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Abstract. Accurate long-term daily Cloud-gap-filled fractional snow cover products are essential for climate change and 15 

snow hydrological studies in the Asia Water Tower (AWT) region, but existing Moderate Resolution Imaging 

Spectroradiometer (MODIS) snow cover products are not sufficient. In this study, the multiple endmember spectral mixture 

analysis algorithm based on automatic endmember extraction (MESMA-AGE) and the multistep spatiotemporal interpolation 

algorithm (MSTI) are used to produce the MODIS daily cloud-gap-filled fractional snow cover product over the AWT region 

(AWT MODIS FSC). The AWT MODIS FSC product have a spatial resolution of 0.005°, and spans from 2000 to 2022. The 20 

2745 scenes of Landsat-8 images are used for the areal scale accuracy assessment. The fractional snow cover accuracy metrics, 

including coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error (MAE) are 0.80, 0.16 

and 0.10, respectively. The binarized identification accuracy metrics, including overall accuracy (OA), producer’s accuracy 

(PA), and user’s accuracy (UA), are 95.17%, 97.34% and 97.59%, respectively. Snow depth data observed at 175 

meteorological stations are used to evaluate accuracy at point scale, yielding the following accuracy metrics: an OA of 93.26%, 25 

a PA of 84.41%, a UA of 82.14%, and a cohen’s kappa (CK) value of 0.79. Snow depth observations from meteorological 

stations are also used to assess the fractional snow cover resulting from different weather conditions, with an OA of 95.36% 

(88.96%), a PA of 87.75% (82.26%), a UA of 86.86% (78.86%) and a CK of 0.84 (0.72) under the MODIS clear sky 

observations (spatiotemporal reconstruction based on the MSTI algorithm). The AWT MODIS FSC product can provide 

quantitative spatial distribution information of snowpack for mountain hydrological models, land surface models, and 30 

numerical weather prediction in the Asia Water Tower region. This dataset is freely available from the National Tibetan Plateau 

Data Centre at https://doi.org/10.11888/Cryos.tpdc.272503(Jiang et al., 2022) or from the Zenodo platform at 

https://zenodo.org/doi/10.5281/zenodo.10005826. 
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1 Introduction 

Snow cover has the characteristics of high albedo, low emissivity and strong water-holding energy (Yang et al., 2014; Wang 35 

et al., 2022; Pan et al., 2023; Wang et al., 2023). The extent and variability of snow cover have profound implications for 

global and regional water and energy cycles(Elguindi et al., 2005; Senan et al., 2016) and climate change (Barnett et al., 2005; 

Li et al., 2018). The Asian Water Tower region centered on the Tibetan Plateau is the region with the largest snow accumulation 

outside the North Pole and South Pole (Immerzeel et al., 2020). In recent years, this region has been in a state of imbalance, 

which is mainly reflected in the massive conversion of snow (one of the two forms of solid water) into liquid water (Yao et 40 

al., 2022). Furthermore, since 2008, the snow cover in the Asian Water Tower region has surpassed the tipping point and has 

become unstable(Liu et al., 2023) , which had a strong and stable relationship with the changes in the Amazon rainforest 

ecosystem. Therefore, it is important to produce long-term series and high spatiotemporal resolution Cloud-gap-filled 

fractional snow cover datasets in the Asian Water Tower region. 

Remote sensing technology has become an essential tool for monitoring snow cover globally. Polar orbit satellites such as 45 

NOAA/AVHRR, Terra/Aqua MODIS, Landsat, and Sentinel-2, which are often used to monitor snow cover, have spatial 

resolutions ranging from meters to kilometers. Toward the requirement of daily, large-scale, and long-time series of fractional 

snow cover monitoring, only moderate to coarse resolution sensors, such as AVHRR and MODIS are currently available. 

However, multispectral images at moderate and coarse spatial resolution have mixed pixels near the snow line, the edge zone 

of snow patches and the forest area covered by snow (Painter et al., 2009; Pan et al., 2022; Wang et al., 2022). The classification 50 

of snow and non-snow alone will lead to significant overestimation or underestimation. Classification errors will be further 

transferred the subsequent applications in various fields(Wang et al., 2013; Niittynen et al., 2020; Notarnicola, 2020). The 

existing optical remote sensing snow cover mapping methods mainly include the reflectivity linear interpolation 

method(Metsämäki et al., 2012; Metsamaki et al., 2005; Wang et al., 2017) , snow index empirical relationship method(Hall 

et al., 1995; Salomonson and Appel, 2004; Wang et al., 2021; Salomonson and Appel, 2006; Wang et al., 2020), machine 55 

learning method (Dobreva and Klein, 2011; Czyzowska-Wisniewski et al., 2015; Kuter, 2021; Xiao et al., 2022) and spectral 

mixture analysis method (Painter et al., 2003, 2009; Bair et al., 2021). The accuracy of the first three methods depends on 

training data, and the methods need to be retrained when used in different regions and on different dates. The MEAMA-AGE 

algorithm is a kind of automatic extraction of pure snow and non-snow endmembers based on the single-band reflectance of 

MODIS multispectral images and the normalized differential snow index (NDSI), normalized differential vegetation index 60 

(NDVI) and normalized differential water index (NDWI), and then fractional snow cover is retrieved by the MESMA-AGE 

algorithm (Shi, 2012; Zhu and Shi, 2018). This algorithm can ensure the representativeness of the endmember, improve the 

computational efficiency and effectively adapt to the characteristics of strong topographic heterogeneity and thin and broken 

snow, with better accuracy and robustness than other algorithms (Hao et al., 2019; Pan et al., 2022). 

Terra and Aqua MODIS provide two daily daytime observations, but the MODIS annual average cloud cover in the Asian 65 

Water Tower region is proximately 50%(Wang et al., 2019; Huang et al., 2022a). Snow cover observations can be obscured 
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by clouds, resulting in many data gaps in daily snow cover products, which greatly limits the application of daily snow cover 

products. To improve the spatiotemporal continuity of snow cover products, researchers have proposed various spatiotemporal 

reconstruction algorithms, such as temporal methods (Dozier et al., 2008; Tang et al., 2017; Tran et al., 2019), spatial 

methods(López-Burgos et al., 2013; Shea et al., 2013; Hou et al., 2019), spatiotemporal methods(Li et al., 2017; Huang et al., 70 

2018; Li et al., 2020; Xing et al., 2022), and multisource data fusion methods(Yang et al., 2014; Yu et al., 2016; Dai et al., 

2017). Most existing algorithms were developed for binary snow cover products, and although they have good accuracy, they 

are difficult to apply to continuous values such as fractional snow cover. The multistep grouping algorithm used in this study 

is an improved spatio-temporal method that combines spatial and temporal methods through multiple step implementations 

(Parajka and BlöSchl, 2008; Gafurov and Bárdossy, 2009; López-Burgos et al., 2013). These simple multistep combinations 75 

have been shown to be effective and efficient in cloud removal, and agree very well with in situ observations (Paudel and 

Andersen, 2011). 

Currently, there are various snow cover datasets for the Asian Water Tower region, such as the Interactive Multi-sensor 

Snow and Ice Mapping System (IMS) (Mazari et al., 2013), MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid 

product (MOD10A1/MOD10A1F) (Hall and Riggs, 2016), MODIS Snow-Covered Area and Grain size product (MODSCAG) 80 

(Painter et al., 2009), Japan Aerospace Exploration Agency (JAXA) long-term snow cover extent dataset (JASMES) (Hori et 

al., 2017), Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences AVHRR/MODIS 

snow cover extent product (NIEER AVHRR/MODIS SCE) (Hao et al., 2021, 2022), Tibetan Plateau long-term daily gap-free 

snow cover product based on the Hidden Markov Random Field model (HMRFS-TP) (Huang et al., 2022a), and the European 

Space Agency (ESA) Snow Climate Change Initiative (Snow CCI: MODIS (Nagler et al., 2022)  and AVHRR (Naegeli et al., 85 

2022)). The IMS, JASMES, and NIEER AVHRR SCE products are binary products and have relatively coarse resolutions. 

