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Abstract. The oceanic emission of dimethyl sulfide (DMS) plays a vital role in the Earth’s climate system and
constitutes a substantial source of uncertainty when evaluating aerosol radiative forcing. Currently, the widely
used monthly climatology of sea surface DMS concentration falls short of meeting the requirement for accu-
rately simulating DMS-derived aerosols with chemical transport models. Hence, there is an urgent need for a
high-resolution, multi-year global sea surface DMS dataset. Here we develop an artificial neural network ensem-
ble model that uses nine environmental factors as input features and captures the variability of the DMS con-
centration across different oceanic regions well. Subsequently, a global sea surface DMS concentration and flux
dataset (1°× 1°) with daily resolution spanning from 1998 to 2017 is established. According to this dataset, the
global annual average concentration was∼ 1.71 nM, and the annual total emissions were∼ 17.2 Tg S yr−1, with
∼ 60 % originating from the Southern Hemisphere. While overall seasonal variations are consistent with previ-
ous DMS climatologies, notable differences exist in regional-scale spatial distributions. The new dataset enables
further investigations into daily and decadal variations. Throughout the period 1998–2017, the global annual
average concentration exhibited a slight decrease, while total emissions showed no significant trend. The DMS
flux from our dataset showed a stronger correlation with the observed atmospheric methanesulfonic acid concen-
tration compared to those from previous monthly climatologies. Therefore, it can serve as an improved emission
inventory of oceanic DMS and has the potential to enhance the simulation of DMS-derived aerosols and associ-
ated radiative effects. The new DMS gridded products are available at https://doi.org/10.5281/zenodo.11879900
(Zhou et al., 2024).

1

https://doi.org/10.5281/zenodo.11879900


2 S. Zhou et al.: A global daily sea surface dimethyl sulfide gridded dataset

1 Introduction

Dimethyl sulfide (DMS), primarily produced by ocean biota,
accounts for more than half of natural sulfur emissions and
significantly contributes to the sulfur dioxide in the tropo-
sphere (Sheng et al., 2015; Andreae, 1990), which can be5

oxidized to sulfuric acid and form sulfate aerosols (Barnes
et al., 2006; Hoffmann et al., 2016). Sulfate aerosols play
an important role in climate systems by scattering solar ra-
diation, changing the cloud condensation nuclei (CCN) pop-
ulation, and altering cloud properties (Masson-Delmotte et10

al., 2021). Recent studies have proven that CCN over the
remote ocean and polar regions are primarily composed of
non-sea-salt sulfate (nss-SO2−

4 ) (Quinn et al., 2017; Park et
al., 2021). Given the weak influence of anthropogenic SO2
over open oceans, marine biogenic DMS emerges as a crucial15

source of nss-SO2−
4 , thus regulating oceanic climate (McCoy

et al., 2015). Accordingly, DMS has been suggested to be
the key substance in the postulated feedback loop of marine
phytoplankton to climate warming (the “CLAW” hypothe-
sis) (Charlson et al., 1987), although this is the subject of20

several controversies (Quinn and Bates, 2011). To accurately
simulate the climate effects of DMS-derived aerosols, high-
fidelity and high-resolution data on sea surface DMS concen-
trations and emission fluxes are required, along with further
explorations of complex atmospheric chemical and physical25

processes (Hoffmann et al., 2016; Novak et al., 2021). It has
been indicated that the uncertainty in DMS emission flux is
the second-largest contributor to the overall uncertainty asso-
ciated with natural aerosols when evaluating the aerosol in-
direct radiative forcing (Carslaw et al., 2013). Therefore, un-30

derstanding the spatiotemporal variations of DMS in global
oceans is currently an important task.

There are complex production and consumption mecha-
nisms of DMS in the upper ocean, which makes it diffi-
cult to capture the dynamics and distributions of sea sur-35

face DMS across different regions well. Dimethylsulfonio-
propionate (DMSP), the major precursor of DMS, is synthe-
sized mainly by phytoplankton in the photic zone and has
a variety of physiological functions in algal cells (Stefels,
2000; Sunda et al., 2002; McParland and Levine, 2018). The40

DMSP yield varies significantly among algal species (Ste-
fels et al., 2007; Keller et al., 1989), and DMS can be pro-
duced through DMSP intracellular and extracellular cleavage
by both algae and bacteria (Alcolombri et al., 2015; Zhang et
al., 2019). Therefore, the oceanic DMS produced via mul-45

tiple pathways can be affected by many biotic and abiotic
factors, such as temperature, salinity, solar radiation, mixed-
layer depth, nutrients, oxygen, and acidity (Simó and Pedrós-
Alió, 1999a; Vallina and Simó, 2007; Stefels, 2000; Zindler
et al., 2014; Six et al., 2013; Omori et al., 2015; Stefels et50

al., 2007). In addition, seawater DMS undergoes various re-
moval pathways (bacterial consumption, photodegradation,

sea-to-air ventilation, etc.), further complicating its cycling
(Stefels et al., 2007; Galí and Simó, 2015; Hopkins et al.,
2023). Therefore, although previous studies have developed 55

several empirical algorithms (Simó and Dachs, 2002; Belviso
et al., 2004b; Vallina and Simó, 2007) and process-embedded
prognostic models (Kloster et al., 2006; Vogt et al., 2010;
Belviso et al., 2011; Wang et al., 2015) based on relevant
variables (mixed-layer depth, chlorophyll a, nutrients, radi- 60

ation, phytoplankton group, etc.) to estimate the distribution
of DMS, their results showed significantly different patterns
and inconsistency with observations in many regions (Tesdal
et al., 2016; Belviso et al., 2004a). Recently, Galí et al. (2018)
developed a new empirical algorithm based on a parameteri- 65

zation of DMSP (Galí et al., 2015). The estimated DMS field
exhibited a generally higher consistency with observations
than those derived from the previous algorithms SD02 (Simó
and Dachs, 2002) and VS07 (Vallina and Simó, 2007), but
this method did not consider the influences of nutrients and 70

still exhibited substantial biases in certain regions (e.g., near
the Antarctic).

Since Lovelock et al. (1972) first discovered the ubiqui-
tous presence of DMS in seawater, numerous observations
of sea surface DMS have been conducted worldwide, yield- 75

ing a substantial volume of observational data to date. Based
on these worldwide measurements, a monthly climatology of
global DMS can be generated through interpolation and ex-
trapolation (Hulswar et al., 2022; Kettle et al., 1999; Lana et
al., 2011). The latest version incorporated 873 539 raw obser- 80

vations (48 898 after data filtration and unification for clima-
tology development), and the estimated global annual mean
concentration and total flux are 2.26 nM and 27.1 Tg S yr−1,
respectively (Hulswar et al., 2022). However, despite the
abundance of data, significant spatial and temporal dispar- 85

ities persist, potentially introducing large uncertainties into
regions or periods with sparse observations. Furthermore, the
observational data from the same month in different years
were combined for interpolation and extrapolation, and in-
terannual variations cannot be investigated by this approach. 90

In recent years, the application of data-driven approaches
like machine learning to Earth system science has drawn
more and more attention. Compared with traditional ap-
proaches, machine learning explores a larger function space
and captures more hidden information from big data; hence, 95

it often provides better prediction performance (Reichstein
et al., 2019; Zheng et al., 2020; Bergen et al., 2019). For
instance, a recent study demonstrated that an artificial neu-
ral network (ANN) can capture much more (∼ 66 %) of the
raw data variance than multilinear regression (∼ 39 %), and 100

a global monthly climatology of sea surface DMS concentra-
tion has been developed based on the ANN model (Wang et
al., 2020). Machine learning techniques have also been used
to simulate the distribution of DMS in the Arctic (Humphries
et al., 2012; Qu et al., 2016), North Atlantic Ocean (Bell et 105
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al., 2021; Mansour et al., 2023), northeastern Pacific Ocean
(McNabb and Tortell, 2022), Southern Ocean (McNabb and
Tortell, 2023), and East Asia (Zhao et al., 2022).

