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Abstract- Soil and vegetation carbon densities play a critical role in global and regional human-10 

Earth system models. These densities affect variables such as land use change emissions and also 11 

influence land use change pathways under climate forcing scenarios where terrestrial carbon is 12 

assigned a carbon price. Recently, more spatially explicit, fine resolution data have become 13 

available for both soil and vegetation carbon. However, for models to effectively use these data 14 

the fine resolution data need to be reharmonized to the initial land use and land cover conditions 15 

represented by these models. Without such reharmonization the carbon values may be inaccurate 16 

for particular land types and places where the source data and the model disagree on the land 17 

use/cover type. Here we present reharmonized soil and vegetation carbon densities both at the 5-18 

arcmin resolution grid cell level and also aggregated to 235 water sheds for 4 land use types and 19 

15 land cover types. These data are particularly useful as initial land carbon conditions for global 20 

Multisectoral Dynamic Models (MSD). Moreover, these data include six different statistical 21 

states calculated using distinct resampling methods for each of the land use and land cover types. 22 

These statistical states are used to define a range of possible carbon values for each land 23 

classification, and any state can be used for defining initial conditions of soil and vegetation 24 

carbon in MSD models. Users can also estimate any percentile of the carbon distribution defined 25 

by these six summary states.  We make use of these statistical states to calculate spatially distinct 26 

uncertainties in the carbon densities by land type. We have implemented these data in a state-of-27 

the-art multi sector dynamics model, namely the Global Change Analysis Model (GCAM), and 28 

show that these new data improve several land use responses in the model, especially when 29 

terrestrial carbon is assigned a carbon price. The statistical states in our data are validated against 30 

similar estimates in the literature both at a grid cell level and at a regional level.     31 

1. Introduction 32 

 Soil and vegetation carbon densities play a critical role in global and regional models such as 33 

Earth system models (ESMs), multisector dynamics models (MSDs) and integrated human-Earth 34 

system models. These densities influence the predicted productivity of land types (e.g., forest 35 

yields, pasture yields, and crop yields) and directly influence land use change emissions. 36 

Moreover, these densities affect land use change pathways under climate forcing scenarios 37 

implemented in these models (Thomson et al., 2010; Wise et al., 2009). Many models make use 38 

of carbon density data that are differentiated by land type but are not spatially explicit. For 39 

example, models have previously used estimates of carbon values on undisturbed land from 40 

Houghton et al. (Houghton, 1999) and the IPCC (Jackson et al., 2017), among others. Recently, 41 
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spatially explicit soil carbon density data have been made available by the FAO (Nachtergaele et 1 

al., 2010) at a 1 km resolution and at 250 m resolution by the SoilGrids team at the International 2 

Soil Reference and Information Centre (ISRIC) (Batjes et al., 2017; Hengl et al., 2014). 3 

Similarly, spatially explicit data on vegetation carbon differentiated by above and below ground 4 

biomass and spanning several vegetation types have been made available by Spawn et al.(Spawn 5 

et al., 2020). Use of spatially distinct, fine resolution data has the potential to significantly 6 

improve results from global and regional models by better capturing the geographies of soil and 7 

vegetation carbon stocks (Jungkunst et al., 2022). These data can also be used to explore and 8 

validate effects of different carbon parameterizations in models (Wieder et al., 2014).  9 

However, these carbon data need to be transformed significantly in order to be used in a robust 10 

manner by regional and global models. This is because each of these fine resolution datasets 11 

utilizes its own assumptions of land use and land cover which may be distinct from the land use 12 

and land cover definitions used by the models in question. For example, many of these fine 13 

resolution data use land cover definitions from the European Space Agency Climate Change 14 

Initiative (ESA CCI) dataset (Li et al., 2018; Liu et al., 2018) while models may use land use 15 

definitions from the Historical Database of the Global Environment (HYDE) dataset (Klein 16 

Goldewijk et al., 2017) and/or land cover definitions from the Moderate Resolution Imaging 17 

Spectrometer (MODIS)(Barnes et al., 2003; Justice et al., 2002).  18 

Resolution mismatch between data and models provides an additional challenge. The new, 19 

spatially distinct carbon densities are available at a very fine resolution (250m / 300 m) while 20 

models are often configured to use coarser data that better match their working resolution. For 21 

example, consistent land datasets that have frequently been used for climate modelling are 22 

available at a resolution of 5 arcmins (i.e. ~ 10km at the equator) (van Asselen & Verburg, 23 

2012), and many regional models operate on land units defined by geopolitical and/or 24 

geophysical boundaries. Given the difference in resolutions, and the above-mentioned 25 

differences in land classifications, a consistent harmonization method is required to appropriately 26 

match the fine resolution carbon data with the appropriate land uses and land cover types within 27 

a model.    28 

Here, we prepare and present an aggregated dataset of fine resolution carbon density for soil and 29 

vegetation biomass in MgC/ha that has been aligned with the land use and land cover definitions 30 

and distribution in the Global Change Analysis Model (GCAM) (Calvin et al., 2019). GCAM 31 

represents the interactions between five major systems – energy, water, land, climate, and the 32 

economy – at global and regional scales. The soil data are based on the 250 m-resolution 33 

SoilGrids dataset and represent a depth of 0-30 cms (Hengl et al., 2014). The aboveground and 34 

below ground biomass are based on the 300 m-resolution Spawn et al. dataset (Spawn et al., 35 

2020). The land data integration for GCAM is performed at a resolution of 5 arcmin using a grid-36 

based land data system (Di Vittorio et al., 2020). Hence the final outputs are available as rasters 37 

at 5 arcmin resolution. These outputs include rasters corresponding to each of the land use and 38 

land cover types in GCAM.  39 

In addition to the reharmonization, we calculated six different data driven statistical states for 40 

each carbon pool and each 5 arcmin grid cell using different resampling methods (area weighted 41 
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average, minimum, maximum, median, Q1, Q3) when re-gridding the data. We also present an 1 

easy-to-use tabular output summarizing the six carbon density states for each carbon pool within 2 

each of the 235 watersheds intersected with 207 country (ISO) boundaries that are modelled by 3 

GCAM. Using our six statistical states, users can calculate any percentile within the distribution 4 

of carbon both at a pixel level and at a land region/ water basin level for any land type (For 5 

example, the 90th percentile). Such a calculation would not be time intensive given that the six 6 

summary states are already available at multiple scales.  7 

GCAM needs to be initialized with densities that represent long term potential maximum carbon 8 

values since these values are used to spin-up the model in historical years. In particular, the 9 

density values are used to spin up the carbon cycle from 1700-1975. Various studies have found 10 

that the long term potential carbon densities are much higher than the contemporary values due 11 

to ongoing land use and cover change (Erb et al., 2018; Walker et al., 2022).Moreover, studies 12 

have also highlighted difficulties in estimating long term potential carbon densities, since these 13 

estimations require long spin up periods themselves (Fang et al., 2014). Here we addressed this 14 

issue by deriving a more data driven long term potential carbon state from our new dataset. By 15 

analyzing the distribution of carbon values within each land type-watershed combination we 16 

found two potential options for initializing GCAM. The first is the Q3 state which would 17 

represent a low carbon initialization in 1700 (This state results in 2144 PgC of terrestrial carbon 18 

in 1700) and the second, the 90th percentile state which would represent a high carbon 19 

initialization (which results in an initial terrestrial carbon stock of 3028 PgC in 1700).  We find 20 

that utilizing this new carbon dataset for the spin-up improved several responses in GCAM, 21 

especially under forcing scenarios where the value of terrestrial carbon is priced using a carbon 22 

tax. 23 

We also compared the Q3 and the 90th percentile carbon state in our dataset (which are intended 24 