The NIEER AVHRR/MODIS SCE and HMRFS-TP products are binary, and their range cannot fully cover the Asian Water 

Tower area. The MODSCAG product has better accuracy, but it cannot freely available. The MOD10A1 product is the most 

widely used, but it has data gaps, and the linear relationship between the NDSI and FSC is not always valid. The MOD10A1F 

product is based on the MOD10A1 product, which only replaces cloud gaps with the previous most-recent clear-sky 90 

observation, resulting in limited product accuracy (Hao et al., 2022; Stillinger et al., 2023). Compared to MODSCAG and 

MOD10A1, the AWT MODIS FSC product has overall better accuracy in the AWT region(Hao et al., 2019). Although Snow 

CCI is a fractional snow cover product, the key parameter for retrieving canopy transmittance is calculated using static forest 

data from early the 2000s, which makes it difficult to capture the dynamic changes in snow cover in forest areas, and it has 

data gaps. Therefore, there is an urgent need for a high precision, high spatiotemporal resolution, and long-term series cloud-95 

gap-filled fractional snow cover dataset to meet the growing demand for snow monitoring in the Asian Water Tower region. 

This study used the MESMA-AGE algorithm and the MSTI algorithm to produce a MODIS long-term series daily fractional 

snow cover dataset for the Asian Water Tower region from 2000 to 2022. This work is organized as follows: first, the study 

area and datasets are presented. Then, the MESMA-AGE algorithm framework, the MSTI algorithm framework, and the data 

processing process are introduced. The two algorithms are used to produce a daily cloud-gap-filled fractional snow cover 100 
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dataset for the Asian Water Tower region. Finally, the accuracy of this product is evaluated using high spatial resolution 

Landsat-8 images and meteorological station snow depth data from the China Meteorological Administration (CMA). 

2 Study area and data 

2.1 Study area 

The Asian Water Tower region consists mainly of the Pamir Plateau, Xinjiang, and the Qinghai-Tibet Plateau in China 105 

(Fig.1). The latitude and longitude ranges are 24° - 54° N and 60° - 106° E respectively, with an average elevation of over 

4000 meters. The Asian Water Tower region is the birthplace of more than 10 major rivers in Asia, sustaining nearly 2 billion 

people in its vicinity(Immerzeel et al., 2020; Li et al., 2022). In the Asian Water Tower region, the monthly average snowmelt 

runoff ratio is greater than 30% in more than half of the months, far exceeding the surrounding area (Yang et al., 2022). Over 

the past 50 years, the temperature in Asia Water Tower region has increased by an average of 0.3 to 0.4 °C per 10 years, which 110 

is twice the global average rate (Barnett et al., 2005; Kraaijenbrink et al., 2017). As one of the most important climate response 

factors (Liu and Chen, 2000; Immerzeel et al., 2010), the distribution and change in snow cover is of great importance for the 

study of climatic and ecological changes across the region. Meanwhile, fractional snow cover data are important input for the 

Snowmelt Runoff Model (SRM) (Martinec, 1975) and can also be used for snow water equivalent reconstruction and 

optimization (Rittger et al., 2016). Therefore, a set of high-precision fractional snow cover products is necessary for 115 

hydrological simulation and hydrological applications in the Asian Water Tower region. 

 

Figure 1. DEM (a) and Land cover (b) maps of the AWT with the positions of the MODIS tiles, Landsat scenes and CMA stations used in 

the validation 
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2.2 MODIS surface reflectance data 120 

This study used MODIS surface reflectance products MOD09GA and MYD09GA in Collection 6 spanning from 2000 to 

2022. These surface reflectance products have two data layers. The 500 m reflectance data layer provides reflectance, quality 

assessment level, observation area, observation number, and 250 m scan information for bands 1-7. The 1 km geographic 

information data layer provides additional information, such as observation times, quality assessment levels, sensor azimuth 

zenith angles, solar azimuth altitude angles, and orbit pointers. In addition, it also includes metadata information of the file 125 

(production information, geographical scope, etc.). The characteristics of MODIS solar reflective bands are shown in table 1. 

The cloud information used in this study was obtained from the 'state_1km' layer, which includes ' cloud state ' is not a clear 

and ' cirrus detected ' is a high. Moreover, 12 MODIS tiles ('h23v03', 'h23v04', 'h23v05', 'h24v04', 'h24v05', 'h24v06', 'h25v04', 

'h25v05', 'h25v06', 'h26v05', 'h26v06', and 'h27v06') with sinusoidal projection were used in this study, as shown in Figure 1 

(a). 130 

Table 1. MODIS spectral characteristics 

Band Name Spectral Range(μm) Central Wavelength(μm) Spatial Resolution(m) 

band1 0.62-0.67 0.645 500 
band2 0.841-0.876 0.858 500 
band3 0.459-0.479 0.469 500 
band4 0.545-0.565 0.555 500 
band5 1.23-1.25 1.24 500 
band6 1.628-1.652 1.64 500 
band7 2.105-2.155 2.13 500 

2.3 Landsat-8 images 

This study used the Google Earth Engine (GEE) cloud platform to select a total of 2745 scenes of Landsat-8 images from 

2013 to 2021 that met the cloud coverage ratio of less than 10% and snow coverage ratio of more than 30% as "ground truth" 

to validate our fractional snow cover product. Landsat-5 Thematic Mapper (TM) has obvious attenuation since 2000, and the 135 

Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor has been affected by striping in 25% of the image area due to 

scanner failure since June 2003. Therefore, this study mainly focused on Landsat-8 images to evaluate the accuracy of the 

AWT MODIS FSC dataset. To better evaluate the MESMA-AGE algorithm and the AWT MODIS FSC product, this study 

also applied the MESMA-AGE algorithm to retrieve Landsat-8 fractional snow cover, which has been demonstrated to have 

good accuracy on Landsat-8 using higher resolution Gaofen-2 imagery with an OA of 94.46% and RMSE of 0.094 (Hao et al., 140 

2019). The Landsat-8 fractional snow cover results at 30 m were resampled to the resolution of the AWT MODIS FSC product 

(0.005°) through aggregation and averaging. Subsequently, the Landsat fractional snow cover results at 0.005° resolution were 

used to assess the accuracy of the MODIS clear sky retrieval results in the AWT MODIS FSC product. 
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2.4 Ground snow-depth measurements 

As Landsat images can only assess the accuracy under clear sky, this study chose to use snow depth data from meteorological 145 

stations to support the validation of the accuracy of the spatio-temporal reconstruction results under cloud cover. This study 

used a total of 175 in situ stations provided by the China Meteorological Administration in the Asian Water Tower area from 

26 February 2000 to 30 April 2019, as shown in Figure 1b. Figure 1b shows that the in situ stations are more evenly distributed 

in the southeast of the Qinghai Tibet Plateau, Tianshan Mountains and Altay Mountains, where seasonal snow is prevalent. 

Snow depth data are measured in an open field at 8:00 am using a professional meter ruler. If the fractional snow cover is 150 

greater than 50% and the snow depth is greater than 1 cm, it is considered snow and recorded. The geographical coordinates, 

time of observation, and snow pressure are also recorded. Snow depth data can only be used to evaluate binarized snow 

products, whereas the AWT MODIS FSC products are binarized by re-classifying the image pixels with small fractional snow 

cover as no snow, and smaller snow depths tend to have greater uncertainty(Ault et al., 2006; Ke et al., 2016; Zhang et al., 

2019; Wang et al., 2022). Therefore, this study refers to previous studies to binaries the snow depth data with a threshold of 3 155 

cm in AWT region (Yang et al., 2015; Zhang et al., 2019; Huang et al., 2022a, b)

, i.e. 

snow depths less than 3 cm are classified as no snow and those greater than 3 cm are classified as snow

. To further illustrate the accuracy of snow 

identification, this study excluded stations with snow depths greater than 1 cm but snow cover days less than 20 (Zhang et al., 160 

2020; Hao et al., 2021). 

