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Abstract. The oceanic emission of dimethyl sulfide (DMS) plays a vital role in the Earth's climate system and constitutes a 22 

substantial source of uncertainty in evaluating aerosol radiative forcing. Currently, the widely used monthly climatology of 23 

sea surface DMS concentration falls short of meeting the requirement for accurately simulating DMS-derived aerosols by 24 

chemical transport models. Hence, there is an urgent need for a high-resolution, multi-year global sea surface DMS dataset. 25 

Here we develop an artificial neural network ensemble model using 9 environmental factors as input features, which well 26 

captures the variabilities of DMS concentration across different oceanic regions. Subsequently, a global sea surface DMS 27 

concentration and flux dataset (1°×1°) with daily resolution spanning from 1998 to 2017 is established. According to this 28 

dataset, the global annual average concentration was ~1.71 nM, and the annual total emission was ~17.2 TgS yr–1, with ~60% 29 

originating from the southern hemisphere. While overall seasonal variations are consistent with previous DMS climatologies, 30 

notable differences exist in regional-scale spatial distributions. The new dataset enables further investigations into daily and 31 

decadal variations. Throughout the period 1998–2017, the global annual average concentration exhibited a slight decrease, 32 

while total emissions showed no significant trend. The DMS flux from our dataset showed a stronger correlation with observed 33 

atmospheric methanesulfonic acid concentration compared to those from previous monthly climatologies. Therefore, it can 34 

serve as an improved emission inventory of oceanic DMS and has the potential to enhance the simulation of DMS-derived 35 
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aerosols and associated radiative effects. The new DMS gridded products are available at 36 

https://doi.org/10.5281/zenodo.11879900 (Zhou et al., 2024).  37 

1 Introduction 38 

Dimethyl sulfide (DMS), primarily produced by ocean biota, accounts for more than half of natural sulfur emissions and 39 

significantly contributes to sulfur dioxide in the troposphere (Sheng et al., 2015; Andreae, 1990), which can be oxidized to 40 

sulfuric acid and form sulfate aerosols (Barnes et al., 2006; Hoffmann et al., 2016). Sulfate aerosols play an important role in 41 

climate systems by scattering solar radiation, changing cloud condensation nuclei (CCN) population, and altering cloud 42 

properties (Masson-Delmotte et al., 2021). Recent studies have proven that CCN over the remote ocean and polar regions are 43 

primarily composed of non-sea-salt sulfate (nss-SO4
2–) (Quinn et al., 2017; Park et al., 2021). Given the weak influence of 44 

anthropogenic SO2 over open oceans, marine biogenic DMS emerges as a crucial source of nss-SO4
2–, regulating oceanic 45 

climate (McCoy et al., 2015). Accordingly, DMS has been suggested to be the key substance in the postulated feedback loop 46 

of marine phytoplankton to climate warming (the “CLAW” hypothesis) (Charlson et al., 1987), albeit facing several 47 

controversies (Quinn and Bates, 2011). To accurately simulate the climate effects of DMS-derived aerosols, high-fidelity and 48 

high-resolution data on sea surface DMS concentrations and emission fluxes are required, along with further exploration of 49 

complex atmospheric chemical and physical processes (Hoffmann et al., 2016; Novak et al., 2021). It has been indicated that 50 

the uncertainty in DMS emission flux is the second largest contributor to the overall uncertainty associated with natural 51 

aerosols in evaluating the aerosol indirect radiative forcing (Carslaw et al., 2013). Therefore, understanding the spatiotemporal 52 

variations of DMS in global oceans is currently an important task. 53 

There are complex production and consumption mechanisms of DMS in the upper ocean, which makes it difficult to well 54 

capture the dynamics and distributions of sea surface DMS across different regions. Dimethylsulfoniopropionate (DMSP), the 55 

major precursor of DMS, is synthesized mainly by phytoplankton in the photic zone and plays a variety of physiological 56 

functions in algal cells (Stefels, 2000; Sunda et al., 2002; McParland and Levine, 2018). The DMSP yield varies significantly 57 

among algal species (Stefels et al., 2007; Keller et al., 1989), and DMS can be produced through DMSP intracellular and 58 

extracellular cleavage by both algae and bacteria (Alcolombri et al., 2015; Zhang et al., 2019). Therefore, the oceanic DMS 59 

produced via multiple pathways can be affected by many biotic and abiotic factors, including temperature, salinity, solar 60 

radiation, mixed layer depth, nutrients, oxygen, acidity, etc. (Simó and Pedrós-Alió, 1999a; Vallina and Simó, 2007; Stefels, 61 

2000; Zindler et al., 2014; Six et al., 2013; Omori et al., 2015; Stefels et al., 2007). In addition, seawater DMS undergoes 62 

various removal pathways (bacterial consumption, photodegradation, sea-to-air ventilation, etc.), further complicating its 63 

cycling (Stefels et al., 2007; Galí and Simó, 2015; Hopkins et al., 2023). Therefore, although previous studies have developed 64 

several empirical algorithms (Simó and Dachs, 2002; Belviso et al., 2004b; Vallina and Simó, 2007) and process-embedded 65 

prognostic models (Kloster et al., 2006; Vogt et al., 2010; Belviso et al., 2011; Wang et al., 2015) based on relevant variables 66 
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(mixed layer depth, chlorophyll a, nutrients, radiation, phytoplankton group, etc.) to estimate the distribution of DMS, their 67 

results showed significantly different patterns and inconsistency with observations in many regions (Tesdal et al., 2016; 68 

Belviso et al., 2004a). Recently, Galí et al. (2018) developed a new empirical algorithm following a parameterization of DMSP 69 

(Galí et al., 2015). The estimated DMS field exhibited a generally higher consistency with observations than those derived 70 

from previous algorithms SD02 (Simó and Dachs, 2002) and VS07 (Vallina and Simó, 2007), but this method did not consider 71 

the influences of nutrients and still exhibited substantial biases in certain regions (e.g., near the Antarctic). 72 

Since Lovelock et al. (1972) first discovered the ubiquitous presence of DMS in seawater, numerous observations of sea 73 

surface DMS have been conducted worldwide, yielding a substantial volume of observational data to date. Based on these 74 

worldwide measurements, monthly climatology of global DMS can be generated through interpolation and extrapolation 75 

(Hulswar et al., 2022; Kettle et al., 1999; Lana et al., 2011). The latest version incorporated 873,539 raw observations (48,898 76 

after data filtration and unification for climatology development), and the estimated global annual mean concentration and 77 

total flux are 2.26 nM and 27.1 TgS yr–1, respectively (Hulswar et al., 2022). However, despite the abundance of data, 78 

significant spatial and temporal disparities persist, potentially introducing large uncertainties in regions or periods with sparse 79 

observations. Furthermore, the observational data from different years within a particular month were combined together for 80 

interpolation and extrapolation, and the interannual variations cannot be investigated by this approach. 81 

In recent years, the application of data-driven approaches like machine learning to Earth system science has drawn more and 82 

more attention. Compared with traditional approaches, machine learning explores larger function space and captures more 83 

hidden information from the big data, hence it often provides a better prediction performance (Reichstein et al., 2019; Zheng 84 

et al., 2020; Bergen et al., 2019). For instance, a recent study demonstrated that artificial neural network (ANN) can capture 85 

much more (~66%) of the raw data variance than multilinear regression (~39%), and a global monthly climatology of sea 86 

surface DMS concentration has been developed based on ANN model (Wang et al., 2020). The machine learning techniques 87 

have also been used to simulate the distribution of DMS in the Arctic (Humphries et al., 2012; Qu et al., 2016),  North Atlantic 88 

Ocean (Bell et al., 2021; Mansour et al., 2023), Northeast Pacific Ocean (McNabb and Tortell, 2022), Southern Ocean 89 

