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Abstract. The oceanic emission of dimethyl sulfide (DMS) plays a vital role in the Earth's climate system and constitutes a 22 

substantial source of uncertainty in evaluating aerosol radiative forcing. Currently, the widely used monthly climatology of 23 

sea surface DMS concentration falls short of meeting the requirement for accurately simulating DMS-derived aerosols by 24 

chemical transport models. Hence, there is an urgent need for a high-resolution, multi-year global sea surface DMS dataset. 25 

Here we develop an artificial neural network ensemble model using 9 environmental factors as input features, which exhibits 26 

high accuracy and generalization in predicting DMS concentrationswell captures the variabilities of DMS concentration across 27 

different oceanic regions. Subsequently, a global sea surface DMS concentration and flux dataset (1°×1°) with daily resolution 28 

spanning from 1998 to 2017 is established. According to this dataset, the global annual average concentration was ~1.72 71 29 

nM, and the annual total emission was ~17.0 2 TgS yr–1, with ~6160% originating from the southern hemisphere. While overall 30 

seasonal variations are consistent with previous DMS climatologies, notable differences exist in regional-scale spatial 31 

distributions. The new dataset enables further investigations into daily and decadal variations. Throughout the period 1998–32 

2017, the global annual average concentration exhibited a slight decrease, while total emissions showed no significant trend. 33 

The DMS flux from our dataset showed a stronger correlation with observed atmospheric methanesulfonic acid concentration 34 

compared to those from previous monthly climatologies. Therefore, it can serve as an improved emission inventory of oceanic 35 

DMS and has the potential to enhance the simulation of DMS-derived aerosols and associated radiative effects. The new DMS 36 
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gridded products are available at https://doi.org/10.5281/zenodo.11879900https://zenodo.org/records/10906101 (Zhou et al., 37 

2024).  38 

1 Introduction 39 

Dimethyl sulfide (DMS), primarily produced by ocean biota, accounts for more than half of natural sulfur emissions and 40 

significantly contributes to sulfur dioxide in the troposphere (Sheng et al., 2015; Andreae, 1990), which can be oxidized to 41 

sulfuric acid and form sulfate aerosols (Barnes et al., 2006; Hoffmann et al., 2016). Sulfate aerosols play an important role in 42 

climate systems by scattering solar radiation, changing cloud condensation nuclei (CCN) population, and altering cloud 43 

properties (Masson-Delmotte et al., 2021). Recent studies have proven that CCN over the remote ocean and polar regions are 44 

primarily composed of non-sea-salt sulfate (nss-SO4
2–) (Quinn et al., 2017; Park et al., 2021). Given the weak influence of 45 

anthropogenic SO2 over open oceans, marine biogenic DMS emerges as a crucial source of nss-SO4
2–, regulating oceanic 46 

climate (McCoy et al., 2015). Accordingly, DMS has been suggested to be the key substance in the postulated feedback loop 47 

of marine phytoplankton to climate warming (the “CLAW” hypothesis) (Charlson et al., 1987), albeit facing several 48 

controversies (Quinn and Bates, 2011). To accurately simulate the climate effects of DMS-derived aerosols, high-fidelity and 49 

high-resolution data on sea surface DMS concentrations and emission fluxes are required, along with further exploration of 50 

complex atmospheric chemical and physical processes (Hoffmann et al., 2016; Novak et al., 2021). It has been indicated that 51 

the uncertainty in DMS emission flux is the second largest contributor to the overall uncertainty associated with natural 52 

aerosols in evaluating the aerosol indirect radiative forcing (Carslaw et al., 2013). Therefore, understanding the spatiotemporal 53 

variations of DMS in global oceans is currently an important task. 54 

There are complex production and consumption mechanisms of DMS in the upper ocean, which makes it difficult to well 55 

capture the dynamics and distributions of sea surface DMS across different regions. Dimethylsulfoniopropionate (DMSP), the 56 

major precursor of DMS, is synthesized mainly by phytoplankton in the photic zone and plays a variety of physiological 57 

functions in algal cells (Stefels, 2000; Sunda et al., 2002; McParland and Levine, 2018). The DMSP yield varies significantly 58 

among algal species (Stefels et al., 2007; Keller et al., 1989), and DMS can be produced through DMSP intracellular and 59 

extracellular cleavage by both algae and bacteria (Alcolombri et al., 2015; Zhang et al., 2019). Therefore, the oceanic DMS 60 

produced via multiple pathways can be affected by many biotic and abiotic factors, including temperature, salinity, solar 61 

radiation, mixed layer depth, nutrients, oxygen, acidity, etc. (Simó and Pedrós-Alió, 1999a; Vallina and Simó, 2007; Stefels, 62 

2000; Zindler et al., 2014; Six et al., 2013; Omori et al., 2015; Stefels et al., 2007). In addition, seawater DMS undergoes 63 

various removal pathways (bacterial consumption, photodegradation, sea-to-air ventilation, etc.), further complicating its 64 

cycling (Stefels et al., 2007; Galí and Simó, 2015; Hopkins et al., 2023). Therefore, although previous studies have developed 65 

several empirical algorithms (Simó and Dachs, 2002; Belviso et al., 2004b; Vallina and Simó, 2007) and process-embedded 66 

prognostic models (Kloster et al., 2006; Vogt et al., 2010; Belviso et al., 2011; Wang et al., 2015) based on relevant variables 67 
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(mixed layer depth, chlorophyll a, nutrients, radiation, phytoplankton group, etc.) to estimate the distribution of DMS, their 68 

results showed significantly different patterns and inconsistency with observations in many regions (Tesdal et al., 2016; 69 

Belviso et al., 2004a). Recently, Galí et al. (2018) developed a new empirical algorithm following a parameterization of DMSP 70 

(Galí et al., 2015). The estimated DMS field exhibited a generally higher consistency with observations than those derived 71 

from previous algorithms SD02 (Simó and Dachs, 2002) and VS07 (Vallina and Simó, 2007), but this method did not consider 72 

the influences of nutrients and still exhibited substantial biases in certain regions (e.g., near the Antarctic). 73 

Since Lovelock et al. (1972) first discovered the ubiquitous presence of DMS in seawater, numerous observations of sea 74 

surface DMS have been conducted worldwide, yielding a substantial volume of observational data to date. Based on these 75 

worldwide measurements, monthly climatology of global DMS can be generated through interpolation and extrapolation 76 

(Hulswar et al., 2022; Kettle et al., 1999; Lana et al., 2011). The latest version incorporated 873,539 raw observations (48,898 77 

after data filtration and unification for climatology development), and the estimated global annual mean concentration and 78 

total flux are 2.26 nM and 27.1 TgS yr–1, respectively (Hulswar et al., 2022). However, despite the abundance of data, 79 

significant spatial and temporal disparities persist, potentially introducing large uncertainties in regions or periods with sparse 80 

observations. Furthermore, the observational data from different years within a particular month were combined together for 81 

interpolation and extrapolation, and the interannual variations cannot be investigated by this approach. 82 

In recent years, the application of data-driven approaches like machine learning to Earth system science has drawn more and 83 

more attention. Compared with traditional approaches, machine learning explores larger function space and captures more 84 

hidden information from the big data, hence it often provides a better prediction performance (Reichstein et al., 2019; Zheng 85 

et al., 2020; Bergen et al., 2019). For instance, a recent study demonstrated that artificial neural network (ANN) can capture 86 

much more (~66%) of the raw data variance than multilinear regression (~39%), and a global monthly climatology of sea 87 

surface DMS concentration has been developed based on ANN model (Wang et al., 2020). The machine learning techniques 88 

have also been used to simulate the distribution of DMS in the Arctic (Humphries et al., 2012; Qu et al., 2016),  North Atlantic 89 

Ocean (Bell et al., 2021; Mansour et al., 2023), Northeast Pacific Ocean (McNabb and Tortell, 2022), Southern Ocean 90 

(McNabb and Tortell, 2023), and East Asia (Zhao et al., 2022). 91 

However, to our best knowledge, there is currently no global-scale sea surface gridded DMS dataset with both high time 92 

resolution (daily) and long-term coverage (> 10 years). Such a dataset is urgently needed for modeling the atmospheric 93 

processes and climatic implications of oceanic DMS. The sea surface concentration and sea-to-air emission flux of DMS can 94 

vary greatly from day to day (Simó and Pedrós-Alió, 1999b), and the emitted DMS exerts effects on the atmosphere over time 95 

scales of several hours to days. Relying solely on monthly climatology of DMS as the emission inventory may fail to capture 96 

important details and could lead to large modeling biases compared to observed concentrations of atmospheric DMS or its 97 

oxidation products (Chen et al., 2018; Fung et al., 2022). 98 
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Here, we build a 20-year (1998 – 2017) global sea surface DMS gridded dataset (1°×1°) with a daily resolution based on a 99 

data-driven machine learning approach (ANN ensemble). This product can improve our understanding of the spatiotemporal 100 

variations of oceanic DMS. More importantly, it can serve as an updated emission inventory of marine biogenic DMS for 101 

chemical transport models, which is beneficial for enhancing the simulation of atmospheric processes of DMS and reducing 102 

the uncertainties in marine aerosol’s climate effects. The paper consists of four main parts as depicted in Fig. 1: (1) the 103 

development of machine learning model based on global DMS measurements and 9 ancillary environmental variables; (2) the 104 

derived spatial and temporal distributions of DMS and comparisons with previous estimates; (3) an example showing the 105 

superiority of our newly developed DMS field through its correlation with atmospheric biogenic sulfur; and (4) the 106 

uncertainties and limitations inherent in our approach and the resulting data product. 107 
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 109 

Figure 1. Flowchart of this study, including the development of ANN ensemble model, construction of new DMS gridded 110 

dataset, and subsequent evaluations of this product. 111 

2 Methodology 112 

2.1 Input datasets 113 

The in-situ DMS measurement data used for training the machine learning model primarily sourced from the Global Surface 114 