to represent a pre-industrial carbon state) with estimates of potential pre-industrial top-soil 25 

carbon by grid cell from Sanderman et al.(Sanderman et al., 2017) and with similar estimates of 26 

vegetation carbon from Walker et al. (Walker et al., 2022). We also perform global-level 27 

validation of our carbon data, respecting that there is a high degree of uncertainty in carbon 28 

estimates from different datasets (Scharlemann et al., 2014; Tifafi et al., 2018). We compare the 29 

global estimates of carbon from our reharmonized data with similar estimates of soil and 30 

vegetation carbon from other sources in the literature, with different meta-analyses of carbon 31 

inventories (Scharlemann et al., 2014) and with modelled estimates of contemporary and 32 

historical soil carbon (Sanderman et al., 2017). 33 

 The available dataset includes raster files for the six different statistical states for each land use 34 

type (Cropland, Urban land, Pasture and Unmanaged land) and each carbon pool, bringing the 35 

total to 72 distinct raster files. We also provide a thematic file that labels each cell with the 36 

dominant biome for Unmanaged land (out of 15). We also present a tabulated text file with the 37 

six carbon state values for each land type and carbon pool aggregated to 699 land regions (235 38 

water basins intersected with 207 country boundaries). Making the data available at these 39 

different resolutions should help facilitate effective multiscale modelling of terrestrial carbon.  40 

We implemented this carbon reharmonization programmatically in a land data system, moirai 41 
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(Di Vittorio et al., 2020), which can further be used to update the data, validate the data, and 1 

reharmonize the data to any other land use and land cover types required by models other than 2 

GCAM.  3 

                    4 

2. Description of data processing 5 

Our carbon data processing method can be organized into three stages:  6 

1. Stage 1- Resampling source datasets based on fine resolution land cover 7 

2. Stage 2- Re-mapping the carbon to Moirai land use and land cover 8 

3. Stage 3- Aggregating raster carbon data to 699 land regions 9 

Figure 1 below summarizes our processing approach from start to finish  10 

  11 

Figure 1: Description of data processing implementation to generate carbon datasets 12 

 13 

2.1 Stage 1 – resampling source data 14 

This stage combines the soil and vegetation carbon data (Mg/ha) both at 300 m resolution with 15 

the input land cover assumptions from the ESA CCI dataset that correspond to these data. Note 16 

that since the land cover dataset from ESA CCI is at a 300m resolution, we resample both our 17 

carbon datasets to 300m before this stage.  18 

 19 
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We first generate land cover masks (1=respective land type present, 0=otherwise) for each of 22 1 

aggregated ESA CCI land cover types (Table 1). We combine the land cover masks with the 2 

carbon data to create 66 rasters (22 land types X 3 carbon pools), each representing a carbon data 3 

mask for an ESA land type. The resulting rasters are calculated as follows:   4 

𝐶𝑎𝑟𝑏𝑜𝑛_𝐿𝑇_300𝑚𝑝𝑜𝑜𝑙,𝑗,𝐿𝑇 = 𝐶𝑎𝑟𝑏𝑜𝑛_300𝑚𝑝𝑜𝑜𝑙,𝑗 ∗ 𝐿𝑇_𝑚𝑎𝑠𝑘_300𝑚𝑗                                      (1)                                                                                 5 

Where, 6 

 7 

           j is the index of a 300m grid cell, 8 

           pool is the carbon pool (soil, aboveground biomass, belowground biomass), 9 

           LT is the ESA land type.  10 

 11 

Next we use six distinct resampling methods to re-grid these data to a 5 arcmin resolution. Each 12 

method is applied to each of the land types and thus we derive 6 statistical states for each 5 13 

arcmin grid cell. These aggregated rasters are calculated as follows: 14 

  15 

𝐶𝑎𝑟𝑏𝑜𝑛_𝐿𝑇_5𝑎𝑟𝑐𝑚𝑖𝑛𝑝𝑜𝑜𝑙,𝑖,𝑠𝑡𝑎𝑡𝑒 =16 

𝑠𝑡𝑎𝑡𝑒(
𝐶𝑎𝑟𝑏𝑜𝑛_𝐿𝑇_300𝑚𝑝𝑜𝑜𝑙,𝑗 𝐶𝑎𝑟𝑏𝑜𝑛_𝐿𝑇_300𝑚𝑝𝑜𝑜𝑙,𝑗+2

𝐶𝑎𝑟𝑏𝑜𝑛_𝐿𝑇_300𝑚𝑝𝑜𝑜𝑙,𝑗+1 𝐶𝑎𝑟𝑏𝑜𝑛_𝐿𝑇_300𝑚𝑝𝑜𝑜𝑙,𝑗+𝑛
)                                      (2) 17 

 18 

Where,  19 

 20 

 i is the index of a 5 arcmin grid cell, 21 

pool is the carbon pool (soil, aboveground biomass, belowground biomass), 22 

state is the resampling method (weighted average, median, min, max, q1, q3), 23 

j is the index of each 300 m grid cell within aggregated cell i, 24 

n is the total number of 300 m cells that are aggregated into cell i. 25 

   26 

Thus, we generate 366 (22 land cover types X 3 types of carbon X 6 states) layers of carbon that 27 

correspond to the aggregated ESA CCI land cover types. This processing is largely conducted 28 

through the GDAL software (Warmerdam, 2008) and implemented using bash scripts.   29 

 30 

 31 

ESA_entry code ESA_classes 

10;Cropland  rainfed;255;255;100  Cropland 

11;Herbaceous cover;255;255;100   Unknown_Herb 

12;Tree or shrub cover;255;255;0   Unknown_Tree 

20;Cropland  irrigated or post-flooding;170;240;240  Cropland 
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30;Mosaic cropland (>50%) / natural vegetation (tree  shrub  

herbaceous cover) (<50%);220;240;100 Mosiac_Crop 

40;Mosaic natural vegetation (tree  shrub  herbaceous cover) 

(>50%) / cropland (<50%) ;200;200;100 Mosaic_tree 

50;Tree cover  broadleaved  evergreen Broadleaf_Evergreen 

60;Tree cover  broadleaved  deciduous Broadleaf_Decidous 

61;Tree cover  broadleaved  deciduous Broadleaf_Decidous 

62;Tree cover  broadleaved  deciduous Broadleaf_Decidous 

70;Tree cover  needleleaved  evergreen Needleleaved_Evergreen 

71;Tree cover  needleleaved  evergreen Needleleaved_Evergreen 

72;Tree cover  needleleaved  evergreen Needleleaved_Evergreen 

80;Tree cover  needleleaved  deciduous Needleleaved_decidous 

81;Tree cover  needleleaved  deciduous Needleleaved_decidous 

82;Tree cover  needleleaved  deciduous Needleleaved_decidous 

90;Tree cover  mixed leaf type (broadleaved and 

needleleaved);120;130;0  Mixed_Forests 

100;Mosaic tree and shrub (>50%) / herbaceous cover 

(<50%);140;160;0   Mosaic_tree 

110;Mosaic herbaceous cover (>50%) / tree and shrub 

(<50%);190;150;0   Mosaic_Herb 

120;Shrubland;150;100;0   Shrubland 

121;Shrubland evergreen;120;75;0   Shrubland 

122;Shrubland deciduous;150;100;0   Shrubland 

130;Grassland;255;180;50   Grasslands 

140;Lichens and mosses;255;220;210   Grasslands 

150;Sparse vegetation (tree  shrub  herbaceous cover) 