(McNabb and Tortell, 2023), and East Asia (Zhao et al., 2022). 90 

However, to our best knowledge, there is currently no global-scale sea surface gridded DMS dataset with both high time 91 

resolution (daily) and long-term coverage (> 10 years). Such a dataset is urgently needed for modeling the atmospheric 92 

processes and climatic implications of oceanic DMS. The sea surface concentration and sea-to-air emission flux of DMS can 93 

vary greatly from day to day (Simó and Pedrós-Alió, 1999b), and the emitted DMS exerts effects on the atmosphere over time 94 

scales of several hours to days. Relying solely on monthly climatology of DMS as the emission inventory may fail to capture 95 

important details and could lead to large modeling biases compared to observed concentrations of atmospheric DMS or its 96 

oxidation products (Chen et al., 2018; Fung et al., 2022). 97 
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Here, we build a 20-year (1998 – 2017) global sea surface DMS gridded dataset (1°×1°) with a daily resolution based on a 98 

data-driven machine learning approach (ANN ensemble). This product can improve our understanding of the spatiotemporal 99 

variations of oceanic DMS. More importantly, it can serve as an updated emission inventory of marine biogenic DMS for 100 

chemical transport models, which is beneficial for enhancing the simulation of atmospheric processes of DMS and reducing 101 

the uncertainties in marine aerosol’s climate effects. The paper consists of four main parts as depicted in Fig. 1: (1) the 102 

development of machine learning model based on global DMS measurements and 9 ancillary environmental variables; (2) the 103 

derived spatial and temporal distributions of DMS and comparisons with previous estimates; (3) an example showing the 104 

superiority of our newly developed DMS field through its correlation with atmospheric biogenic sulfur; and (4) the 105 

uncertainties and limitations inherent in our approach and the resulting data product. 106 

 107 

Figure 1. Flowchart of this study, including the development of ANN ensemble model, construction of new DMS gridded 108 

dataset, and subsequent evaluations of this product. 109 
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2 Methodology 110 

2.1 Input datasets 111 

The in-situ DMS measurement data used for training the machine learning model primarily sourced from the Global Surface 112 

Seawater DMS (GSSD) database (Kettle et al., 1999). The GSSD database contains a total of 87,801 DMS measurements 113 

collected across 266 cruise and fixed-site observation campaigns from 11 March 1972 to 27 August 2017 114 

(https://saga.pmel.noaa.gov/dms/, last access: 1 April 2020). Hulswar et al. (2022) consolidated other DMS measurements not 115 

included in the GSSD database to establish an updated DMS climatology. Here we incorporated these additional data predating 116 

2017, originating from 8 campaigns (number of samples = 6,711). The spatial distribution of theses combined 94,512 in-situ 117 

observational data is shown in Fig. S1, which covers all major regions of the global ocean. 118 

We selected 9 environmental variables relevant to DMS biogeochemical processes as input features, including chlorophyll a 119 

(Chl a), sea surface temperature (SST), mixed layer depth (MLD), nitrate, phosphate, silicate, dissolved oxygen (DO), 120 

downward short-wave radiation flux (DSWF), and sea surface salinity (SSS). The data sources and relevant information of 121 

these 9 input variables and DMS are listed in Table 1. Chl a data were obtained from both in-situ observations, co-located with 122 

DMS data, and satellite remote sensing products (Copernicus-GlobColour, Level-4, daily, 0.042°×0.042°). The Copernicus-123 

GlobColour Level-4 dataset integrates multiple upstream sensors including SeaWiFS, MODIS-Aqua & Terra, MERIS, VIIRS-124 

SNPP & JPSS1, and OLCI-S3A & S3B, with an interpolation procedure applied to fill missing data (Garnesson et al., 2019). 125 

Daily SST data (0.25°×0.25°) were from the NOAA OI SST V2 high-resolution blended reanalysis dataset (Huang et al., 126 

2021). Daily MLD, DSWF, and SSS were from the modeling outputs of NASA’s "Estimating the Circulation and Climate of 127 

the Ocean" (ECCO) consortium, Version 4 Release 4 (V4r4) (Forget et al., 2015). The sea surface concentrations of nitrate, 128 

phosphate, silicate, and DO were from the CMEMS global biogeochemical multi-year hindcast dataset (daily, 0.25°×0.25°). 129 

The surface wind speed (WS) and sea ice fraction (SI) data are needed in the calculation of sea-to-air flux (details are provided 130 

in Section 2.4.2). Here we utilized the daily 10-meter WS data from ECCO V4r4 and the daily SI data from NOAA OI SST 131 

V2. Since there are multiple different spatial grids among all datasets, the data match-up has been conducted as described in 132 

the next section. 133 

  134 
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Table 1. The data sources and relavant information of variables used for model development, DMS simulation, and flux 135 

calculation 136 

Variable Data source URL 
Temporal 
resolution 

Temporal 
coverage 

Spatial grid 

DMS 
GSSD database 

https://saga.pmel.noaa.gov
/dms/ 

In-situ 
Mar. 1972 – 
Aug. 2017 

- 

Other campaigns integrated in 
Hulswar et al. (2022) 

https://data.mendeley.com/
datasets/hyn62spny2/1 

In-situ 
Feb. 2000 – 
Jun. 2016 

- 

Chl a 

GSSD database 
https://saga.pmel.noaa.gov
/dms/ 

In-situ 
Oct. 1980 – 
Aug. 2017 

- 

Copernicus-GlobColour Level-4 

https://data.marine.coperni
cus.eu/product/OCEANC
OLOUR_GLO_BGC_L4_
MY_009_104/description 

Daily 
Sep. 1997 – 
present 

0.042°×0.042° 

CMEMS global biogeochemical 
multi-year hindcast (only used 
for the simulation of DMS 
concentration in polar regions 
when satellite Chl a is 
unavailable) 

https://data.marine.coperni
cus.eu/product/GLOBAL_
MULTIYEAR_BGC_001_
029/description 

Daily 
Jan. 1993 – 
present 

0.25°×0.25° 

SST NOAA OI SST V2 
https://psl.noaa.gov/data/gr
idded/data.noaa.oisst.v2.hi
ghres.html 

Daily 
Sep. 1981 – 
present 

0.25°×0.25° 

MLD 

NASA ECCO V4r4 
https://data.nas.nasa.gov/ec
co/data.php?dir=/eccodata/
llc_90/ECCOv4/Release4 

Daily 
Jan. 1992 – 
Dec. 2017 

LLC90 (22 – 
110 km) DSWF 

SSS 

Nitrate 

CMEMS global biogeochemical 
multi-year hindcast 

https://data.marine.coperni
cus.eu/product/GLOBAL_
MULTIYEAR_BGC_001_
029/description 

Daily 
Jan. 1993 – 
present 

0.25°×0.25° 
Phosphate 

Silicate 

DO 

WS NASA ECCO V4r4 
https://data.nas.nasa.gov/ec
co/data.php?dir=/eccodata/
llc_90/ECCOv4/Release4 

Daily 
Jan. 1992 – 
Dec. 2017 

LLC90 (22 – 
110 km) 

SI NOAA OI SST V2 
https://psl.noaa.gov/data/gr
idded/data.noaa.oisst.v2.hi
ghres.html 

Daily 
Sep. 1981 – 
present 

0.25°×0.25° 

 137 

2.2 Data preprocessing for model development 138 

The data extraction and match-up were performed based on the sampling location and time associated with each DMS 139 

measurement record, as well as the temporal range and grid distribution of each variable. For satellite-retrieved Chl a, the data 140 

of the grids covering DMS sampling locations were extracted. If the data of the corresponding grid is missing, the average 141 
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value of the 55 grids nearby was calculated and used. For other variables, only values in the grids matching the DMS sampling 142 

locations were extracted. 143 

There are in-situ Chl a measurements co-located with certain GSSD data. They were also used along with satellite-retrieved 144 

Chl a. In-situ Chl a measurements with low precision (defined as < 0.1 mg m–3, and the number of significant digits is 1) were 145 

removed. For a specific in-situ observation campaign, if the number of low-precision values is larger than 10 and accounts for 146 

more than half, all in-situ Chl a data from this campaign were excluded. In addition, the in-situ Chl a data in the GSSD database 147 

were measured by two different methods: Turner fluorometry and high-performance liquid chromatography (HPLC). In order 148 

to improve mutual consistency, a conversion between the data from these two methods was applied and then the in-situ Chl a 149 

concentrations were adjusted to match up with satellite Chl a following the functions described in Galí et al. (2015). After that, 150 

the statistical outliers for all log10(Chl a) (outside the range of average ± 3 standard deviations) were eliminated. The 151 

comparison between in-situ and satellite-retrieved Chl a data is shown in Fig. S2. A strong consistency between in-situ and 152 

daily satellite Chl a data (R2 > 0.5, RMSE < 0.4) suggests the rationale for integrating these datasets. The log10 transformation 153 

was applied to make the data distribution close to normal distribution. When finally selecting the log10(Chl a) corresponding 154 

to each DMS data, in-situ data were prioritized where available; otherwise, the satellite-retrieved data were used. 155 