Seawater DMS (GSSD) database (Kettle et al., 1999). The GSSD database contains a total of 87,801 DMS measurements 115 

collected across 266 cruise and fixed-site observation campaigns from 11 March 1972 to 27 August 2017 116 

(https://saga.pmel.noaa.gov/dms/, last access: 1 April 2020). Hulswar et al. (2022) consolidated other DMS measurements not 117 

included in the GSSD database to establish an updated DMS climatology. Here we incorporated these additional data predating 118 

2017, originating from 8 campaigns (number of samples = 6,711). The spatial distribution of theses combined 94,512 in-situ 119 

observational data is shown in Fig. S1, which covers all major regions of the global ocean. 120 
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We selected 9 environmental variables relevant to DMS biogeochemical processes as input features, including chlorophyll a 121 

(Chl a), sea surface temperature (SST), mixed layer depth (MLD), nitrate, phosphate, silicate, dissolved oxygen (DO), 122 

downward short-wave radiation flux (DSWF), and sea surface salinity (SSS). The data sources and relevant information of 123 

these 9 input variables and DMS are listed in Table 1. Chl a data were obtained from both in-situ observations, co-located with 124 

DMS data, and satellite remote sensing products (Copernicus-GlobColour, Level-4, daily, 0.042°×0.042°). The Copernicus-125 

GlobColour Level-4 dataset integrates multiple upstream sensors including SeaWiFS, MODIS-Aqua & Terra, MERIS, VIIRS-126 

SNPP & JPSS1, and OLCI-S3A & S3B, with an interpolation procedure applied to fill missing data (Garnesson et al., 2019). 127 

Daily SST data (0.25°×0.25°) were from the NOAA OI SST V2 high-resolution blended reanalysis dataset (Huang et al., 128 

2021). Daily MLD, DSWF, and SSS were from the modeling outputs of NASA’s "Estimating the Circulation and Climate of 129 

the Ocean" (ECCO) consortium, Version 4 Release 4 (V4r4) (Forget et al., 2015). Thes sea surface concentrations of nitrate, 130 

phosphate, silicate, and DO were from the CMEMS global biogeochemical multi-year hindcast dataset (daily, 0.25°×0.25°). 131 

The surface wind speed (WS) and sea ice fraction (SI) data are needed in the calculation of sea-to-air flux (details are provided 132 

in Section 2.4.2). Here we utilized the daily 10-meter WS data from ECCO V4r4 and the daily SI data from NOAA OI SST 133 

V2. Since there are multiple different spatial grids among all datasets, the data match-up has been conducted as described in 134 

the next section. 135 

  136 
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Table 1. The data sources and related relavant information of variables used for model development, DMS simulation, and 137 

flux calculation 138 

Variable Data source URL 
Temporal 
resolution 

Temporal 
coverage 

Spatial grid 

DMS 
GSSD database 

https://saga.pmel.noaa.gov
/dms/ 

In-situ 
Mar. 1972 – 
Aug. 2017 

- 

Other campaigns integrated in 
Hulswar et al. (2022) 

https://data.mendeley.com/
datasets/hyn62spny2/1 

In-situ 
Feb. 2000 – 
Jun. 2016 

- 

Chl a 

GSSD database 
https://saga.pmel.noaa.gov
/dms/ 

In-situ 
Oct. 1980 – 
Aug. 2017 

- 

Copernicus-GlobColour Level-4 

https://data.marine.coperni
cus.eu/product/OCEANC
OLOUR_GLO_BGC_L4_
MY_009_104/description 

Daily 
Sep. 1997 – 
present 

0.042°×0.042° 

CMEMS global biogeochemical 
multi-year hindcast (only used 
for the simulation of DMS 
concentration in polar regions 
when satellite Chl a is 
unavailable) 

https://data.marine.coperni
cus.eu/product/GLOBAL_
MULTIYEAR_BGC_001_
029/description 

Daily 
Jan. 1993 – 
present 

0.25°×0.25° 

SST NOAA OI SST V2 
https://psl.noaa.gov/data/gr
idded/data.noaa.oisst.v2.hi
ghres.html 

Daily 
Sep. 1981 – 
present 

0.25°×0.25° 

MLD 

NASA ECCO V4r4 
https://data.nas.nasa.gov/ec
co/data.php?dir=/eccodata/
llc_90/ECCOv4/Release4 

Daily 
Jan. 1992 – 
Dec. 2017 

LLC90 (22 – 
110 km) DSWF 

SSS 

Nitrate 

CMEMS global biogeochemical 
multi-year hindcast 

https://data.marine.coperni
cus.eu/product/GLOBAL_
MULTIYEAR_BGC_001_
029/description 

Daily 
Jan. 1993 – 
present 

0.25°×0.25° 
Phosphate 

Silicate 

DO 

WS NASA ECCO V4r4 
https://data.nas.nasa.gov/ec
co/data.php?dir=/eccodata/
llc_90/ECCOv4/Release4 

Daily 
Jan. 1992 – 
Dec. 2017 

LLC90 (22 – 
110 km) 

SI NOAA OI SST V2 
https://psl.noaa.gov/data/gr
idded/data.noaa.oisst.v2.hi
ghres.html 

Daily 
Sep. 1981 – 
present 

0.25°×0.25° 

 139 

2.2 Data preprocessing for model development 140 

The data extraction and match-up were performed based on the sampling location and time associated with each DMS 141 

measurement record, as well as the temporal range and grid distribution of each variable. For satellite-retrieved Chl a, the data 142 

of the grids covering DMS sampling locations were extracted. If the data of the corresponding grid is missing, the average 143 
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value of the 55 grids nearby was calculated and used. For other variables, only values in the grids matching the DMS sampling 144 

locations were extracted. 145 

There are in-situ Chl a measurements co-located with certain GSSD data. They were also used along with satellite-retrieved 146 

Chl a. In-situ Chl a measurements with low precision (defined as < 0.1 mg m–3, and the number of significant digits is 1) were 147 

removed. For a specific in-situ observation campaign, if the number of low-precision values is larger than 10 and accounts for 148 

more than half, all in-situ Chl a data from this campaign were excluded. In addition, the in-situ Chl a data in the GSSD database 149 

were measured by two different methods: Turner fluorometry and high-performance liquid chromatography (HPLC). In order 150 

to improve mutual consistency, a conversion between the data from these two methods was applied and then the in-situ Chl a 151 

concentrations were adjusted to match up with satellite Chl a following the functions described in Galí et al. (2015). After that, 152 

the statistical outliers for all log10(Chl a) (outside the range of average ± 3 standard deviations) were eliminated. The 153 

comparison between in-situ and satellite-retrieved Chl a data is shown in Fig. S2. A strong consistency between in-situ and 154 

daily satellite Chl a data (R2 > 0.5, RMSE < 0.4) suggests the rationale for integrating these datasets. The log10 transformation 155 

was applied to make the data distribution close to normal distribution. When finally selecting the log10(Chl a) corresponding 156 

to each DMS data, in-situ data were prioritized where available; otherwise, the satellite-retrieved data were used. 157 

DMS and extracted MLD and three nutrients (nitrate, phosphate, silicate) were also performed log10 transformation. The 158 

statistical outliers of each variable were excluded as mentioned above. After data filtration, a total of 633,361 samples with 159 

valid data for all variables were obtained. To avoid data aggregation bias stemming from multiple data points gathered within 160 

a narrow temporal and spatial range (i.e., the same day and within a region smaller than 0.05°×0.05°), these data points were 161 

averaged. Consequently, 41,157 binned samples were utilized for subsequent model development, with their spatial 162 

distribution depicted in Fig. 2a. 163 

We divided the global ocean into 9 regions based on Longhurst’s biomes (Longhurst, 1998). There are 6 biomes in 164 

Longhurst’s definition, including Coastal, Polar_N, Polar_S, Westerlies_N, Westerlies_S, and Trades (the .shp file of 165 

Longhurst’s biomes and provinces was downloaded from https://www.marineregions.org/downloads.php#longhurst). We 166 

further divided Westerlies_N into Westerlies_N_Pacific and Westerlies_N_Atlantic, and divided Trades into Trades_Pacific, 167 

Trades_Indian, and Trades_Atlantic by different oceanic basins, as shown in Fig. 2b. It is noteworthy that there are 11,237 168 

samples in the Coastal region, constituting 27.3% of the entire sample set, despite the Coastal biome accounting for only 169 

9.7% of the global ocean area. Given the distinct seawater physiochemical and biological conditions in coastal seas 170 

compared to other regions, the disproportionately higher density of samples within the Coastal biome might cause the model 171 

to overly prioritize this region. To mitigate this data imbalance and ensure the model captures broader patterns in open 172 

oceans, we adjusted the data distribution during model training and validation processes. Specifically, for each training 173 

session, a portion of coastal samples is randomly removed, ensuring the proportion of coastal samples in the total sample set 174 
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(denoted as Fcoastal) matches its area proportion.we adjusted the fraction of coastal samples to match the area fraction. Further 175 

details are provided in the subsequent section and visualized in Fig. 3a.  176 

 177 

Figure 2. (a) The distribution of 41,157 DMS observational data after matchup, filtration, and binning for constructing the 178 

ANN model. The grid size is 11. (b) Nine oceanic regions separated based on Longhurst’s biomes (Longhurst, 1998). 179 