However, to our best knowledge, there is currently no
global-scale sea surface gridded DMS dataset with both high5

time resolution (daily) and long-term coverage (>10 years).
Such a dataset is urgently needed for modeling the atmo-
spheric processes and climatic implications of oceanic DMS.
The sea surface concentration and sea-to-air emission flux of
DMS can vary greatly from day to day (Simó and Pedrós-10

Alió, 1999b), and the emitted DMS exerts effects on the at-
mosphere over timescales of several hours to days. Relying
solely on a monthly climatology of DMS as the emission in-
ventory may result in a failure to capture important details
and could lead to large modeling biases compared to ob-15

served concentrations of atmospheric DMS or its oxidation
products (Chen et al., 2018; Fung et al., 2022).

Here, we build a 20-year (1998–2017) global sea surface
DMS gridded dataset (1°× 1°) with daily resolution based
on a data-driven machine learning approach (ANN ensem-20

ble). This product can improve our understanding of the spa-
tiotemporal variations of oceanic DMS. More importantly, it
can serve as an updated emission inventory of marine bio-
genic DMS for chemical transport models, which is benefi-
cial for enhancing the simulation of atmospheric processes25

of DMS and reducing the uncertainties in marine aerosol’s
climate effects. This paper consists of four main parts, as de-
picted in Fig. 1: (1) the development of the machine learn-
ing model based on global DMS measurements and nine an-
cillary environmental variables, (2) the derived spatial and30

temporal distributions of DMS and comparisons with previ-
ous estimates, (3) an example showing the superiority of our
newly developed DMS field through its correlation with at-
mospheric biogenic sulfur, and (4) the uncertainties and lim-
itations inherent in our approach and the resulting data prod-35

uct.

2 Methodology

2.1 Input datasets

The in situ DMS measurement data used for training the ma-
chine learning model were primarily sourced from the Global40

Surface Seawater DMS (GSSD) database (Kettle et al.,
1999). The GSSD database contains a total of 87 801 DMS
measurements collected across 266 cruise and fixed-site ob-
servation campaigns from 11 March 1972 to 27 August 2017
(https://saga.pmel.noaa.gov/dms/, last access: 1 April 2020).45

Hulswar et al. (2022) consolidated other DMS measurements
not included in the GSSD database to establish an updated
DMS climatology. Here, we incorporated these additional
data predating 2017, which originate from eight campaigns
(number of samples 6711). The spatial distribution of these50

94 512 in situ observational data values in total is shown in

Fig. S1 in the Supplement, which covers all major regions of
the global ocean.

We selected nine environmental variables relevant to
DMS biogeochemical processes as input features, includ- 55

ing chlorophyll a (Chl a), sea surface temperature (SST),
mixed-layer depth (MLD), nitrate, phosphate, silicate, dis-
solved oxygen (DO), downward shortwave radiation flux
(DSWF), and sea surface salinity (SSS). The data sources
and relevant information for these nine input variables and 60

DMS are listed in Table 1. Chl a data were obtained from
both in situ observations co-located with DMS data and
satellite remote sensing products (Copernicus-GlobColour,
Level 4; daily; 0.042°× 0.042°). The dataset Copernicus-
GlobColour, Level 4, integrates multiple upstream sen- 65

sors, including SeaWiFS, MODIS Aqua and Terra, MERIS,
VIIRS-SNPP and JPSS1, and OLCI-S3A and OLCI-S3B,
and an interpolation procedure is applied to fill in missing
data (Garnesson et al., 2019). Daily SST data (0.25°× 0.25°)
were obtained from the NOAA OI SST V2 high-resolution 70

blended reanalysis dataset (Huang et al., 2021). Daily MLD,
DSWF, and SSS data were obtained from version 4 release
4 (V4r4) of the modeling outputs of NASA’s Estimating the
Circulation and Climate of the Ocean (ECCO) consortium
(Forget et al., 2015). The sea surface concentrations of ni- 75

trate, phosphate, silicate, and DO were obtained from the
CMEMS global biogeochemical multi-year hindcast dataset
(daily; 0.25°× 0.25°). Surface wind speed (WS) and sea ice
fraction (SI) data are needed in the calculation of the sea-
to-air flux (details are provided in Sect. 2.4.2). Here, we uti- 80

lized the daily 10 m WS data from ECCO V4r4 and the daily
SI data from NOAA OI SST V2. Since there were multiple
different spatial grids among all the datasets, the data were
matched up as described in the next section.

2.2 Data preprocessing for model development 85

The data extraction and matchup were performed based on
the sampling location and time associated with each DMS
measurement record as well as the temporal range and grid
distribution of each variable. For satellite-retrieved Chl a, the
data for the grids covering DMS sampling locations were ex- 90

tracted. If the data for the corresponding grid were missing,
the average value for the 5× 5 grids nearby was calculated
and used. For other variables, only values in grids matching
DMS sampling locations were extracted.

There are in situ Chl a measurements that are co-located 95

with certain GSSD data. They were also used along with the
satellite-retrieved Chl a. In situ Chl a measurements with low
precision (defined as <0.1 mg m−3 when the number of sig-
nificant digits is 1) were removed. For a specific in situ obser-
vation campaign, if the number of low-precision values was 100

larger than 10 and accounted for more than half of the val-
ues, all in situ Chl a data from that campaign were excluded.
In addition, the in situ Chl a data in the GSSD database
were measured by two different methods: Turner fluorome-

https://saga.pmel.noaa.gov/dms/
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Figure 1. Flowchart of this study, including the development of the ANN ensemble model, the construction of the new DMS gridded dataset,
and subsequent evaluations of this product.

try and high-performance liquid chromatography (HPLC). In
order to improve mutual consistency, a conversion between
the data from these two methods was applied, and then the
in situ Chl a concentrations were adjusted to match them
up with the satellite Chl a using the functions described in5

Galí et al. (2015). After that, the statistical outliers among all
the log10(Chl a) values (i.e., those outside a range defined as
the average±3 standard deviations) were eliminated. A com-
parison between the in situ and satellite-retrieved Chl a data
is shown in Fig. S2. The strong consistency between in situ10

and daily satellite Chl a data (R2>0.5; RMSE<0.4) pro-
vides the rationale for integrating these datasets. The log10
transformation was applied to make the data distribution
close to a normal distribution. When finally selecting the
log10(Chl a) value corresponding to each DMS data value,15

in situ data were prioritized where available; otherwise, the
satellite-retrieved data were used.

The DMS values and extracted values of MLD and three
nutrients (nitrate, phosphate, and silicate) were also log10-
transformed. The statistical outliers for each variable were20

excluded as mentioned above. After data filtration, a total of
633 361CE1 samples with valid data for all variables were ob-
tained. To avoid a data aggregation bias stemming from the
clustering of multiple data points within a narrow temporal
range and spatial range (i.e., obtained on the same day and25

within a region smaller than 0.05°× 0.05°), these data points
were averaged. Consequently, 41 157 binned samples were
utilized for subsequent model development; their spatial dis-
tribution is depicted in Fig. 2a.

We divided the global ocean into nine regions based on 30

Longhurst’s biomes (Longhurst, 1998). There are six biomes
in Longhurst’s definition, including Coastal, Polar_N, Po-
lar_S, Westerlies_N, Westerlies_S, and Trades (the .shp file
of Longhurst’s biomes and provinces was downloaded from
https://www.marineregions.org/downloads.php#longhurst, 35

last access: 16 April 2020). We further divided Westerlies_N
into Westerlies_N_Pacific and Westerlies_N_Atlantic and
divided Trades into Trades_ Pacific, Trades_Indian, and
Trades_Atlantic based on the different oceanic basins, as
shown in Fig. 2b. It is noteworthy that there are 11 237 40

samples in the Coastal region, constituting 27.3 % of the
entire sample set, despite the Coastal biome accounting for
only 9.7 % of the global ocean area. Given the distinct phys-
iochemical and biological conditions of seawater in coastal
seas compared to other regions, the disproportionately higher 45

density of samples within the Coastal biome might cause the
model to overly prioritize this region. To mitigate this data
imbalance and ensure the model captures broader patterns
in open oceans, we adjusted the data distribution during
the model training and validation processes. Specifically, 50

for each training session, a portion of coastal samples was
randomly removed to ensure that the proportion of coastal
samples in the total sample set (denoted as Fcoastal) matched
the coastal proportion of the total area.

2.3 Artificial neural network training and validation 55

The 41 157 binned samples obtained after the previously
mentioned data preprocessing were used to develop the ar-

https://www.marineregions.org/downloads.php#longhurst
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Table 1. The data sources and relevant information for the variables used for model development, DMS simulation, and flux calculation.

