
Response to Reviewer 2 

Pan’s paper produced a daily cloud-free daily Cloud-gap-filled fractional snow cover products with 

0.005°spatial resolution based on MODIS surface reflectance data in the Asia Water Tower (AWT) 

region. The core of the algorithm contains two parts, one part is the automatic endmember extraction 

(MESMA-AGE) technique for producing FSC, and the other part is the multistep spatiotemporal 

interpolation algorithm (MSTI) for filling gaps. However, before this article is accepted by ESSD, the 

following questions are still required. 

We thank the topic editor, editor and anonymous reviewers for their thoughtful and constructive 

comments and suggestions, which significantly help us to improve the quality of the manuscript. In this 

revised manuscript, we have tried our best as much as possible to address all concerns and have revised 

the manuscript accordingly. Below, we indicate the original comment of the reviewer in black and our 

point-to-point response is denoted in blue. 

General comments: 

1.  The author conducted a comprehensive evaluation of the product using Landsat8 and sites, but 

comparison with existing products was lacking. It is recommended to increase comparison with other 

500-meter fractional snow cover products. The author also mentioned that SNOW CCI data can be 

compared before going to the cloud to clarify the accuracy of the MESMA-AGE algorithm. In particular, 

the MOD10A1F product is global daily Cloud-gap-filled fractional snow cover dataset. This study does 

not mention or compare with it.  

Response: We greatly thank the Reviewer #2 for the comment. Following the reviewer's suggestion, we 

added the comparison with the Snow CCI(MODIS) products on the continuous value accuracy evaluation 

index in the clear sky scenario. The result is shown in Figure 1 below. As shown in Figure 1, the R2, 

RMSE and MAE of the AWT MODIS FSC product are 0.831, 0.148 and 0.084. The R2, RMSE and MAE 

of the Snow CCI(MODIS) product are 0.780, 0.159 and 0.094, respectively. It can be seen from Figure1 

that the products we have produced are overall better than the Snow CCI(MODIS) products. We have 

also added the relevant results to Section 5.1. 

 

Figure 1. Violin charts for the accuracy evaluation metrics of the AWT MODIS FSC and Snow 

CCI(MODIS) product validated by Landsat images 

We have compared MOD10A1 products, and it can be seen from the relevant results in Section 5.1 

that our AWT MODIS FSC products are superior to MOD10A1 under clear sky conditions no matter 

how NDSI threshold is selected. And previous studies have shown that the MOD10A1F product have a 



lower verified accuracy than MOD10A1 products (Hao et al., 2022; Stillinger et al., 2023). Because it’s 

based on the MOD10A1 product, their cloud gap filled (CGF) algorithm virtually only replaces cloud 

gaps in the current day with the previous most-recent clear-sky observation (Hall et al., 2019). Meanwhile, 

this CGF algorithm fails to consider the advantages of Terra and Aqua MODIS cooperative observations 

and the surrounding spatio-temporal information, resulting in limited accuracy of the interpolation results. 

Therefore, this study did not compare with MOD10A1F products. However, as suggested by the reviewer, 

we have added the introduction of the MOD10A1F products in the Section 1. 

Reference: 

Hall, D. K., G. A. Riggs, N.E. DiGirolamo and M.O. Román, 2019: MODIS Cloud-Gap Filled Snow-

Cover Products: Advantages and Uncertainties, Hydrology and Earth System Sciences, 23:5227-5241, 

https://doi.org/10.5194/hess-23-5227-2019. 

Hao, X., Huang, G., Zheng, Z., Sun, X., Ji, W., Zhao, H., Wang, J., Li, H., and Wang, X.: Development 

and validation of a new MODIS snow-cover-extent product over China, Hydrol. Earth Syst. Sci., 26, 

1937–1952, https://doi.org/10.5194/hess-26-1937-2022, 2022. 

Stillinger, T., Rittger, K., Raleigh, M., Michell, A., Davis, R., and Bair, E.: Landsat, MODIS, and VIIRS 

snow cover mapping algorithm performance as validated by airborne lidar datasets, The Cryosphere, 17, 

567–590, https://doi.org/10.5194/tc-17-567-2023, 2023. 

2.    The selection of pure end-member is the key to the MESMA-AGE algorithm. What is the basis for 

selecting pure end-member in TABLE2? Qinghai-Tibet soil and rocks are quite different. Is the current 

selection very representative? Further explanation is needed. 