(<15%);255;235;175 Sparse_Tree 

151;Sparse tree (<15%);255;200;100   Sparse_Tree 

152;Sparse shrub (<15%);255;210;120   Sparse_Shrub 

153;Sparse herbaceous cover (<15%);255;235;175   Sparse_Shrub 

160;Tree cover  flooded  fresh or brakish water;0;120;90 Flood_Tree_Cover 

170;Tree cover  flooded  saline water;0;150;120 Flood_Tree_Cover 

180;Shrub or herbaceous cover  flooded  fresh/saline/brakish 

water;0;220;130 Flooded_Shrub 

190;Urban areas;195;20;0   Urbanland 

200;Bare areas;255;245;215   Desert 

201;Consolidated bare areas;220;220;220   Desert 

202;Unconsolidated bare areas;255;245;215   Desert 

220;Permanent snow and ice;255;255;255   Polar_desert_rock_ice 

 1 

Table 1: Raw ESA codes mapped to ESA land types  2 

 3 
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 1 

2.2 Stage 2 – remapping the carbon data to Moirai land use/cover 2 

 3 

2.2.1 Reharmonization of ESA land cover with Moirai land cover at 5 arcmins using a 4 

prioritization matrix 5 

Next, the 366 layers described above are aligned with the default initial land use/cover for GCAM 6 

(2010) at a 5 arcmin resolution. These initial land use/cover data are generated by the Moirai land 7 

data system based on land use data from the HYDE (Klein Goldewijk et al., 2017) database  and a 8 

one-half degree land cover product (Meiyappan & Jain, 2012). Moirai can generate land use and 9 

land cover maps for any year based on the these datasets combined with a potential vegetation 10 

dataset from Ramankutty et al. (1999). The Moirai land use and land cover types are listed in 11 

table 2. It is important to note that carbon values are independently assigned to each of the four 12 

Moirai land use types in each cell, and that the unmanaged land use type can be only one of the 13 

Moirai land cover types in a given cell. Moirai is described in more detail in Di Vittorio et al.(Di 14 

Vittorio et al., 2020).  15 

 16 

Land use Land cover 

Cropland Cropland 

Pasture Pasture 

Urbanland Urbanland 

Unmanaged 

TropicalEvergreenForest/Woodland 

TropicalDeciduousForest/Woodland 

TemperateBroadleafEvergreenForest/Woodland 

TemperateNeedleleafEvergreenForest/Woodland 

TemperateDeciduousForest/Woodland 

BorealEvergreenForest/Woodland 

BorealDeciduousForest/Woodland 

Evergreen/DeciduousMixedForest/Woodland 

Savanna 

Grassland/Steppe 

DenseShrubland 

OpenShrubland 

Tundra 

Desert 

Polardesert/Rock/Ice 

 17 

Table 2: land use, land cover types for Moirai/GCAM. Total of 4 land use types, 15 types 18 

of land cover tracked for Unmanaged land type 19 

 20 

The carbon for each Moirai land type in a cell needs to be selected from the 366 rasters generated 21 

in Stage 1 described above. We use a rule-based harmonization approach where we select the 22 
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appropriate carbon values by matching the Moirai land type with the corresponding ESA land 1 

cover type (Table 3). We assign 6 possible ESA land cover types to each Moirai land type and 2 

rank them according to their similarity with the Moirai land type. This means that carbon values 3 

for a particular moirai land type can come from any of six ESA land cover types, as long as they 4 

are present in a given cell. For example, a Tropical Evergreen Forest cell in Moirai, may be 5 

assigned carbon values from the Evergreen_Combined, Mixed_Forests, Mosaic_Tree, 6 

Flood_Tree_Cover, Unknown_Tree_Cover, or Sparse_Treecover ESA land cover types. The 7 

similarity ranking both maximizes the number of Moirai land type assignments and ensures that 8 

the most appropriate carbon values are selected. The first ESA land cover in the ranked list that is 9 

present in a given cell provides the carbon values for the corresponding Moirai land type in the 10 

same cell (Table 3). In the example above, The Evergreen_Combined carbon data would be 11 

chosen first over all other ESA land covers if it existed in a given cell and the Sparse_Treecover 12 

carbon data would be chosen if it were the only ESA land cover from the list that existed in a 13 

given cell. These prioritization rules are designed such that carbon data from one biome is not 14 

assigned to a different biome when reharmonizing and re-gridding the carbon. The ESA land 15 

cover selection is done once for each cell and Moirai land type, and then the data from the 16 

corresponding carbon pool and state rasters are assigned to the Moirai land type in the target cell. 17 

This results in 72 rasters that become input files for Moirai.   18 

 19 

 20 

 21 

We used expert judgement when developing the matrix so as to best represent the Moirai land 22 

types when selecting from the ESA land types. For certain land types we constrain the choices by 23 

allowing less than six choices. For example, carbon for a Moirai Desert cell can only be chosen 24 

from a corresponding desert cell in the ESA masks. On the other hand, Moirai Tundra includes 25 

eight ESA land covers because ESA does not have an explicit Tundra class. The increased 26 

number of options aims to provide adequate data coverage for Tundra1. Furthermore, certain 27 

biome types that are not modelled by GCAM or represented explicitly in Moirai receive low 28 

priority rankings. For example, Flooded land types are never included as a first priority choice for 29 

any land type since Moirai does not explicitly include flooded land types. Conversely, the ESA 30 

land cover data do not include any explicit representation of pastures or rangeland. Our rules 31 

assign pasture carbon values based on proximate grassland or shrubland carbon values. 32 

Grasslands in particular are prioritized for Pasture carbon selection because the pasture definition 33 

in GCAM corresponds to grasslands used for grazing.  34 

 35 

 
1 Tundra data selection prioritizes polar desert rock ice pixels. The location of these pixels coincides with the 
Tundra land cover and they also represent pixels with high values for soil carbon densities.  
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 1 

Table 3: Prioritization matrix to match ESA land cover with moirai land types 2 

     3 

 4 

    5 

2.2.2 Implementation of nearest neighbor algorithm to increase data coverage 6 

 7 

After implementing the prioritization rules there remain 5 arcmin cells with no carbon data 8 

coverage for a given land type and carbon pool. This is expected since the land cover data used 9 

to generate the carbon masks (ESA CCI land cover data) may be different from the land cover 10 

data used in HYDE, SAGE.  We therefore implement a nearest neighbor algorithm to interpolate 11 

data to each ‘no data’ cell based on availability in 40 neighboring cells. This algorithm fills the 12 

target cell and land type with the corresponding carbon data of the closest cell with matching 13 

land type. If no matches are found within the prescribed window then the target cell remains 14 

without data for that particular carbon pool and that particular land type. 15 

 16 

Carbon data coverage after interpolation is reasonable with the exception of a few land types. 17 

Table 4 shows the data coverage by land type after implementation of the nearest neighbor 18 

algorithm. All but three land types have over 80% data coverage for soil and vegetation carbon. 19 

moirai land type name Primary 2 3 4 5 6 7 8

TropicalEvergreenForest/Wo

odland Evergreen_Combined Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree - -

TropicalDeciduousForest/Wo

odland Decidous_Combined Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree - -

TemperateBroadleafEvergre

enForest/Woodland Broadleaf_Evergreen Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree - -

TemperateNeedleleafEvergre

enForest/Woodland

Needleleaved_Evergre

en Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree - -

TemperateDeciduousForest/

Woodland Decidous_Combined Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree - -

BorealEvergreenForest/Woo

dland Evergreen_Combined Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree - -

BorealDeciduousForest/Woo

dland Combined_Decidous Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree - -

Evergreen/DeciduousMixedF

orest/Woodland Mixed_Forests Mosaic_Tree Flood_Tree_Cover Unknown_Tree Sparse_Tree Sparse_Tree - -