Variable Data source URL Temporal
resolution

Temporal coverage Spatial grid

DMS GSSD database https://saga.pmel.noaa.gov/dms/
(last access: 1 April 2020)

In situ March 1972–August 2017 –

Other campaigns included in
Hulswar et al. (2022)

https://data.mendeley.com/datasets/
hyn62spny2/1
(last access: 25 November 2023)

In situ February 2000–June 2016 –

Chl a GSSD database https://saga.pmel.noaa.gov/dms/
(last access: 1 April 2020)

In situ October 1980–August 2017 –

Copernicus-GlobColour, Level
4

https://data.marine.copernicus.eu/
product/OCEANCOLOUR_GLO_
BGC_L4_MY_009_104/description
(last access: 25 February 2024)

Daily September 1997–present 0.042°× 0.042°

CMEMS global biogeochemi-
cal multi-year hindcast (only
used for the simulation of DMS
concentrations in polar regions
when satellite Chl a is unavail-
able)

https://data.marine.copernicus.eu/
product/GLOBAL_MULTIYEAR_
BGC_001_029/description
(last access: 25 February 2024)

Daily January 1993–present 0.25°× 0.25°

SST NOAA OI SST V2 https://psl.noaa.gov/data/gridded/data.
noaa.oisst.v2.highres.html par (last
access: 2 April 2020)

Daily September 1981–present 0.25°× 0.25°

MLD
NASA ECCO V4r4

https://data.nas.nasa.gov/ecco/data.
php?dir=/eccodata/llc_90/ECCOv4/
Release4
(last access: 25 May 2020)

Daily January 1992–December 2017
LLC90
(22–110 km)DSWF

SSS

Nitrate
CMEMS global biogeochemi-
cal multi-year hindcast

https://data.marine.copernicus.eu/
product/GLOBAL_MULTIYEAR_
BGC_001_029/description
(last access: 25 February 2024)

Daily January 1993–present 0.25°× 0.25°Phosphate

Silicate

DO

WS NASA ECCO V4r4 https://data.nas.nasa.gov/ecco/data.
php?dir=/eccodata/llc_90/ECCOv4/
Release4
(last access: 25 May 2020)

Daily January 1992–December 2017 LLC90
(22–110 km)

SI NOAA OI SST V2 https://psl.noaa.gov/data/gridded/data.
noaa.oisst.v2.highres.html
(last access: 2 April 2020)

Daily September 1981–present 0.25°× 0.25°

tificial neural network (ANN) model. The target feature
was log10(DMS), and the input features were log10(Chl
a), SST, log10(MLD), log10(nitrate), log10(phosphate),
log10(silicate), DO, DSWF, and SSS. The data for all vari-
ables were standardized before training.5

We randomly selected 10 % of the samples (n= 4116) to
be entirely excluded from training as a testing subset for
global validation and the overfitting test. Specifically, 401
samples were randomly selected from the Coastal biome and
3715 samples were selected from other biomes to compose10

the testing subset, which matched the proportion of the global
ocean that is coastal (9.7 %). Then, the remaining samples
(n= 37041) were utilized for training and cross-validation,
with the constraint that Fcoastal was equal to 9.7 % in each
training session, as mentioned above.15

Our feedforward fully connected neural network com-
prised two hidden layers, with 15 nodes in each layer. The
activation functions for the first and second layers were
ReLU and tanh, respectively. We applied L2 regularization
(lambda= 1× 10−4 TS1 ) to counteract overfitting. The loss 20

function was the mean square error (MSE). Training stopped
if the validation loss was greater than or equal to the min-
imum validation loss computed so far 20 times in a row.
The training processes were carried out with the Statistics
and Machine Learning Toolbox in MATLAB 2022b. We re- 25

peated the data split (for training and validation sets) and
training processes 100 times and obtained 100 neural net-
works. The average prediction results from multiple ANNs
show a much higher consistency with the observations than
obtained with a single ANN (Fig. S3). As the number of 30

ANNs (Ntraining) increases, the accuracy of the model pre-

https://saga.pmel.noaa.gov/dms/
https://data.mendeley.com/datasets/hyn62spny2/1
https://data.mendeley.com/datasets/hyn62spny2/1
https://saga.pmel.noaa.gov/dms/
https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104/description
https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104/description
https://data.marine.copernicus.eu/product/OCEANCOLOUR_GLO_BGC_L4_MY_009_104/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_90/ECCOv4/Release4
https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_90/ECCOv4/Release4
https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_90/ECCOv4/Release4
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_90/ECCOv4/Release4
https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_90/ECCOv4/Release4
https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_90/ECCOv4/Release4
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
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Figure 2. (a) The distribution of the 41 157 DMS observational data values after matchup, filtration, and binning when constructing the
ANN model. The grid size is 1°× 1°. (b) The nine oceanic regions that were separated based on Longhurst’s biomes (Longhurst, 1998).

dictions initially improves and then stabilizes. We adopted
the average output of 20 ANNs as the final output, balancing
performance and computational costs effectively. This kind
of multiple-training approach, often termed an “ANN ensem-
ble” or “Monte Carlo cross-validation”, has been widely used5

to improve model generalization and performance (Sigmund
et al., 2020; Holder et al., 2022) as well as to get a better
model evaluation (Dubitzky et al., 2007).

2.4 Deriving the 20-year global DMS distributions

2.4.1 Simulation of sea surface DMS concentrations10

First, we constructed the daily gridded dataset of input vari-
ables with a spatial resolution of 1°× 1° from 1998 to 2017
based on the data sources listed in Table 1 (except the in situ
Chl a data). Datasets with a higher spatial resolution than
1°× 1° were binned into 1°× 1°. Satellite Chl a data for the15

polar regions obtained during winter were missing, so the
Chl a data from the CMEMS global biogeochemical multi-
year hindcast were used to fill in the missing values. Then,
the obtained gridded dataset was fed into the ANN ensem-
ble model, and the 20-year global distribution of sea surface20

DMS concentration with daily resolution was simulated.

2.4.2 Calculation of sea-to-air fluxes

The sea-to-air fluxes of DMS were calculated on the basis of
simulated surface DMS concentrations using Eq. (1):

DMS flux= Kt×
(

DMSw−
DMSa

H

)
. (1) 25

Here, DMSw and DMSa are the DMS concentrations in sur-
face seawater and air, respectively.H is the Henry’s law con-
stant for DMS. Since DMSa

H
is usually � DMSw, this term

was omitted in the calculation. Kt is the total transfer veloc-
ity considering the sea ice coverage fraction (SI): 30

Kt= kt× (1−SI). (2)

kt is the total transfer velocity without considering sea ice,
which is calculated by Eq. (3):

1
kt
=

1
kw
+

1
ka×H

. (3)

Here, kw and ka are the water-side transfer velocity and air- 35

side transfer velocity, respectively. We used the same ap-
proach as Galí et al. (2019) to obtain kw, ka, and H for
DMS, where the effect of wind speed was considered for
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ka and the influences of SST and SSS were considered for
H . The calculations of ka and H followed the parameteri-
zations of Johnson (2010). To calculate kw, we adopted the
bubble scheme (Woolf, 1997), which divided the sea-to-air
mass transfer process into turbulence- and bubble-mediated5

gas exchange. The kw calculated based on the bubble scheme
is lower than that from Nightingale’s scheme (Nightingale et
al., 2000) under the conditions of a high wind speed, and it
exhibits a smaller deviation from the measurements (Beale et
al., 2014; Galí et al., 2019). Before the calculation, the WS10

and SI data were also binned into a 1°× 1° grid. By using
WS and SI together with SST and SSS datasets, we obtained
the daily gridded Kt and then calculated the sea-to-air DMS
fluxes (daily; 1998–2017) by multiplying the simulated DMS
concentrations by the Kt values.15

3 Results

3.1 Model performance

As shown in Fig. 3a, the newly developed ANN ensemble
model captures a substantial part of the data variance glob-
ally (log10 space R2

= 0.651 and RMSE= 0.262). A total20

of 92.8 % of the ANN-simulated concentration values fall
within 1/3 to 3 times the corresponding true value. The per-
formance for the testing set (R2

= 0.640, RMSE= 0.267,
and 92.7 % of data within the range of 1/3 to 3 times the
observed value) is very close to that for the training set25

(Fig. 3b), suggesting no obvious overfitting. The ANN model
exhibits better performance compared to previous empirical
and process-based models (R2

= 0.01–0.14) (Tesdal et al.,
2016) as well as the satellite-based algorithm (R2

= 0.50)
(Galí et al., 2018). Compared to our model, the ANN model30

developed by Wang et al. (2020) showed a similar perfor-
mance (R2

= 0.66 and RMSE= 0.264 for the training set)
despite its more complex ANN configuration (two hidden
layers with 128 nodes each) and the inclusion of sample loca-
tion and time among its input features. However, the greater35

complexity of that model will significantly increase its com-
putational cost, and the incorporation of location and time
information may weaken the physical interpretability.