 180 

2.3 Artificial neural network training and validation 181 

The 41,157 binned samples after the previously mentioned data preprocessing were used to develop the artificial neural 182 

network (ANN) model. The target feature is log10(DMS), and the input features are log10(Chl a), SST, log10(MLD), 183 

log10(nitrate), log10(phosphate), log10(silicate), DO, DSWF, and SSS. The data of all variables were standardized before 184 

training. 185 

We randomly selected 10% of the samples (n = 4,116) to be entirely excluded from training, as a testing subset for global 186 

validation and overfitting test. The testing subset was controlled to contain a proportion of coastal samples (denoted as Fcoastal) 187 

at 9.7%. Specifically, 401 samples were randomly selected from Coastal biome, andwhile 3,715 samples were selected from 188 
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other biomes to compose the testing subset, matching the proportion of coastal area in global oceans (9.7%). Then, the 189 

remaining samples (n = 37,041) were utilized for training and cross validation., with a constraint of Fcoastal equal to 9.7% in 190 

each training session as mentioned above. Apart from the data imbalance between coastal and non-coastal regions, there exists 191 

an imbalance across different DMS concentration ranges. As shown in Fig. 3b, the majority of DMS concentration values 192 

(78.6%) fall within the range of 0.8 to 10 nM (log10(DMS) between -0.1 to 1). Samples with DMS concentrations exceeding 193 

15 nM or falling below 0.3 nM only represent 6.9% of the entire sample set. Here we implemented a weighted resampling 194 

strategy to mitigate this imbalance and enhance the model's capability in predicting extreme values. We randomly sampled 195 

50,000 samples with replacement from the remaining sample set. The probability of each sample being selected is proportional 196 

to the weighting factor shown in Fig. 3b, which is dependent on its DMS concentration. Samples exhibiting high or low DMS 197 

concentration values are more likely to be selected, whereas those with intermediate concentrations are less likely to be 198 

selected. The details of the weighting factor are explained in Appendix B. We also controlled the Fcoastal value of the resampled 199 

data equals to 9.7% by the same method as described above, i.e., applying the resampling process to coastal and non-coastal 200 

samples separately and combining them together afterwards. The data distribution of DMS concentrations after the resampling 201 

process is shown in Fig. 3c. The fraction of samples with DMS concentrations above 15 nM or below 0.3 nM is elevated to 202 

15.0%. The 50,000 samples were then randomly split to a training set (80%) and a validation set (20%). Since there are 203 

duplicate samples in the resampled dataset, the random data split was conducted based on the original sample ID before 204 

resampling to ensure that there was no sample overlap between the training and validation sets. 205 

Our feedforward fully connected neural network comprises two hidden layers, with 15 nodes in each layer. The activation 206 

functions for the first and second layers are ReLU and tanh, respectively. We applied L2 regularization (lambda = 5E1E-4) to 207 

counteract overfitting. The loss function is mean square error (MSE). Training stops if the validation loss is greater than or 208 

equal to the minimum validation loss computed so far 20 times in a row. The training processes were carried out with Statistics 209 

and Machine Learning Toolbox on Matlab 2022b. We repeated the data resampling, split,  (for training and validation sets) 210 

and training processes for 100 times and obtained 100 neural networks. The average prediction results of multiple ANNs shows 211 

a much higher consistency with the observations than a single ANN (Fig. S3). As the number of ANNs (Ntraining) increases, the 212 

accuracy of model predictions initially improves and then diminishes, eventually stabilizingstabilizes. We adopted the average 213 

output of 10 20 ANNs as the final output, balancing performance and computational costs effectively. This kind of multiple-214 

training approach, often termed “ANN ensemble” or “Monte Carlo cross-validation”, has been widely used to improve the 215 

model generalization and performance (Sigmund et al., 2020; Holder et al., 2022) as well as get a better model evaluation 216 

(Dubitzky et al., 2007). 217 

 218 
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 219 

Figure 3. Data split and resampling strategy for ANN model training and testing. (a) Flowchart of the data split and resampling 220 

procedures. N and Fcoastal denote the number of samples and the fraction of coastal samples, respectively. (b) The probability 221 

distribution of raw log10(DMS) values and the relationship between the weighting factor for weighted resampling and 222 

log10(DMS) value. PDF represents the probability density function. (c) The probability distribution of log10(DMS) values after 223 

weighted resampling. 224 
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2.4 Deriving the 20-year global DMS distributions 225 

2.4.1 Simulation of sea surface DMS concentrations 226 

First, we constructed the daily gridded dataset of input variables with a spatial resolution of 11 from 1998 to 2017 using 227 

based on the data sources listed in Table 1 (except in-situ Chl a data). Datasets with a higher spatial resolution than 11 were 228 

binned into 11. In polar regions, the satellite Chl a data are missing during winter, and the Chl a data from CMEMS global 229 

biogeochemical multi-year hindcast were used to fill the missing values. Then, the obtained gridded dataset was fed into the 230 

ANN ensemble model, and the 20-year global distribution of sea surface DMS concentration with daily resolution was 231 

simulated. 232 

2.4.2 Calculation of sea-to-air fluxes 233 

The sea-to-air fluxes of DMS were calculated on the basis of simulated surface DMS concentrations following equation (1): 234 

𝐷𝑀𝑆 𝑓𝑙𝑢𝑥 ൌ 𝐾𝑡 ൈ ሺ𝐷𝑀𝑆௪ െ
஽ெௌೌ
ு
ሻ         (1) 235 

Here DMSw and DMSa are DMS concentrations in surface seawater and air, respectively. H is Henry’s law constant of DMS. 236 

Since 
஽ெௌೌ
ு

 is usually ≪ 𝐷𝑀𝑆௪, this term was omitted in the calculation. Kt is the total transfer velocity considering the sea 237 

ice coverage fraction (SI): 238 

𝐾𝑡 ൌ 𝑘௧ ൈ ሺ1 െ 𝑆𝐼ሻ           (2) 239 

kt is the total transfer velocity without considering sea ice which is calculated by equation (3): 240 
ଵ

௞೟
ൌ

ଵ

௞ೢ
൅

ଵ

௞ೌൈு
            (3) 241 

Here kw and ka are the water-side transfer velocity and air-side transfer velocity, respectively. We used the same approach as 242 

Galí et al. (2019) to obtain kw, ka, and H for DMS, where the effect of wind speed was considered for ka, and the influences of 243 

SST and SSS were considered for H. The calculations of ka and H followed the parameterizations of Johnson (2010). As for 244 

kw calculation, we adopted the bubble scheme (Woolf, 1997), which divided the sea-to-air mass transfer process into 245 

turbulence- and bubble-mediated gas exchange. The calculated kw based on the bubble scheme is lower than that of 246 

Nightingale’s scheme (Nightingale et al., 2000) under conditions of high wind speed, exhibiting a smaller deviation from the 247 

actual valuemeasurements (Beale et al., 2014; Galí et al., 2019). Before calculation, WS and SI data were also binned by 11 248 

grid. By using WS and SI together with SST and SSS datasets, we obtained the daily gridded Kt and then calculated the sea-249 

to-air DMS fluxes (daily, 1998–2017) by multiplying simulated DMS concentrations by Kt values. 250 
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3 Results 251 

3.1 Model performance 252 

As shown in Fig. 4a3a, the newly developed ANN ensemble model captures a substantial part of data variance globally (log10 253 

space R2 = 0.612 651 and RMSE = 0.276262). 91.692.8% of ANN simulated concentration values fall within 1/3 to 3 times of 254 

corresponding true values. The performance for testing set (R2 = 0.606640, RMSE = 0.282267, and 90.892.7% of data within 255 

the range of 1/3 to 3 times of observations) is very close to that for the training dataset (Fig. 4b3b), suggesting no obvious 256 

overfitting. The ANN model exhibits better performance compared to previous empirical and process-based models (R2 = 257 

0.010.14) (Tesdal et al., 2016) as well as the satellite-based algorithm (R2 = 0.50) (Galí et al., 2018). The ANN model 258 

developed by Wang et al. (2020) showed a slightly highersimilar performance (R2 = 0.66, RMSE = 0.264 for training dataset) 259 

than to our model, likely due todespite their more complex ANN configuration (two hidden layers with 128 nodes each) and 260 

the including inclusion of sample location and time into input features. However, the more complex model will significantly 261 

increase the computational cost, and the incorporation of location and time information may weaken the physical 262 

interpretability. On the other hand, the performance improvement is very limited. Therefore, we keep the simpler model 263 

configuration. 264 

The performance of the model was evaluated across each of the nine oceanic regions. As illustrated in Fig. 4c3c and 4, the 265 

log10 space RMSEs are all below 0.33 32 (equivalent to a concentration ratio of 2.13 09 in linear space), except for the Coastal 266 

region (training: RMSE = 0.362 322, R2 = 0.479; testing: RMSE = 0.332, R2 = 0.480and R2 = 0.384). Since the Coastal region 267 

comprises only 9.7% of the global oceanic area, the comparatively lower performance in this area has minimal impact on the 268 

overall ability to predict the spatiotemporal distributions of DMS on a global scale. Despite the R2 values in Trades_Pacific 269 

and Trades_Atlantic being lower than 0.5, which is related to the relatively narrow variation range of DMS concentration, the 270 

RMSEs in these regions remain quite low and comparable to those of other regions. In general, our ANN ensemble model 271 

demonstrates a satisfactory capacity to reproduce variations in DMS concentrations across diverse oceanic regions. 272 

However, it is noteworthy that our model tends to underestimate extremely high DMS concentrations and overestimate 273 

extremely low concentrations. Overall, the linear regressions between ANN-predicted and observed DMS concentrations yield 274 

slopes significantly lower than unity across all regions (Fig. 3c and 4), and there are significantly positive correlations between 275 

prediction residuals (observation – prediction) and observed log10(DMS) (Fig. S5 and S6). From a data perspective, this may 276 

be partly due to the insufficient number of samples with extreme DMS concentrations (known as underrepresentation), making 277 

it difficult to adequately capture the relevant information during training process. To test this point, we adopted a weighted 278 

resampling strategy to bolster the number of samples in the minority class before training, which has been widely used in 279 

machine learning to deal with the data imbalance issue (Haibo et al., 2008; Yu and Zhou, 2021; Chawla et al., 2002). The basic 280 

idea is to set a higher probability of being sampled for the minority class with extreme DMS concentrations, and the details 281 
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are illustrated in Fig. S7 and explained in Appendix B. The results indicate that the weighted resampling scheme cannot fully 282 

alleviate the model bias. Although it does elevate the overall prediction-versus-observation slopes from ~0.59 to ~0.63, this 283 

improvement is marginal (Fig. S8 and S9). In several regions like Westerlies_S and Trades biomes, the slopes are even lower 284 

than original values. Furthermore, the data become more scattered after implementing the weighted resampling, resulting in 285 

increased RMSE and decreased R2. Therefore, there are other potential issues causing the model bias, which are discussed in 286 