Savanna Mosaic_Herb Grasslands Unknown_Herb Flood_Shrub - - - -

Grassland/Steppe Grasslands Unknown_Herb Mosaic_Herb Flood_Shrub - - - -

DenseShrubland Shrubland Unknown_Tree Flooded_Shrub Mosaic_Herb - - - -

OpenShrubland Sparse_Shrub Mosaic_Herb Flooded_Shrub Unknown_Herb - - - -

Tundra Polar_Desert_Rock_Ice Sparse_Shrub Mosaic_Herb Unknown_Herb Unknown_Tree Sparse_Tree Shrubland Mosaic_Tree

Desert Desert - - - - - - -

Polardesert/Rock/Ice Polar_desert_rock_ice - - - - - - -

Cropland Cropland Mosaic_Cropland - - - - - -

Pasture Grasslands Mosaic_Herb Unknown_Herb Sparse_Tree Sparse_Shrub - - -

Urbanland Urbanland - - - - - - -

Corresponding ESA LAND COVER prioritized from Primary to 8th 
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At least 25% of Tundra and Polar desert cells remain without carbon data. This is likely a result of 1 

differences in way Tundra land cover is defined by different datasets.  2 

 3 

There have been more recent efforts to collect soil carbon data specifically for the permafrost and 4 

Tundra regions such as that by Hugelius et al.(Hugelius et al., 2014). This suggests that a future 5 

area of work would be to incorporate these more detailed datasets into either the source data or 6 

our processing workflow. Along with Tundra and Polar deserts, over 20% of the Urban land cells 7 

do not have carbon data. This is once again likely due to the different definitions of Urban land 8 

cover indifferent datasets. Our data coverage suggests that there exists more uncertainty in the 9 

Tundra, Polar, and Urban carbon values purely based on limited data availability. Recognizing 10 

and quantifying data availability by land type enables users to utilize their own judgement when 11 

using the carbon values for these land types.   12 

  13 

Land type 

Total 

5arcmin 

grid cells 

Vegetation 

carbon 

Percentage 

unfound (NO 

DATA cells 

after 

interpolation) 

Soil carbon 

Percentage 

unfound (NO 

DATA cells 

after 

interpolation) 

Pasture 1195396 2.3 2.3 

Cropland 952850 17.0 17.0 

Grassland/Steppe 498404 15.0 14.6 

OpenShrubland 274296 16.0 16.0 

Desert 195579 1.0 1.1 

TropicalEvergreenForest/Woodland 190780 0.0 0.3 

Savanna 173776 8.0 7.6 

BorealEvergreenForest/Woodland 148756 0.0 0.0 

Polardesert/rock/ice 132021 29.0 24.9 

Urban 119597 22.3 22.3 

TemperateDeciduousForest/Woodland 86922 1.0 1.1 

DenseShrubland 78065 10.0 9.5 

TemperateNeedleleafEvergreenForest/Woodland 71600 1.0 0.5 

BorealDeciduousForest/Woodland 65824 0.0 0.4 
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TropicalDeciduousForest/Woodland 56377 1.0 1.4 

Tundra 25000 29.0 24.9 

TemperateBroadleafEvergreenForest/Woodland 14395 0.0 0.3 

  1 

Table 4: Details of NODATA cells after nearest neighbor interpolation 2 

 3 

2.3 Stage 3 - Aggregating raster carbon data to 699 land regions 4 

 As a final step, we pass the 72 rasters generated in Stage 2 and use those as inputs to the Moirai 5 

land data system. The land data system uses the inputs to aggregate the values to 699 land 6 

regions from the 5 arcmin grid cell level. The 699 land regions are the intersection of 235 water 7 

basins and 207 countries and are shown as a map in SI figure 1. The final carbon state values 8 

for each land type are aggregated to each land region for each carbon pool (aboveground 9 

biomass, belowground biomass, soil 0-30 cms). These outputs are available as a tabular text file.  10 

The moirai land data system performs this aggregation using the same land masks for the year 11 

2010 which are used in the Stage 2 processing. The basic aggregation performed by moirai is 12 

summarized in equation 3 below      13 

 14 

𝐶𝑎𝑟𝑏𝑜𝑛_𝑡𝑎𝑏𝑢𝑙𝑎𝑟𝑝𝑜𝑜𝑙,𝐺𝐿𝑈,𝑠𝑡𝑎𝑡𝑒,𝐿𝑇 =15 

𝑠𝑡𝑎𝑡𝑒(
𝐶𝑎𝑟𝑏𝑜𝑛_5𝑎𝑟𝑐𝑚𝑖𝑛_𝐿𝑇𝑝𝑜𝑜𝑙,𝑗 𝐶𝑎𝑟𝑏𝑜𝑛_5𝑎𝑟𝑐𝑚𝑖𝑛_𝐿𝑇𝑝𝑜𝑜𝑙,𝑗+2

𝐶𝑎𝑟𝑏𝑜𝑛_5𝑎𝑟𝑐𝑚𝑖𝑛_𝐿𝑇𝑝𝑜𝑜𝑙,𝑗+1 𝐶𝑎𝑟𝑏𝑜𝑛_5𝑎𝑟𝑐𝑚𝑖𝑛_𝐿𝑇𝑝𝑜𝑜𝑙,𝑗+𝑛
)                    (3) 16 

 17 

 Where,  18 

 pool is the carbon pool (aboveground biomass, belowground biomass, topsoil (0-30 cms)),  19 

state is the aggregation method (area-weighted average, median, min, max, q1, q3), 20 

GLU represents a land region which is an intersection of 207 country boundaries and 235 21 

watershed boundaries,  22 

j is the grid cell index for each 5 arcmin grid cell in a basin with land type LT, 23 

n is the total number of cells in a basin for a given land type, 24 

and LT is the land type. 25 

 26 

2.4 Stage 4 – Deriving any other percentile using our six statistical states 27 

 28 

 Using our six summary states, users can calculate any percentile for the carbon value in any pixel 29 

for each of our 19 land types and three carbon pools (soil, above ground biomass, below ground 30 

biomass). These values can also be calculated directly for a land region/water basin. The 31 

percentile values can be calculated assuming that carbon values are lognormally distributed (this 32 

is established in our analysis below- See section 3.1) The steps to calculate any percentile are as 33 

follows,  34 
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1. Compute a mean value as a natural log of the median state. Since the distribution of carbon 1 

values is lognormal, the natural log of our median would be an estimated mean for the 2 

lognormal distribution.  3 

2. Compute an estimated standard deviation using a natural log of the Q3 and the mean value 4 

in step 1, specifically we use the formula- (LN(Q3)- LN(mean))/0.675.  5 

3. Estimate the percentile value from the mean and standard deviation above. Since the logged 6 

distribution is normal, users can compute this value using a z table for a normal distribution.  7 

4. Calculate the exponent of the value in step 3.  8 

5. Constrain this value to the max observed value in our dataset.  9 

This method would enable a timely calculation of percentiles and would be much faster than re-10 

running the code to derive individual percentiles using re-sampling. 11 

 12 

3. Analysis, Uncertainty and data validation 13 

 14 

We first evaluate our main data products, namely the maps of soil and vegetation carbon 15 

across gridcells by land type (e.g., Figure 2 and Figure 3), with the goal of identifying the 16 

most appropriate carbon state for GCAM modeling, and then take a closer look at data 17 

uncertainty and spatial variability. Note that the authors of the source data on soil (Hengl 18 

et al.) and vegetation (Spawn et al.) did a detailed spatial validation of the data in their 19 

resperctive papers. Our validation will focus on uncertainties that have been introduced 20 

through our re-harmonization process. We will also compare our Q3 and 90th percentile 21 

(determined as described above) estimates with similar estimates from the literature since 22 

these estimates will be used to initialize GCAM.  23 
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 1 
Figure 2: Soil carbon for each 5 arcmin grid cell in MgC/ha. Values are shown for two statistical states, namely the Q1 and the 2 
Q3.  3 

 4 

 5 

https://doi.org/10.5194/essd-2023-251
Preprint. Discussion started: 17 July 2023
c© Author(s) 2023. CC BY 4.0 License.