The performance of the model was evaluated across each
of the nine oceanic regions. As illustrated in Figs. 3c and 4,40

the log10 space RMSEs are all below 0.32 (equivalent to a
concentration ratio of 2.09 in linear space), except for the
Coastal region (training: RMSE= 0.322, R2

= 0.479; test-
ing: RMSE= 0.332, R2

= 0.480). Since the Coastal region
comprises only 9.7 % of the global oceanic area, the com-45

paratively low performance in this area has a minimal im-
pact on the overall ability to predict the spatiotemporal dis-
tribution of DMS on a global scale. Despite the R2 values
in Trades_Pacific and Trades_Atlantic being lower than 0.5,
which is related to the relatively narrow range of DMS con-50

centration variation, the RMSEs in these regions remain quite
low and comparable to those in other regions. In general, our

ANN ensemble model demonstrates a satisfactory capacity
to reproduce variations in DMS concentrations across diverse
oceanic regions. 55

However, it is noteworthy that our model tends to underes-
timate extremely high DMS concentrations and overestimate
extremely low concentrations. Overall, the linear regressions
between ANN-predicted and observed DMS concentrations
yield slopes that are significantly lower than unity across all 60

regions (Figs. 3c and 4), and there are significantly positive
correlations between prediction residuals (observation− pre-
diction) and the observed log10(DMS) (Figs. S5 and S6).
From a data perspective, this may be partly due to the in-
sufficient number of samples with extreme DMS concentra- 65

tions (known as underrepresentation), making it difficult to
adequately capture the relevant information during the train-
ing process. To test this point, we adopted a weighted resam-
pling strategy to bolster the number of samples in the minor-
ity class before training. This strategy has been widely used 70

in machine learning to deal with the data imbalance issue
(Haibo et al., 2008; Yu and Zhou, 2021; Chawla et al., 2002).
The basic idea is to set a higher probability of being sampled
for the minority class with extreme DMS concentrations; the
details are illustrated in Fig. S7 and explained in Appendix 75

B. The results indicate that the weighted resampling scheme
cannot fully alleviate the model bias. Although it does elevate
the overall prediction-versus-observation slope from ∼ 0.59
to ∼ 0.63, this improvement is marginal (Figs. S8 and S9).
In several regions like the Westerlies_S and Trades biomes, 80

the slopes are even lower than the original values. Further-
more, the data become more scattered after implementing
the weighted resampling, resulting in an increased RMSE
and decreased R2. Therefore, there are other potential issues
causing the model bias, which are discussed in Sect. 4. The 85

original model, trained without weighted resampling, was
adopted for subsequent analysis and the construction of the
gridded DMS dataset.

Primarily owing to the underestimation of high DMS con-
centrations, a negative mean bias (MB) in DMS concen- 90

tration is evident across all regions, ranging from −0.18
to −2.02 nM (Table 2). The normalized mean bias (NMB;
the ratio between mean bias and mean observed concentra-
tion) ranges from −8.7 % to −32.2 %. The most significant
NMB emerges in Coastal and Trades_India regions, while 95

the NMB remains within−25 % for other regions. The global
MB and NMB are−1.05 nM and−22.1 %, respectively. It is
worth noting that these biases are compared against historical
DMS observations, which were conducted within a very lim-
ited geographical area and very limited time periods. Thus, 100

they cannot be interpreted as the actual mean modeling bias
for the entire region. On the other hand, the negative biases
at the high end of the concentrations are partially canceled
out by the positive biases at the low end during the averaging
over the entire region. The bias at a specific grid could be 105

much larger. Nevertheless, those extreme DMS concentra-
tions (>15 nM or <0.3 nM) that exhibit the most significant
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Figure 3. Comparisons between ANN-simulated and observed DMS concentrations. (a) Scatter density for simulated versus observed DMS
concentrations of the samples used in ANN training. (b) Comparison between the simulated and observed DMS concentrations in the testing
set. (c) Comparison between the simulated and observed DMS concentrations for the samples used in ANN training across nine regions. The
number of data points (n), log10 space R2, root mean square error (RMSE), and linear regression slope are also displayed.
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Figure 4. Comparisons between the simulated and observed DMS concentrations in the testing set across nine regions.

modeling bias represent only a minority of the entire sample
set (6.9 %). Our model adeptly reproduces the majority of ob-
servations with moderate DMS concentrations across all re-
gions, with the percentage of predicted values falling within
1/3 to 3 times the observed value ranging from 87.0 % to5

98.8 %.
It is worth noting that there may be intrinsic connections

between the 10 % of samples excluded as a testing subset
and the training set because the data from the same cruise
or fixed-site campaign have a certain level of continuity. To10

further evaluate the reliability of the ANN model, we com-
pared the simulated DMS concentrations with the observa-
tional data from fully independent campaigns. The latter data
were obtained from 33 cruises in the northeastern Pacific,
western Pacific, and North Atlantic (number of data values 15

6478). These data include (1) discrete samplings and mea-
surements during 31 cruises of the Line P program in the
northeastern Pacific (Steiner et al., 2011) (9 February 2007–
26 August 2017; number of data values 177; https://www.
waterproperties.ca/linep/index.php, last access: 23 Novem- 20

https://www.waterproperties.ca/linep/index.php
https://www.waterproperties.ca/linep/index.php
https://www.waterproperties.ca/linep/index.php
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Table 2. The mean bias and normalized mean bias of the ANN-
predicted DMS concentrations against observations across different
regions.

Region Mean bias Normalized
(nM) mean bias

Coastal −1.55 −32.2 %
Polar_N −0.90 −21.4 %
Polar_S −2.02 −24.1 %
Westerlies_N_Pacific −0.91 −18.8 %
Westerlies_N_Atlantic −0.24 −10.4 %
Westerlies_S −0.36 −14.1 %
Trades_Pacific −0.19 −8.7 %
Trades_Indian −0.73 −26.7 %
Trades_Atlantic −0.18 −10.1 %
Global −1.05 −22.1 %

ber 2020), (2) underway measurements performed during
SONNE cruise 202/2 (TRANSBROM) in the western Pa-
cific (Zindler et al., 2013a) (9–23 October 2009; number of
data values 115; https://doi.org/10.1594/PANGAEA.805613,
Zindler et al., 2013b), and (3) underway measurements per-5

formed during the third North Atlantic Aerosols and Marine
Ecosystems Study (NAAMES) campaign (Behrenfeld et al.,
2019; Bell et al., 2021) (6–24 September 2017; number of
data values 1025; https://seabass.gsfc.nasa.gov/naames, last
access: 27 November 2020). Before the comparison, the data10

measured within a 0.05°× 0.05° grid on the same day were
binned by arithmetic averaging.

The comparisons between these observed DMS concen-
trations and the ANN simulation are shown in Fig. 5. Re-
garding the Line P program, it should be noted that seven15

cruises are included in the GSSD database, but those data
were obtained by underway measurements, different from
the discrete sampling (Niskin bottle) data used here. Hence,
these cruises were retained and are marked in Fig. 5a but ex-
cluded in the subsequent statistical analysis (Fig. 5b, c). It20

can be seen that the model effectively captures the seasonal
variation in the northeastern Pacific, which is generally Au-
gust> June>February (Fig. 5a). However, the small-scale
spatial variations are only partially reproduced by the model
in certain campaigns, such as those performed in June and25

August of 2007, June of 2009, August of 2012, and August
of 2016. Notably, the model generally underestimates high
DMS concentrations during summer, particularly those ex-
ceeding 10 nM, consistent with earlier discussions. Aggre-
gating data from all campaigns across three regions, the log1030

space RMSE of the simulated DMS concentrations against
the observations is 0.274, marginally higher than for the
training set. Most simulated values (93.0 %) are within the
range of 1/3 to 3 times the observed value. The results fur-
ther evidence that there is no significant overfitting in our35

model. When data from each campaign are binned, simu-
lations demonstrate high consistency with observations, as

depicted in Fig. 5c (RMSE= 0.249; R2
= 0.758). In sum-

mary, although our ANN ensemble model may not precisely
reproduce small-scale variations and extreme values in spe- 40

cific regions and periods, it captures the overall large-scale
variations reasonably well.