Section 4. The original model, trained without weighted resampling, was adopted for subsequent analysis and the construction 287 

of the gridded DMS dataset. 288 

 289 

While we have implemented a weighted resampling strategy to bolster the number of samples with extreme DMS 290 

concentrations prior to training, aiming to enhance the model performance in predicting such extreme values, the model still 291 

tends to underestimate the extremely high DMS concentrations and overestimate the extremely low concentrations (Fig. 4 and 292 

Fig. S4). Consequently, significant positive correlations emerge between prediction residuals (observation – prediction) and 293 

observed log10(DMS), particularly evident in Coastal and Trades regions, where the slopes exceed 0.55 (Fig. 5 and Fig. S6). 294 

Given the scarcity of observational data in these high-DMS and low-DMS regimes, it is considerable challenge to completely 295 

address this issue without succumbing to overfitting via purely data-driven approaches. The data augmentation by weighted 296 

resampling can only partially alleviate this issue. It underscores imperative for acquiring more observational data on sea surface 297 

DMS in future endeavours. Moreover, integrating DMS biogeochemical mechanisms with machine learning techniques may 298 

offer a promising avenue to tackle this challenge. 299 

Owing Primarily owing to the underestimation of high DMS concentrations, a negative mean bias (MB) in DMS concentration 300 

is evident across all regions, ranging from -0.23 18 to -1.482.02 nM (Table 2). The normalized mean bias (NMB, the ratio 301 

between mean bias and mean observed concentration) ranges from -11.18.7% to -32.12%. The most significant NMB emerges 302 

in Coastal and Trades_India regions, while NMB remains within -2025% for other regions. The global MB and NMB are -303 

0.771.05 nM and -16.222.1%, respectively. It is worth noting that these biases are compared against historical DMS 304 

observations, which were conducted within a very limited geographical area and time periods. Thus, they cannot be interpreted 305 

as the actual mean modelling bias for the entire region. On the other hand, the negative biases at high end of the concentrations 306 

are partially cancelled out by the positive biases at low end during the averaging over the entire region. The bias at a specific 307 

grid could be much larger. Nevertheless, these those extreme DMS concentrations (> 15 nM or < 0.3 nM), exhibiting the most 308 

significant modeling bias, represent only a minority of the entire sample set (6.9%). Our model adeptly reproduces the majority 309 

of observations with moderate DMS concentrations across all regions, with the percentage of simulated predicted values falling 310 

within 1/3 to 3 times of observations ranging from 8887.0% to 99.398.8%. 311 

 312 
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Figure 43. Comparisons between ANN-simulated and observed DMS concentrations. (a) Scatter density for simulated versus 316 

observed DMS concentrations of the samples used in ANN training. This plot corresponds to the original data before 317 

resampling and only a subset of coastal data are included to maintain Fcoastal at 9.7%, which aligns with data composition in 318 

training. (b) Comparison between the simulated versus observed DMS concentrations of testing set. (c) Comparison between 319 

the simulated versus observed DMS concentrations of the samples used in ANN trainingtesting set across 9 regions. The 320 

number of data points (n), the log10 space R2,  and the root mean square error (RMSE), and linear regression slope are also 321 

displayed. 322 

 323 

 324 
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Figure 4. Comparisons between the simulated versus observed DMS concentrations of the testing set across 9 regions. 325 

 326 

 327 

Figure 5. Correlations between prediction residuals of log10(DMS) and observed values across different regions 328 

corresponding to the testing set. 329 

 330 

Table 2. The mean bias and normalized mean bias of the ANN-predicted DMS concentrations against observations across 331 

different regions. 332 

Region Mean bias (nM) Normalized mean bias 

Coastal -1.48 -29.6% 
Polar_N -0.62 -14.9% 
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Polar_S -1.09 -13.0% 
Westerlies_N_Pacific -0.74 -15.3% 
Westerlies_N_Atlantic -0.25 -11.1% 
Westerlies_S -0.44 -17.1% 
Trades_Pacific -0.23 -10.3% 
Trades_Indian -0.88 -32.1% 
Trades_Atlantic -0.24 -13.6% 
Global -0.77 -16.2% 

 333 

Region Mean bias (nM) Normalized mean bias 

Coastal -1.55 -32.2% 
Polar_N -0.90 -21.4% 
Polar_S -2.02 -24.1% 
Westerlies_N_Pacific -0.91 -18.8% 
Westerlies_N_Atlantic -0.24 -10.4% 
Westerlies_S -0.36 -14.1% 
Trades_Pacific -0.19 -8.7% 
Trades_Indian -0.73 -26.7% 
Trades_Atlantic -0.18 -10.1% 
Global -1.05 -22.1% 

 334 

 335 

It is worth noting that there may be intrinsic connections between the 10% excluded testing subset and the training set, because 336 

the data from the same cruise or fixed-site campaign have certain continuity. To further evaluate the reliability of the ANN 337 

model, we compared the simulated DMS concentrations with the observational data from fully independent campaigns, which 338 

are obtained from 33 cruises in Northeast Pacific, West Pacific, and North Atlantic (number of data = 6,478). These data 339 

include (1) discrete sampling and measurement during 31 cruises of Line P Program in Northeast Pacific (Steiner et al., 2011) 340 

(9 February 2007 – 26 August 2017, number of data = 177, https://www.waterproperties.ca/linep/index.php, last access: 23 341 

November 2020), (2) underway measurements during SONNE cruise 202/2 (TRANSBROM) in West Pacific (Zindler et al., 342 

2013) (9 – 23 October 2009, number of data = 115, https://doi.org/10.1594/PANGAEA.805613, last access: 23 November 343 

2020), (3) underway measurements during the third North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) 344 

campaign (Behrenfeld et al., 2019; Bell et al., 2021) (6 – 24 September 2017, number of data = 1,025, 345 

https://seabass.gsfc.nasa.gov/naames, last access: 27 November, 2020). Before the comparison, the data measured within a 346 

0.050.05 grid and at the same day were binned by arithmetic average. 347 
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The comparisons between these observed DMS concentrations and ANN simulation are shown in Fig. 65. Regarding the Line 348 

P Program, it should be noted that there are 7 cruises included in the GSSD database, but those data were obtained by underway 349 

measurements, different from the discrete sampling (Niskin bottle) data used here. Hence, these cruises were retained and 350 

marked in Fig. 6a 5a but excluded in subsequent statistical analysis (Fig. 6b5b-c). It can be seen that the model effectively 351 

captures the seasonal variation in Northeast Pacific, which is generally August > June > February (Fig. 6a5a). However, the 352 

small-scale spatial variations can only be partially reproduced by the model in certain campaigns, such as those in June and 353 

August of 2007, June of 2009, August of 2012, and August of 2016. Notably, the model generally underestimates high DMS 354 

concentrations during summer, particularly those exceeding 10 nM, consistent with earlier discussions. Aggregating data from 355 

all campaigns across three regions, the log10 space RMSE of simulated DMS concentrations against observations is 0.294274, 356 

marginally higher than the training set. Most simulated values (87.893.0%) are within the range of 1/3 to 3 times of 357 

observations. The results further evidence that there is no significant overfitting in our model. When data from each campaign 358 

are binned, simulations demonstrate high consistency with observations, as depicted in Fig. 6c 5c (RMSE = 0.278249, R2 = 359 

0.651758). In summary, although our ANN ensemble model may not precisely reproduce small-scale variations and extreme 360 

values in specific regions and periods, it reasonably captures overall large-scale variations. 361 

 362 
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 364 

Figure 65. Comparisons between the ANN predictions and observations from for fully independent campaigns. (a) Time series 365 

of simulation results and DMS observational data obtained from Line P Program. The different markers represent different 366 

stations of Line P. The blue shades cover the data obtained from the cruises included in the GSSD database but with a different 367 

method. (b) Scatter plot of simulated versus observed DMS concentrations. (c) The same as panel b but for averaged data of 368 

each cruise. The yellow lines and shaded bands are linear fittings and corresponding 95% confidence intervals for log10 space 369 

data. The values of R2, and RMSE, and slope displayed in the figure also correspond to log10 space data. 370 

3.2 DMS distribution 371 

3.2.1 Spatial and seasonal variations 372 

The monthly climatology of ANN-simulated DMS concentrations in the global sea surface from 1998 to 2017 is shown in Fig. 373 

76. Overall, the DMS concentrations in mid- and high-latitude regions exhibit a significant seasonal cycle, peaking in summer 374 

and reaching their lowest in winter. This pattern aligns with the results of many prior observational studies. In the northern 375 

hemisphere, elevated DMS concentrations (> 2.5 nM) during summer mainly occur in two regions. One is the North Pacific 376 
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(40°–60° N) where the concentration generally peaks in August, surpassing 10 nM (Fig. 76). The other is the subarctic North 377 

Atlantic (45°–80° N). A notable increase of DMS concentration starts around 45°–50° N in May and gradually shifts northward 378 

beyond 50° N by July (Fig. 76-87). This spatiotemporal evolution pattern corresponds to the evolution of solar radiation 379 

intensity and the spring-summer bloom patterns of phytoplankton (Friedland et al., 2018; Yang et al., 2020). The peak 380 

concentration date at the same latitude in the North Atlantic generally precedes that in the North Pacific (Fig. 87). In the 381 

southern hemisphere, there is a conspicuous DMS-rich zone near 40° S (where the Subtropical Convergence lies) in summer, 382 

delineating a ring-shaped high-concentration band nearly parallel to the latitude. The highest seasonal mean concentration 383 