14 
 

 1 
Figure 3 Veg carbon (aboveground) in MgC /ha across 5 arcmin grid cells for aggregate land types for the Q3 state. Values are 2 
shown for two statistical states, namely the Q1 and the Q3 3 

 4 

 5 

 6 

3A Comparison of harmonized carbon values to estimates of historical values 7 

As mentioned above, this dataset was generated to initialize GCAM with spatially 8 

explicit carbon values for spin up and further simulation of the land system. This 9 

initialization requires the carbon values to represent a maximum potential carbon density 10 

because these values determine the limiting parameters for vegetation growth and soil 11 
carbon accumulation curves. The pre industrial carbon density has been estimated to be 12 

much higher than the contemporary carbon stored in land (Erb et al., 2018) due to a long 13 
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history of land use. Moreover, various studies have highlighted the difficulties with the 1 

calculation of the long term potential maximum(Fang et al., 2014). However, our 2 

development of the statistical states has allowed us to adopt a more systematic approach 3 

to selecting a data driven maximum value that we use to initialize GCAM.  4 

 5 

To select a data driven pre industrial equilibrium state, we compared the frequency 6 

distributions of carbon by pool within each land region for each land type with the final 7 

statistical states calculated. The frequency distributions represent a heterogeneous 8 

landscape at different stages of growth and management. The average or median values 9 

may be representative of the contemporary landscape, but not of an undisturbed 10 

landscape that has been allowed to equilibrate its carbon stocks. The maximum value in a 11 

land region may be an extreme outlier and likewise would not be representative of the 12 

undisturbed landscape. Our goal then is to find a value in between the contempory 13 

average and the maximum that is representative of a long term potential maximum value. 14 

Fortunately, most distributions of soil carbon generally follow a log-normal shape with a 15 

long tail. For example, we analyzed the distribution of soil carbon in the Amazon basin 16 

(Figure 4) for different land types.  17 

 18 

One possible option for initialization is the Q3 statistical state. The Q3 statistical state 19 

value from these distributions does fall between the average and the maximum, as 20 

expected. Given the lognormal shape, the observations above the Q3 value are infrequent 21 

and can stretch to extremely high values. We also find that most vegetation carbon 22 

distributions follow a log-normal shape within each basin for each land type. However, 23 

forests have distributions that are more bimodal (Figure 5). Nonetheless, in these 24 

distributions the Q3 value provides an estimate of carbon that is reasonably higher than 25 

the contemporary average or median value.   Using the Q3 values to initialize GCAM, we 26 

found that the initial carbon stock in the year 1700 would be approx 2144 PgC (1553 PgC 27 

of carbon in top soil and 591 PgC of vegetation biomass). This estimate is still on the 28 

lower end of other similar estimates from Walker et al. ,Erb et al, Houghton and 29 

Sanderman et al.  Table 5 below summarizes our initial terrestrial carbon stock in 1700 30 

calculated from different sources- 31 

 32 

 33 

  34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

Data source 

Topsoil (0-30 
cms) carbon in 
PgC 

vegetation (above+ 
below ground biomass) 
in PgC 

Erb et al 2019   916 

moirai (Q3) 1553 591.7 

moirai (90th 
percentile) 2063 966 

Walker 2022   795 

Sanderman et al. 
2017 2119   

Houghton 1999 1462 662 
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 Table 5:Initial potential terrestrial carbon stock calculated from different sources. 1 

Sources from moirai are calculated using land maps in 1700. Sanderman et al. 2 

represents a carbon stock in 1800 given no land use. Walker and Erb et al. are based on 3 

potential vegetation carbon estimations.  4 

 5 

In addition to the Q3 value, we also use the estimated 90th percentile state in order to 6 

represent a higher initialization of carbon in 1700. This 90th percentile is estimated from 7 

our six summary states using the methodology outlined in section 2.4. This 90th percentile 8 

provides an initial carbon stock of 3028 PgC (2063 PgC of carbon from topsoil and 966 9 

PgC of vegetation biomass). Using these two states for initialization helps us understand 10 

the sensitivity of the model to the initial value. 11 

 12 

In the case of forests, we note that we derive carbon values for Forests as a whole and do 13 

not differentiate between Primary Forests and Secondary Forests. This is a result of lack 14 

of availability of fine resolution land masks that differentiate between primary and 15 

secondary forests. This likely means that our long term potential maximum forest carbon 16 

densities include the impact of harvesting especially in regions with high levels of forest 17 

harvests. As more fine resolution data on different types of forests become available, a 18 

logical next step would be to derive separate carbon densities for this particular land type.    19 

 20 
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 1 

Figure 4: Within basin distributions of soil carbon in Mgc/ha for the Amazon basin. Each facet shows a distribution for a land type. The final basin 
level statistical states are shown as dots with the Q3 state shown as the orange line.  

Figure 5: Within basin distributions of aboveground biomass carbon in Mgc/ha for the Amazon basin. Each facet shows a distribution for a land 
type. The final basin level statistical states are shown as dots with the Q3 state shown as the orange line. 
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3B  Comparison of carbon values to other estimates of long term potential carbon by 1 

grid  cell 2 

 3 

Since the Q3 and 90th percentile values in our dataset will be used to represent pre-4 

industrial carbon densities in GCAM, we compared our values to similar estimates in the 5 

literature. Specifically we compare the 90th percentile values at the pixel level with other 6 

estimates, since this statistical state represents a high carbon initialization compared to the 7 

Q3 and produces a global terrestrial carbon stock that is in line with other estimates of 8 

potential terrestrial carbon.   9 

 10 

Sanderman et al. 2017 generated a pre-industrial soil carbon map for top soil in the year 11 

1800. This map assumed no land use in that year. Similarly Walker et al. (Walker et al., 12 

2022) generated a similar map for potential carbon in above and below ground vegetation. 13 

For a valid comparison we compared only our unmanaged land carbon values with these 14 

estimates (Figure 6 and 7). 15 

 16 

We found that in the case of soil carbon, even though our maps track well with the maps 17 

from Sanderman et al.  in terms of the overall spatial distribution, the mean error (moirai 18 

90th percentile – Sanderman et al.) across gridcells that is close to -23%. There are some 19 

upper latitude pixels from the Sanderman et al. dataset that show almost 100% higher 20 

values compared to our data.  21 

 22 

In case of aboveground vegetation carbon, the mean percen error  (moirai 90th percentile – 23 

Walker et al. 2022) is -17%, which is lower than for soil carbon. The largest errors were 24 

observed for forest pixels. This is likely due to the combination of Primary and Secondary 25 

forests into a single forest category in our dataset (as described above). The highest 26 

differences between datasets are observed in forest pixels with high level of forest 27 

harvesting (Central and West Africa and South and East Asia).  28 

        29 

 30 
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 1 
 2 

 3 
 4 

Figure 6: A.) Topsoil (0-30 cms) carbon in MgC/ha for 5 arcmin pixels using moirai 90th percentile B.) Top soil (0-30cms) carbon in 5 
MgC/ha from Sanderman et al. assuming a no land use condition. C.) Histogram showing percent error between A and B. Dark 6 
blue dashed line represents mean error across all pixels which is at -27%.    7 
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 1 

 2 

Figure 7: A.) Vegetation (aboveground) carbon in MgC/ha for 5 arcmin pixels using moirai 90th percentile B.) Vegetation 3 
(aboveground) carbon in MgC/ha from Walker et al. constrained for initial land use C.) Histogram showing percent error 4 
between A and B. Dark blue dashed line represents mean error across all pixels which is at -15%. 5 