DMS and extracted MLD and three nutrients (nitrate, phosphate, silicate) were also performed log10 transformation. The 156 

statistical outliers of each variable were excluded as mentioned above. After data filtration, a total of 633,361 samples with 157 

valid data for all variables were obtained. To avoid data aggregation bias stemming from multiple data points gathered within 158 

a narrow temporal and spatial range (i.e., the same day and within a region smaller than 0.05°×0.05°), these data points were 159 

averaged. Consequently, 41,157 binned samples were utilized for subsequent model development, with their spatial 160 

distribution depicted in Fig. 2a. 161 

We divided the global ocean into 9 regions based on Longhurst’s biomes (Longhurst, 1998). There are 6 biomes in 162 

Longhurst’s definition, including Coastal, Polar_N, Polar_S, Westerlies_N, Westerlies_S, and Trades (the .shp file of 163 

Longhurst’s biomes and provinces was downloaded from https://www.marineregions.org/downloads.php#longhurst). We 164 

further divided Westerlies_N into Westerlies_N_Pacific and Westerlies_N_Atlantic, and divided Trades into Trades_Pacific, 165 

Trades_Indian, and Trades_Atlantic by different oceanic basins, as shown in Fig. 2b. It is noteworthy that there are 11,237 166 

samples in the Coastal region, constituting 27.3% of the entire sample set, despite the Coastal biome accounting for only 167 

9.7% of the global ocean area. Given the distinct seawater physiochemical and biological conditions in coastal seas 168 

compared to other regions, the disproportionately higher density of samples within the Coastal biome might cause the model 169 

to overly prioritize this region. To mitigate this data imbalance and ensure the model captures broader patterns in open 170 

oceans, we adjusted the data distribution during model training and validation processes. Specifically, for each training 171 

session, a portion of coastal samples is randomly removed, ensuring the proportion of coastal samples in the total sample set 172 

(denoted as Fcoastal) matches its area proportion.  173 
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 174 

Figure 2. (a) The distribution of 41,157 DMS observational data after matchup, filtration, and binning for constructing the 175 

ANN model. The grid size is 11. (b) Nine oceanic regions separated based on Longhurst’s biomes (Longhurst, 1998). 176 

 177 

2.3 Artificial neural network training and validation 178 

The 41,157 binned samples after the previously mentioned data preprocessing were used to develop the artificial neural 179 

network (ANN) model. The target feature is log10(DMS), and the input features are log10(Chl a), SST, log10(MLD), 180 

log10(nitrate), log10(phosphate), log10(silicate), DO, DSWF, and SSS. The data of all variables were standardized before 181 

training. 182 

We randomly selected 10% of the samples (n = 4,116) to be entirely excluded from training, as a testing subset for global 183 

validation and overfitting test. Specifically, 401 samples were randomly selected from Coastal biome, and 3,715 samples were 184 

selected from other biomes to compose the testing subset, matching the proportion of coastal area in global oceans (9.7%). 185 

Then, the remaining samples (n = 37,041) were utilized for training and cross validation, with a constraint of Fcoastal equal to 186 

9.7% in each training session as mentioned above. 187 



9 
 

Our feedforward fully connected neural network comprises two hidden layers, with 15 nodes in each layer. The activation 188 

functions for the first and second layers are ReLU and tanh, respectively. We applied L2 regularization (lambda = 1E-4) to 189 

counteract overfitting. The loss function is mean square error (MSE). Training stops if the validation loss is greater than or 190 

equal to the minimum validation loss computed so far 20 times in a row. The training processes were carried out with Statistics 191 

and Machine Learning Toolbox on Matlab 2022b. We repeated the data split (for training and validation sets) and training 192 

processes for 100 times and obtained 100 neural networks. The average prediction results of multiple ANNs shows a much 193 

higher consistency with the observations than a single ANN (Fig. S3). As the number of ANNs (Ntraining) increases, the accuracy 194 

of model predictions initially improves and then stabilizes. We adopted the average output of 20 ANNs as the final output, 195 

balancing performance and computational costs effectively. This kind of multiple-training approach, often termed “ANN 196 

ensemble” or “Monte Carlo cross-validation”, has been widely used to improve the model generalization and performance 197 

(Sigmund et al., 2020; Holder et al., 2022) as well as get a better model evaluation (Dubitzky et al., 2007). 198 

 199 

2.4 Deriving the 20-year global DMS distributions 200 

2.4.1 Simulation of sea surface DMS concentrations 201 

First, we constructed the daily gridded dataset of input variables with a spatial resolution of 11 from 1998 to 2017 based 202 

on the data sources listed in Table 1 (except in-situ Chl a data). Datasets with a higher spatial resolution than 11 were 203 

binned into 11. In polar regions, the satellite Chl a data are missing during winter, and the Chl a data from CMEMS global 204 

biogeochemical multi-year hindcast were used to fill the missing values. Then, the obtained gridded dataset was fed into the 205 

ANN ensemble model, and the 20-year global distribution of sea surface DMS concentration with daily resolution was 206 

simulated. 207 

2.4.2 Calculation of sea-to-air fluxes 208 

The sea-to-air fluxes of DMS were calculated on the basis of simulated surface DMS concentrations following equation (1): 209 

𝐷𝑀𝑆 𝑓𝑙𝑢𝑥 ൌ 𝐾𝑡 ൈ ሺ𝐷𝑀𝑆௪ െ
஽ெௌೌ
ு
ሻ         (1) 210 

Here DMSw and DMSa are DMS concentrations in surface seawater and air, respectively. H is Henry’s law constant of DMS. 211 

Since 
஽ெௌೌ
ு

 is usually ≪ 𝐷𝑀𝑆௪, this term was omitted in the calculation. Kt is the total transfer velocity considering the sea 212 

ice coverage fraction (SI): 213 

𝐾𝑡 ൌ 𝑘௧ ൈ ሺ1 െ 𝑆𝐼ሻ           (2) 214 

kt is the total transfer velocity without considering sea ice which is calculated by equation (3): 215 
ଵ

௞೟
ൌ

ଵ

௞ೢ
൅

ଵ

௞ೌൈு
            (3) 216 
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Here kw and ka are the water-side transfer velocity and air-side transfer velocity, respectively. We used the same approach as 217 

Galí et al. (2019) to obtain kw, ka, and H for DMS, where the effect of wind speed was considered for ka, and the influences of 218 

SST and SSS were considered for H. The calculations of ka and H followed the parameterizations of Johnson (2010). As for 219 

kw calculation, we adopted the bubble scheme (Woolf, 1997), which divided the sea-to-air mass transfer process into 220 

turbulence- and bubble-mediated gas exchange. The calculated kw based on the bubble scheme is lower than that of 221 

Nightingale’s scheme (Nightingale et al., 2000) under conditions of high wind speed, exhibiting a smaller deviation from the 222 

measurements (Beale et al., 2014; Galí et al., 2019). Before calculation, WS and SI data were also binned by 11 grid. By 223 

using WS and SI together with SST and SSS datasets, we obtained the daily gridded Kt and then calculated the sea-to-air DMS 224 

fluxes (daily, 1998–2017) by multiplying simulated DMS concentrations by Kt values. 225 

3 Results 226 

3.1 Model performance 227 

As shown in Fig. 3a, the newly developed ANN ensemble model captures a substantial part of data variance globally (log10 228 

space R2 = 0.651 and RMSE = 0.262). 92.8% of ANN simulated concentration values fall within 1/3 to 3 times of corresponding 229 

true values. The performance for testing set (R2 = 0.640, RMSE = 0.267, and 92.7% of data within the range of 1/3 to 3 times 230 

of observations) is very close to that for the training set (Fig. 3b), suggesting no obvious overfitting. The ANN model exhibits 231 

better performance compared to previous empirical and process-based models (R2 = 0.010.14) (Tesdal et al., 2016) as well 232 

as the satellite-based algorithm (R2 = 0.50) (Galí et al., 2018). The ANN model developed by Wang et al. (2020) showed a 233 

similar performance (R2 = 0.66, RMSE = 0.264 for training set) to our model, despite their more complex ANN configuration 234 