Response: We sincerely appreciate the feedback from Reviewer #2. Following the reviewer's suggestion, 

we have added reference citations in Table 2. The MESMA-AGE algorithm was specifically tailored to 

the study area. Pure snow samples were selected for training according to snow spectral curve and image 

features, and the snow extraction rules of NDSI greater than 0.7 and NDVI less than -0.035 were obtained. 

In addition, a criterion of green band greater than 0.7 was included to mitigate the effect of glacial lakes 

(Shi, 2012). Non-snow endmembers, which include vegetation, water bodies and bare soil/rock, were 

identified primarily based on NDVI and spectral characteristics of non-snow endmembers (Shi, 2012). 

Simultaneously, the spectral vector algorithm (Xu et al., 2015) was employed to refine and optimize the 

spectral library, which obtained from images by using endmembers extraction rules (Shi, 2012). This 

refinement aimed to enhance the representativeness of the endmembers while ensuring computational 

efficiency. Comparative analysis with MODSCAG and MOD10A1 products revealed that the FSC 

retrieval results obtained through the MESMA-AGE algorithm exhibited superior accuracy overall 

within our study area (Hao et al., 2019). This comparison underscores the validity and reliability of the 

endmember extraction criteria outlined in Table 2. Considering that if the image area is too large, the 

representativeness will be limited if only one set of endmember libraries is used, this study performs the 

FSC retrieval independently for each MODIS tile during the retrieval process. To further validate the 

reliability of the endmember extraction rule, this study expanded the samples depicted in Figure 3 of the 

article. A total of 42,033 samples were selected from January, June, November, and December of 2001, 



2005, 2010, 2015, and 2020, including 14756 snow samples 6968, vegetation samples and 20309 soil 

samples. The soil/rocks on the Qinghai-Tibet Plateau do possess unique characteristics, as mentioned by 

the reviewer. Specifically, the high salt content in certain areas and surface brightness contribute to 

certain misinterpretations in the retrieval results. Consequently, to better demonstrate the efficacy of the 

soil endmember extraction rules, we intentionally augmented the number of soil samples. These samples 

were utilized to construct the ground object feature map (Figure 2), where the x-axis represents the NDSI 

value, and the y-axis denotes the NDVI. The endmember extraction rules outlined in Table 2 effectively 

identify and isolate regions located at the geometric vertices within the two-dimensional scatter plots in 

Figure 2. 

Therefore, we modify the corresponding statement in Section 3.1: “In this study, the MEAMA-

AGE algorithm was used to retrieve the fractional snow cover in the Asian Water Tower region, 

which combines an image-based automatic endmember extraction algorithm(Shi, 2012) with a 

spectral library optimization method (Xu et al., 2015). The MESMA-AGE algorithm can improve 

the computational efficiency while ensuring the representativeness of the endmembers(Hao et al., 

2019). Considering that if the image area is too large, the representativeness will be limited if only 

one set of endmember libraries is used, this study performs the FSC retrieval independently for 

each MODIS tile during the retrieval process. The rules for extracting snow and non-snow 

endmembers are shown in Table 2. 

For this study, 42033 samples were selected from the MODIS data in January, November, and 

December 2020. The sample types include snow (14756 samples), vegetation (6968 samples), and 

soil (20309 samples). The samples were used to create the ground object feature map (Fig. 3). The 

x-axis in Fig. 3 is the NDSI value, and the y-axis is the NDVI. The endmember extraction rules 

outlined in Table 2 effectively identify and isolate regions located at the geometric vertices within 

the two-dimensional scatter plots in Figure 3.” 

 

Figure 2. The NDSI and NDVI pattern of vegetation, soil/rock, and snow endmembers from MODIS 

images 

3.  In 3.2 "Multistep spatiotemporal interpolation algorithm", the author's last two steps are "piecewise 

cubic Hermite interpolating polynomial (PCHIP) for the 19-day period, and further spatial interpolation 



using a 10×10 window." However, the snow cover on the Tibetan Plateau changes rapidly and has strong 

spatial heterogeneity. The author also mentioned in "4.2.3 Performance of spatiotemporal reconstruction 

algorithm" that "The results show that the accuracy of the fractional snow cover based on clear sky 

observations is significantly better than that of the spatiotemporal reconstruction. "The 19-day time series 

and the 10 ×10 window” interpolation may not be suitable for the Tibetan Plateau, and the author needs 

to further consider the rationality of the Multistep spatiotemporal interpolation algorithm. 