2.5 Auxiliary data 

To better evaluate the accuracy of the MESMA-AGE algorithm and the AWT MODIS FSC product, auxiliary information, 

such as elevation and the land cover type of the Asian Water Tower, were used. The GEE cloud platform provided the 

MCD12Q1 V6.1 annual International Geosphere-Biosphere Programme (IGBP) classification data (Sulla-Menashe et al., 165 

2019). The surface types were further divided into four categories: bare land, grassland, forest, and plateau mountain. The 

GEE cloud platform was utilized to obtain Shuttle Radar Topography Mission (STRM) digital elevation model (DEM) data. 

The DEM data were then resampled from 90 m to the 0.005° resolution of the AWT MODIS FSC product(Reuter et al., 2007). 

3 Methodology 

Figure 2 shows the flowchart of the AWT MODIS FSC production. According to the accuracy evaluation of the MOD10A1, 170 

MODSCAG, and MODAGE fractional snow cover products in the Qinghai Tibet Plateau region, the MODAGE product had 

the highest accuracy (Hao et al., 2019). Therefore, the MODAGE fractional snow cover retrieval algorithm (MESMA-AGE 

algorithm) was selected for the fractional snow cover retrieval of Terra and Aqua MODIS surface reflectance version 6 data 

in the Asian Water Tower region. Second, based on the Terra/MODIS fractional snow cover retrieval results, the Aqua/MODIS 
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fractional snow cover retrieval results were used to fill in data gaps due to clouds and missing observations(Li et al., 2014). 175 

Third, the Geospatial Data Abstraction Library (GDAL) was used to reproject and mosaic the fractional snow cover retrieval 

results of 12 MODIS tiles (GDAL Development Team, 2022). Fourth, the MSTI algorithm was developed for performing 

spatiotemporal interpolation on pixels with cloud cover or missing data, enabling the generation of a daily cloud-gap-filled 

fractional snow cover product. Finally, accuracy evaluation and algorithm optimization of the MESMA-AGE algorithm and 

the AWT MODIS FSC product were performed using snow depth data from meteorological stations and Landsat-8 imagery. 180 

 

Figure 2. Overall flowchart of the AWT MODIS FSC product  

3.1 MESMA-AGE algorithm 

When a pixel contains information from multiple surface types, it is called a mixed pixel, whereas a pixel containing only 

one type of ground object can be called an endmember of that surface type. The algorithm for unmixing mixed pixels is mainly 185 

based on the linear combination of the spectral information of the endmember(Roberts et al., 1998). To analyze the spectral 

information combination of a pixel, a linear spectral mixing analysis model can be used, which assumes that different 

endmember energies only undergo single scattering mixing and that there is no nonlinear mixing process(Painter et al., 2003). 

The linear spectral mixing analysis expression and constraints can be expressed as Equations 1-3: 
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𝑅𝜆 = ∑ 𝐹𝑖

𝑁

𝑖=1

𝑅𝑖,𝜆 + 𝜀𝜆 

(1) 

∑ 𝐹𝑖

𝑁

𝑖=1

= 1 

(2) 

0iF   (3) 

Painter et al. (2003) established an endmember spectral library by collecting spectra of various types of vegetation, rocks, 190 

soils, and lake ice from the field and lab and optimized the endmember metadata of snow cover of different grain sizes using 

radiative transfer models. They then used this spectral library with MODIS images to produce the MODIS Snow Covered Area 

and Grain Size algorithm (MODSCAG)(Painter et al., 2009). Due to the phenomenon of “the same object with different 

spectra”, spectra from limited observation conditions in the field and lab have difficulty representing the actual complex surface. 

Meanwhile, the spectrum simulated by the Mie/DISORT model can represent the reflection characteristics of snow under 195 

different snow properties and observation conditions, but it is also susceptible to the simulation errors of the model itself. In 

this study, the MEAMA-AGE algorithm was used to retrieve the fractional snow cover in the Asian Water Tower region, 

which combines an image-based automatic endmember extraction algorithm(Shi, 2012) with a spectral library optimization 

method (Xu et al., 2015). The MESMA-AGE algorithm can improve the computational efficiency while ensuring the 

representativeness of the endmembers(Hao et al., 2019). Considering that if the image area is too large, the representativeness 200 

will be limited if only one set of endmember libraries is used, this study performs the FSC retrieval independently for each 

MODIS tile during the retrieval process. The rules for extracting snow and non-snow endmembers are shown in Table 2. 

Table 2. Endmember extraction rule of the MESMA-AGE algorithm(Shi, 2012; Hao et al., 2019)  

End-Member Rule for MODIS Surface Reflectance data 

Snow NDSI>0.75 & NDVI<-0.035& R0.55>0.7 

Vegetation NDSI<-0.4 & NDVI>0.7 

Soil/rock NDSI<-0.4 & 0<NDVI<0.15 

Waterbody NDWI>0. 2& R0.86<0.2 
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Figure 3. The NDSI and NDVI pattern of vegetation, soil/rock, and snow endmembers from MODIS images 205 

For this study, 42033 samples were selected from the MODIS data in January, November, and December 2020. The 

sample types include snow (14756 samples), vegetation (6968 samples), and soil (20309 samples). The 

samples were used to create the ground object feature map (Fig. 3). The x-axis in Fig. 3 is the NDSI value, and the y-axis is 

the NDVI. The endmember extraction rules outlined in Table 2 effectively identify and isolate regions located at the geometric 

vertices within the two-dimensional scatter plots in Figure 3210 

. 

. 

3.2 Multistep spatiotemporal interpolation algorithm 

This study developed a multistep cloud removal algorithm that combines temporal and spatial information. The MSTI 

algorithm prioritizes the use of nearby spatiotemporal information based on the characteristics of snow cover and achieves 215 

complete cloud removal for still cloudy pixels by further expanding their spatiotemporal range. This algorithm is mainly 

divided into four steps: temporal filtering with a 3×3 temporal window, 4×4 spatial interpolation, piecewise cubic hermite 

interpolating polynomial (PCHIP) for the 19-day period, and further spatial interpolation using a 11×11window. The 

process is shown in the MSTI algorithm flowchart in Figure 2. 

1) The temporal filtering algorithm assumes that FSC does not change during a short period. (Hou et al., 2019). In previous 220 

studies, the size window of the adjacent time filter ranged from 1 d to 8 d. Due to the unique climate conditions and terrain 

conditions of the Asian Water Tower (high wind speeds can easily redistribute snow, and thin layers of snow can melt and 

sublime quickly), the snow cover changes rapidly. Therefore, choosing a longer time window may introduce errors. In this 

study, the time window of the adjacent time filtering algorithm was set to 3 d (the day of cloud cover, and the day before and 
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after cloud cover). If a given pixel is covered by clouds and there are no clouds before and after two days, the FSC value of 225 

the cloud pixel can be calculated using the following formula: 

𝐹𝑆𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑐𝑙𝑜𝑢𝑑

𝑇 (𝑥, 𝑦) = (𝐹𝑆𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑐𝑙𝑜𝑢𝑑−𝑓𝑟𝑒𝑒
𝑇−1

(𝑥, 𝑦) + 𝐹𝑆𝐶𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑙𝑜𝑢𝑑−𝑓𝑟𝑒𝑒
𝑇+1 (𝑥, 𝑦))/2 (4) 

where 𝐹𝑆𝐶_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑐𝑙𝑜𝑢𝑑
𝑇 (𝑥, 𝑦) is the predicted FSC value of cloud pixels (𝑥, 𝑦) at time T, 𝐹𝑆𝐶_𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑐𝑙𝑜𝑢𝑑−𝑓𝑟𝑒𝑒

𝑇−1 (𝑥, 𝑦) is 

the observed FSC value of cloud-free pixel (𝑥, 𝑦) at time T-1, and  𝐹𝑆𝐶_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑐𝑙𝑜𝑢𝑑
𝑇+1 (𝑥, 𝑦) is the observed FSC value of 

cloud-free pixel (𝑥, 𝑦) at time T+1. 