(two hidden layers with 128 nodes each) and the inclusion of sample location and time into input features. However, the more 235 

complex model will significantly increase the computational cost, and the incorporation of location and time information may 236 

weaken the physical interpretability. 237 

The performance of the model was evaluated across each of the nine oceanic regions. As illustrated in Fig. 3c and 4, the log10 238 

space RMSEs are all below 0.32 (equivalent to a concentration ratio of 2.09 in linear space), except for the Coastal region 239 

(training: RMSE = 0.322, R2 = 0.479; testing: RMSE = 0.332, R2 = 0.480). Since the Coastal region comprises only 9.7% of 240 

the global oceanic area, the comparatively lower performance in this area has minimal impact on the overall ability to predict 241 

the spatiotemporal distributions of DMS on a global scale. Despite the R2 values in Trades_Pacific and Trades_Atlantic being 242 

lower than 0.5, which is related to the relatively narrow variation range of DMS concentration, the RMSEs in these regions 243 

remain quite low and comparable to those of other regions. In general, our ANN ensemble model demonstrates a satisfactory 244 

capacity to reproduce variations in DMS concentrations across diverse oceanic regions. 245 
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However, it is noteworthy that our model tends to underestimate extremely high DMS concentrations and overestimate 246 

extremely low concentrations. Overall, the linear regressions between ANN-predicted and observed DMS concentrations yield 247 

slopes significantly lower than unity across all regions (Fig. 3c and 4), and there are significantly positive correlations between 248 

prediction residuals (observation – prediction) and observed log10(DMS) (Fig. S5 and S6). From a data perspective, this may 249 

be partly due to the insufficient number of samples with extreme DMS concentrations (known as underrepresentation), making 250 

it difficult to adequately capture the relevant information during training process. To test this point, we adopted a weighted 251 

resampling strategy to bolster the number of samples in the minority class before training, which has been widely used in 252 

machine learning to deal with the data imbalance issue (Haibo et al., 2008; Yu and Zhou, 2021; Chawla et al., 2002). The basic 253 

idea is to set a higher probability of being sampled for the minority class with extreme DMS concentrations, and the details 254 

are illustrated in Fig. S7 and explained in Appendix B. The results indicate that the weighted resampling scheme cannot fully 255 

alleviate the model bias. Although it does elevate the overall prediction-versus-observation slopes from ~0.59 to ~0.63, this 256 

improvement is marginal (Fig. S8 and S9). In several regions like Westerlies_S and Trades biomes, the slopes are even lower 257 

than original values. Furthermore, the data become more scattered after implementing the weighted resampling, resulting in 258 

increased RMSE and decreased R2. Therefore, there are other potential issues causing the model bias, which are discussed in 259 

Section 4. The original model, trained without weighted resampling, was adopted for subsequent analysis and the construction 260 

of the gridded DMS dataset. 261 

Primarily owing to the underestimation of high DMS concentrations, a negative mean bias (MB) in DMS concentration is 262 

evident across all regions, ranging from -0.18 to -2.02 nM (Table 2). The normalized mean bias (NMB, the ratio between mean 263 

bias and mean observed concentration) ranges from -8.7% to -32.2%. The most significant NMB emerges in Coastal and 264 

Trades_India regions, while NMB remains within -25% for other regions. The global MB and NMB are -1.05 nM and -22.1%, 265 

respectively. It is worth noting that these biases are compared against historical DMS observations, which were conducted 266 

within a very limited geographical area and time periods. Thus, they cannot be interpreted as the actual mean modelling bias 267 

for the entire region. On the other hand, the negative biases at high end of the concentrations are partially cancelled out by the 268 

positive biases at low end during the averaging over the entire region. The bias at a specific grid could be much larger. 269 

Nevertheless, those extreme DMS concentrations (> 15 nM or < 0.3 nM), exhibiting the most significant modeling bias, 270 

represent only a minority of the entire sample set (6.9%). Our model adeptly reproduces the majority of observations with 271 

moderate DMS concentrations across all regions, with the percentage of predicted values falling within 1/3 to 3 times of 272 

observations ranging from 87.0% to 98.8%. 273 

 274 
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Figure 3. Comparisons between ANN-simulated and observed DMS concentrations. (a) Scatter density for simulated versus 276 

observed DMS concentrations of the samples used in ANN training. (b) Comparison between the simulated versus observed 277 

DMS concentrations of testing set. (c) Comparison between the simulated versus observed DMS concentrations of the samples 278 

used in ANN training across 9 regions. The number of data points (n), log10 space R2, root mean square error (RMSE), and 279 

linear regression slope are also displayed. 280 

 281 

 282 

Figure 4. Comparisons between the simulated versus observed DMS concentrations of the testing set across 9 regions. 283 

 284 

 285 
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Table 2. The mean bias and normalized mean bias of the ANN-predicted DMS concentrations against observations across 286 

different regions. 287 

Region Mean bias (nM) Normalized mean bias 

Coastal -1.55 -32.2% 
Polar_N -0.90 -21.4% 
Polar_S -2.02 -24.1% 
Westerlies_N_Pacific -0.91 -18.8% 
Westerlies_N_Atlantic -0.24 -10.4% 
Westerlies_S -0.36 -14.1% 
Trades_Pacific -0.19 -8.7% 
Trades_Indian -0.73 -26.7% 
Trades_Atlantic -0.18 -10.1% 
Global -1.05 -22.1% 

 288 

 289 

It is worth noting that there may be intrinsic connections between the 10% excluded testing subset and the training set, because 290 

the data from the same cruise or fixed-site campaign have certain continuity. To further evaluate the reliability of the ANN 291 

model, we compared the simulated DMS concentrations with the observational data from fully independent campaigns, which 292 

are obtained from 33 cruises in Northeast Pacific, West Pacific, and North Atlantic (number of data = 6,478). These data 293 

include (1) discrete sampling and measurement during 31 cruises of Line P Program in Northeast Pacific (Steiner et al., 2011) 294 

(9 February 2007 – 26 August 2017, number of data = 177, https://www.waterproperties.ca/linep/index.php, last access: 23 295 

November 2020), (2) underway measurements during SONNE cruise 202/2 (TRANSBROM) in West Pacific (Zindler et al., 296 

2013) (9 – 23 October 2009, number of data = 115, https://doi.org/10.1594/PANGAEA.805613, last access: 23 November 297 

2020), (3) underway measurements during the third North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) 298 

campaign (Behrenfeld et al., 2019; Bell et al., 2021) (6 – 24 September 2017, number of data = 1,025, 299 

https://seabass.gsfc.nasa.gov/naames, last access: 27 November, 2020). Before the comparison, the data measured within a 300 

0.050.05 grid and at the same day were binned by arithmetic average. 301 

The comparisons between these observed DMS concentrations and ANN simulation are shown in Fig. 5. Regarding the Line 302 

P Program, it should be noted that there are 7 cruises included in the GSSD database, but those data were obtained by underway 303 

measurements, different from the discrete sampling (Niskin bottle) data used here. Hence, these cruises were retained and 304 

marked in Fig. 5a but excluded in subsequent statistical analysis (Fig. 5b-c). It can be seen that the model effectively captures 305 

the seasonal variation in Northeast Pacific, which is generally August > June > February (Fig. 5a). However, the small-scale 306 

spatial variations can only be partially reproduced by the model in certain campaigns, such as those in June and August of 307 

2007, June of 2009, August of 2012, and August of 2016. Notably, the model generally underestimates high DMS 308 
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concentrations during summer, particularly those exceeding 10 nM, consistent with earlier discussions. Aggregating data from 309 

all campaigns across three regions, the log10 space RMSE of simulated DMS concentrations against observations is 0.274, 310 

marginally higher than the training set. Most simulated values (93.0%) are within the range of 1/3 to 3 times of observations. 311 