3.2 DMS distribution

3.2.1 Spatial and seasonal variations

The monthly climatology of ANN-simulated DMS concen- 45

trations in the global sea surface from 1998 to 2017 is shown
in Fig. 6. Overall, the DMS concentrations in mid- and high-
latitude regions exhibit a significant seasonal cycle, peak-
ing in summer and reaching their lowest in winter. This pat-
tern aligns with the results of many prior observational stud- 50

ies. In the Northern Hemisphere, elevated DMS concentra-
tions (>2.5 nM) during summer mainly occur in two regions.
One is the North Pacific (40–60° N), where the concentra-
tion generally peaks in August, surpassing 10 nM (Fig. 6).
The other is the subarctic North Atlantic (45–80° N). A no- 55

table increase in DMS concentration starts at around 45–
50° N in May and gradually shifts northward beyond 50° N
by July (Figs. 6–7). This spatiotemporal evolution pattern
corresponds to the evolution of solar radiation intensity and
the spring–summer bloom patterns of phytoplankton (Fried- 60

land et al., 2018; Yang et al., 2020). The peak concentra-
tion date at the same latitude in the North Atlantic gen-
erally precedes that in the North Pacific (Fig. 7). In the
Southern Hemisphere, there is a conspicuous DMS-rich zone
near 40° S (where the Subtropical Convergence lies) in sum- 65

mer. This presents as a ring-shaped high-concentration band
that is nearly parallel to that latitude. The highest seasonal
mean concentration (December–February) occurs at 41.5° S,
reaching 3.71 nM (Fig. 9). Southward from this zone, there is
a low-DMS area spanning 47–61° S where the average con- 70

centration is below 2.5 nM across all seasons. However, in
the coastal waters of Antarctica (south of 60° S), significantly
high concentrations also manifest in summer; these surpass
4.0 nM, even higher than those near 40° S (Figs. 6 and 9).
In addition to the above regions, several typical upwelling 75

zones also exhibit relatively high DMS concentrations, such
as the eastern Pacific and the southeastern Atlantic. The for-
mer, situated at lower latitudes, shows no significant seasonal
variation, while the latter exhibits higher concentrations from
October to February. The high nutrient concentrations in up- 80

welling areas can bolster primary productivity, intensifying
biological activities and augmenting the production of bio-
genic sulfur.

The spatiotemporal variation of DMS emission flux is gen-
erally consistent with that of the concentration. As shown in 85

Fig. 8, DMS fluxes are also significantly higher in summer
across most mid- and high-latitude regions, and the high-
flux regions generally overlap with the hot spots of DMS
concentration. This indicates that the distribution of sea sur-

https://doi.org/10.1594/PANGAEA.805613
https://seabass.gsfc.nasa.gov/naames
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Figure 5. Comparisons between the ANN predictions and observations from fully independent campaigns. (a) Time series of simulation
results and DMS observational data obtained from the Line P program. The different markers represent different stations along Line P. The
blue shading covers the cruises included in the GSSD database. (b) Scatter plot of simulated versus observed DMS concentrations. (c) The
same as panel (b) but for the averaged data from each cruise. The yellow lines and shaded bands are linear fits and the corresponding 95 %
confidence intervals for log10 space data. The values of R2, RMSE, and slope displayed in the figure also correspond to the log10 space data.

face DMS concentration is the main factor controlling the
monthly variation pattern of DMS emissions at the global
scale, and the effect of transfer velocity is secondary. How-
ever, certain regions present inconsistencies between DMS
flux and the concentration dynamics. For instance, in the5

Arabian Sea and the central Indian Ocean, elevated trans-
fer velocities (Fig. S10) during June to September, driven by
heightened wind speeds, markedly enhance emission fluxes
despite the comparatively low concentrations compared to
other months. In polar regions, especially along the coast of10

Antarctica, although the DMS concentration is high in sum-
mer, sea ice coverage significantly impedes DMS release;
thus, the emission flux remains at a low level.

As shown in Fig. 9, the higher wind speeds in autumn and
winter at mid-latitudes and high latitudes result in higher to-15

tal transfer velocities, leading to smaller summer-to-winter
ratios of DMS emission flux compared to that of DMS con-
centration. At low latitudes, the existence of the trade wind
zones in both hemispheres further leads to two high-flux
bands. The emission fluxes in the equatorial region between20

these two trade zones are significantly lower. Although the
latitudinal distributions of mean DMS emission flux in the
Southern and Northern Hemisphere are almost symmetrical,
the huge difference in ocean area between the two hemi-

spheres results in significantly higher total emissions from 25

the Southern Hemisphere. Since anthropogenic SO2 emis-
sions are mainly concentrated in the Northern Hemisphere,
oceanic DMS plays a much more important role in the South-
ern Hemisphere, especially over the regions south of 40° S
where the DMS emissions are high and the perturbation of 30

anthropogenic pollution is low.
According to our newly built DMS gridded dataset, the

global area-weighted annual mean concentration of DMS at
the sea surface from 1998 to 2017 was ∼ 1.71 nM (1.67–
1.75 nM), which is within the range of values (1.6 to 2.4 nM) 35

obtained by various methods in previous studies (Tesdal et
al., 2016). The global annual mean DMS emissions into the
atmosphere were 17.2 Tg S yr−1 (16.9–17.5 Tg S yr−1), with
10.3 Tg S yr−1 (59.9 %) originating from the Southern Hemi-
sphere and 6.9 Tg S yr−1 (40.1 %) from the Northern Hemi- 40

sphere.

3.2.2 Comparisons with other global DMS climatologies

Here we compare the distributions of DMS concentration de-
rived from our ANN simulation (referred to as Z23) with four
previously constructed climatologies (Fig. 10), including (1) 45

L11 (the widely used second version of the interpolation-
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Figure 6. Monthly climatology of global sea surface DMS concentration during 1998 to 2017.

Figure 7. The day of the year with the highest sea surface DMS concentration for each grid point.

and/or extrapolation-based climatology established by Lana
et al., 2011), (2) H22 (an updated version of L11 that incor-
porates many more DMS measurements and uses dynamic
biogeochemical provinces; Hulswar et al., 2022), (3) G18
(the DMS concentration field estimated by a two-step remote5

sensing algorithm; Galí et al., 2018), and (4) W20 (the pre-
vious DMS climatology simulated by an ANN; Wang et al.,
2020).

Overall, all datasets exhibit the general pattern of high
DMS concentrations during summer and low concentrations10

during winter, but notable distinctions between their specific
distributions emerge. Due to the limitation of the method
used, DMSL11 exhibits relatively low spatial heterogeneity

(i.e., higher patchiness), which may not capture the detailed
spatial variability on a regional scale well. Compared with 15

DMSL11, DMSZ23 is significantly lower at high latitudes dur-
ing summer and in the southern Indian Ocean and southwest-
ern Pacific Ocean from December to February (Fig. 10a).
Particularly in the southern polar region (Polar_S), latitudinal
averages of DMSL11 surpass 10 nM during summer, which 20

is 1–3 times higher than those of DMSZ23 (Fig. 10e). How-
ever, DMSZ23 maintains a similar level around the Antarc-
tic in March compared to summer, and it is significantly
higher than DMSL11 as well as the other three climatologies.
DMSH22 shows lower disparities with DMSZ23 in the Arc- 25

tic, the southern Indian Ocean, and the southwestern Pacific
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Figure 8. Monthly climatology of global DMS sea-to-air flux from 1998 to 2017.