Response: We greatly thank the Reviewer #2 for the comment. Although the accuracy of spatio-temporal 

interpolation using more recent spatio-temporal information is higher, the clouds in the AWT region have 

the characteristics of wide coverage and long duration. In this study, after performing the first and second 

steps of the MSTI algorithm (temporal information of the surrounding front and back days and spatial 

information of the surrounding neighboring pixels), it is found that there is still a high number of cloud-

day. Therefore, the cloud persistence days (CPD) of each cloud pixel is calculated based on the daily 

MOD09GA/MYD09GA combination image during 2000–2019 and the results are shown in Figure 3. 

From the figure, only 3.42% of the remaining proportion of CPD is greater than 20 days, so this study 

chooses 19 days as the time window and interpolates it using the PCHIP algorithm. Combined with 

Figure 17(a) in the revised manuscript, the regions where the cloud exists for a long time and over a wide 

area are mainly the regions with relatively stable snow cover, such as the Pamir Plateau, the Himalayan 

Mountains, the Altay region and the Hengduan Mountains, or the regions with almost no snow in the 

south of the Himalayas. Therefore, although the time window is longer, the high accuracy can still be 

guaranteed in these regions. Specifically, we can see the accuracy evaluation results of the mountainous 

area in Figure 6 in the revised manuscript. Meanwhile, compared with the spline interpolation algorithm 

used in existing studies (Dozier et al., 2008; Tang et al., 2013, 2022), which uses the whole sequence 

information to fit an equation, the PCHIP algorithm (Fritsch and Carlson., 1980) divides the time series 

into several sub-intervals, and the fitting equation for this sub-interval can be obtained only by using the 

two endpoints of the sub-intervals and their derivative values. This also can make the results more 

conformal since the adjacent sub-intervals share an endpoint and a derivative. For details about the 

PCHIP algorithm, please see Formulas 5-8 in Section 3.2. Therefore, the PCHIP algorithm can adaptively 

select a suitable time window for interpolation according to the CPD, which ensures the monotonicity of 

the interpolation result, thus suppressing the influence of noise while achieving a spatio-temporally 

continuous snow cover and avoiding results outside the reasonable range of the snow cover. Although 

the PCHIP algorithm has introduced some errors, it is still better than the spline interpolation algorithm 

used in the previous study. High-frequency observations from geostationary meteorological satellites 

provide more opportunity to eliminate the influence of clouds on the extraction of snow information. 

Next work we will consider the combination of geostationary satellites in snow cover mapping. We have 

also made changes in section 3.2 of the article to give readers a better understanding of the PCHIP 

algorithm's ability to adapt to select appropriate sub-windows based on CPD within a 19-day window.  



 
Figure 3. The mean frequency of CPD during 2000–2019 

We strongly agree with the reviewer's suggestion that the snow cover in the Asian Water Tower 

region has strong spatial heterogeneity. Therefore, in the fourth step of the MSTI algorithm, we adopt 

the inverse distance weight interpolation algorithm considering the elevation information, which can 

exclude pixels with large spatial heterogeneity with the elevation information, and adjust the weight of 

pixels with different distances by using the inverse distance weight algorithm. Through extensive testing, 

we found that using the 11*11 window can fill all the remaining cloud-covered pixels in the first three 

steps. 

Reference: 

Dozier, J., Painter, T. H., Rittger, K., and Frew, J. E.: Time–space continuity of daily maps of fractional 

snow cover and albedo from MODIS, Adv. Water Resour., 31, 1515–1526, 

https://doi.org/10.1016/j.advwatres.2008.08.011, 2008. 

Fritsch, F. N. and Carlson, R. E.: Monotone Piecewise Cubic Interpolation, SIAM J. Numer. Anal., 17, 

238–246, https://doi.org/10.1137/0717021, 1980. 

Tang, Z., Wang, J., Li, H., and Yan, L.: Spatiotemporal changes of snow cover over the Tibetan plateau 

based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product 

from 2001 to 2011, J. Appl. Remote Sens., 7, 073582, https://doi.org/10.1117/1.JRS.7.073582, 2013. 

Tang, Z., Deng, G., Hu, G., Zhang, H., Pan, H., and Sang, G.: Satellite observed spatiotemporal 

variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021, J. Hydrol., 

613, 128438, https://doi.org/10.1016/j.jhydrol.2022.128438, 2022. 