 6 

3C Comparison to C values to previously used in GCAM by land type and 7 

aggregate contemporary estimates  8 

We compared the moirai densities by land type globally with similar carbon densities 9 

from Houghton (1999) (See SI Table 2  and Figure 8 for a comparison of soil carbon 10 

estimates and SI Table 3 and Figure 9 for aboveground biomass comparison). The 11 

Houghton carbon densities represent carbon values on undisturbed land differentiated by 12 

biome. We specifically compare against the Houghton carbon densities since those values 13 

were previously used for the spin up in GCAM.  We also compared our statistical states 14 
with contemporary values where available (e.g. Jackson et al. for soil carbon and Vlek et 15 

al. for contemporary vegetation carbon).  16 
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 1 

For soil carbon (Figure 8), we found that our values (Q3, 90th percentile) are generally 2 

higher than the Houghton values globally for most land types. The values are especially 3 

higher for Shrublands which are located in Boreal regions where the difference is approx 4 

80 Mgc/ha. This is likely because the SoilGrids dataset shows high carbon values at high 5 

latitudes and includes peat soils in its estimates (e.g., figure 3). The high values of soil 6 

carbon at the upper latitudes may also be driven by high levels of predicted bulk density 7 

at those locations(Tifafi et al., 2018).Another version of soil grids has recently produced 8 

lower values in these regions to reduce the effects of peat soil estimates(Poggio et al., 9 

2021).   10 

 11 

For cropland, our Q3 estimates of carbon are as high as forest soil carbon. This is 12 

investigated in more detail in the sections below. Similarly the soil carbon under Urban 13 

land cover is extremely high. This is likely due to how the samples were collected for 14 

Urban land cover (these samples are collected in parks as opposed to built up areas). As 15 

expected, the values in our range are higher than the contemporary values from Jackson 16 

et al., especially in the Boreal regions. However, the Q1 values from our range are closest 17 

to contemporary values for soils.  18 

 19 

For vegetation carbon (Figure 9), in the case of forests, the carbon densities are 20 

significantly scaled down across moirai states when compared to the literature (Houghton 21 

for the pre-industrial values  and Vlek et al. for contemporary values). This is not 22 

surprising since in the Houghton inventory numbers, the spatial distribution of forest 23 

carbon is an unknown especially for tropical forests (Houghton, 2005). Also, as noted 24 

above our moirai values for forest carbon densities are a combination of Primary and 25 

Secondary Forests and are therefore underestimate the long term potential maximum 26 

carbon that can be stored in forests.     27 

 28 

For grasslands and pastures, the moirai Q3 and 90th percentile estimate is higher than the 29 

literature values. However, for this land type, the overall distribution of carbon values is 30 

not very dispersed across basins. For forests, there is significant variation in values across 31 

basins , likely since some forests may be more intensively managed or harvested 32 

compared to others. Note that the reduction in carbon values compared to the global 33 

values from Houghton will likely reduce the afforestation response in GCAM under 34 

scenarios where carbon in forests is priced.     35 

 36 

 37 

 38 
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 1 
Figure 8: Carbon densities globally by land type across basins and Houghton pre-industrial state. Also shown is the 2 
contemporary carbon density value by land type from Jackson et al.  3 

 4 

 5 
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 1 
 2 

Figure 9: Carbon densities globally by land type for vegetation carbon across basins and Houghton values (Undisturbed carbon 3 
in 1850). Also shown is the contemporary carbon density value by land type from Vlek et al.   4 

 5 

 6 

 7 

 8 

 9 

 10 

          11 

 12 

 13 
 14 

   15 
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 1 

 2 

3.1 Uncertainties in re-harmonized carbon data (spatially and across land types) 3 

 4 

Here we explore uncertainty in the available data by further examing spatial distributions, 5 

aggregation statistics, and land type considerations. 6 

 7 

 8 

i.) Do managed land types show a deprecation in carbon compared to unmanaged 9 

land types? 10 

 11 

Studies show that managed land (i.e., Cropland, Pasture, Urbanland) has depleted 12 

carbon stocks in relation to undisturbed land (Cooper et al., 2021; Sanderman et 13 

al., 2017; Wei et al., 2014). The aim of processing the spatial managed land 14 

carbon data and adding it to Moirai is to obtain contemporary estimates for these 15 

lands that can be used in modeling rather than assuming a global value or that 16 

managed lands have a fixed fraction of unmanaged land carbon. Carbon data 17 

values do not correspond with a long term potential maximum for these managed 18 

land types by definition, as these land are actively disturbed. However, we still 19 

want higher than average carbon values for the parameters that define the limits of 20 

carbon accumulation for these land types. We expect that the carbon data reflect 21 

the effects of these managed land types and that our desired values would be 22 

lower than those for the surrounding unmanaged land types. We checked this 23 

expectation by first comparing Q3 carbon values for soil and aboveground 24 

biomass for  Cropland with the corresponding values for Unmanaged land cover 25 

in each of our land regions (Figure 10). We found that Cropland soil carbon 26 

values do not show a consistent depletion for soil carbon compared to Unmanaged 27 

land. The reason for these differences among carbon pools is rooted in the source 28 

data sampling and processing methodologies. In case of the soilgrids dataset, the 29 

authors state that cropland soil carbon samples were largely collected in the US. 30 

In case of the vegetation carbon dataset from Spawn et al., the vegetation carbon 31 

was calculated for each crop type based on yields which explains the low values 32 

on cropland compared to unmanaged land. 33 

 34 

For cropland, yields are determined from harvested area and production data, 35 

while the carbon data are used for land use emissions and when valuing carbon in 36 

forcing scenarios. To address the relatively high cropland soil carbon data in our 37 

modeling experiments we reduce these data by 30% before using them in GCAM. 38 

Previous studies have a found a similar loss of soil carbon through agricultural 39 

practices and land conver conversion from unmanaged land types to 40 

cropland(Cooper et al., 2021; Wei et al., 2014).  41 

 42 

 43 

 44 

     45 
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 1 
Figure 10: Comparison of unmanaged Q3 carbon densities and Cropland carbon densities for A.) soil carbon and B.) 2 
aboveground biomass. Values here are aggregated to individual countries 3 

 4 

          We performed a similar analysis for pasture carbon densities and found that 5 

Pasture carbon shows depletion or lower values compared to unmanaged land 6 

cover both for both soil and vegetation.  In this case, it is reasonable to use the Q3 7 

soil and vegetation carbon values for Pasture in GCAM without adjustment. 8 

 9 

 10 

ii.) Assesing spatial uncertainties in soil and vegetation carbon within and across 11 

basins 12 

 13 

We have established that carbon distributions within land regions generally follow 14 

a lognormal pattern for soil carbon and for vegetation carbon for most land types  15 

while vegetation carbon for Forests has a more bimodal distribution. However, 16 

there may be more dispersion across values in some basins for some land types 17 

compared to others. To assess this systematically, we computed a quartile 18 

coefficient of dispersion (QCD) for each basin and land type as:  19 

 20 

𝑄𝐶𝐷𝐺𝐿𝑈,𝐿𝑇,𝑝𝑜𝑜𝑙 = (𝑄3𝐺𝐿𝑈,𝐿𝑇,𝑝𝑜𝑜𝑙 − 𝑄1𝐺𝐿𝑈,𝐿𝑇,𝑝𝑜𝑜𝑙)/(𝑄3𝐺𝐿𝑈,𝐿𝑇,𝑝𝑜𝑜𝑙 +21 

𝑄1𝐺𝐿𝑈,𝐿𝑇,𝑝𝑜𝑜𝑙)                                                                                                (5) 22 

 23 

Where,  24 

 pool is the carbon pool (aboveground biomass, belowground biomass, topsoil (0-30 cms)),  25 