Figure 9. Latitudinal distributions of sea surface DMS concentration, total transfer velocity (Kt), sea-to-air flux, and total emissions in
different seasons during 1998–2017. The dashed parts of the lines indicate regions where more than half of the satellite Chl a values
were missing and thus not available for the DMS simulation, so most of the Chl a data for these regions are from the CMEMS global
biogeochemical multi-year hindcast.

Ocean, but the summertime concentrations in most of the Po-
lar_S region are also >2 nM higher than DMSZ23 (Fig. 10b).
In contrast, DMSH22 in Polar_S from September to Novem-
ber is∼ 2 nM lower than DMSZ23. The global area-weighted
annual mean DMS concentrations in L11 and H22 are 2.435

and 2.26 nM, respectively, which are approximately 42.1 %
and 32.2 % higher than Z23.

G18 exhibits the lowest global annual mean concentration
(1.63 nM) among these climatologies, approximately 4.7 %
lower than Z23. The most notable deviation occurs in the 10

North Pacific during boreal summer and near the Antarctic
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Figure 10. (a–d) The spatial distributions of DMS concentration differences between Z23 and four previously estimated fields across
different seasons: (a) L11, (b) H22, (c) G18, and (d) W20. Dark gray regions of the ocean represent areas where data are missing for at least
one field. (e) Comparisons between the latitudinal distributions of Z23 and four previous DMS fields across different seasons. The dashed
parts of the Z23 lines indicate regions where more than half of the satellite Chl a values were missing and thus not available for the DMS
simulation, so most of the Chl a data for these regions are from the CMEMS global biogeochemical multi-year hindcast.

during austral summer; in these cases, DMSZ23 is >3.5 nM
(>100 %) higher than DMSG18 (Fig. 10c). Conversely, there
are high DMS concentrations (>5 nM) in certain coastal
seas (such as the coasts of eastern and northeastern Asia,
the coasts of Patagonia and Peru, the southwestern coast5

of Africa, and the western coasts of the Sahara and North
America) based on the G18 estimate. This characteristic is
not fully replicated by other DMS fields, possibly due to
the underestimation of DMS by our model and other meth-

ods in coastal regions as well as the overestimation of Chl 10

a by satellites, which is caused by interference from col-
ored dissolved organic matter and non-algal detrital parti-
cles (Aurin and Dierssen, 2012). W20 exhibits the highest
consistency with Z23 in spatiotemporal distribution patterns
as well as the lowest difference in global annual mean con- 15

centration (1.74 nM, only 1.8 % higher than Z23). However,
notable discrepancies exist in specific regions. For instance,
during summertime, DMSZ23 is >1 nM (>40 %) lower than
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DMSW20 in more than half of the Arctic area, while in the
North Pacific and Southern Ocean, DMSZ23 is significantly
higher than DMSW20 (Fig. 10d). Furthermore, only DMSZ23
forms a nearly complete high-concentration annular band at
∼ 40° S during austral summer.5

3.2.3 Decadal changes

One of the advantages of our ANN-derived DMS dataset is
its time-resolved nature, which enables us to investigate the
interannual variations in sea surface DMS concentration and
flux. Here we present the decadal trends in DMS concentra-10

tion, Kt, and emission flux spanning from 1998 to 2017 at
both global and regional scales. Overall, the absolute inter-
annual variability of DMS concentration across most global
oceanic regions appears relatively small. A total of 88.4 % of
the global oceanic area exhibited a range of less than 1 nM15

between the maximum and minimum annual average con-
centrations during this 20-year period. This was particularly
evident in tropical and subtropical regions with latitudes be-
tween 40° S and 40° N. At latitudes higher than 40° in both
hemispheres, notable decadal changes occurred (Fig. 11a).20

Annual mean DMS concentrations in the Greenland Sea,
the North Pacific, and the Southern Ocean exhibited signif-
icant decreasing trends, with rates exceeding 0.03 nM yr−1

(P<0.05). A significant decreasing trend was also noted in
the eastern tropical Pacific Ocean, albeit at a much lower ab-25

solute rate, primarily below 0.015 nM yr−1. Conversely, there
were significant increasing trends in the Labrador Sea, the
South Pacific (35–60° S, 150° E–75° W), and the southeast-
ern Pacific, with the highest rate exceeding 0.02 nM yr−1.
The global annual mean concentration exhibited a decreas-30

ing trend with a rate of 0.0035 nM yr−1 (P<0.05; Fig. 11d).
The highest value (1.75 nM) occurred in 1999, and the low-
est concentration (1.67 nM) occurred in 2015. Due to the pri-
mary influence of an increasing WS and the secondary im-
pact of a rising SST in most mid- and low-latitude regions35

(Fig. S11), the Kt of DMS also showed an overall increasing
trend, especially in the eastern Pacific and Atlantic Ocean
(Fig. 11b). The increase in Kt can offset the decrease in
DMS concentration to some extent, resulting in no signifi-
cant trend in global DMS emissions during this 20-year pe-40

riod (Fig. 11d).
In the Arctic region, which is one of the most sensitive

areas to climate warming (Screen et al., 2012; Serreze and
Barry, 2011), the sea ice coverage has undergone a signif-
icant reduction over the past 2 decades; this is particularly45

noticeable in the Barents Sea and Kara Sea as well as further
north (>1 % yr−1 for annual mean SI; Fig. S11). The retreat
of summertime sea ice leads to an expansion of the open-
sea surface, potentially amplifying DMS emission (Galí et
al., 2019). However, despite this trend, there was no sig-50

nificant increase in the annual total emissions from the Po-
lar_N region over the same period, primarily due to a de-
creasing trend in DMS concentration (Fig. 12). On the other

hand, the highest emissions occurred in the last 2 years
(>0.64 Tg S yr−1)CE2 , which are attributed to the highest Kt. 55

Thus, with the further loss of sea ice coverage, it is likely
that a rise in DMS emissions will appear in the Arctic re-
gion in the future (Galí et al., 2019). In contrast to the Arctic,
the Southern Ocean has experienced a significant increase in
the sea ice fraction (Fig. S11), leading to a significant de- 60

crease in Kt (Fig. 11b). Coupled with the decreased DMS
concentration, this resulted in a substantial decline in the
DMS emission flux (Figs. 11c and 12). The highest annual
total emission flux in the Polar_S region occurred in 1998
(1.49 Tg S), while the lowest occurred in 2013 (1.02 Tg S), 65

representing a decrease of ∼ 32 %. Across other oceanic re-
gions, the annual average DMS concentrations in the West-
erlies_N_Pacific and Trades_Pacific regions exhibit decreas-
ing trends over the past 20 years, while the concentration
in Westerlies_S and Trades_Atlantic has increased (P<0.05; 70

Fig. 12). Regarding DMS flux, Westerlies_N_Pacific showed
a decrease, while Westerlies_N_Atlantic, Westerlies_S, and
Trades_Atlantic showed an increase. There was no signifi-
cant trend in other low-latitude regions.

3.3 Connection with atmospheric biogenic sulfur 75

One of the primary objectives of developing this daily grid-
ded DMS dataset (Z23) spanning multiple years is to improve
the emission inventory of marine biogenic DMS, thereby
enhancing the modeling performance for atmospheric sul-
fur chemistry, especially when simulating sulfur-containing 80

aerosols. To assess whether our newly constructed DMS
dataset can reach this objective, we employed a backward-
trajectory-based method to examine the correlation between
sea surface DMS emissions and resulting DMS oxidation
products in the atmosphere. The correlation was then com- 85

pared against those derived from previously reported DMS
climatologies (i.e., L11, H22, G18, and W20).

Here we use the observed concentrations of particulate
methanesulfonic acid (MSA) over the Atlantic Ocean as a
reference. MSA is one of the major end products of DMS 90

in the atmosphere and derives solely from the oxidation
of marine biogenic DMS over remote oceans (Saltzman et
al., 1983; Savoie et al., 2002; Osman et al., 2019). There-
fore, there is likely to be a dependence of the variation
of MSA concentration on the DMS emission fluxes. Dur- 95

ing four transection cruises in the Atlantic conducted by
the R/V Polarstern (20 April–20 May 2011, 28 October–
1 December 2011, 10 April–15 May 2012, and 27 October–
27 November 2012), the MSA concentrations in submi-
cron aerosols were measured online using a high-resolution 100

time-of-flight aerosol mass spectrometer. The ship tracks are
shown in Fig. S12, and detailed information about the cruises
and measurement methodology was provided by Huang et
al. (2016). 72 h backward trajectories of air masses reaching
the ship position were calculated every hour by the HYS- 105

PLIT model, starting from a height of 100 m (Stein et al.,
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Figure 11. (a–c) The spatial distributions of changes in (a) DMS concentration, (b) Kt, and (c) DMS emission flux from 1998 to 2017. The
linear regression slopes for the annual means are taken as the rates of change here. (d) The temporal changes in global annual mean DMS
concentration, Kt, and total emission flux from 1998 to 2017.