2) Based on the continuity of snow cover in spatial continuity, snow cover can be interpolated based on information from non-230 

cloud pixels around a cloud pixel (Gafurov and Bárdossy, 2009; Paudel and Andersen, 2011; Lindsay et al., 2015). Considering 

the situation where there are at least 3 identical pixels in the 4 pixels adjacent to a cloud pixel, the cloud pixel discrimination 

rule is as follows: if at least 3 of the 4 pixels above, below, left, and right of a cloud pixel are covered with snow, the central 

cloud pixel is assigned the mean FSC of the snow pixels in the adjacent 8 pixels. If at least 3 out of the 4 pixels above, below, 

left, and right of a cloud pixel are land, the central cloud pixel is assigned as land. In other cases, the pixels retain their cloud 235 

pixel values. 

3) For the remaining cloud pixels after the previous two steps, the PCHIP algorithm is used to interpolate the time series of 

the missing data. Compared with the spline curve used in previous studies (Dozier et al., 2008; Tang et al., 2013b, 2022), 

which uses the whole sequence information to fit an equation, the PCHIP algorithm(Fritsch and Carlson, 1980) divides the 

time series into several sub-intervals, and the fitting equation for this sub-interval can be obtained only by using the two 240 

endpoints of the sub-intervals and their derivative values. This also can make the results more conformal since the adjacent 

sub-intervals share an endpoint and a derivative. Therefore, the PCHIP algorithm can adaptively select a suitable time window 

for interpolation according to the cloud persistence days (CPD), the whichPCHIP algorithm ensures the monotonicity of the 

interpolation result, which and allows it to achieve spatiotemporally continuous fractional snow cover while suppressing the 

effects of noise. Through statistical analysis of the CPDcloud cover in the Asian Water Tower region over the past 245 

approximately 20 years, 78.92% of the regions has less than 16 days of cloud cover, and 936.1458% has less than 19 days of 

cloud cover. Therefore, the time window selected for this study was set to 9 days before and after the presence of cloud cover 

pixels. 

The PCHIP algorithm assumes that the known function 𝑓 (𝑥) satisfies 𝑓 (𝑥𝑖) = 𝑓𝑖  and 𝑓′(𝑥𝑖) = 𝑓𝑖
′ (𝑖 = 0,1,2, … , 𝑛) at n+1 

distinct nodes 𝑥𝑖  (𝑖 = 0 … . . . , 𝑛 𝑛) on the interpolation interval [a, b]. A segmented cubic Hermite interpolation function  𝐺(𝑥)  250 

can be constructed to satisfy Equations (5), (6) and (7). 

The polynomial degree of 𝐺(𝑥) between each cell is 3 (5) 

𝐺(𝑥) ∈ 𝐶1[𝑎, 𝑏] (6) 

𝐺(𝑥𝑖) = 𝑓(𝑥𝑖), 𝐺′(𝑥𝑖) = 𝑓′(𝑥𝑖),𝑖 = (0,1, … , 𝑛) (7) 

The expression of 𝐺(𝑥) between cells [𝑥𝑘 , 𝑥𝑘+1]can be directly obtained from the above conditions: 
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𝐺(𝑥) = (1 + 2
𝑥 − 𝑥𝑘

𝑥𝑘+1 − 𝑥𝑘
) (

𝑥 − 𝑥𝑘+1

𝑥𝑘 − 𝑥𝑘+1
)

2

𝑦𝑘 + (1 + 2
𝑥 − 𝑥𝑘+1

𝑥𝑘 − 𝑥𝑘+1
) (

𝑥 − 𝑥𝑘

𝑥𝑘+1 − 𝑥𝑘
)

2

𝑦𝑘+1

+ (𝑥 − 𝑥𝑘) (
𝑥 − 𝑥𝑘+1

𝑥𝑘 − 𝑥𝑘+1
)

2

𝑦𝑘
′ + (𝑥 − 𝑥𝑘+1) (

𝑥 − 𝑥𝑘

𝑥𝑘+1 − 𝑥𝑘
)

2

𝑦𝑘+1
′  

(8) 

 

where 𝑥𝑘  and 𝑥𝑘+1 are the positions of two adjacent time points to be interpolated，𝑦𝑘  and 𝑦𝑘+1 are the FSC corresponding 

to the two observations before and after the corresponding interpolation point, and 𝑦𝑘
′  and 𝑦𝑘+1

′  are the corresponding 255 

derivatives. 

4) After the first three steps of spatiotemporal interpolation, there are still a few cloud pixels left. In this study, the observation 

information from the 11*11 interpolation window centred on the cloud pixel was used based on the inverse distance weight 

(IDM) interpolation algorithm, which considers elevation information for spatial interpolation. The IDW interpolation 

algorithm is an important application of the first law of geography, which uses the distance between the interpolation point 260 

and the sample point as the weight for weighted averaging (Zhao et al., 2022). The closer the interpolation point is, the greater 

the weight assigned to the sample point. According to existing studies, elevation is important for the distribution of fractional 

snow cover (Li et al., 2017), but traditional IDW algorithms only consider spatial distance. Therefore, this study incorporated 

the influence of elevation on fractional snow cover on this basis. The SNOWL method is a commonly used algorithm for 

spatiotemporal interpolation of snow cover, and scholars often use 100 m as the interval(Huang et al., 2016; Li et al., 2017). 265 

Therefore, this study mainly used clear sky pixel information within the range of elevation differences less than 100 m around 

the pixels. The process of the IDW interpolation algorithm considering elevation information is described in Eq. (9), Eq. (10) 

and Eq. (11): 

𝑑𝑖 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)22
 (9) 

𝑤𝑖 =
∆𝐸𝑖/𝑑𝑖

∑ ∆𝐸𝑖/𝑑𝑖
𝑛
1

, ∆𝐸𝑖 = {
1 −

|∆𝐸𝑙𝑒𝑣𝑖|

100
, |∆𝐸𝑙𝑒𝑣𝑖| ≤ 100 𝑚

0, |∆𝐸𝑙𝑒𝑣𝑖| > 100 𝑚
 

(10) 

𝐹𝑆𝐶(𝑥, 𝑦) = ∑ 𝑤𝑖

𝑛

𝑖=1

∗ 𝐹𝑆𝐶(𝑥𝑖 , 𝑦𝑖) 
(11) 

where (𝑥, 𝑦) is the position of the cloud pixel,(𝑥𝑖 , 𝑦𝑖) is the observing pixel positions for the surrounding clear sky pixels, 𝑑𝑖 

is the distance between the sample point and the position to be interpolated, ∆𝐸𝑖 is the weight of the i-th sample point obtained 270 

based on elevation, ∆𝐸𝑙𝑒𝑣𝑖  is the elevation difference, 𝑤𝑖  is the weight of the i-th sample point, 𝐹𝑆𝐶(𝑥𝑖 , 𝑦𝑖) is the fractional 

snow cover for clear sky pixels, and 𝐹𝑆𝐶(𝑥, 𝑦) is the interpolated fractional snow cover for the cloud pixel. 