(December–February) occurs at 4241.5° S, reaching 4.023.71 nM (Fig. 109). Southward from this zone, a low-DMS area spans 384 

4947°–5961° S, where the average concentration is below 2.5 nM across all seasons. However, in the coastal waters of 385 

Antarctica (south of 60° S), significantly high concentrations also manifest in summer, surpassing 54.0 nM, even higher than 386 

those near 40° S (Fig. 7 6 and 109). In addition to the above regions, several typical upwelling zones also exhibit relatively 387 

higher DMS concentrations, such as the eastern Pacific and the Southeast Atlantic. The former, situated at lower latitudes, 388 

shows no distinct significant seasonal variation, while the latter exhibits higher concentrations from October to February. The 389 

high nutrient concentrations in upwelling areas can bolster primary productivity, intensifying biological activities and 390 

augmenting the production of biogenic sulfur. 391 

 392 
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 395 

Figure 76. Monthly climatology of global sea surface DMS concentration during 1998 to 2017. 396 

 397 
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 398 

 399 

Figure 87. The day of the year with the highest sea surface DMS concentration for each grid point. 400 

 401 

The spatiotemporal variation of DMS emission flux is generally consistent with that of concentration. As shown in Fig. 98, 402 

DMS fluxes are also significantly higher in summer across most mid- and high-latitude regions, and the high-flux regions 403 

generally overlap with the hot spots of DMS concentration. This indicates that the distribution of sea surface DMS 404 

concentration is the main factor controlling the monthly variation pattern of DMS emissions at the global scale, and the effect 405 

of transfer velocity is secondary. However, certain regions present inconsistencies between DMS flux and concentration 406 

dynamics. For instance, in the Arabian Sea and the central Indian Ocean, elevated transfer velocities (Fig. S7S10) during the 407 

June to September, driven by heightened wind speeds, markedly enhance emission fluxes, despite comparatively lower 408 

concentrations than other months. In polar regions, especially along the coast of Antarctica, although the DMS concentration 409 

is high in summer, sea ice coverage significantly impedes DMS release, thus the emission flux remains at a low level. 410 

As shown in Fig. 109, the higher wind speeds in autumn and winter at mid- and high-latitudes result in higher total transfer 411 

velocities, leading to smaller summer-to-winter ratios of DMS emission flux compared to that of DMS concentration. In low 412 
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latitudes, the existence of the trade wind zones in both hemispheres further leads to two high-flux bands between 5° to 20°. 413 

The emission fluxes in the equatorial region between these two trade zones are significantly lower. Although the latitudinal 414 

distributions of mean DMS emission fluxes in the southern and northern hemispheres are almost symmetrical, the huge 415 

difference in ocean area between the two hemispheres results in a significantly higher total emission from the southern 416 

hemisphere. Since anthropogenic SO2 emissions are mainly concentrated in the northern hemisphere, oceanic DMS plays a 417 

much more important role in the southern hemisphere, especially over the regions south of 40° S where the DMS emission is 418 

high and the perturbation of anthropogenic pollution is low. 419 

According to our newly built DMS gridded dataset, the global area-weighted annual mean concentration of DMS at the sea 420 

surface from 1998 to 2017 was ~1.72 71 nM (1.67–1.76 75 nM), which is within the range among the values (1.6 to 2.4 nM) 421 

obtained by various methods in previous studies (Tesdal et al., 2016). The global annual mean DMS emission to the atmosphere 422 

was 17.0 2 TgS yr–1 (16.69–17.4 5 TgS yr–1), with 10.3 TgS yr–1 (60.659.9%) from the southern hemisphere and 6.7 9 TgS yr–423 
1 (39.440.1%) from the northern hemisphere. 424 

 425 
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 428 

Figure 98. Monthly climatology of global DMS sea-to-air flux from 1998 to 2017. 429 

 430 

 431 
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  432 

 433 

Figure 109. Latitudinal distributions of sea surface DMS concentration, total transfer velocity (Kt), sea-to-air flux, and total 434 

emission in different seasons during 1998–2017. The dashed parts of the lines represent the missing ratio of satellite Chl a data 435 

for DMS simulation is higher than 0.5, thus most Chl a data is from CMEMS global biogeochemical multi-year hindcast. 436 

 437 

3.2.2 Comparisons with other global DMS climatologies 438 

Here we compare the distributions of DMS concentration derived from our ANN simulation (referred to as Z23) with four 439 

previously constructed climatologies (Fig. 1110), including (1) L11: the widely used second version of 440 

interpolation/extrapolation-based climatology established by Lana et al. (2011), (2) H22: an updated version of L11 441 

incorporating much more DMS measurements and using dynamic biogeochemical provinces (Hulswar et al., 2022), (3) G18: 442 

the DMS concentration field estimated by a two-step remote sensing algorithm (Galí et al., 2018), and (4) W20: the previous 443 

DMS climatology simulated by ANN (Wang et al., 2020). 444 
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Overall, all datasets exhibit the general pattern of high DMS concentration during summer and low concentration during winter, 445 

but notable distinctions emerge in their specific distributions. Due to the limitation of the method used, DMSL11 exhibits 446 

relatively lower spatial heterogeneity (i.e., higher patchiness), which may not well capture the detailed spatial variability on a 447 

regional scale. Compared with DMSL11, DMSZ23 is significantly lower at high latitudes during summer and in the South Indian 448 

Ocean and Southwest Pacific Ocean from December to February (Fig. 11a10a). Particularly in the southern polar region 449 

(Polar_S), latitudinal averages of DMSL11 surpass 10 nM during summer, which are 1–3 times higher than DMSZ23 (Fig. 450 

11e10e). However, DMSZ23 maintains a similar level around the Antarctic in March compared to summer, and it is significantly 451 

higher than DMSL11 as well as other three climatologies. DMSH22 shows lower disparities with DMSZ23 in the Arctic, the South 452 

Indian Ocean, and the Southwest Pacific Ocean, but the summertime concentrations in most of Polar_S region are also > 2 nM 453 

higher than DMSZ23 (Fig. 11b10b). In contrast, DMSH22 in Polar_S from September to November is > ~2 nM lower than 454 

DMSZ23. The global area-weighted annual mean DMS concentrations in L11 and H22 are 2.43 nM and 2.26 nM, respectively, 455 

which are approximately 41.342.1% and 31.432.2% higher than Z23. 456 

G18 exhibits the lowest global annual mean concentration (1.63 nM) among these climatologies, approximately 5.24.7% lower 457 

than Z23. The most notable deviation occurs in the North Pacific during boreal summer and near the Antarctic during austral 458 

summer and autumn, where DMSZ23 is > 3.5 nM (> 100%) higher than DMSG18 (Fig. 11c10c). Conversely, there are high DMS 459 

concentrations (> 5 nM) in certain coastal seas (such as the coasts of East and Northeast Asia, the coasts of Patagonia and 460 

Peru, the southwestern coast of Africa, and the western coasts of the Sahara Desert and North America and the Sahara Desert) 461 

based on the G18 estimate. This characteristic is not fully replicated by other DMS fields, possibly due to the underestimation 462 

of DMS by our model and other methods in coastal regions as well as the overestimation of Chl a by satellites in coastal 463 

regions caused by the interference of colored dissolved organic matters and non-algal detrital particles (Aurin and Dierssen, 464 

2012). W20 exhibits the highest consistency with Z23 in spatiotemporal distribution patterns as well as the lowest difference 465 

in global annual mean concentration (1.74 nM, only 1.28% higher than Z23). However, notable discrepancies exist in specific 466 

regions. For instance, during summertime, DMSZ23 is > 1 nM (> 40%) lower than DMSW20 in more than half of the Arctic area, 467 

while in North Pacific and Southern Ocean DMSZ23 is significantly higher than DMSW20 (Fig. 11d10d). Furthermore, only 468 

DMSZ23 forms a nearly complete high-concentration annular band at ~ 40° S during austral summer. 469 

 470 
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 472 

Figure 1110. (a–d) The spatial distributions of DMS concentration differences between Z23 and four previously estimated 473 

fields across different seasons: (a) L11, (b) H22, (c) G18, and (d) W20. Dark gray regions in the ocean represent data missing 474 

in at least one field. (e) Comparisons between the latitudinal distributions of Z23 and four previous DMS fields across different 475 
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seasons. The dashed parts of the Z23 lines represent the missing ratio of satellite Chl a data for DMS simulation is higher than 476 

0.5, thus most Chl a data is from CMEMS global biogeochemical multi-year hindcast. 477 

 478 

3.2.3 Decadal changes 479 

One of the advantages of our ANN-derived DMS dataset is its time-resolved nature, which enables us to investigate the 480 

interannual variations in sea surface DMS concentration and flux. Here we present the decadal trends of DMS concentration, 481 

Kt, and emission flux spanning from 1998 to 2017 at both global and regional scales. Overall, the absolute interannual 482 

variability of DMS concentration across most global oceanic regions appears relatively small. 85.388.4% of the global oceanic 483 

area exhibited a difference range of less than 1 nM between the maximum and minimum annual average concentrations during 484 

this 20-year period, particularly evident in tropical and subtropical regions with latitudes between 40° S and 40° N. At latitudes 485 

higher than 40° in both hemispheres, notable decadal changes occurred (Fig. 12a11a). Annual mean DMS concentrations in 486 

the Greenland Sea, the North Pacific, and the Southern Ocean exhibited significant decreasing trends with rates exceeding 487 