The results further evidence that there is no significant overfitting in our model. When data from each campaign are binned, 312 

simulations demonstrate high consistency with observations, as depicted in Fig. 5c (RMSE = 0.249, R2 = 0.758). In summary, 313 

although our ANN ensemble model may not precisely reproduce small-scale variations and extreme values in specific regions 314 

and periods, it reasonably captures overall large-scale variations. 315 

 316 

 317 

Figure 5. Comparisons between the ANN predictions and observations for fully independent campaigns. (a) Time series of 318 

simulation results and DMS observational data obtained from Line P Program. The different markers represent different 319 

stations of Line P. The blue shades cover the data obtained from the cruises included in the GSSD database but with a different 320 

method. (b) Scatter plot of simulated versus observed DMS concentrations. (c) The same as panel b but for averaged data of 321 

each cruise. The yellow lines and shaded bands are linear fittings and corresponding 95% confidence intervals for log10 space 322 

data. The values of R2, RMSE, and slope displayed in the figure also correspond to log10 space data. 323 
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3.2 DMS distribution 324 

3.2.1 Spatial and seasonal variations 325 

The monthly climatology of ANN-simulated DMS concentrations in the global sea surface from 1998 to 2017 is shown in Fig. 326 

6. Overall, the DMS concentrations in mid- and high-latitude regions exhibit a significant seasonal cycle, peaking in summer 327 

and reaching their lowest in winter. This pattern aligns with the results of many prior observational studies. In the northern 328 

hemisphere, elevated DMS concentrations (> 2.5 nM) during summer mainly occur in two regions. One is the North Pacific 329 

(40°–60° N) where the concentration generally peaks in August, surpassing 10 nM (Fig. 6). The other is the subarctic North 330 

Atlantic (45°–80° N). A notable increase of DMS concentration starts around 45°–50° N in May and gradually shifts northward 331 

beyond 50° N by July (Fig. 6-7). This spatiotemporal evolution pattern corresponds to the evolution of solar radiation intensity 332 

and the spring-summer bloom patterns of phytoplankton (Friedland et al., 2018; Yang et al., 2020). The peak concentration 333 

date at the same latitude in the North Atlantic generally precedes that in the North Pacific (Fig. 7). In the southern hemisphere, 334 

there is a conspicuous DMS-rich zone near 40° S (where the Subtropical Convergence lies) in summer, delineating a ring-335 

shaped high-concentration band nearly parallel to the latitude. The highest seasonal mean concentration (December–February) 336 

occurs at 41.5° S, reaching 3.71 nM (Fig. 9). Southward from this zone, a low-DMS area spans 47°–61° S, where the average 337 

concentration is below 2.5 nM across all seasons. However, in the coastal waters of Antarctica (south of 60° S), significantly 338 

high concentrations also manifest in summer, surpassing 4.0 nM, even higher than those near 40° S (Fig. 6 and 9). In addition 339 

to the above regions, several typical upwelling zones also exhibit relatively higher DMS concentrations, such as the eastern 340 

Pacific and the Southeast Atlantic. The former, situated at lower latitudes, shows no significant seasonal variation, while the 341 

latter exhibits higher concentrations from October to February. The high nutrient concentrations in upwelling areas can bolster 342 

primary productivity, intensifying biological activities and augmenting the production of biogenic sulfur. 343 

 344 
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 345 

 346 

Figure 6. Monthly climatology of global sea surface DMS concentration during 1998 to 2017. 347 

 348 

  349 

Figure 7. The day of the year with the highest sea surface DMS concentration for each grid point. 350 
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 351 

The spatiotemporal variation of DMS emission flux is generally consistent with that of concentration. As shown in Fig. 8, 352 

DMS fluxes are also significantly higher in summer across most mid- and high-latitude regions, and the high-flux regions 353 

generally overlap with the hot spots of DMS concentration. This indicates that the distribution of sea surface DMS 354 

concentration is the main factor controlling the monthly variation pattern of DMS emissions at the global scale, and the effect 355 

of transfer velocity is secondary. However, certain regions present inconsistencies between DMS flux and concentration 356 

dynamics. For instance, in the Arabian Sea and the central Indian Ocean, elevated transfer velocities (Fig. S10) during the June 357 

to September, driven by heightened wind speeds, markedly enhance emission fluxes, despite comparatively lower 358 

concentrations than other months. In polar regions, especially along the coast of Antarctica, although the DMS concentration 359 

is high in summer, sea ice coverage significantly impedes DMS release, thus the emission flux remains at a low level. 360 

As shown in Fig. 9, the higher wind speeds in autumn and winter at mid- and high-latitudes result in higher total transfer 361 

velocities, leading to smaller summer-to-winter ratios of DMS emission flux compared to that of DMS concentration. In low 362 

latitudes, the existence of the trade wind zones in both hemispheres further leads to two high-flux bands. The emission fluxes 363 

in the equatorial region between these two trade zones are significantly lower. Although the latitudinal distributions of mean 364 

DMS emission fluxes in the southern and northern hemispheres are almost symmetrical, the huge difference in ocean area 365 

between the two hemispheres results in a significantly higher total emission from the southern hemisphere. Since 366 

anthropogenic SO2 emissions are mainly concentrated in the northern hemisphere, oceanic DMS plays a much more important 367 

role in the southern hemisphere, especially over the regions south of 40° S where the DMS emission is high and the perturbation 368 

of anthropogenic pollution is low. 369 

According to our newly built DMS gridded dataset, the global area-weighted annual mean concentration of DMS at the sea 370 

surface from 1998 to 2017 was ~1.71 nM (1.67–1.75 nM), which is within the range among the values (1.6 to 2.4 nM) obtained 371 

by various methods in previous studies (Tesdal et al., 2016). The global annual mean DMS emission to the atmosphere was 372 

17.2 TgS yr–1 (16.9–17.5 TgS yr–1), with 10.3 TgS yr–1 (59.9%) from the southern hemisphere and 6.9 TgS yr–1 (40.1%) from 373 

the northern hemisphere. 374 

 375 
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 376 

 377 

Figure 8. Monthly climatology of global DMS sea-to-air flux from 1998 to 2017. 378 

 379 

 380 
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   381 

Figure 9. Latitudinal distributions of sea surface DMS concentration, total transfer velocity (Kt), sea-to-air flux, and total 382 

emission in different seasons during 1998–2017. The dashed parts of the lines represent the missing ratio of satellite Chl a data 383 

for DMS simulation is higher than 0.5, thus most Chl a data is from CMEMS global biogeochemical multi-year hindcast. 384 

 385 

3.2.2 Comparisons with other global DMS climatologies 386 

Here we compare the distributions of DMS concentration derived from our ANN simulation (referred to as Z23) with four 387 

previously constructed climatologies (Fig. 10), including (1) L11: the widely used second version of 388 

interpolation/extrapolation-based climatology established by Lana et al. (2011), (2) H22: an updated version of L11 389 

incorporating much more DMS measurements and using dynamic biogeochemical provinces (Hulswar et al., 2022), (3) G18: 390 

the DMS concentration field estimated by a two-step remote sensing algorithm (Galí et al., 2018), and (4) W20: the previous 391 

DMS climatology simulated by ANN (Wang et al., 2020). 392 

Overall, all datasets exhibit the general pattern of high DMS concentration during summer and low concentration during winter, 393 

but notable distinctions emerge in their specific distributions. Due to the limitation of the method used, DMSL11 exhibits 394 

relatively lower spatial heterogeneity (i.e., higher patchiness), which may not well capture the detailed spatial variability on a 395 

regional scale. Compared with DMSL11, DMSZ23 is significantly lower at high latitudes during summer and in the South Indian 396 

Ocean and Southwest Pacific Ocean from December to February (Fig. 10a). Particularly in the southern polar region (Polar_S), 397 

latitudinal averages of DMSL11 surpass 10 nM during summer, which are 1–3 times higher than DMSZ23 (Fig. 10e). However, 398 

DMSZ23 maintains a similar level around the Antarctic in March compared to summer, and it is significantly higher than 399 

DMSL11 as well as other three climatologies. DMSH22 shows lower disparities with DMSZ23 in the Arctic, the South Indian 400 

