclusions 573 

Large sample hydrology (LSH) datasets play a critical role in data-driven analyses and model 574 

parameter estimation for hydrological studies. From MOPEX (Duan et al., 2006) to Caravan 575 

(Kratzert et al., 2023), significant efforts have been made to improve the comprehensiveness of LSH, 576 

yet issues related to data spatial coverage, uncertainty estimates, and human activity dynamics 577 

remain to be solved. This study complements existing LSH with a new synthesis dataset named the 578 
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Global Streamflow characteristics, Hydrometeorology, and catchment Attributes for large sample 579 

river-centric studies (GSHA v1.1).  580 

To summarize, GSHA contributes the following aspects to the LSH development: 581 

1. It includes streamflow indices, hydrometeorological data, and surface characteristics data for 582 
21568 gauges compiled from 13 agencies worldwide, which represents one of the most 583 
comprehensive LSH by far. 584 

2. We incorporated multiple data sources to provide uncertainty estimates for each meteorological 585 
variable (including precipitation, 2 m air temperature, radiation, wind, and ET). The spatial 586 
patterns and the relationship between the uncertainty and the watershed characteristics GSHA 587 
reveals may be helpful to identify inconsistencies among data-driven studies or biases for model 588 
parameter estimation studies using existing LSH.  589 

3. Dynamic data are provided for previously static data descriptors for land cover changes 590 
including urban, cropland and forest fractions, as well as reservoir storage change including 591 
storage capacity and degree of regulation. 592 

Although GSHA does not cover watersheds of <25km2 or the dynamics of cryosphere variables 593 

(e.g., glacier and permafrost) that have become increasingly important in terrestrial hydrological 594 

changes, and the time spans for the dynamic descriptors of LULC are unable to cover the critical 595 

periods for the advanced and less-advanced economies due to the constraints with existing LULC 596 

data, GSHA is expected to be utilized to unravel the following insights: 597 

1. The uncertainty patterns vary between variables and geographical regions, indicating that the 598 

interpretation of model and analysis results need to consider inconsistencies of raw data, apart 599 

from looking into the methodologies and patterns themselves. 600 

2. Although most watersheds have remained natural or human managed throughout the GSHA 601 

time span, a considerable number of watersheds shifted between the two categories, which can 602 

be ascribed to urbanization, cropland increase, reservoir construction and ecological restoration 603 

such as returning farmland to natural states, and these can be clearly manifested using GSHA. 604 

3. Analysis with runoff coefficient reveals that among gauges with a statistically significant trend, 605 

a greater portion experienced a declining RC trend than an increase trend. This pattern revealed 606 

by GSHA can be used to further study water availability issues in a changing climate. 607 

As our knowledge on the above processes continues to improve, we expect that future versions 608 

of GSHA will be continuously updated. Finally, better hydrological data sharing is crucial to 609 

advance global change hydrology studies. 610 

Appendix 611 

A. Spatial patterns of GSHA meteorological variables 612 

Figures A1 & A2 show the spatial distributions of GSHA meteorological variables and selected 613 
streamflow indices. The spatial pattern derived from each individual data source is plotted separately. 614 
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 615 
Figure A1 Spatial distribution of streamflow indices (row 1, m3/s), precipitation (row 2, mm/day), 2 m 616 
air temperature (row 3, K), actual ET (row 4, mm/day), potential ET (row 5, mm/day). 617 
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 618 

Figure A 2 Spatial distribution of longwave radiation (row 1, W/m2), shortwave radiation (row 2, W/m2), 619 
wind u- (row 3, m/s) and v- components (row 4, m/s) and the wind speed (row 5, m/s). 620 

 621 

B. Validation results of watershed areas 622 

The validation results with BOM, HYDAT, and GRDC, and USGS on watershed areas are 623 
plotted in Figure B1, and B2, where the mismatches between GSHA areas and the officially reported 624 
areas are shown. Before removing the mismatched watersheds, their correlation coefficients are 625 
0.960, 0.840, 0.709, 0.905, respectively, as showm in Figure B1 (a), (b), (c), and (d). After 626 
removing the mismatched watersheds, correlation coefficients for all three agencies reach 0.999, as 627 
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shown in Figure B1 (d), (e), (f), (g) and (h). As we traced the MERIT Basins (Lin et al., 2019) for 628 
our watershed delineation, the mismatches are believed to occur when the gauge locates in the 629 
vicinity of the intersection point of a river reach and its main stream, which makes it difficult to 630 
decide which reach the gauge belongs to while matching the gauge to the MERIT river network. 631 
This explains why in Figure B1 most of the mismatches appear at relatively small areas. As we do 632 
not have access to all official watershed areas, and Figure B1 (a), (b), (c) and (d) suggest that 633 
matching qualities differ among the agencies, to simply remove the mismatched watersheds or to 634 
modify them might put the samples in the dataset under an unfair standard. Additionally, some 635 
agencies such as GRDC experienced some updates of their gauige locations and upstream areas, 636 
thus watershed boundaries in all datasets mentioned might come with uncertainties. Therefore, we 637 
gave the watersheds as “unverified”, “verified match”, and “verified mismatch” identifiers to allow 638 
users to flexibly filter the watersheds. 639 

640 

 641 
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Figure B1 Validation of GSHA with officially reported areas of BOM (a, de), HYDAT (b, ef), and GRDC 642 
(c, fg), and USGS (d, h). Subfigures (a) to (cd) are the results before removing the mismatched 643 
watersheds, and subfigures (de) to (fh) represent results after removing the mismatched watersheds. The 644 
Pearson correlation coefficient are represented by “Corr” in the figure. The areas are represented by the 645 
unit of (log10 km2). 646 

C. Potential evapotranspiration uncertainty 647 

The spatial and numerical distributions of potential evapotranspiration (PET) uncertainties are 648 
illustrated in Figure C1 and Figure C2. PET uncertainty is high compared with other variables (see 649 
5.2 section). The majority of high PET uncertainty watersheds are in dry areas, but since it is 650 
calculated from meteorological variables, exceptions exist for palces including eastern Pacific coast, 651 
where the climate is dry but PET uncertainty is low, and India, which is located in a wet climate 652 
zone but has high PET uncertainty. As demonstrated by Figure C3, PET uncertainty do not decrease 653 
with the increase of watershed area, probably because PET is calculated from various variables, and 654 
the calculation over large watersheds involves more uncertainties for individual grids. 655 

 656 
Figure C1 Spatial pattern of potential evapotranspiration (PET) uncertainty. 657 

 658 

 659 
Figure C2 Numerical distribution of PET uncertainty. 660 

 661 
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 662 

Figure C3 Relationship of PET uncertainty to watershed area. 663 
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