0.03 nM yr–1 (P < 0.05). A significant decreasing trend was also noted in the eastern tropical Pacific Ocean, albeit at a much 488 

lower absolute rate, primarily below 0.015 nM yr–1. Conversely, there were significant increasing trends in the Labrador Sea, 489 

the South Pacific (35° S – 60° S, 150° E – 75° W), and the southeastern Pacific, with the highest rate exceeding 0.02 nM yr–1. 490 

The global annual mean concentration exhibited a decreasing trend with a rate of 0.0033 0035 nM yr–1 (P < 0.05, Fig. 11d). 491 

The highest value (1.76 75 nM) occurred in 20001999, and the lowest concentration (1.67 nM) occurred in 2015. Due to the 492 

primary influences of increasing WS and secondary impact of rising SST in most mid- and low-latitude regions (Fig. S8S11), 493 

the Kt of DMS also showed an overall increasing trend, especially in the eastern Pacific and Atlantic Ocean (Fig. 12b11b). 494 

The increase in Kt can offset the decrease in DMS concentration to some extent, resulting in no significant trend in global 495 

DMS emissions during this 20-year period (Fig. 12d11d). 496 

In the Arctic region, which stands as one of the most sensitive areas to climate warming (Screen et al., 2012; Serreze and 497 

Barry, 2011), the sea ice coverage has undergone significant reduction over the past 2 two decades, particularly noticeable in 498 

the Barents Sea and Kara Sea, and further north (> 1% yr–1 for annual mean SI, Fig. S8S11). The retreat of summertime sea 499 

ice leads to an expansion of open-sea surface, potentially amplifying DMS emission (Galí et al., 2019). However, despite this 500 

trend, there was no significant increase in the annual total emission from the Polar_N region over the same period, primarily 501 

due to a decreasing trend in DMS concentration (Fig. 1312). On the other hand, the highest emission took place in the last two 502 

years (> 0.65 64 Tg yr–1), attributed to the highest Kt. Thus, it is likely that a rise in DMS emission will appear in future Arctic 503 

region with further loss of sea ice coverage (Galí et al., 2019). In contrast to the Arctic, the Southern Ocean has experienced a 504 

significant increase in sea ice fraction (Fig. S8S11), leading to a significant decrease in Kt (Fig. 12b11b). Coupled with the 505 

decreased DMS concentration, it resulted in a substantial decline in the DMS emission flux (Fig. 12c 11c and 1312). The 506 

highest annual total emission flux in the Polar_S region occurred in 1998 (1.42 49 TgS), while the lowest occurred in 2013 507 
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(1.12 02 TgS), representing a decrease of ~2132%. Across other oceanic regions, the annual average DMS concentrations in 508 

the Westerlies_N_Pacific and Trades_Pacific regions exhibit decreasing trends over the past 20 years, while the concentration 509 

in Westerlies_S and Trades_Atlantic has increased (P < 0.05, Fig. 1312). Regarding DMS flux, the Westerlies_N_Pacific 510 

showed a decrease, while the Westerlies_N_Atlantic, Westerlies_S, and Trades_Atlantic showed an increase. There was no 511 

significant trend in other low- and mid-latitude regions. 512 
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 513 

514 

 515 

Figure 1211. (a–c) The spatial distributions of changes in (a) DMS concentration, (b) Kt, and (c) DMS emission flux from 516 

1998 to 2017. The linear regression slopes for the annual means are taken as the changing rates here. (d) The temporal changes 517 

of global annual mean DMS concentration, Kt, and total emission flux from 1998 to 2017. 518 

 519 
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 522 

Figure 1312. The temporal changes of annual mean DMS concentration, Kt, and total emission flux in different regions from 523 

1998 to 2017. 524 

3.3 Connection with atmospheric biogenic sulfur 525 

One of the primary objectives of developing this daily gridded DMS dataset (Z23) spanning multiple years is to improve the 526 

emission inventory of marine biogenic DMS, thereby enhancing the modelling performance for atmospheric sulfur chemistry, 527 

especially for simulating sulfur-containing aerosols. To assess whether our newly constructed DMS dataset can reach this 528 

objective, we employed a backward trajectory-based method to examine the correlation between sea surface DMS emissions 529 

and resulting DMS oxidation products in the atmosphere. The correlation was then compared against those derived from 530 

previously reported DMS climatologies (i.e., L11, H22, G18, and W20). 531 

Here we use the observed concentrations of particulate methanesulfonic acid (MSA) over the Atlantic Ocean as a reference. 532 

MSA is one of the major end-products of DMS in the atmosphere and is solely from the oxidation of marine biogenic DMS 533 

over remote oceans (Saltzman et al., 1983; Savoie et al., 2002; Osman et al., 2019). Therefore, there is likely to be a dependence 534 
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of the variation of MSA concentration on the DMS emission fluxes. During four transection cruises in the Atlantic conducted 535 

by R/V Polarstern (20 April – 20 May 2011, 28 October – 1 December 2011, 10 April – 15 May 2012, and 27 October – 27 536 

November 2012), the MSA concentrations in submicron aerosols were measured online using a High-Resolution Time-of-537 

Flight Aerosol Mass Spectrometer. The ship tracks are shown in Fig. S9S12, and detailed information about the cruises and 538 

measurement methodology was provided by Huang et al. (2016). The 72-hour air mass backward trajectories reaching the ship 539 

position were calculated every hour by the HYSPLIT model, starting from a height of 100 m (Stein et al., 2015). Subsequently, 540 

the air mass exposure to DMS emission (AEDMS), denoting the weighted average of DMS emission flux along the trajectory 541 

path, was calculated following the approach of Zhou et al. (2021). We used 5 different DMS gridded datasets, including Z23, 542 

L11, H22, G18, and W20. For Z23, the calculated daily DMS fluxes were utilized. For the remaining 4 monthly climatologies, 543 

we applied the daily Kt data from Z23 to calculate the DMS fluxes, thus eliminating the potential confounding influences 544 

stemming from different Kt parameterizations. In this calculation, the same concentration was assigned to all days within a 545 

month without interpolation. Detailed procedures for the calculation of AEDMS are elucidated in Appendix C. 546 

MSA concentrations were significantly higher in late spring than those in autumn for both North and South Atlantic Oceans 547 

(Fig. 14a13a). For example, during the boreal spring cruise in 2011, the average MSA concentration over the North Atlantic 548 

(0.068 µg m–3, north of 25° N) was about an order of magnitude higher than the average concentration over the South Atlantic 549 

(0.006 µg m–3, south of 5° S). During the boreal autumn cruise in 2011, the average concentration over the South Atlantic 550 

(0.034 µg m–3, south of 5° S) was ~5 times higher than that over the North Atlantic (0.006 µg m–3, north of 25° N). In addition 551 

to this major seasonal pattern, there was also a minor MSA concentration peak between 5°–15° N in both seasons. The spatial 552 

and seasonal variations of AEDMS based on the Z23 dataset (referred to as AEDMS_Z23) largely coincided with these MSA 553 

concentration patterns (Fig. 14a13a). It should be noted that the MSA/AEDMS ratio between 5°–15° N was significantly lower 554 

than those in other high-MSA regions, which may result from the DMS simulation biases near the coast of West Africa or the 555 

lower DMS-to-MSA conversion yields related with air temperature and oxidant species (Barnes et al., 2006; Bates et al., 1992).  556 

There were also several AEDMS peaks in North Atlantic during November 2012, inconsistent with the continuously low MSA 557 

concentrations. Given the high precipitation rates along the trajectory (Fig. 14a13a), a strong wet scavenging process might 558 

significantly reduce aerosol concentrations (Wood et al., 2017). 559 

The AEDMS derived from other DMS concentration fields showed similar variations to AEDMS_Z23 (Fig. 14a13a). It is not 560 

surprising since all DMS concentration fields exhibit similar large-scale spatiotemporal patterns, and identical air mass 561 

transport path and Kt were applied in different AEDMS calculations. However, due to the lower temporal resolutions and 562 

absence of interannual changes in those DMS monthly climatologies, the resulting AEDMS may be less effective in capturing 563 

variability at finer scales or across different years. Here we focus on the high-MSA periods to elaborate on this issue, which 564 

corresponds to latitudes north of 25° N in boreal spring (S1 and S2 in Fig. 14a13a), 25° N – 25° S in boreal autumn of 2011 565 

(A1 in Fig. 14a13a), and south of 5° N in boreal autumn of 2012 (A2 in Fig. 14a13a). As shown in Fig. 14b13b, hourly MSA 566 
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concentrations exhibited significantly stronger correlations with AEDMS_Z23 than with other AEDMS time series in S1 and 567 

S2, indicating AEDMS_Z23 can explain more (1.32 31 – 1.70 69 times) variance of MSA concentration. During A1 and A2, 568 

the correlations between AEDMS and MSA concentration were weaker than those during S1 and S2, possibly due to higher 569 

DMS prediction biases in South Atlantic or different influencing factors on atmospheric DMS chemistry across wide spatial 570 

ranges. Nonetheless, AEDMS_Z23 still exhibited the highest correlation with MSA (Fig. 14c13c). This overall stronger 571 

connection between Z23 and atmospheric DMS-derived aerosols mainly benefited from the combined effects of higher time 572 

resolution and inherent interannual variations. For example, the ratio of average MSA concentration during S1 to that during 573 

S2 (S1-to-S2 ratio) was 1.89, and the A2-to-A1 ratio was 1.75. AEDMS_Z23 exhibited a slightly lower but still significant 574 

interannual variation degree, where the S1-to-S2 ratio and A2-to-A1 ratio were 1.60 58 and 1.4546, respectively. However, 575 

this interannual variation cannot be reproduced by other datasets, where the S1-to-S2 ratio and A2-to-A1 ratio were in the 576 

range of 1.08–1.30 and 1.19–1.29, respectively. These results manifest the potential of our newly developed DMS gridded 577 

data product to enhance the modeling performance for atmospheric DMS processes compared with previously reported 578 

climatologies. 579 

It is worth noting that the satellite-based algorithms of G18 and ANN model of W20 can also be utilized to produce daily 580 

multiyear DMS fields as Z23. Future investigations could include comparisons with these fields, facilitating a more 581 

comprehensive assessment of the performance of each algorithm/model. Furthermore, the AEDMS method used here is a 582 

highly simplified approach without considering the complex DMS chemistry in the atmosphere, and the intercomparisons 583 

based on chemical transport models can be used in the future to obtain a more straightforward conclusion. 584 