4.    In previous studies, FSC set thresholds greater than 10, 15... to consider snow, and site verification 

set thresholds greater than 0cm, 1cm, 2cm, 3, cm, 4cm, 5cm... both, this study Please explain further the 

reasons for using FSC>15 and sd>3cm. 

Response: We greatly thank the Reviewer #2 for the comment. We refer to the value of the FSC threshold 

in the verification process of the MODSCAG algorithm during the product validation (Painter et al., 

2009). The MODSCAG algorithm validation process suggests that the error for FSC less than 15% would 

probably be larger because the spectral signal from snow is diminished with mixing from other land 

covers (Painter et al., 2009; Rittger et al., 2013) and cloud/snow misjudgments are more severe in areas 

with less snow (Hall and Riggs, 2007; Tang et al., 2013). And this threshold has been widely used in the 



validation of VIIRSCAG (Rittger et al., 2021), USGS Landsat fSCA (Selkowitz et al., 2017), and 

GOESRSCAG (Key et al., 2020) products. Therefore, in this study, 15% was used as the threshold for 

binary discrimination of snow. The FSC threshold is further explained in Section 3.3: ” To calculate 

the overall accuracy, binary snow cover was labeled for pixels with fractional snow cover ≥15%, 

as the error for FSC less than 15% would probably be larger because the spectral signal from snow 

is diminished with mixing from other land covers and cloud/snow misjudgments are more severe 

in areas with less snow (Painter et al., 2009; Rittger et al., 2013, 2021; Selkowitz et al., 2017; Key 

et al., 2020; Hall and Riggs, 2007; Tang et al., 2013a).” 

This study chose 3 cm as the threshold for binary snow identification of snow depth data based on the 

previous studies on the verification of snow cover on the Tibetan Plateau (Yang et al., 2015; Zhang et 

al., 2019; Huang et al., 2022a, b). These studies suggest that the small snow depth should considered as 

trace introducing large uncertainties possibly due to more susceptibility to the time difference between 

satellite and ground observations, more patchy vegetation, higher possibility of erroneously classifying 

thin snow as clouds (Ault et al., 2006; Ke et al., 2016; Zhang et al., 2019; Wang et al., 2022). And due 

to the fragmentation of snow in the Tibetan Plateau, the snow depth of 3 cm can better ensure the snow 

coverage in the pixel, and can also better explain the accuracy of the snow binary products. At the same 

time, in the process of using snow depth to evaluate the accuracy of binary snow identification, FSC<15% 

of the pixels were reclassified as non-snow, so this study chose 3 cm as the threshold for binary snow 

identification of snow depth data based on the existing research. The Snow Depth threshold is further 

explained in Section 2.4: “Snow depth data can only be used to evaluate binarized snow products, 

whereas the AWT MODIS FSC products are binarized by re-classifying the image pixels with 

small fractional snow cover as no snow, and smaller snow depths tend to have greater uncertainty 

(Ault et al., 2006; Ke et al., 2016; Zhang et al., 2019; Wang et al., 2022). Therefore, this study refers 

to previous studies to binaries the snow depth data with a threshold of 3 cm in AWT region (Yang 

et al., 2015; Huang et al., 2022a, b; Zhang et al., 2019), i.e. snow depths less than 3 cm are classified 

as no snow and those greater than 3 cm are classified as snow.” 

Reference: 

Ault, T. W., Czajkowski, K. P., Benko, T., Coss, J., Struble, J., Spongberg, A., Templin, M., and Gross, 

C.: Validation of the MODIS snow product and cloud mask using student and NWS cooperative station 

observations in the Lower Great Lakes Region, Remote Sens. Environ., 105, 341–353, 

https://doi.org/10.1016/j.rse.2006.07.004, 2006. 

Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow products, Hydrol. Process., 21, 

1534–1547, https://doi.org/10.1002/hyp.6715, 2007. 

Huang, Y., Song, Z., Yang, H., Yu, B., Liu, H., Che, T., Chen, J., Wu, J., Shu, S., Peng, X., Zheng, Z., 

and Xu, J.: Snow cover detection in mid-latitude mountainous and polar regions using nighttime light 

data, Remote Sens. Environ., 268, 112766, https://doi.org/10.1016/j.rse.2021.112766, 2022a. 

Huang, Y., Xu, J., Xu, J., Zhao, Y., Yu, B., Liu, H., Wang, S., Xu, W., Wu, J., and Zheng, Z.: HMRFS-

TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on 

Hidden Markov Random Field model, Snow and Sea Ice, https://doi.org/10.5194/essd-2022-134, 2022b. 