3.3 Evaluation Metrics 

Selected metrics for validation of the AWT MODIS FSC product included the OA, PA, UA, CK, R2, RMSE, and MAE, 

which are defined below: 275 
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OA =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (12) 

PA =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 

UA =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

𝐶𝐾 =
𝑂𝐴 − 𝑃

1 − 𝑃
 , 𝑃 =

(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)+(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)2  (15) 

𝑅2 =  
[∑(𝑓𝑒𝑠𝑡 − 𝑓𝑒𝑠𝑡

̅̅ ̅̅̅)(𝑓𝑟𝑒𝑓 − 𝑓𝑟𝑒𝑓
̅̅ ̅̅ ̅)]

2

∑(𝑓𝑒𝑠𝑡 − 𝑓𝑟𝑒𝑓
̅̅ ̅̅ ̅)2 ∙ ∑(𝑓𝑟𝑒𝑓 − 𝑓𝑟𝑒𝑓

̅̅ ̅̅ ̅)2
 (16) 

MAE =  
1

𝑁
∑ |𝑓𝑒𝑠𝑡 − 𝑓𝑟𝑒𝑓|

𝑁

 (17) 

RMSE =  √
1

𝑁
∑(𝑓𝑒𝑠𝑡 − 𝑓𝑟𝑒𝑓)

2

𝑁

 (18) 

where TP indicates true positive, TN indicates true negative, FP indicates false positive, FN indicates false negative, 

𝑓𝑒𝑠𝑡indicates fractional snow cover estimation derived from MODIS, and similarly, 𝑓𝑟𝑒𝑓indicates reference fractional snow 

cover derived from Landsat–8. To calculate the overall accuracy, binary snow cover was labeledlabelled for pixels with 

fractional snow cover ≥15%, as the error for FSC less than 15% would probably be larger because the spectral signal from 

snow is diminished with mixing from other land covers and cloud/snow misjudgments are more severe in areas with less snow 280 

(Painter et al., 2009; Rittger et al., 2013, 2021; Selkowitz et al., 2017; Key et al., 2020; Hall and Riggs, 2007; Tang et al., 

2013a). 

4 Results 

In this study, a comprehensive evaluation of the accuracy of the AWT MODIS FSC product in two dimensions, namely 

binary and fractional snow cover, was conducted. The binary and fractional snow cover accuracies of the AWT MODIS FSC 285 

product were quantitatively assessed under three different conditions: overall, different surface types, and altitudes. This 

evaluation was performed using 2745 Landsat-8 images. Additionally, the binary accuracies of the AWT MODIS FSC product 

were specifically evaluated in three different conditions, i.e., overall (including clear and cloud conditions), clear sky, and 

cloud cover, utilizing snow depth data from 175 meteorological stations. 
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4.1 Validation with Landsat-8 images 290 

4.1.1 Overall results 

In this study, the 2745 Landsat-8 scenes were used as "ground truth" to quantitatively evaluate the AWT MODIS FSC 

product obtained from clear sky in two dimensions: binary (OA, PA, and UA) and fractional snow cover (R2, MAE, and 

RMSE). Figure 4 shows violin charts of the accuracy evaluation metrics, and the violin charts of each accuracy metric are 

composed of two parts: the outer violin chart and the inner box plot. The left side of the outer violin chart is the kernel density 295 

map, the larger the area of a certain range is; the greater the probability of the distribution near a certain value, and the 

horizontal line in the left area is where the median is located. To the right of the violin plot is a histogram of the frequency of 

a value, i.e., the longer the line is, the more points there are for that value. The internal box plot contains a gray rectangle 

consisting of the upper and lower quartiles, with the mean position represented by the white point. From Figure 4, the minimum 

OA value of the AWT MODIS FSC product is 80.38%, and the average value is 95.17%. The minimum PA value is 58.71%, 300 

and the average value is 97.34%, i.e., the average omission error of this product is 2.66%. The minimum UA value is 67.02%, 

and the average value is 97.59%, i.e., the average commission error is 2.41%. The R2 value distribution range is 0.40-0.97, and 

the average value is 0.80. The MAE ranges from 0.01 to 0.23, with an average of 0.10. The RMSE ranges from 0.02 to 0.26, 

with an average of 0.16. The above results provide a good illustration of the consistency of the AWT MODIS FSC product 

with the "ground truth" data. 305 

 

Figure 4. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC product validated by Landsat images 

To better explore the interannual differences in each accuracy metric, this study divided the 2745 Landsat-8 scenes by year. 

Figure 5 shows the interannual distribution of each accuracy metric, and Table 3 shows the number of Landsat images and the 

interannual average of each accuracy metric. Figure 5 and Table 3 show that the interannual means of the OA range from 310 

92.41% to 96.22%, PA from 94.77% to 97.88%, UA from 95.35% to 98.55%, R2 from 0.76 to 0.81, MAE from 0.09 to 0.11, 

and RMSE from 0.15 to 0.17. The accuracy metrics perform better except for 2013, where the poor accuracy indicators are 
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mainly due to the overall low number of validation data and the fact that a significantly larger proportion of the validation data 

are located at high altitudes in mountainous areas than in other years. The results of this part of the retrieval are strongly 

influenced by topographical effects. 315 

 

Figure 5. Violin chart for the interannual accuracy evaluation metrics 

Table 3. The number of Landsat images and the interannual average of each accuracy metric 

Year Image Number OA PA UA R2 MAE RMSE 

2013 123 92.41% 94.77% 95.35% 0.81 0.11 0.17 

2014 328 95.60% 97.67% 98.38% 0.79 0.11 0.16 

2015 287 95.08% 97.26% 97.58% 0.79 0.10 0.16 

2016 309 96.22% 97.88% 98.55% 0.81 0.09 0.15 

2017 315 95.85% 97.25% 98.27% 0.79 0.09 0.15 

2018 389 95.16% 97.30% 97.95% 0.76 0.11 0.17 

2019 360 95.23% 97.32% 97.37% 0.79 0.10 0.16 

2020 320 95.01% 97.21% 97.53% 0.81 0.10 0.16 

2021 314 94.20% 97.33% 95.07% 0.81 0.10 0.17 

4.1.2 Evaluation for different land surface types 

Spectra of snow-covered surface also encounters the impacts of land cover type. In particular, in forested areas, snow below 320 

the forest canopy is difficult to observe with spaceborne sensors because the forest blocks the visible, near-infrared, and 

shortwave infrared bands(Wang et al., 2021, 2023). Therefore, in this study, 2745 scenes of Landsat-8 images were divided 

into four categories according to land surface types, namely, grassland area (1500 scenes), bare land area (264 scenes), forest 
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area (410 scenes), and mountain area of the Himalayas and Pamir Plateau (571 scenes). The accuracy evaluation metrics under 

the two dimensions of binary value and fractional snow cover of the four land surface types are shown in Figure 6. Regarding 325 

the accuracy metrics of binarization, the accuracy of the grassland area is better than that of other land surface types, and its 

average OA is 95.99%, while the bare land area is the worst but also reaches 93.69%. This is because the bare land area is 

mainly the hinterland of the Asian Water Tower region, which is mainly desert/Gobi with little vegetation growth, and there 

are also many large and small lakes distributed in this area. The bright land and the winter water surface lead to deviations in 

the retrieval algorithm. In addition, the snow in this region is relatively broken, and the observation scales of MODIS and 330 

Landsat are quite different, making it difficult for MODIS to capture the broken snow information as effectively as Landsat. 

These two reasons lead to many errors in the results. The UA also illustrates this problem well. Figure 6 shows that the average 

UA of bare land is only 94.06%, approximately 4% lower than that of the other surface types. From the perspective of fractional 

snow cover accuracy metrics, grassland and forest are slightly worse, mainly because it is difficult to observe the snow signal 

shielded by the vegetation canopy at the MODIS scale. Previous studies have demonstrated that canopy adjustment using 335 

fractional vegetation cover (FVC) can enhance the accuracy of observations in such areas(Raleigh et al., 2013; Rittger et al., 

2020; Xiao et al., 2022). Therefore, future relevant studies can utilize mature FVC products for canopy adjustment to fulfill 

research requirements. For snow mapping in areas with high forest cover we recommend using URSI(Wang et al., 2021) or 

NDFSI(Wang et al., 2020), which are more sensitive indicators, to replace NDSI to ensure accuracy. 