 585 
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 587 

Figure 1413. (a) Time series of observed MSA concentration, AEDMS calculated based on different DMS concentration 588 

datasets, and average precipitation along the backward trajectory (Precipitation_traj) during four Atlantic cruises in 2011–589 

2012. (b–c) Correlations between hourly MSA concentration and AEDMS based on different DMS concentration datasets (b) 590 
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during periods S1 + S2 and (c) during periods A1 + A2. Data points during the periods with air mass time fraction within the 591 

boundary layer less than 90% or Precipitation_traj larger than 0.05 mm h–1 were removed. 592 

4 Uncertainties and limitations 593 

Although our ANN ensemble model and derived DMS dataset demonstrate certain advantages compared to previous studies, 594 

as discussed in Section 3.3, there persist notable uncertainties and limitations, which result in the ~3935% uncaptured variance 595 

(Fig. 4a3a) and non-negligible simulation biases, e.g., underestimation of extremely high DMS concentrations and 596 

overestimation of low DMS concentrations. Firstly, there is a mismatch in the spatial and temporal scales between the input 597 

and target. The target, sea surface DMS concentrations, are obtained from in-situ measurements taken at specific locations and 598 

time points. In contrast, the input data are primarily from gridded datasets where each pixel represents an average over a 599 

defined spatial and temporal range. This is particularly significant for the ECCO variables, which have the largest spatial grid 600 

size of 110 km. Consequently, extreme values at specific locations cannot be accurately captured by the regional averages, 601 

resulting in dampened variations among the samples. FirstlySecondly, the data of input featuresinput data from different 602 

sources and the observed sea surface DMS concentrations inherently possess certain uncertainties, which can introduce biases 603 

noises into the ANN learning process. Thirdly, the ANN itself may not be powerful enough to fully capture the complex input-604 

output relationships across different oceanic regions, especially when the samples are scarce under specific environmental 605 

conditions. Finally, beyond the 9 variables incorporated in this study, other environmental parameters such as pH (Six et al., 606 

2013; Hopkins et al., 2010) and trace metal elements (Li et al., 2021) can also influence DMS concentration. Not incorporating 607 

these factors may introduce additional biases.  608 

The overall bias for log10DMS is at a similar level between high- and low-concentration ends, but the DMS concentration on 609 

a linear scale is more underestimated in the high-concentration regime than it is overestimated in the low-concentration regime. 610 

As a result, our simulation results may tend to underestimate the annual average DMS concentration and flux. To mitigate this 611 

critical bias and reduce model uncertainty, high-quality input datasets with finer spatial resolution are needed in the future. 612 

The high-time resolution nature of the resulted daily DMS data product would be more valuable if accompanied by higher 613 

spatial resolution. Expanding the data volume is also crucial for improving model performance. Although the current DMS 614 

observational data covers all major oceanic basins, certain regions such as the Trades_Pacific remain underrepresented. 615 

Advances in online measurement technologies offer promising avenues for acquiring more extensive and convenient 616 

observational data (Hulswar et al., 2022). In the future, more observations are imperative for these underrepresented regions, 617 

facilitating model refinement and updates.Additionally, incorporating more input features to the model would be beneficial. 618 

This necessitates a comprehensive understanding of the spatiotemporal distributions of those input features, and further field 619 

measurements are important to this end. Moreover, integrating DMS biogeochemical mechanisms with machine learning 620 

technique, i.e., a hybrid model coupling physical processes with data-driven approach, may further improve prediction 621 
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accuracy, generalization, and interpretability (Reichstein et al., 2019).Secondly, ANN models may not fully capture all intricate 622 

data patterns, and the outcomes from each training may exhibit certain randomness. In this study, the average standard 623 

deviation of simulated log10DMS values from 100 neural networks is 0.244, and the 5%-95% range of the coefficient of 624 

variation for DMS concentration is 0.18–2.54, with an average of 0.72. If the detailed uncertainties associated with each data 625 

source are known, future investigations could employ Monte Carlo methods to estimate the uncertainties of final results arising 626 

from the aforementioned two factors (Abdar et al., 2021; Moradkhani et al., 2012). Thirdly, although the DMS observational 627 

data covers all major oceanic basins, certain regions such as the Trades_Pacific remain underrepresented. Advances in online 628 

measurement technologies offer promising avenues for acquiring more extensive and convenient observational data (Hulswar 629 

et al., 2022). In the future, more observations are imperative for these underrepresented regions, facilitating model refinement 630 

and updates. Fourthly, as discussed in Section 3.1, the model cannot well reproduce the extremely high and extremely low 631 

DMS concentrations, which potentially introduces notable biases, particularly in flux calculations. We also need more 632 

observational data to help mitigate this issue. 633 

Beyond the 9 variables incorporated in this study, other environmental parameters, such as pH (Six et al., 2013; Hopkins et 634 

al., 2010) and trace metal elements (Li et al., 2021), can also influence DMS concentration. Not incorporating these factors 635 

may introduce potential biases. Thus, further field measurements of trace metals are necessary to comprehend their 636 

spatiotemporal distributions, which are likely to enhance the model's ability to simulate sea surface DMS concentrations. In 637 

terms of the temporal resolution, our product significantly surpasses previous monthly climatologies. However, the higher 638 

temporal resolution would be even more valuable if accompanied by higher spatial resolution. In this work, the spatial 639 

resolution is limited by the ECCO dataset, where the largest spatial grid size is 110 km. Therefore, we are not able to achieve 640 

higher spatial resolution without interpolation. Enhancing the spatial resolution of DMS fields using high-quality input datasets 641 

with finer spatial resolution represents a prospective direction for future research. 642 

When using our newly developed DMS dataset, there are two issues that need to be noted. Firstly, there is a significant portion 643 

of missing satellite Chl a data during winter in polar regions. In such instances, the modeling data from CMEMS global 644 

biogeochemical multi-year hindcast was used, which may introduce higher uncertainty. We have provided the flags indicating 645 

the source of Chl a data for each grid in the dataset. Nevertheless, given the low phytoplankton biomass and extensive sea ice 646 

coverage during winter, DMS emissions are typically at the lowest level of the year, thus the satellite data missing has a 647 

relatively small impact on investigating the subsequent effects of DMS emission on atmospheric environment. Secondly, since 648 

the ANN ensemble model exhibits limited capacity in accurately reproducing extremely high concentrations of DMS, the DMS 649 

concentrations in certain nearshore areas with intensive biological activity may be greatly underestimated. 650 

 651 
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5 Code and data availability 652 

The generated gridded datasets of DMS concentration, total transfer velocity, and flux have been deposited at 653 

https://doi.org/10.5281/zenodo.11879900 https://zenodo.org/records/10906101 (Zhou et al., 2024) and can be downloaded 654 

publicly. The ANN model code and the Matlab scripts for data analysis are available from 655 

https://doi.org/10.5281/zenodo.12398985 https://zenodo.org/record/10937598 (Zhou, 2024). 656 

6 Conclusion 657 

Based on the global sea surface DMS observations and associated data of 9 relevant environmental variables, an ANN 658 

ensemble model was trained. The ANN model effectively captures the variability of DMS concentrations and demonstrates 659 

good simulation accuracy. Leveraging this ANN model, a global sea surface DMS gridded dataset with a daily resolution 660 

spanning 20 years (1998–2017) was constructed. The global annual average concentration was ~1.72 71 nM, falling within 661 

the range of previous estimates, and the annual total emission was ~17.0 2 TgS yr–1. High DMS concentrations and fluxes took 662 

place during summer in North Pacific (40°–60° N), North Atlantic (50°–80° N), the annular band around 40° S, and the 663 

Southern Ocean. With this newly developed dataset, the day-to-day changes and interannual variations can be investigated. 664 

The global annual average concentration shows a mild decreasing trend (~0.0033 0035 nM yr–1), while the total emission 665 

remains stable. There were more significant decadal changes in certain regions. Specifically, the annual DMS emission in the 666 

South Pacific and North Pacific showed opposite trends. 667 

To further validate the robustness and advantages of our new dataset, an airmass trajectory-based approach was applied to link 668 

the DMS flux and atmospheric MSA concentration. Compared to previous monthly climatologies, the airmass exposure to 669 

DMS calculated using our new dataset explains a greater amount of variance in atmospheric MSA concentration over the 670 

Atlantic Ocean. Therefore, despite the presence of uncertainties and limitations, the new dataset holds the potential to serve as 671 

an improved DMS emission inventory for atmospheric models and enhance the simulation of DMS-induced aerosols and their 672 

associated climatic effects. 673 

 674 

Appendix A: Acronyms 675 

AEDMS  Air mass exposure to DMS emission 676 

ANN  Artificial neural network 677 

BLH  Boundary layer height 678 

CCN  Cloud condensation nuclei 679 

Chl a  Chlorophyll a 680 

DMS  Dimethyl sulfide 681 

DMSP  Dimethylsulfoniopropionate 682 

DO  Dissolved oxygen 683 
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DSWF  Downward short-wave radiation flux 684 