Ocean, and the Southwest Pacific Ocean, but the summertime concentrations in most of Polar_S region are also > 2 nM higher 401 

than DMSZ23 (Fig. 10b). In contrast, DMSH22 in Polar_S from September to November is ~2 nM lower than DMSZ23. The 402 
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global area-weighted annual mean DMS concentrations in L11 and H22 are 2.43 nM and 2.26 nM, respectively, which are 403 

approximately 42.1% and 32.2% higher than Z23. 404 

G18 exhibits the lowest global annual mean concentration (1.63 nM) among these climatologies, approximately 4.7% lower 405 

than Z23. The most notable deviation occurs in the North Pacific during boreal summer and near the Antarctic during austral 406 

summer, where DMSZ23 is > 3.5 nM (> 100%) higher than DMSG18 (Fig. 10c). Conversely, there are high DMS concentrations 407 

(> 5 nM) in certain coastal seas (such as the coasts of East and Northeast Asia, the coasts of Patagonia and Peru, the 408 

southwestern coast of Africa, and the western coasts of the Sahara Desert and North America) based on the G18 estimate. This 409 

characteristic is not fully replicated by other DMS fields, possibly due to the underestimation of DMS by our model and other 410 

methods in coastal regions as well as the overestimation of Chl a by satellites caused by the interference of colored dissolved 411 

organic matters and non-algal detrital particles (Aurin and Dierssen, 2012). W20 exhibits the highest consistency with Z23 in 412 

spatiotemporal distribution patterns as well as the lowest difference in global annual mean concentration (1.74 nM, only 1.8% 413 

higher than Z23). However, notable discrepancies exist in specific regions. For instance, during summertime, DMSZ23 is > 1 414 

nM (> 40%) lower than DMSW20 in more than half of the Arctic area, while in North Pacific and Southern Ocean DMSZ23 is 415 

significantly higher than DMSW20 (Fig. 10d). Furthermore, only DMSZ23 forms a nearly complete high-concentration annular 416 

band at ~ 40° S during austral summer. 417 

 418 
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 419 

 420 

Figure 10. (a–d) The spatial distributions of DMS concentration differences between Z23 and four previously estimated fields 421 

across different seasons: (a) L11, (b) H22, (c) G18, and (d) W20. Dark gray regions in the ocean represent data missing in at 422 

least one field. (e) Comparisons between the latitudinal distributions of Z23 and four previous DMS fields across different 423 
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seasons. The dashed parts of the Z23 lines represent the missing ratio of satellite Chl a data for DMS simulation is higher than 424 

0.5, thus most Chl a data is from CMEMS global biogeochemical multi-year hindcast. 425 

 426 

3.2.3 Decadal changes 427 

One of the advantages of our ANN-derived DMS dataset is its time-resolved nature, which enables us to investigate the 428 

interannual variations in sea surface DMS concentration and flux. Here we present the decadal trends of DMS concentration, 429 

Kt, and emission flux spanning from 1998 to 2017 at both global and regional scales. Overall, the absolute interannual 430 

variability of DMS concentration across most global oceanic regions appears relatively small. 88.4% of the global oceanic 431 

area exhibited a range of less than 1 nM between the maximum and minimum annual average concentrations during this 20-432 

year period, particularly evident in tropical and subtropical regions with latitudes between 40° S and 40° N. At latitudes higher 433 

than 40° in both hemispheres, notable decadal changes occurred (Fig. 11a). Annual mean DMS concentrations in the Greenland 434 

Sea, the North Pacific, and the Southern Ocean exhibited significant decreasing trends with rates exceeding 0.03 nM yr–1 (P < 435 

0.05). A significant decreasing trend was also noted in the eastern tropical Pacific Ocean, albeit at a much lower absolute rate, 436 

primarily below 0.015 nM yr–1. Conversely, there were significant increasing trends in the Labrador Sea, the South Pacific 437 

(35° S – 60° S, 150° E – 75° W), and the southeastern Pacific, with the highest rate exceeding 0.02 nM yr–1. The global annual 438 

mean concentration exhibited a decreasing trend with a rate of 0.0035 nM yr–1 (P < 0.05, Fig. 11d). The highest value (1.75 439 

nM) occurred in 1999, and the lowest concentration (1.67 nM) occurred in 2015. Due to the primary influences of increasing 440 

WS and secondary impact of rising SST in most mid- and low-latitude regions (Fig. S11), the Kt of DMS also showed an 441 

overall increasing trend, especially in the eastern Pacific and Atlantic Ocean (Fig. 11b). The increase in Kt can offset the 442 

decrease in DMS concentration to some extent, resulting in no significant trend in global DMS emissions during this 20-year 443 

period (Fig. 11d). 444 

In the Arctic region, which stands as one of the most sensitive areas to climate warming (Screen et al., 2012; Serreze and 445 

Barry, 2011), the sea ice coverage has undergone significant reduction over the past two decades, particularly noticeable in the 446 

Barents Sea and Kara Sea, and further north (> 1% yr–1 for annual mean SI, Fig. S11). The retreat of summertime sea ice leads 447 

to an expansion of open-sea surface, potentially amplifying DMS emission (Galí et al., 2019). However, despite this trend, 448 

there was no significant increase in the annual total emission from the Polar_N region over the same period, primarily due to 449 

a decreasing trend in DMS concentration (Fig. 12). On the other hand, the highest emission took place in the last two years (> 450 

0.64 Tg yr–1), attributed to the highest Kt. Thus, it is likely that a rise in DMS emission will appear in future Arctic region with 451 

further loss of sea ice coverage (Galí et al., 2019). In contrast to the Arctic, the Southern Ocean has experienced a significant 452 

increase in sea ice fraction (Fig. S11), leading to a significant decrease in Kt (Fig. 11b). Coupled with the decreased DMS 453 

concentration, it resulted in a substantial decline in the DMS emission flux (Fig. 11c and 12). The highest annual total emission 454 

flux in the Polar_S region occurred in 1998 (1.49 TgS), while the lowest occurred in 2013 (1.02 TgS), representing a decrease 455 
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of ~32%. Across other oceanic regions, the annual average DMS concentrations in the Westerlies_N_Pacific and 456 

Trades_Pacific regions exhibit decreasing trends over the past 20 years, while the concentration in Westerlies_S and 457 

Trades_Atlantic has increased (P < 0.05, Fig. 12). Regarding DMS flux, the Westerlies_N_Pacific showed a decrease, while 458 

the Westerlies_N_Atlantic, Westerlies_S, and Trades_Atlantic showed an increase. There was no significant trend in other 459 

low-latitude regions. 460 

 461 

 462 

Figure 11. (a–c) The spatial distributions of changes in (a) DMS concentration, (b) Kt, and (c) DMS emission flux from 1998 463 

to 2017. The linear regression slopes for the annual means are taken as the changing rates here. (d) The temporal changes of 464 

global annual mean DMS concentration, Kt, and total emission flux from 1998 to 2017. 465 

 466 
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  467 

 468 

Figure 12. The temporal changes of annual mean DMS concentration, Kt, and total emission flux in different regions from 469 

1998 to 2017. 470 

3.3 Connection with atmospheric biogenic sulfur 471 

One of the primary objectives of developing this daily gridded DMS dataset (Z23) spanning multiple years is to improve the 472 

emission inventory of marine biogenic DMS, thereby enhancing the modelling performance for atmospheric sulfur chemistry, 473 

especially for simulating sulfur-containing aerosols. To assess whether our newly constructed DMS dataset can reach this 474 

objective, we employed a backward trajectory-based method to examine the correlation between sea surface DMS emissions 475 

and resulting DMS oxidation products in the atmosphere. The correlation was then compared against those derived from 476 

previously reported DMS climatologies (i.e., L11, H22, G18, and W20). 477 

Here we use the observed concentrations of particulate methanesulfonic acid (MSA) over the Atlantic Ocean as a reference. 478 

MSA is one of the major end-products of DMS in the atmosphere and is solely from the oxidation of marine biogenic DMS 479 



26 
 

over remote oceans (Saltzman et al., 1983; Savoie et al., 2002; Osman et al., 2019). Therefore, there is likely to be a dependence 480 

of the variation of MSA concentration on the DMS emission fluxes. During four transection cruises in the Atlantic conducted 481 

by R/V Polarstern (20 April – 20 May 2011, 28 October – 1 December 2011, 10 April – 15 May 2012, and 27 October – 27 482 

November 2012), the MSA concentrations in submicron aerosols were measured online using a High-Resolution Time-of-483 