Figure 12. The temporal changes in annual mean DMS concentration, Kt, and total emission flux in different regions from 1998 to 2017.
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2015). Subsequently, the air mass exposure to DMS emis-
sions (AEDMS), denoting the weighted average of the DMS
emission flux along the trajectory path, was calculated fol-
lowing the approach of Zhou et al. (2021). We used five dif-
ferent DMS gridded datasets, including Z23, L11, H22, G18,5

and W20. For Z23, the calculated daily DMS fluxes were
utilized. For the remaining four monthly climatologies, we
applied the daily Kt data from Z23 to calculate the DMS
fluxes, thus eliminating the potential confounding influences
stemming from different Kt parameterizations. In this calcu-10

lation, the same concentration was assigned to all days within
a month without interpolation. The detailed procedures for
the calculation of AEDMS are elucidated in Appendix C.

MSA concentrations were significantly higher in late
spring than in autumn for both the North and South At-15

lantic Ocean (Fig. 13a). For example, during the boreal
spring cruise in 2011, the average MSA concentration over
the North Atlantic (0.068 µg m−3 north of 25° N) was about
an order of magnitude higher than the average concentra-
tion over the South Atlantic (0.006 µg m−3 south of 5° S).20

During the boreal autumn cruise in 2011, the average con-
centration over the South Atlantic (0.034 µg m−3 south of
5° S) was ∼ 5 times higher than that over the North Atlantic
(0.006 µg m−3 north of 25° N). In addition to this major sea-
sonal pattern, there was also a minor MSA concentration25

peak between 5 and 15° N in both seasons. The spatial and
seasonal variations in AEDMS based on the Z23 dataset (re-
ferred to as AEDMS_Z23) largely coincided with these MSA
concentration patterns (Fig. 13a). It should be noted that the
MSA /AEDMS ratio between 5 and 15° N was significantly30

lower than those in other high-MSA regions. This may re-
sult from the DMS simulation biases near the coast of West
Africa or the lower DMS-to-MSA conversion yields, which
are related to the air temperature and oxidant species (Barnes
et al., 2006; Bates et al., 1992). There were also several35

AEDMS peaks in the North Atlantic during November 2012,
which is inconsistent with the continuously low MSA con-
centrations. Given the high precipitation rates along the tra-
jectory (Fig. 13a), a strong wet scavenging process might sig-
nificantly reduce aerosol concentrations (Wood et al., 2017).40

The AEDMS derived from other DMS concentration fields
showed similar variations to AEDMS_Z23 (Fig. 13a). This
is not surprising since all DMS concentration fields exhibit
similar large-scale spatiotemporal patterns, and identical air
mass transport paths and Kt values were applied in different45

AEDMS calculations. However, due to the lower temporal
resolutions and the absence of interannual changes in those
DMS monthly climatologies, the resulting AEDMS may be
less effective in capturing variability at finer scales or across
different years. To elaborate on this issue, here we focus on50

the high-MSA periods, which correspond to latitudes north
of 25° N in boreal spring (S1 and S2 in Fig. 13a), 25° N–
25° S in the boreal autumn of 2011 (A1 in Fig. 13a), and
south of 5° N in the boreal autumn of 2012 (A2 in Fig. 13a).
As shown in Fig. 13b, hourly MSA concentrations exhibited55

significantly stronger correlations with AEDMS_Z23 than
with other AEDMS time series in S1 and S2, indicating that
AEDMS_Z23 can explain more (1.31–1.69 times more) of
the variance of MSA concentration. During A1 and A2, the
correlations between AEDMS and MSA concentration were 60

weaker than those during S1 and S2, possibly due to higher
DMS prediction biases in the South Atlantic or different
influencing factors for atmospheric DMS chemistry across
wide spatial ranges. Nonetheless, AEDMS_Z23 still exhib-
ited the highest correlation with MSA (Fig. 13c). This over- 65

all stronger connection between Z23 and atmospheric DMS-
derived aerosols mainly benefited from the combined effects
of a higher time resolution and inherent interannual varia-
tions. For example, the ratio of the average MSA concen-
tration during S1 to that during S2 (the S1-to-S2 ratio) was 70

1.89, and the A2-to-A1 ratio was 1.75. AEDMS_Z23 exhib-
ited a slightly lower but still significant interannual variation,
where the S1-to-S2 ratio and the A2-to-A1 ratio were 1.58
and 1.46, respectively. However, this interannual variation
cannot be reproduced by other datasets, where the S1-to-S2 75

ratio and A2-to-A1 ratio were in the ranges of 1.08–1.30 and
1.19–1.29, respectively. These results show the potential of
our newly developed DMS gridded data product to enhance
the modeling performance for atmospheric DMS processes
compared with previously reported climatologies. 80

It is worth noting that the satellite-based algorithms of G18
and the ANN model of W20 can also be utilized to produce
daily multi-year DMS fields, just as Z23 does. Future investi-
gations could include comparisons with these fields, facilitat-
ing a more comprehensive assessment of the performance of 85

each algorithm or model. Furthermore, the AEDMS method
used here is a highly simplified approach that does not con-
sider the complex DMS chemistry in the atmosphere, and
intercomparisons based on chemical transport models can be
used in the future to obtain a more straightforward conclu- 90

sion.

4 Uncertainties and limitations

Although our ANN ensemble model and derived DMS
dataset demonstrate certain advantages compared to previ-
ous studies, as discussed in Sect. 3.3, notable uncertainties 95

and limitations persist, resulting in ∼ 35 % uncaptured vari-
ance (Fig. 3a) and non-negligible simulation biases, e.g., the
underestimation of extremely high DMS concentrations and
the overestimation of low DMS concentrations. Firstly, there
is a mismatch in the spatial and temporal scales between the 100

input and target. The target, sea surface DMS concentrations,
is obtained from in situ measurements taken at specific loca-
tions and time points. In contrast, the input data are primarily
from gridded datasets where each pixel represents an aver-
age over a defined spatial range and temporal range. This is 105

particularly significant for the ECCO variables, which have
the largest spatial grid size of 110 km. Consequently, extreme
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Figure 13. (a) Time series of observed MSA concentration, AEDMS calculated based on different DMS concentration datasets, and average
precipitation along the backward trajectory (Precipitation_traj) during four Atlantic cruises in 2011–2012. (b–c) Correlations between hourly
MSA concentration and AEDMS based on different DMS concentration datasets (b) during periods S1 and S2 and (c) during periods A1 and
A2. Data points during periods in which the air mass was within the boundary layer for less than 90 % of the time or Precipitation_traj larger
than 0.05 mm h−1 were removed.

values at specific locations cannot be accurately captured
by the regional averages, resulting in dampened variations
among the samples. Secondly, the input data from different
sources and the observed sea surface DMS concentrations
inherently possess certain uncertainties, which can introduce5

noise into the ANN learning process. Thirdly, the ANN it-
self may not be powerful enough to fully capture the com-
plex input–output relationships across different oceanic re-
gions, especially when the samples are scarce under specific
environmental conditions. Finally, beyond the nine variables10

incorporated in this study, other environmental parameters

such as pH (Six et al., 2013; Hopkins et al., 2010) and trace
metal elements (Li et al., 2021) can also influence the DMS
concentration. Not incorporating these factors may introduce
additional biases. 15