 340 

Figure 6. Violin charts for accuracy evaluation metrics of the AWT MODIS FSC product validated by Landsat images under different 

surface types 
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4.1.3 Evaluation for different altitudes 

Topographic effects challenge accurate snow cover mapping with optical imagery as well. The snow cover products such 

as MOD10A1 have been reported uncertaines related with altitudes(Zhang et al., 2020; Wu et al., 2021; Huang et al., 2022a). 345 

Therefore, the 2745 Landsat-8 images are divided into four sections according to altitude, namely < 3 km (1603 scenes), 3-4 

km (395 scenes), 4-5 km (355 scenes) and > 5 km (392 scenes). The results of the accuracy evaluation metrics according to 

different heights are shown in Figure 7. As shown in Figure 7, both binary and fractional snow cover accuracy metrics show a 

decreasing trend with increasing altitude. The areas smaller than 3 km are mostly distributed in northern Xinjiang, China, i.e., 

the area north of 40°N, where the snow distribution is relatively concentrated, and the surface type is mostly grassland with a 350 

small amount of forest, so the accuracy is highest. The three elevation regions greater than 3 km are mainly distributed in the 

Tianshan Mountains, the Pamir Plateau and the Tibetan Plateau. Snow fragmentation and topographic heterogeneity in these 

regions increase with altitude. This results in a slight reduction in the accuracy of the AWT MODIS FSC product. 

 

Figure 7. Violin chart for accuracy evaluation metrics of the AWT MODIS FSC product validated by Landsat under different altitudes 355 

4.2 Validation with in situ snow depth measurements  

Landsat images can only be used to evaluate the accuracy of the fractional snow cover retrieval algorithm and FSC product 

under clear sky conditions, and the fractional snow cover information reconstructed by the MSTI algorithm needs to be verified 

by snow depth observations at meteorological stations. Therefore, this study used a total of nearly 1 million observations 

collected from 175 in situ stations during the period from 26 February 2000 to 30 April 2019 to evaluate the accuracy under 360 
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different weather conditions. The numbers of meteorological stations and SD observations obtained each year are shown in 

Figure 8. The number of stations fluctuates to some extent each year, and the number of snow depth observations available 

after 2014 has nearly tripled compared with before 2014. 

 

Figure 8. The number of in situ stations and observed data volume per year (3.12, 2000-4.30, 2019) 365 

4.2.1 Overall results 

To better assess the accuracy of snow identification, only in situ stations with more than 20 days of snow observations per 

year were selected for evaluation(Zhang et al., 2020; Hao et al., 2021). This reduced the number of in situ stations and the total 

observation data by approximately half. In this study, snow depth observations from 175 in situ stations were used to perform 

a binary evaluation of the AWT MODIS FSC product. Table 4 shows the results of the overall accuracy evaluation. It can be 370 

seen from the results that the OA of the product reaches 93.26%, PA can reach 84.41%, and UA can reach 82.14%, i.e., the 

omission error is 15.59%, and the commission error is 17.86%. In addition, CK reach 0.79. The results of the above accuracy 

metrics exclude the stations without snow observations, which indicates that the AWT MODIS FSC product has good accuracy 

and good consistency with the snow depth observation data of meteorological stations. 

Table 4. Confusion matrix and accuracy results of the AWT MODIS FSC product based on snow depth measurements from CMA. OA, 375 

PA, UA and CK 

 AWT MODIS FSC 

Class Snow  Non-Snow 

In situ snow depth measurements 
Snow 102617  18946 

Non-Snow 22316  468105 

OA 93.26% 

PA 84.41% 

UA 82.14% 

CK 0.79 



18 

 

To verify the stability of the product accuracy over time, this study performed a binary accuracy assessment of the snow 

depth observations at each station by year. The overall results of each accuracy metric over the last 20 years are shown in 

Figure 9. Each accuracy metric is relatively stable before and after 2014, but there is a large fluctuation in 2014. The OA metric 

exhibits the most significant temporal variation. Before 2014, the fluctuation range of OA is 88.69%-92.96%, and after 2014, 380 

the fluctuation range of OA is 95.05-97.54%. Meanwhile, CK and PA increase significantly after 2014. This also indicates 

that the consistency between the AWT MODIS FSC product and the snow depth observations from meteorological stations 

has improved significantly since 2014. The fluctuation in the above accuracy indicators is mainly due to the significant increase 

in the number of meteorological station observations used in this study after 2014 and the improvement in the accuracy of 

snow identification, which ultimately leads to a significant increase in OA. The percentage of cloud cover in different years is 385 

also shown in Figure 9 below. Combined with Figures 8 and 9, the decrease in cloud and snow cover (Tang et al., 2022; Yao 

et al., 2022) leads to an increase in the proportion of clear sky and non-snow observations at stations. This will 

result in fewer omission errors (PA increases), ultimately leading to better station-based assessment accuracy 

.  

.  390 

.  

 

Figure 9. Accuracy fluctuations of the AWT MODIS FSC product based on in situ snow-depth measurements and the 

percentage of cloud cover in the past 20 years 

4.2.2 Accuracy metrics at each in situ station 395 

Figure 10 shows the detailed results of the accuracy metrics of the AWT MODIS FSC product verified by the snow depth 

data of the stations. As shown in Figure 10, the OA of most in situ stations is above 90%, with only one in situ station below 

70%. However, the figure shows that, unlike the OA, the accuracy of the entire Asia Water Tower region is relatively consistent. 

PA, UA and CK are severely affected by the region. The PA and UA metrics at stations in northern Xinjiang, China, are 

generally greater than 90%, and CK is also greater than 0.8. This is mainly due to the stable snow cover in the region. The 400 
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spatiotemporal reconstruction algorithm of snow cover developed in this research can well grasp the spatiotemporal variation 

characteristics of snow cover in this region, so that high-precision spatiotemporal reconstruction of snow cover information 

can be achieved. However, the snow cover in the eastern part of the Asia Water Tower region and the northwestern edge of 

the Tarim Basin is relatively broken, and the MODIS resolution is coarse. These areas are seriously affected by clouds, so the 

PA, UA and CK metrics in these areas are generally not high. 405 

 

Figure 10. Point-based accuracy results of the AWT MODIS FSC product: (a) OA; (b) PA; (c) UA; (d) CK.  

4.2.3 Performance of spatiotemporal reconstruction algorithm 

The above two sections presented the overall accuracy of the AWT MODIS FSC product using snow depth data from 

meteorological stations. The AWT MODIS FSC product is derived from the composition of two parts: the real MODIS 410 

observation under clear sky and the spatiotemporal reconstruction with the MSTI algorithm for cloudy conditions. To further 

explore the accuracy of the fractional snow cover results of these two parts, the snow depth observation data of the 

meteorological stations are divided into two categories based on MODIS clear sky and cloudy conditions. First, the stability 

of the accuracy evaluation metric under clear sky and cloudy conditions is evaluated, respectively and the results are shown in 

Figure 11. Comparison of Figure 10 shows that there is an increase in accuracy in years with lower cloud cover. Figure 11 (a) 415 

presents the interannual variation results of the accuracy metrics of fractional snow cover obtained from MODIS clear sky 
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observations using snow depth observations at the selected meteorological stations. OA, PA, UA and CK all exhibit good 

stability, and the range of variation in OA is 92.80-99.01%. The range of UA is 82.39-90.26%. After 2014, the two indices of 

PA and CK improved, with the maximum of PA reaching 95.46% and CK reaching 0.91. Figure 11 (b) shows the interannual 

variation results of the accuracy metrics of the fractional snow cover result obtained by the spatiotemporal reconstruction of 420 

the MSTI algorithm using the snow depth observations at the selected meteorological stations. All accuracy metrics decrease 

to some extent compared to the clear sky condition. Influenced by the amount of in situ station data used, the spatiotemporal 

reconstruction results show a relatively obvious jump in 2014. The variation range of OA before 2014 is 84.51-90.00%, but 

the variation range of OA after 2014 is 92.76-95.60%. PA and CK have interannual variations in the years before 2014, but 

the value of the years after 2014 has a large increase, with the maximum PA reaching 89.61% and CK reaching 0.83. UA has 425 

only a large interannual variation, and there is no significant jump in 2014. The results show that the accuracy of the fractional 

snow cover based on clear sky observations is significantly better than that of the spatiotemporal reconstruction. This is mainly 

due to the presence of clouds over a long period of time and over a large area in most of the Asian Water Tower region, the 

interpolation of this part of the area relies heavily on the last two steps of the MSTI algorithm. The last two steps of the MSTI 

algorithm require a larger space-time window to complete the interpolation. However, a larger space-time window introduces 430 

more error, especially for snow cover, which has strong spatial heterogeneity and changes rapidly over time. 