GLU represents a land region which is an intersection of basin boundaries and country 26 
boundaries,  27 

and LT is the land type. 28 
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 1 

 2 

The QCD values ranges from 0 to 1 where a value towards zero indicates less dispersion within a 3 

region-land type-carbon pool combination and a value towards 1 indicates more dispersion. 4 

 5 

The QCD values for soil carbon (Figure 11) are generally similar across most basins across land 6 

types. This is expected since the distributions of soil carbon are generally lognormal. However, in 7 

some basins the QCD value is consistently high and similar across land types. This mainly occurs 8 

in individual basins in Russia and Indonesia which have high levels of peat soils which would 9 

mean that the level of dispersion across cells would be high since some cells would contain peat 10 

soils whereaes others would not.   11 

 12 

  13 

 14 

Based on QCD values across basins and land types  for vegetation carbon (Figure 12), we 15 

observe that there is significant variation in the QCD values within and across basins for Tundra 16 

(with values ranging from 0-1). This is likely due to the way Tundra pixels are defined in our 17 

dataset (they encompass different vegetation types). Similarly, there is significant variation 18 

within and across basins for grasslands, savannah and pastures, which is once again likely due to 19 

the definitions of what constitutes grasslands in the base land cover dataset. While there are also 20 

variations in vegetation carbon values for cropland and urbanland, the overall range of values for 21 
these land types when it comes to vegetation carbon is low (Figure 7). QCD values for forests 22 

Figure 11: QCD values for topsoil carbon across basins and land types 
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across and between basins is lower. This may be due to the more narrow definitions for what 1 

constitutes forests across datasets.       2 

 3 

 4 

 5 
Figure 12: QCD values for aboveground vegetation across basins and land type 6 

 7 

4.  Results from implementation of spatiually explicit carbon in GCAM 8 

 9 

We make the following assumptions when implementing the carbon densities in GCAM, 10 

based on the analyses above:  11 

a.) The Q3 carbon values and the 90th percentile values are used throughout to reflect two 12 

potential options for a long term potential maximum state of carbon in 1700 13 

b.) Cropland soil carbon is reduced by a factor of 0.3 (30% reduction) for all basins to 14 

reflect the effects of management 15 

c.) Tundra, Urban, Desert, and Polar desert/rock/ice do not change in GCAM and so the 16 

assigned carbon values do not influence model simulations. If a model does include 17 

dynamics for these land types, then the associated uncertainties should be addressed. 18 

            19 

 20 

          4.1 Results from historical spin up 21 

            22 

We initialize GCAM using our two options identified above This results in a pre-spin up 23 

carbon stock of 2144 PgC (1553 PgC in soil and 591.7 PgC in vegetation) when using the 24 
Q3 state and a carbon stock of 3028 PgC (2063 PgC in top soil and 965 PgC in vegetation) 25 

when using the 90th percentile. Note that these initialization values are calculated using the 26 
land cover in 1700, which does include some managed area, and the spatially explicit 27 

carbon.  28 
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During the spin up (Table 6), this carbon is reduced to 1967 PgC in 2015  when using the 1 

Q3 state(1481 PgC of topsoil carbon and 486 PgC of vegetation carbon) as a result of 2 

historical land transitions. Similarly during the spin up, this carbon is reduced to 2758 PgC 3 

when using the 90th percentile values (1965 PgC of topsoil carbon and 793 PgC of 4 

vegetation carbon).   5 

 6 

An important point to note is that while the 90th percentile generates results more in line 7 

with independent pre-industrial estimates (e.g. Walker Sanderman, Erb), the Q3 state 8 

results in more realistic contemporary values in 2015 during the GCAM spin up. For 9 

example, the Q3 state results in a contemporary value of 486 PgC of vegetation carbon in 10 

2015, which is closer to contemporary vegetation carbon stock estimates. Whereaes, the 11 

90th percentile results in a global vegetation carbon stock of 793 PgC. Using the 90th 12 

percentile would effectively result in an unrealistically high initial vegetation carbon stock 13 

that is close to equilibrium in 2015. Furthermore, when running a carbon price scenario 14 

using the 90th percentile densities (Figure 13), the model would add another 54 PgC of 15 

vegetation carbon through afforestation that would result in a very unrealistic value of 16 

vegetation carbon in 2100- Close to 847 PgC which is higher than undistrurbed carbon 17 

stocks in 1700. When using the Q3 densities, this vegetation carbon stock in 2100 is close 18 

to 515 PgC (Additional 30 PgC of carbon added through planted forests). 19 

 20 

Another point to note is that the amount of global historical emissions (1700-2015) 21 

produced by the  Q3 initialization is 176 PgC which is much lower than the global 22 

historial emissions using the 90th percentile of 270 PgC. For context, the Global Carbon 23 

Project (as of 2021) produced an estimate of annual LUC emissions from 1700-2015 of 24 

196 PgC(Friedlingstein et al., 2022).  Figure 14 below shows the LUC emissions for the 25 

historical periods for the GCP and our two initialization options. As seen in the figure, the 26 

90th percentile produces consistently higher annual LUC emissions.  27 

 28 

Given the above results from the spin up, we found that the Q3 value from our dataset is 29 

appropriate for initialization and use in GCAM when using the model to estimate 30 

contemporary C dynamics. While the 90th percentile better resembles independent 31 

estimates of pre-settlmenet stocks, it results in substantial overestimation when used to 32 

estimate contemporary C fluxes. This is a result of assumptions and processes within 33 

GCAM pertaining to carbon dynamics. As such, What is appropriate for other models 34 

would likely be different and would require a similar analysis.   35 

 36 

 37 
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 1 
 2 

     3 

Table 6: Results from the historical spin up 4 

Initialization carbon 
pool 

Initial value in 
PgC In the year 
1700) 

Contemporary 
value after spin 
up in PgC (2015) 

Historical 
emission
s (PgC) 
(betwee
n 1700 
and 
2015) 

Value 
in 2100 
under 
SSP1 
2p6 

Additional 
carbon 
sequestered 
during 
afforestation 
scenario (2100 
value- 2015 
value) 

Houghton 
vegeta
tion 
carbon 662.0 516.1 145.9 605.3 89.2 

moirai (Q3 
value) 

vegeta
tion 
carbon 591.7 486.3 105.4 515.9 29.6 

Figure 13: Descriptions of the results of the spin up process. Global vegetation carbon during spin up (1700-2015) and the SSP1 
2p6 climate forcing scenario (2016-2100) for our initialization options.  
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moirai (90th 
percentile) 

vegeta
tion 
carbon 965.8 793.2 172.6 847.9 54.7 

Houghton 

soil 
carbon 
(top-
soil) 1243.5 1181.4 62.1 1220.0 38.6 

moirai (Q3 
value) 

soil 
carbon 
(top-
soil) 1320.5 1249.1 71.4 1274.6 25.5 

moirai (90th 
percentile) 

soil 
carbon 
(top-
soil) 1753.0 1655.2 97.8 1700.6 45.4 

Houghton 

Total 
terrest
rial 
carbon 1905.5 1697.5 208.0 1825.3 127.8 

moirai (Q3 
value) 

Total 
terrest
rial 
carbon 1912.3 1735.4 176.9 1790.6 55.2 

moirai (90th 
percentile) 

Total 
terrest
rial 
carbon 2718.8 2448.3 270.5 2548.4 100.1 

 1 

 2 
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 1 
Figure 14: Annual Global LUC emissions from GCP 2021 and our two initialization options 2 