Ke, C.-Q., Li, X.-C., Xie, H., Ma, D.-H., Liu, X., and Kou, C.: Variability in snow cover phenology in 

China from 1952 to 2010, Hydrol. Earth Syst. Sci., 20, 755–770, https://doi.org/10.5194/hess-20-755-

2016, 2016. 

Key, J., Liu, Y., Wang, X., Letterly, A., and Painter, T.: Snow and Ice Products from ABI on the GOES-

R Series, 165–177, https://doi.org/10.1016/B978-0-12-814327-8.00014-7, 2020. 

Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and Dozier, J.: Retrieval of subpixel 

snow covered area, grain size, and albedo from MODIS, Remote Sens. Environ., 113, 868–879, 

https://doi.org/10.1016/j.rse.2009.01.001, 2009. 

Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for mapping snow cover from MODIS, 

Adv. Water Resour., 51, 367–380, https://doi.org/10.1016/j.advwatres.2012.03.002, 2013. 

Rittger, K., Bormann, K. J., Bair, E. H., Dozier, J., and Painter, T. H.: Evaluation of VIIRS and MODIS 

Snow Cover Fraction in High-Mountain Asia Using Landsat 8 OLI, Front. Remote Sens., 2, 2021. 

Selkowitz, D. J., Painter, T. H., Rittger, K. E., Schmidt, G., and Forster, R.: The USGS Landsat Snow 

Covered Area Products: Methods and Preliminary Validation, in: Automated Approaches for Snow and 

Ice Cover Monitoring Using Optical Remote Sensing, edited by: Selkowitz, D. J., The University of Utah, 

Salt Lake City, Utah, 76–119, 2017.  

Tang, B.-H., Shrestha, B., Li, Z.-L., Liu, G., Ouyang, H., Gurung, D. R., Giriraj, A., and Aung, K. S.: 

Determination of snow cover from MODIS data for the Tibetan Plateau region, Int. J. Appl. Earth Obs. 

Geoinformation, 21, 356–365, https://doi.org/10.1016/j.jag.2012.07.014, 2013. 

Wang, G., Jiang, L., Xiong, C., and Zhang, Y.: Characterization of NDSI Variation: Implications for 

Snow Cover Mapping, IEEE Trans. Geosci. Remote Sens., 60, 1–18, 

https://doi.org/10.1109/TGRS.2022.3165986, 2022. 

Yang, J., Jiang, L., Menard, C., Luojus, K., Lemmetyinen, J., and Pulliainen, J.: Evaluation of snow 

products over the Tibetan Plateau, Hydrol. Process., 29, https://doi.org/10.1002/hyp.10427, 2015. 

Zhang, H., Zhang, F., Zhang, G., Che, T., Yan, W., Ye, M., and Ma, N.: Ground-based evaluation of 

MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold, Sci. 

Total Environ., 651, 2712–2726, https://doi.org/10.1016/j.scitotenv.2018.10.128, 2019. 

5.  It is recommended that the author add a schematic diagram of Asian Water Tower Region's products 

so that readers can more intuitively understand the algorithm effect of each step. 

Response: We greatly thank the Reviewer #2 for the comment. According to the suggestions of 

reviewers, we modified the flow chart to make it easier for readers to understand the whole FSC retrieval 

and spatio-temporal interpolation process and the algorithm effect of each step. 



 

Figure 4. Overall flowchart of the AWT MODIS FSC product  

Minor comments: 

1.  There are two RMSE indicators in Figure 2. It is recommended to modify one of them to MAE. 

Response: We greatly thank the Reviewer #2 for the comment. Sorry for the error caused by our 

carelessness, we have modified the figure 2. 

2.  Line 207 mentioned “further spatial interpolation using a 10×10 window”, and Line 241 mentioned 

“In this study, the observation information from the 11*11 interpolation window centered on the cloud 

pixel was used based on the inverse distance weight ", did the author use "10×10" or "11×11" window 

in the fourth step of the multistep spatiotemporal interpolation algorithm? 

Response: We greatly thank the Reviewer #2 for the comment. Sorry for the misunderstanding caused 

by our careless, we use the information in the 11*11 interpolation window centred on the cloud pixel to 

perform spatial interpolation. We have revised the corresponding Line 207 expression: “further 

spatial interpolation using a 11×11 window”. 