 

Figure 11. Point-based accuracy results of the AWT MODIS FSC product: (a) clear sky observations; (b) spatiotemporal 

reconstruction. 

This study further analyzed the accuracy of the AWT MODIS FSC product obtained from MODIS clear sky and cloud cover 435 

observations at each station, and the results of the binarization accuracy metrics are shown in Figure 12. It can be seen from 

the figure that the accuracy of fractional snow cover obtained by the clear sky retrievals is significantly better than that obtained 

by the MSTI algorithm. According to the OA in Figure 12 (a) and (e), the accuracy of the verification results of fractional 

snow cover based on MODIS clear sky observations is good at all stations, and only a few stations are less than 90%. However, 

the OA of the fractional snow cover reconstructed by the MSTI algorithm shows some regional differences. When comparing 440 

the accuracy metrics (PA, UA, and CK) of fractional snow cover between the real MODIS observations and the spatiotemporal 
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reconstruction results achieved through the MSTI algorithm, notable regional variations are observed in all three metrics. In 

other words, the accuracy of the stable snow cover area in northern Xinjiang, China is obviously better than that in the central 

and eastern parts of the Asia Water Tower region and the northwestern edge of the Tarim Basin, where the snow cover is 

relatively fragmented and rapidly changing. 445 
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Figure 12. Point-based accuracy results of the AWT MODIS FSC product under clear sky conditions ((a)OA, (b)PA, (c)UA, 

and (d)CK) and spatiotemporal reconstruction ((e)OA, (f)PA, (g)UA, and (h)CK) 

5 Discussion 

5.1 Comparing AWT MODIS FSC with Snow CCI(MODIS), MOD10A1 and HMRFS-TP product 450 

In order to evaluate the accuracy of AWT MODIS FSC products more objectively, Snow CCI(MODIS) (Nagler et al., 2022), 

MOD10A1(Hall and Riggs, 2016) and HMRFS-TP(Huang et al., 2022a) products are selected as benchmarks for this study 

using Landsat-8 imagery. Snow CCI(MODIS) product has a spatial resolution of 1km and a time span of 2001-2020, which is 

used to compare the accuracy difference with the AWT MODIS FSC product under the clear sky scenario. MOD10A1 is the 

most widely used MODIS snow product, which has a long time series (since 2000) and highly spatial and temporal resolution 455 

(i.e., 500 m and daily). This study is based on the GEE platform to obtain the MOD10A1 (Collection 61) data from 2013 to 

2022 for the Asian water tower region, and uses this data product to evaluate the accuracy difference with the AWT MODIS 

FSC product under the clear sky scenario. The HMRFS-TP product is a continuous spatio-temporal binary snow product based 

on the MOD10A1 product and the HMRFS spatio-temporal interpolation algorithm covering the Tibetan Plateau region within 

China, and is used in this study to compare the accuracy of the two sets of continuous spatio-temporal products. 460 

The Snow CCI(MODIS) product is a fractional snow cover product generated by the SCAmod algorithm (Metsämäki et al., 

2012; Metsamaki et al., 2005). In this study, 877 Landsat images were used to compare the differences in the continuous value 

accuracy evaluation metrics between the Snow CCI(MODIS) product and the AWT MODIS FSC product under clear sky 

conditions. and the results are shown in Figure 13 below. As shown in Figure 13, the R2, RMSE and MAE of the AWT MODIS 

FSC product are 0.831, 0.148 and 0.084. The R2, RMSE and MAE of the Snow CCI(MODIS) product are 0.780, 0.159 and 465 

0.094, respectively. From the results, it can be concluded that the AWT MODIS FSC product is overall better than the Snow 

CCI(MODIS) on the 1km scale, and the subsequent dynamic canopy transmittance for different regions will help to realize 

high-precision snow cover monitoring. 

 

Figure 13. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC and Snow CCI(MODIS) product validated by 470 

Landsat images 
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The accuracy of the MOD10A1 product depends on the threshold value of NDSI, and the commonly used thresholds are 0.1 

(Zhang et al., 2019), 0.29 (Zhang et al., 2021; Tang et al., 2022) and 0.4 (Riggs et al., 2017). Since no spatio-temporal 

interpolation is performed for the MOD10A1 product, in order to make a comprehensive and objective comparative assessment, 

this study uses 1805 Landsat images to compare the clear sky pixels of the two products, and the results are shown in Figure 475 

14 below. The OA, PA and UA of the AWT MODIS FSC product are 97.69%, 98.73% and 98.83% respectively. The NDSI 

threshold is 0.1, the OA, PA and UA of the MOD10A1 products are 94.51%, 95.70% and 99.04%. The NDSI threshold is 0.29, 

the OA, PA and UA of the MOD10A1 products are 94. 75%, 98.49% and 96.52%. The NDSI threshold is 0.4, the OA, PA and 

UA of the MOD10A1 products are 91.86%, 98.96% and 90.82%. As the NDSI threshold increases, Figure 14 shows that 

the PA of the MOD10A1 product gradually increases and the UA gradually decreases. This also means that the percentage of 480 

omission error is decreasing and the percentage of commission error is increasing. This is because the larger the NDSI, the 

higher the probability that the image pixel is snow, and the probability of correctly judging snow increases accordingly, which 

also leads to a lower probability of correctly judging non-snow, resulting in a decrease in overall accuracy. From the results in 

Figure 14, the MOD10A1 product has the best accuracy when the NDSI is 0.29, but its accuracy is still lower than that of 

the AWT MODIS FSC product. 485 

 

Figure 14. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC and MOD10A1 product validated by Landsat 

images 

The NDSI of the HMRFS-TP product is 0.4 as the threshold for snow identification of MOD10A1, and the spatio-temporal 

continuous product is obtained by the HMRFS spatio-temporal interpolation algorithm. In this study, 372 Landsat images were 490 

used to quantitatively evaluate and compare two sets of spatio-temporal continuous snow products, and the results are shown 

in Figure 15 below. As shown in Figure 15, the OA, PA and UA of the AWT MODIS FSC product are 89.71%, 94.29% 

and 86.21%. The OA, PA and UA of the HMRFS-TP product are 79.45%, 99.20% and 66.82%, respectively. Comparing the 

accuracy indices of the two sets of products, AWT MODIS FSC products are significantly better than HMRFS-TP products, 

and various accuracy evaluation indices are around 90%. The poor accuracy of the HMRFS-TP products is mainly due to the 495 

value of NDSI. Combined with Figure 14, the threshold of 0.4 will lead to serious misclassification of products and is not 

applicable to the Tibetan Plateau region. 
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Figure 15. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC and HMRFS-TP product validated by Landsat 

images 500 

5.2 Area differences in fractional snow cover and binary snow cover 

Long-term series and high precision fractional snow cover products are of great importance for snow hydrology research in 

the Asia Water Tower region. However, most of the existing snow cover products are binary products or space-time gap fill 

fractional snow cover products. In this study, the clear sky fractional snow cover was retrieved by the MEASMA-AGE 