The overall bias for log10(DMS) is at a similar level at
the high- and low-concentration ends, but the DMS con-
centration on a linear scale is more underestimated in the
high-concentration regime than overestimated in the low-
concentration regime. As a result, our simulation results may 20

tend to underestimate the annual average DMS concentration
and flux. To mitigate this critical bias and reduce model un-
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certainty, high-quality input datasets with finer spatial res-
olution are needed in the future. The high-time-resolution
nature of the resulting daily DMS data product would be
more valuable if it was accompanied by higher spatial res-
olution. Expanding the data volume is also crucial for im-5

proving model performance. Although the current DMS ob-
servational data cover all major oceanic basins, certain re-
gions such as Trades_Pacific remain underrepresented. Ad-
vances in online measurement technologies offer promising
avenues for acquiring more extensive and convenient obser-10

vational data (Hulswar et al., 2022). Additionally, incorporat-
ing more input features into the model would be beneficial.
This necessitates a comprehensive understanding of the spa-
tiotemporal distributions of those input features, and further
field measurements are important to this end. Moreover, inte-15

grating DMS biogeochemical mechanisms with the machine
learning technique, i.e., a hybrid model coupling physical
processes with a data-driven approach, may further improve
prediction accuracy, generalization, and interpretability (Re-
ichstein et al., 2019).20

When using our newly developed DMS dataset, there are
two issues that need to be noted. Firstly, there is a significant
portion of missing satellite Chl a data during winter in po-
lar regions. In such instances, the modeling data from the
CMEMS global biogeochemical multi-year hindcast were25

used, which may introduce higher uncertainty. We have pro-
vided flags indicating the source of the Chl a data for each
grid in the dataset. Nevertheless, given the low phytoplank-
ton biomass and extensive sea ice coverage during winter,
DMS emissions are typically at the lowest level of the year,30

so the missing satellite data have a relatively small impact
when investigating the subsequent effects of DMS emission
on the atmospheric environment. Secondly, since the ANN
ensemble model exhibits a limited capacity to accurately re-
produce extremely high concentrations of DMS, the DMS35

concentrations in certain nearshore areas with intensive bio-
logical activity may be greatly underestimated.

5 Code and data availability

The generated gridded datasets of DMS concentration, to-
tal transfer velocity, and flux have been deposited at https:40

//doi.org/10.5281/zenodo.11879900 (Zhou et al., 2024) and
can be downloaded publicly. The ANN model code and the
MATLAB scripts for data analysis are available from https:
//doi.org/10.5281/zenodo.12398985 (Zhou, 2024).

6 Conclusions 45

Based on the global sea surface DMS observations and as-
sociated data on nine relevant environmental variables, an
ANN ensemble model was trained. The ANN model ef-
fectively captured the variability of DMS concentrations
and demonstrated good simulation accuracy. Leveraging this 50

ANN model, a global sea surface DMS gridded dataset
spanning 20 years (1998–2017) with daily resolution was
constructed. The global annual average concentration was
∼ 1.71 nM, which falls within the range of previous esti-
mates, and the annual total emissions were∼ 17.2 Tg S yr−1. 55

High DMS concentrations and fluxes occurred during sum-
mer in the North Pacific (40–60° N), the North Atlantic (50–
80° N), the annular band around 40° S, and the Southern
Ocean. With this newly developed dataset, the day-to-day
changes and interannual variations can be investigated. The 60

global annual average concentration shows a mild decreasing
trend (∼ 0.0035 nM yr−1), while the total emissions remain
stable. There were more significant decadal changes in cer-
tain regions. Specifically, the annual DMS emissions in the
South Pacific and North Pacific showed opposite trends. 65

To further validate the robustness and advantages of our
new dataset, an approach based on air mass trajectories was
applied to link the DMS flux and atmospheric MSA con-
centration. Compared to previous monthly climatologies, the
exposure of the air mass to DMS calculated using our new 70

dataset explains a greater amount of the variance in atmo-
spheric MSA concentration over the Atlantic Ocean. There-
fore, despite the presence of uncertainties and limitations, the
new dataset holds the potential to serve as an improved DMS
emission inventory for atmospheric models and to enhance 75

the simulation of DMS-induced aerosols and their associated
climatic effects.

https://doi.org/10.5281/zenodo.11879900
https://doi.org/10.5281/zenodo.11879900
https://doi.org/10.5281/zenodo.11879900
https://doi.org/10.5281/zenodo.12398985
https://doi.org/10.5281/zenodo.12398985
https://doi.org/10.5281/zenodo.12398985
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Appendix A: Abbreviations

AEDMS Air mass exposure to DMS emission
ANN Artificial neural network
BLH Boundary layer height
CCN Cloud condensation nuclei
Chl a Chlorophyll a
DMS Dimethyl sulfide
DMSP Dimethylsulfoniopropionate
DO Dissolved oxygen
DSWF Downward shortwave radiation flux
ECCO Estimating the Circulation and Climate of

the Ocean
GSSD Global Surface Seawater DMS (database)
Kt Total transfer velocity
MLD Mixed-layer depth
MB Mean bias
MSA Methanesulfonic acid
MSE Mean square error
NAAMES North Atlantic Aerosols and Marine

Ecosystems Study
NMB Normalized mean bias
RMSE Rooted mean square error
SI Sea ice fraction
SST Sea surface temperature
SSS Sea surface salinity
WS Wind speed

Appendix B: The weighted resampling strategy

Apart from the data imbalance between coastal and non-
coastal regions, an imbalance exists across different DMS5

concentration ranges. The majority (78.6 %) of DMS con-
centrations fall within the range of 0.8 to 10 nM (log10(DMS)
between−0.1 and 1). Samples with DMS concentrations ex-
ceeding 15 nM or falling below 0.3 nM only represent 6.9 %
of the entire sample set. A weighted resampling strategy was10

applied to mitigate this imbalance (Fig. S7). We randomly
sampled 50 000 samples with replacement from the original
sample set. The probability of each sample being selected is
proportional to the weighting factor shown as the dashed red
line in Fig. S7b, which is dependent on its DMS concentra-15

tion. First, the probability distribution of initial log10(DMS)
values was fitted with a gamma distribution, which is given
below and displayed as the blue line in Fig. S7b:

f (x)=
1

0(k)θk
(x+ 4)k−1e−(x+4)/θ . (B1)

Here, k and θ represent the shape parameter and scale pa-20

rameter: in this case, 100.7 and 0.044, respectively. x is the
log10(DMS) value. Since a gamma distribution only takes
positive values, we added 4 to the original x used as the
dependent variable for distribution fitting. We then obtained
a new gamma distribution function with the same mode25

but a lower shape parameter (k = 40) and with θ = 0.112.

The reciprocal of the new gamma distribution function was
taken as the weighting factor. As a result, samples exhibit-
ing high or low DMS concentrations are more likely to be
selected, whereas those with intermediate concentrations are 30

less likely to be selected. We also controlled the Fcoastal value
of the resampled data, keeping it equal to 9.7 %. The data
distribution of DMS concentrations after the resampling pro-
cess is shown in Fig. S7c. The fraction of samples with DMS
concentrations above 15 nM or below 0.3 nM is elevated to 35

15.0 %. The 50 000 samples were then randomly split into a
training set (80 %) and a validation set (20 %). Since there
were duplicate samples in the resampled dataset, the random
data split was conducted based on the original sample ID be-
fore resampling was performed to ensure that there was no 40

sample overlap between the training and validation sets.

Appendix C: The calculation of air mass exposure to
DMS emissions (AEDMS)

Here, the calculation of the AEDMS index was similar to the
calculation of air mass exposure to Chl a (AEC) in previous 45

studies (Arnold et al., 2010; Park et al., 2018; Zhou et al.,
2021). We adopted a similar approach to that presented in
Zhou et al. (2021) but replaced the Chl a concentration with
the DMS flux, as shown in the following equation:

AEDMS=

∑72
i=0DMS fluxi · e−

ti
72 ·

600
BLH∑72

i=0e
−
ti
72

. (C1) 50

Here, i represents the ith trajectory point of the 72 h back-
ward trajectory (the receptor point is the zeroth point). DMS
fluxi represents the DMS flux of the pixel in which the ith
trajectory point is located. DMS fluxi is set to zero if the
point is located on land or the air mass pressure is below 55

850 hPa (usually in the free troposphere with little influence
of surface emissions). ti is the tracking time of the trajectory
point (unit: hours) and e−

ti
72 is the weighting factor used to

assign higher values to regions closer to the receptor point.
To better connect with the atmospheric concentrations in the 60

marine boundary layer, normalization by the boundary layer
height (BLH) is achieved by including the 600

BLH term. A BLH
below 50 m is replaced with 50 m.
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