Flight Aerosol Mass Spectrometer. The ship tracks are shown in Fig. S12, and detailed information about the cruises and 484 

measurement methodology was provided by Huang et al. (2016). The 72-hour air mass backward trajectories reaching the ship 485 

position were calculated every hour by the HYSPLIT model, starting from a height of 100 m (Stein et al., 2015). Subsequently, 486 

the air mass exposure to DMS emission (AEDMS), denoting the weighted average of DMS emission flux along the trajectory 487 

path, was calculated following the approach of Zhou et al. (2021). We used 5 different DMS gridded datasets, including Z23, 488 

L11, H22, G18, and W20. For Z23, the calculated daily DMS fluxes were utilized. For the remaining 4 monthly climatologies, 489 

we applied the daily Kt data from Z23 to calculate the DMS fluxes, thus eliminating the potential confounding influences 490 

stemming from different Kt parameterizations. In this calculation, the same concentration was assigned to all days within a 491 

month without interpolation. Detailed procedures for the calculation of AEDMS are elucidated in Appendix C. 492 

MSA concentrations were significantly higher in late spring than those in autumn for both North and South Atlantic Oceans 493 

(Fig. 13a). For example, during the boreal spring cruise in 2011, the average MSA concentration over the North Atlantic (0.068 494 

µg m–3, north of 25° N) was about an order of magnitude higher than the average concentration over the South Atlantic (0.006 495 

µg m–3, south of 5° S). During the boreal autumn cruise in 2011, the average concentration over the South Atlantic (0.034 µg 496 

m–3, south of 5° S) was ~5 times higher than that over the North Atlantic (0.006 µg m–3, north of 25° N). In addition to this 497 

major seasonal pattern, there was also a minor MSA concentration peak between 5°–15° N in both seasons. The spatial and 498 

seasonal variations of AEDMS based on the Z23 dataset (referred to as AEDMS_Z23) largely coincided with these MSA 499 

concentration patterns (Fig. 13a). It should be noted that the MSA/AEDMS ratio between 5°–15° N was significantly lower 500 

than those in other high-MSA regions, which may result from the DMS simulation biases near the coast of West Africa or the 501 

lower DMS-to-MSA conversion yields related with air temperature and oxidant species (Barnes et al., 2006; Bates et al., 1992).  502 

There were also several AEDMS peaks in North Atlantic during November 2012, inconsistent with the continuously low MSA 503 

concentrations. Given the high precipitation rates along the trajectory (Fig. 13a), a strong wet scavenging process might 504 

significantly reduce aerosol concentrations (Wood et al., 2017). 505 

The AEDMS derived from other DMS concentration fields showed similar variations to AEDMS_Z23 (Fig. 13a). It is not 506 

surprising since all DMS concentration fields exhibit similar large-scale spatiotemporal patterns, and identical air mass 507 

transport path and Kt were applied in different AEDMS calculations. However, due to the lower temporal resolutions and 508 

absence of interannual changes in those DMS monthly climatologies, the resulting AEDMS may be less effective in capturing 509 

variability at finer scales or across different years. Here we focus on the high-MSA periods to elaborate on this issue, which 510 

corresponds to latitudes north of 25° N in boreal spring (S1 and S2 in Fig. 13a), 25° N – 25° S in boreal autumn of 2011 (A1 511 
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in Fig. 13a), and south of 5° N in boreal autumn of 2012 (A2 in Fig. 13a). As shown in Fig. 13b, hourly MSA concentrations 512 

exhibited significantly stronger correlations with AEDMS_Z23 than with other AEDMS time series in S1 and S2, indicating 513 

AEDMS_Z23 can explain more (1.31 – 1.69 times) variance of MSA concentration. During A1 and A2, the correlations 514 

between AEDMS and MSA concentration were weaker than those during S1 and S2, possibly due to higher DMS prediction 515 

biases in South Atlantic or different influencing factors on atmospheric DMS chemistry across wide spatial ranges. 516 

Nonetheless, AEDMS_Z23 still exhibited the highest correlation with MSA (Fig. 13c). This overall stronger connection 517 

between Z23 and atmospheric DMS-derived aerosols mainly benefited from the combined effects of higher time resolution 518 

and inherent interannual variations. For example, the ratio of average MSA concentration during S1 to that during S2 (S1-to-519 

S2 ratio) was 1.89, and the A2-to-A1 ratio was 1.75. AEDMS_Z23 exhibited a slightly lower but still significant interannual 520 

variation degree, where the S1-to-S2 ratio and A2-to-A1 ratio were 1.58 and 1.46, respectively. However, this interannual 521 

variation cannot be reproduced by other datasets, where the S1-to-S2 ratio and A2-to-A1 ratio were in the range of 1.08–1.30 522 

and 1.19–1.29, respectively. These results manifest the potential of our newly developed DMS gridded data product to enhance 523 

the modeling performance for atmospheric DMS processes compared with previously reported climatologies. 524 

It is worth noting that the satellite-based algorithms of G18 and ANN model of W20 can also be utilized to produce daily 525 

multiyear DMS fields as Z23. Future investigations could include comparisons with these fields, facilitating a more 526 

comprehensive assessment of the performance of each algorithm/model. Furthermore, the AEDMS method used here is a 527 

highly simplified approach without considering the complex DMS chemistry in the atmosphere, and the intercomparisons 528 

based on chemical transport models can be used in the future to obtain a more straightforward conclusion. 529 

 530 
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 531 

Figure 13. (a) Time series of observed MSA concentration, AEDMS calculated based on different DMS concentration 532 

datasets, and average precipitation along the backward trajectory (Precipitation_traj) during four Atlantic cruises in 2011–533 

2012. (b–c) Correlations between hourly MSA concentration and AEDMS based on different DMS concentration datasets (b) 534 
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during periods S1 + S2 and (c) during periods A1 + A2. Data points during the periods with air mass time fraction within the 535 

boundary layer less than 90% or Precipitation_traj larger than 0.05 mm h–1 were removed. 536 

4 Uncertainties and limitations 537 

Although our ANN ensemble model and derived DMS dataset demonstrate certain advantages compared to previous studies, 538 

as discussed in Section 3.3, there persist notable uncertainties and limitations, which result in the ~35% uncaptured variance 539 

(Fig. 3a) and non-negligible simulation biases, e.g., underestimation of extremely high DMS concentrations and overestimation 540 

of low DMS concentrations. Firstly, there is a mismatch in the spatial and temporal scales between the input and target. The 541 

target, sea surface DMS concentrations, are obtained from in-situ measurements taken at specific locations and time points. In 542 

contrast, the input data are primarily from gridded datasets where each pixel represents an average over a defined spatial and 543 

temporal range. This is particularly significant for the ECCO variables, which have the largest spatial grid size of 110 km. 544 

Consequently, extreme values at specific locations cannot be accurately captured by the regional averages, resulting in 545 

dampened variations among the samples. Secondly, the input data from different sources and the observed sea surface DMS 546 

concentrations inherently possess certain uncertainties, which can introduce noises into the ANN learning process. Thirdly, 547 

the ANN itself may not be powerful enough to fully capture the complex input-output relationships across different oceanic 548 

regions, especially when the samples are scarce under specific environmental conditions. Finally, beyond the 9 variables 549 

incorporated in this study, other environmental parameters such as pH (Six et al., 2013; Hopkins et al., 2010) and trace metal 550 

elements (Li et al., 2021) can also influence DMS concentration. Not incorporating these factors may introduce additional 551 

biases.  552 

The overall bias for log10DMS is at a similar level between high- and low-concentration ends, but the DMS concentration on 553 

a linear scale is more underestimated in the high-concentration regime than it is overestimated in the low-concentration regime. 554 

As a result, our simulation results may tend to underestimate the annual average DMS concentration and flux. To mitigate this 555 

critical bias and reduce model uncertainty, high-quality input datasets with finer spatial resolution are needed in the future. 556 

The high-time resolution nature of the resulted daily DMS data product would be more valuable if accompanied by higher 557 

spatial resolution. Expanding the data volume is also crucial for improving model performance. Although the current DMS 558 

observational data covers all major oceanic basins, certain regions such as the Trades_Pacific remain underrepresented. 559 

Advances in online measurement technologies offer promising avenues for acquiring more extensive and convenient 560 

observational data (Hulswar et al., 2022). Additionally, incorporating more input features to the model would be beneficial. 561 