algorithm based on MODIS observations. The missing fractional snow cover information caused by cloud cover was 505 

reconstructed by the MSTI algorithm, and finally, the spatiotemporally continuous long-term series AWT MODIS FSC product 

was obtained. The actual snow distribution, which is difficult to capture, was identified with binary values, especially in 

scenarios with mixed pixels at medium and coarse resolutions, and the subsequent direct application of binary products will 

introduce large errors. Therefore, the AWT MODIS FSC product produced in this study was used to quantitatively analyze 

the actual difference between the binary snow cover product and the fractional snow cover product, and the results are shown 510 

in Figure 16. In this study, pixels with FSC>15% were identified as the binary snow product (Rittger et al., 2013; Wang et 

al., 2019). Figure 16 (a) shows the difference between the total snow cover area obtained by the binary snow product and 

that obtained by the fractional snow cover product in the Asian Water Tower region. There is a significant overestimation of 

the binary snow product, with an average difference of 39400 km2 and a maximum difference of 102,000 km2, which is very 

large for the Asian Water Tower region with a total area of only 623,000 km2. Figure 16 (b) shows the proportion of the 515 

difference in the total snow area obtained by the two snow cover products in the total snow area obtained by the binary snow 

product. The average difference is 34.53%, and the maximum difference is 59.52%. Comparing Figure 16 (a) and (b), the 

smaller the total snow cover area is, the greater the difference between the two sets of products, indicating that greater errors 

in the binary snow cover product occur for more broken and smaller areas. 
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 520 

Figure 16. Difference between the binary snow cover product and the fractional snow cover product in the Asia Water Tower region: 

(a) the difference in total snow cover area between the binary snow cover product and the fractional snow cover product, (b) proportion of 

total snow area difference between the two snow products compared with the total snow area obtained by the binary snow product  

5.3 Limitations of the AWT MODIS FSC product 

Clouds in most of the Asia Water Tower region have the characteristics of wide coverage and long duration. If clouds exist 525 

for a long-term, relying only on MODIS data will lead to a serious data gap, and the accuracy of snow cover monitoring will 

be reduced, regardless of any spatiotemporal reconstruction algorithm. With the launch of a new generation of geostationary 

satellites (FY-4A/B, GOES-17/18, Himawari-8/9, and MSG/MTG), their sensor performance can be comparable to that of 

MODIS sensors, and at the same time, the observation can be realized once every 5-15 minutes. Combined with geostationary 

sensors, these platforms are expected to provide the highest precision fractional snow cover monitoring. At the same time, 530 

problems with MODIS cloud products, such as overestimation and confusion error between clouds and snow, can be effectively 

improved by combining station observations(Dong and Menzel, 2016a, b), but this requires enough dense stations in the study 

area. The applicability of this method is limited due to terrain constraints in the AWT region, and subsequent studies in specific 

small areas may be referred to further improve product quality. Long-scale synchronous and high-frequency observations from 

geostationary meteorological satellites can overcome the shortcomings of the above methods and meet the needs of large-scale 535 

applications

. In this study, the monthly average 

cloud cover data MODIS and FY-4A during the period 2018.04-2022.03 were collected, and the results are shown in Figure 

17. Figure 17 (a) shows the average monthly cloud cover statistics from MODIS. It can be seen from the figure that the 

average monthly cloud cover in areas with more snow cover, such as the Pamir Plateau, Tianshan Mountain and Altai Mountain, 540 

is generally more than 15 days, and some areas of the Hengduan Mountain range can reach more than 25 days. As shown in 
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Figure 17(b), the average monthly cloud cover in most regions based on the FY-4A data is generally less than 10 days, and 

the average monthly cloud cover in the Hengduan Mountain region is also less than 19 days, which will provide strong data 

support for the subsequent high-precision spatiotemporal reconstruction of fractional snow cover information. However, the 

large amount of multitemporal observation data from geostationary satellites, the lack of necessary preprocessing steps, such 545 

as atmospheric correction, angle correction and geometric registration, and the serious misjudgement of cloud snow in existing 

cloud products will limit its further application. 

 

Figure 17. Monthly average cloud cover over the Asia Water Tower region (2018.04-2022.03) from (a) MODIS and (b) FY-4A 

6 Data and Code availability 550 

The AWT MODIS FSC product is the daily cloud-gap-filled snow cover data for the Asia Water Tower region. It has a 

spatial resolution of 0.005° and a daily temporal resolution. This dataset is freely available from the National Tibetan Plateau 

Data Center at https://doi.org/10.11888/Cryos.tpdc.272503 (Jiang et al., 2022) or from the Zenodo platform at 

https://zenodo.org/doi/10.5281/zenodo.10005826. It contains 8347 daily data files from 26 February 2000 to 31 December 

2022 in NetCDF  format. The filename rule is ‘AWT_MODIS_FSC_yyyymmdd.NC’, where AWT_MODIS_FSC represents 555 

the daily cloud-gap-filled MODIS fractional snow cover product over the Asian Water Tower region, and yyyymmdd indicates 

the year, month, and day of the data. The dataset contains two layer, 'fSCA' layer: fractional snow cover (non-snow (0), snow 

(1-100), water (237), cloud (250), and filling value (255)), 'QA' layer: cloud mask (0: clear sky, 1: cloud mask and 2: invalid 

value). 

The Landsat-8 fractional snow cover dataset for verification is available on the Zenodo platform: 560 

https://doi.org/10.5281/zenodo.10008227. The binary value (snow/no-snow) snow depth dataset based on ground stations is 

available on the Github platform: https://github.com/FangboPan/AWT_Site_SD. The code is available on the Github platform:  

https://github.com/FangboPan/AWT_MODIS_DailyFSC_Product_code_v1. 
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7 Conclusions 

In this study, based on the MESMA-AGE algorithm and the MSTI spatiotemporal reconstruction algorithm, the daily AWT 565 

MODIS FSC product was produced with long-term series, high precision, and spatiotemporal continuity in the Asian Water 

Tower region. The spatial resolution of the product is 0.005° from 2000 to 2022. The new AWT MODIS FSC product was 

quantitatively evaluated in two dimensions: binary value and fractional snow cover using snow depth observations from 

meteorological stations and high spatial resolution Landsat-8 images. Based on the results of the Landsat-8 image accuracy 

evaluation, the binarized identification accuracy metrics OA, PA and UA are 95.17%, 97.34% and 97.59%, respectively. The 570 

total fractional snow cover accuracy metrics R2, RMSE and MAE are 0.80, 0.16 and 0.10, respectively, compared with 2745 

Landsat-8 images. All these results indicate that the AWT MODIS FSC product has good consistency with the high spatial 

resolution Landsat-8 images and has high accuracy. Based on the accuracy evaluation results after excluding the stations that 

cannot observe snow at all, the OA, PA, UA and CK of the AWT MODIS FSC product can reach 93.26%, 84.41%, 82.14% 

and 0.79, respectively. The AWT MODIS FSC product consists of two parts: the retrieval results of MODIS clear sky 575 

observations and the spatiotemporal reconstruction results based on the MSTI algorithm. Snow depth observations from 

meteorological stations are also used to evaluate these two parts. The binary precision metrics of fractional snow cover based 

on MODIS clear-sky observations are as follows: OA (95.36%), PA (87.75%), UA (86.86%) and CK (0.84). The binarization 

accuracy metrics of the fractional snow cover based on the spatiotemporal reconstruction of the MSTI algorithm are as follows: 

OA (88.96%), PA (82.26%), UA (78.86%), CK (0.72).Therefore, it can be shown that both the binarized identification and 580 

fractional snow cover metrics are excellent at both the point scale and the areal scale, which further indicates that this AWT 

MODIS FSC product has relatively high precision(Wu et al., 2021; Huang et al., 2022a; Hao et al., 2022). The AWT MODIS 

FSC product is expected to offer robust and highly accurate data support for future snow hydrology studies. 
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