 3 

 4 

 5 

           4.2 Results from climate forcing scenario 6 

 7 

We use one climate forcing socioeconomic scenario (SSP1 2p6) with a maximum 8 

radiative forcing level of 2.6 watts per square meter by 2100 to assess how the new 9 

carbon data influence land projection in GCAM. Under this scenario land carbon prices 10 

are implemented to assign value to terrestrial carbon at the same rate as carbon is valued 11 

in the energy system. GCAM by default uses carbon densities from Houghton et al. 12 

(1999) which are described in SI Table 5 (soil) and SI Table 6 (vegetation). Note that the 13 

changes in land cover under the climate forcing scenario are driven by relative levels of 14 

carbon across land types rather than absolute levels of carbon. Therefore, even if forest 15 

carbon in some tropical regions are lower than other estimates, forests still sequester 16 

much more carbon compared to other land types in these regions. Below, we will 17 

compare results for the climate forcing scenario when using values from Houghton, the 18 

moirai Q3 value and the moirai 90th percentile.   19 

 20 

The global land allocation comparison under SSP1 2p6 scenario in GCAM (Figure 15) 21 

shows that the afforestation/reforestation response is greatly reduced as a result of the 22 

spatially explicit carbon (the increase in forest cover from 2020 to 2100 globally is only 23 
3.2 million km2  when using the moirai Q3 as opposed to  7 million km2 with the 24 
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Houghton carbon). IAMs (Including GCAM) generally show a very optimistic 1 

afforestation response for this scenario that ranges from 0.5 to 12 million km2  of trees 2 

planted as part of a nature based carbon sequestration strategy under SSP1 2p6 (Popp et 3 

al., 2017). The afforestation response in IAMs has been considered too optimistic in some 4 

studies (Pongratz et al., 2021).  The reduced forest expansion in GCAM with the new 5 

carbon data is largely driven by lower vegetation carbon densities in the new data. When 6 

using the 90th percentile, the afforestation values are the lowest at 0.1 million km2. This 7 

is expected given that the 90th percentile carbon values are much higher so much lower 8 

increases in forest cover are required to meet additional afforestation targets. Usage of the 9 

90th percentile values leads to minimal changes across land types under a climate forcing 10 

scenario. This would be expected since the carbon pool generated by this scenario in 11 

2015 is already close to equilibrium. This further illustrates why the Q3 state from our 12 

dataset is a better choice for initialization in a model like GCAM.    13 

 14 

However, the afforestation responses are diverse by regions. In case of tropical forests, 15 

there is an increase in the afforestation response with our updated carbon densities. In 16 

case of boreal forests, the opposite is true.  17 

 18 

Global Cropland and Shrubland dynamics show a more complicated response. The 19 

reduced emphasis on forest expansion reduces the need for Cropland abandonment. 20 

Cropland also sequesters more soil carbon in some regions (even with the 30% reduction 21 

factor), which also reduces abandonment. This Shrubland response is also enhanced by 22 

higher Shrubland vegetation carbon densities. 23 

 24 

Regional responses are dictated by their respective land type distrubutions (e.g., SI Figure 25 

5). For example, in Russia the afforestation strategy is completely replaced with a 26 

shrubland and grassland preservation strategy. This is expected since the region has a 27 

relatively high amount of boreal forests. In South Asia however, where non-forest land 28 

types dominate, forest expansion persists and is supplemented by shrubland expansion.   29 

 30 

https://doi.org/10.5194/essd-2023-251
Preprint. Discussion started: 17 July 2023
c© Author(s) 2023. CC BY 4.0 License.



33 
 

 1 

  2 

       3 

The implementation of the spatially explicit carbon  clearly improves land use responses and also 4 

suggests that high carbon sequestering shrubs can also be preserved as a part of nature based 5 

solutions to mitigate climate change. The robustness of these responses across other radiative 6 

forcing scenarios (implemented for more SSPs for example) and across other models need to be 7 

studied and is a subject worthy of exploration in a future paper.  8 

 9 
 10 

5. Discussion and conclusion 11 

 12 

In this paper we present a new dataset of grid cell level spatially explicit carbon harmonized with 13 

Moriai/GCAM land types. Our harmonized dataset presents carbon values for 3 pools (topsoil, 14 

above ground biomass and below ground biomass) for six statistical states for various land use 15 

types. Our dataset is available both at a 5 arcmin resolution and aggregated to 699 land regions. 16 

This dataset is specifically designed to enable initialization of spatially explicit carbon in IAMs 17 

and MSD models. This dataset was specifically designed to generate carbon values for GCAM, 18 

but can and should be extensible to other models. In the future, this dataset can be extended to 19 
include deeper soil (beyond 0-30 cms) so that land use responses in models can account for an 20 

additional deep soil carbon pool.  21 

 

Figure 15: Global land allocation in GCAM under the SSP1 2p6 scenario by land type 
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 1 

We noted that there are some limitations with respect to the carbon observations (both for soil 2 

and vegetation) for the Tundra region. For example, we could find no data for 29% of the 5 3 

arcmin gridcells for this land type. The biome mapping also needed to include several source 4 

land types to enable an increase in data coverage for Tundra. This issue was likely caused by the 5 

different definitions of Tundra land cover in different datasets. Recently, there have been efforts 6 

dedicated to collecting carbon data specifically for this land type. These data should be 7 

integrated in future releases of our data to address the current lack of data coverage.  8 

 9 

As a part of our analysis, we observed that SoilGrids soil carbon values for cropland do not show 10 

a depletion when compared to SoilGrids soil carbon values in unmanaged land. As discussed, 11 

this is likely due the locations of sampling for cropland soil carbon. As a result, we reduced 12 

Cropland soil carbon by 30% when we applied it to GCAM. If better/improved data on crop soil 13 

carbon become available, our data should be updated with the same.  14 

 15 

We have also noted that our current estimates of forest vegetation carbon are based on both 16 

primary and secondary forests. This is due to the lack of availability of fine resolution (300 m) 17 

land masks that distinguish between primary and secondary forests. As more data become 18 

available related to forest cover types, a logical next step would be to break out different forest 19 

types in our dataset.  20 

 21 

Finally, our analysis showed that using the Q3 statistical state was most appropriate for GCAM 22 

even though it resulted in an initialization of pre-industrial carbon value that was lower than 23 

other estimates. Selection of the Q3 results in more accurate historical LUC emissions and the 24 

model therefore spins up to a value that is close to other estimates in the literature in 2015. What 25 

the correct initialization value is will differ from model to model and would require a similar 26 

analysis.  27 

 28 

 29 

 30 

 31 

6. Data availability statement 32 

Final data are available for download here- https://zenodo.org/record/7884615 (Narayan 33 

et al., 2023) The data repository contains the following-  34 

1. 72 rasters (4 land use types X 6 states X 3 carbon pools) at a 5 arcmin resolution 35 

representative of carbon in 2010 36 

2. 1 thematic raster which tracks 15 vegetation biomes for Unmanaged land use type (from 1. 37 

above) 38 

3.  Tabular data file showing aggregated carbon densities for 6 states of carbon for 699 land 39 

regions for soil (0-30cm), aboveground biomass and belowground biomass. 40 

 41 

 42 

7. Code availability statement 43 

 As mentioned above, the data can be generated programmatically with scripts that are hosted on 44 

GitHub (https://github.com/JGCRI/moirai/tree/master/ancillary/carbon_harmonization). 45 
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The process has been split into two steps where the computationally intensive stage 1 1 

(approx.. 6 hours of processing) is optional with outputs made available in the repository. 2 

The Stage 1 processing is performed using bash scripts which use the GDAL software 3 

(Warmerdam, 2008). The second stage processing uses an R script and can be completed 4 

for all carbon pools in approx. 15 minutes to generate the final 72 rasters and the final 5 

tabular output file. We have also made available optional diagnostic functions in the R 6 

script which can be used to validate results.   7 

 8 
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