This necessitates a comprehensive understanding of the spatiotemporal distributions of those input features, and further field 562 

measurements are important to this end. Moreover, integrating DMS biogeochemical mechanisms with machine learning 563 

technique, i.e., a hybrid model coupling physical processes with data-driven approach, may further improve prediction 564 

accuracy, generalization, and interpretability (Reichstein et al., 2019). 565 
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When using our newly developed DMS dataset, there are two issues that need to be noted. Firstly, there is a significant portion 566 

of missing satellite Chl a data during winter in polar regions. In such instances, the modeling data from CMEMS global 567 

biogeochemical multi-year hindcast was used, which may introduce higher uncertainty. We have provided the flags indicating 568 

the source of Chl a data for each grid in the dataset. Nevertheless, given the low phytoplankton biomass and extensive sea ice 569 

coverage during winter, DMS emissions are typically at the lowest level of the year, thus the satellite data missing has a 570 

relatively small impact on investigating the subsequent effects of DMS emission on atmospheric environment. Secondly, since 571 

the ANN ensemble model exhibits limited capacity in accurately reproducing extremely high concentrations of DMS, the DMS 572 

concentrations in certain nearshore areas with intensive biological activity may be greatly underestimated. 573 

5 Code and data availability 574 

The generated gridded datasets of DMS concentration, total transfer velocity, and flux have been deposited at 575 

https://doi.org/10.5281/zenodo.11879900 (Zhou et al., 2024) and can be downloaded publicly. The ANN model code and the 576 

Matlab scripts for data analysis are available from https://doi.org/10.5281/zenodo.12398985 (Zhou, 2024). 577 

6 Conclusion 578 

Based on the global sea surface DMS observations and associated data of 9 relevant environmental variables, an ANN 579 

ensemble model was trained. The ANN model effectively captures the variability of DMS concentrations and demonstrates 580 

good simulation accuracy. Leveraging this ANN model, a global sea surface DMS gridded dataset with a daily resolution 581 

spanning 20 years (1998–2017) was constructed. The global annual average concentration was ~1.71 nM, falling within the 582 

range of previous estimates, and the annual total emission was ~17.2 TgS yr–1. High DMS concentrations and fluxes took place 583 

during summer in North Pacific (40°–60° N), North Atlantic (50°–80° N), the annular band around 40° S, and the Southern 584 

Ocean. With this newly developed dataset, the day-to-day changes and interannual variations can be investigated. The global 585 

annual average concentration shows a mild decreasing trend (~0.0035 nM yr–1), while the total emission remains stable. There 586 

were more significant decadal changes in certain regions. Specifically, the annual DMS emission in the South Pacific and 587 

North Pacific showed opposite trends. 588 

To further validate the robustness and advantages of our new dataset, an airmass trajectory-based approach was applied to link 589 

the DMS flux and atmospheric MSA concentration. Compared to previous monthly climatologies, the airmass exposure to 590 

DMS calculated using our new dataset explains a greater amount of variance in atmospheric MSA concentration over the 591 

Atlantic Ocean. Therefore, despite the presence of uncertainties and limitations, the new dataset holds the potential to serve as 592 

an improved DMS emission inventory for atmospheric models and enhance the simulation of DMS-induced aerosols and their 593 

associated climatic effects. 594 

 595 
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Appendix A: Acronyms 596 

AEDMS  Air mass exposure to DMS emission 597 

ANN  Artificial neural network 598 

BLH  Boundary layer height 599 

CCN  Cloud condensation nuclei 600 

Chl a  Chlorophyll a 601 

DMS  Dimethyl sulfide 602 

DMSP  Dimethylsulfoniopropionate 603 

DO  Dissolved oxygen 604 

DSWF  Downward short-wave radiation flux 605 

ECCO  Estimating the Circulation and Climate of the Ocean 606 

GSSD database Global Surface Seawater DMS database 607 

Kt  Total transfer velocity 608 

MLD  Mixed layer depth 609 

MB  Mean bias 610 

MSA  Methanesulfonic acid 611 

MSE  Mean square error 612 

NAAMES North Atlantic Aerosols and Marine Ecosystems Study 613 

NMB  Normalized mean bias 614 

RMSE  Rooted mean square error 615 

SI  Sea ice fraction 616 

SST  Sea surface temperature 617 

SSS  Sea surface salinity 618 

WS  Wind speed 619 

 620 

Appendix B: The weighted resampling strategy 621 

Apart from the data imbalance between coastal and non-coastal regions, there exists an imbalance across different DMS 622 

concentration ranges. The majority of DMS concentrations (78.6%) fall within the range of 0.8 to 10 nM (log10(DMS) between 623 

-0.1 to 1). Samples with DMS concentrations exceeding 15 nM or falling below 0.3 nM only represent 6.9% of the entire 624 

sample set. A weighted resampling strategy was applied to mitigate this imbalance (Fig. S7). We randomly sampled 50,000 625 

samples with replacement from the original sample set. The probability of each sample being selected is proportional to the 626 

weighting factor shown as the red dash line in Fig. S7b, which is dependent on its DMS concentration. First, the probability 627 

distribution of initial log10(DMS) values was fitted with a gamma distribution, which is given below and displayed as the blue 628 

line in Fig. S7b: 629 
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𝑓ሺ𝑥ሻ ൌ
ଵ

୻ሺ௞ሻఏೖ
ሺ𝑥 ൅ 4ሻ௞ିଵ𝑒ିሺ௫ାସሻ/ఏ          (A1) 630 

Here k and θ represent the shape parameter and scale parameter, in this case, 100.7 and 0.044, respectively. x is the log10(DMS) 631 

value. Since gamma distribution only takes positive values, we added 4 to the original x as the dependent variable for 632 

distribution fitting. We then obtained a new gamma distribution function with the same mode but lower shape parameter, in 633 

which k = 40 and θ = 0.112. The reciprocal of the new gamma distribution function was taken as the weighting factor. As a 634 

result, samples exhibiting high or low DMS concentrations are more likely to be selected, whereas those with intermediate 635 

concentrations are less likely to be selected. We also controlled the Fcoastal value of the resampled data equal to 9.7%. The data 636 

distribution of DMS concentrations after the resampling process is shown in Fig. S7c. The fraction of samples with DMS 637 

concentrations above 15 nM or below 0.3 nM is elevated to 15.0%. The 50,000 samples were then randomly split to a training 638 

set (80%) and a validation set (20%). Since there are duplicate samples in the resampled dataset, the random data split was 639 

conducted based on the original sample ID before resampling to ensure that there was no sample overlap between the training 640 

and validation sets. 641 

 642 

Appendix C: The calculation of airmass exposure to DMS emission (AEDMS) 643 

Here the AEDMS index followed the similar calculation of the air mass exposure to Chl a (AEC) in previous studies (Arnold 644 

et al., 2010; Park et al., 2018; Zhou et al., 2021). We adopted the similar approach presented in Zhou et al. (2021) by replacing 645 

the Chl a concentration with DMS flux, as shown in the following equation (A2): 646 

𝐴𝐸𝐷𝑀𝑆 ൌ
∑ ஽ெௌ ௙௟௨௫೔൉௘

ష
೟೔
ళమళమ

೔సబ ൉
లబబ
ಳಽಹ

∑ ௘ష
೟೔
ళమళమ

೔సబ

          (A2) 647 

Here i represents the i-th trajectory point of the 72-hour backward trajectory (0-th for the receptor point). 𝐷𝑀𝑆 𝑓𝑙𝑢𝑥௜ represents 648 

the DMS flux of the pixel where the i-th trajectory point locates. 𝐷𝑀𝑆 𝑓𝑙𝑢𝑥௜ is set to zero if the point locates on land or the 649 

air mass pressure is below 850 hPa (usually in the free troposphere with little influence of surface emission). ti is the tracking 650 

time of the trajectory point (unit: hour) and 𝑒ି
೟೔
ళమ is the weighting factor to assign higher values for regions closer to the receptor 651 

point. To better connect with the atmospheric concentrations in the marine boundary layer, the normalization by boundary 652 

layer height (BLH) is added by the 
଺଴଴

஻௅ு
 term. The BLH below 50 m is replaced by 50 m. 653 
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