ECCO  Estimating the Circulation and Climate of the Ocean 685 

GSSD database Global Surface Seawater DMS database 686 

Kt  Total transfer velocity 687 

MLD  Mixed layer depth 688 

MB  Mean bias 689 

MSA  Methanesulfonic acid 690 

MSE  Mean square error 691 

NAAMES North Atlantic Aerosols and Marine Ecosystems Study 692 

NMB  Normalized mean bias 693 

RMSE  Rooted mean square error 694 

PDF  Probability distribution function 695 

SI  Sea ice fraction 696 

SST  Sea surface temperature 697 

SSS  Sea surface salinity 698 

WS  Wind speed 699 

 700 

Appendix B: The weighted resampling strategy 701 

Apart from the data imbalance between coastal and non-coastal regions, there exists an imbalance across different DMS 702 

concentration ranges. The majority of DMS concentrations (78.6%) fall within the range of 0.8 to 10 nM (log10(DMS) between 703 

-0.1 to 1). Samples with DMS concentrations exceeding 15 nM or falling below 0.3 nM only represent 6.9% of the entire 704 

sample set. A weighted resampling strategy was applied to mitigate this imbalance (Fig. S7). We randomly sampled 50,000 705 

samples with replacement from the original sample set. The probability of each sample being selected is proportional to the 706 

weighting factor shown as the red dash line in Fig. S7b, which is dependent on its DMS concentration. Deriving the weighting 707 

factors for weighted resampling 708 

First, tThe probability distribution of initial log10(DMS) values was fitting fitted with a gamma distribution. The probability 709 

density function, which is given below and displayed as the blue line in Fig. S7b:3b.  710 

𝑓ሺ𝑥ሻ ൌ
ଵ

୻ሺ௞ሻఏೖ
ሺ𝑥 ൅ 4ሻ௞ିଵ𝑒ିሺ௫ାସሻ/ఏ          (A1) 711 

Here k and θ represent the shape parameter and scale parameter, in this case, 100.7 and 0.044, respectively. x is the log10(DMS) 712 

value. Since gamma distribution only takes positive values, we added 4 to the original x as the dependent variable for 713 

distribution fitting. We then obtained a new gamma distribution function with the same mode but lower shape parameter, in 714 

which k = 40 and θ = 0.112. The reciprocal of the new gamma distribution function was taken as the weighting factor. As a 715 

result, samples exhibiting high or low DMS concentrations are more likely to be selected, whereas those with intermediate 716 
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concentrations are less likely to be selected. We also controlled the Fcoastal value of the resampled data equal to 9.7%. The data 717 

distribution of DMS concentrations after the resampling process is shown in Fig. S7c. The fraction of samples with DMS 718 

concentrations above 15 nM or below 0.3 nM is elevated to 15.0%. The 50,000 samples were then randomly split to a training 719 

set (80%) and a validation set (20%). Since there are duplicate samples in the resampled dataset, the random data split was 720 

conducted based on the original sample ID before resampling to ensure that there was no sample overlap between the training 721 

and validation sets. 722 

 723 

Appendix C: The calculation of airmass exposure to DMS emission (AEDMS) 724 

Here the AEDMS index followed the similar calculation of the air mass exposure to Chl a (AEC) in previous studies (Arnold 725 

et al., 2010; Park et al., 2018; Zhou et al., 2021). We adopted the similar approach presented in Zhou et al. (2021) by replacing 726 

the Chl a concentration with DMS flux, as shown in the following equation (A2): 727 

𝐴𝐸𝐷𝑀𝑆 ൌ
∑ ஽ெௌ ௙௟௨௫೔൉௘

ష
೟೔
ళమళమ

೔సబ ൉
లబబ
ಳಽಹ

∑ ௘ష
೟೔
ళమళమ

೔సబ

          (A2) 728 

Here i represents the i-th trajectory point of the 72-hour backward trajectory (0-th for the receptor point). 𝐷𝑀𝑆 𝑓𝑙𝑢𝑥௜ represents 729 

the mean DMS flux within a radius of 20 km at the location of the pixel where the i-th trajectory point locates. 𝐷𝑀𝑆 𝑓𝑙𝑢𝑥௜ is 730 

set to zero if the point locates on land or the air mass pressure is below 850 hPa (usually in the free troposphere with little 731 

influence of surface emission). ti is the tracking time of the trajectory point (unit: hour) and 𝑒ି
೟೔
ళమ is the weighting factor to 732 

assign higher values for regions closer to the receptor point. To better connect with the atmospheric concentrations in the 733 

marine boundary layer, the normalization by boundary layer height (BLH) is added by the 
଺଴଴

஻௅ு
 term. The BLH below 50 m is 734 

replaced by 50 m. 735 

Author contributions. 736 

SZ and YC designed the research. SZ, FW, ZX, and KY collected the data and did the data preprocessing. SZ implemented 737 

the model development and performed the simulation with assistance from GY, HZ, and YZ. SH, HH, AW, and LP provided 738 

the measurement data of atmospheric MSA over the Atlantic Ocean. SZ conducted the data analysis and visualization with 739 

advice from YC and XG. SZ and YC wrote the manuscript with inputs from all authors. 740 

Competing interests. 741 

The authors declare that they have no conflict of interest. 742 



49 
 

Acknowledgements. 743 

We greatly thank National Oceanic and Atmospheric Administration’s Pacific Marine Environmental Laboratory for 744 

maintaining the Global Surface Seawater DMS Database. We acknowledge Dr. Chenzhao Li for sharing the code of global 745 

sensitivity analysis and Dr. Martin Johnson for sharing the code of DMS transfer velocity calculation. We also thank Dr. Rich 746 

Pawlowicz for developing and sharing the M_Map toolbox for Matlab (https://www.eoas.ubc.ca/~rich/map.html), which was 747 

used in the mapping of this study. XG was supported by the Research Center for Industries of the Future (RCIF) at Westlake 748 

University and Westlake University Education Foundation. 749 

Financial support. 750 

This work is jointly supported by Natural Science Foundation of Shanghai (22ZR1403800), National Key Research and 751 

Development Program of China (2016YFA0601304), and National Natural Science Foundation of China (41775145). 752 

 753 

References 754 

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., 755 

Acharya, U. R., Makarenkov, V., and Nahavandi, S.: A review of uncertainty quantification in deep learning: Techniques, 756 

applications and challenges, Information Fusion, 76, 243-297, 10.1016/j.inffus.2021.05.008, 2021. 757 

Alcolombri, U., Ben-Dor, S., Feldmesser, E., Levin, Y., Tawfik, D. S., and Vardi, A.: Identification of the algal dimethyl 758 

sulfide–releasing enzyme: a missing link in the marine sulfur cycle, Science, 348, 1466-1469, 2015. 759 

Andreae, M. O.: Ocean-Atmosphere Interactions in the Global Biogeochemical Sulfur Cycle, Mar. Chem., 30, 1-29, Doi 760 

10.1016/0304-4203(90)90059-L, 1990. 761 

Arnold, S. R., Spracklen, D. V., Gebhardt, S., Custer, T., Williams, J., Peeken, I., and Alvain, S.: Relationships between 762 

atmospheric organic compounds and air-mass exposure to marine biology, Environ. Chem., 7, 232-241, 10.1071/en09144, 763 

2010. 764 

Aurin, D. A., and Dierssen, H. M.: Advantages and limitations of ocean color remote sensing in CDOM-dominated, mineral-765 

rich coastal and estuarine waters, Remote Sensing of Environment, 125, 181-197, 10.1016/j.rse.2012.07.001, 2012. 766 

Barnes, I., Hjorth, J., and Mihalopoulos, N.: Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere, 767 

Chem. Rev., 106, 940-975, 10.1021/cr020529+, 2006. 768 

Bates, T. S., Calhoun, J. A., and Quinn, P. K.: Variations in the Methanesulfonate to Sulfate Molar Ratio in Submicrometer 769 

Marine Aerosol-Particles over the South-Pacific Ocean, J. Geophys. Res.-Atmos., 97, 9859-9865, 10.1029/92JD00411, 1992. 770 

Beale, R., Johnson, M., Liss, P. S., and Nightingale, P. D.: Air–Sea Exchange of Marine Trace Gases, in: Treatise on 771 

Geochemistry (Second Edition), edited by: Holland, H. D., and Turekian, K. K., 2, Elsevier, Oxford, 53-92, 2014. 772 



50 
 

Behrenfeld, M. J., Moore, R. H., Hostetler, C. A., Graff, J., Gaube, P., Russell, L. M., Chen, G., Doney, S. C., Giovannoni, S., 773 

Liu, H., Proctor, C., Bolaños, L. M., Baetge, N., Davie-Martin, C., Westberry, T. K., Bates, T. S., Bell, T. G., Bidle, K. D., 774 

Boss, E. S., Brooks, S. D., Cairns, B., Carlson, C., Halsey, K., Harvey, E. L., Hu, C., Karp-Boss, L., Kleb, M., Menden-Deuer, 775 

S., Morison, F., Quinn, P. K., Scarino, A. J., Anderson, B., Chowdhary, J., Crosbie, E., Ferrare, R., Hair, J. W., Hu, Y., Janz, 776 

S., Redemann, J., Saltzman, E., Shook, M., Siegel, D. A., Wisthaler, A., Martin, M. Y., and Ziemba, L.: The North Atlantic 777 

Aerosol and Marine Ecosystem Study (NAAMES): Science Motive and Mission Overview, Front. Mar. Sci., 6, 778 

10.3389/fmars.2019.00122, 2019. 779 

Bell, T. G., Porter, J. G., Wang, W.-L., Lawler, M. J., Boss, E., Behrenfeld, M. J., and Saltzman, E. S.: Predictability of 780 

Seawater DMS During the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES), Front. Mar. Sci., 7, 596763, 781 

10.3389/fmars.2020.596763, 2021. 782 

Belviso, S., Bopp, L., Moulin, C., Orr, J. C., Anderson, T. R., Aumont, O., Chu, S., Elliott, S., Maltrud, M. E., and Simó, R.: 783 

Comparison of global climatological maps of sea surface dimethyl sulfide, Glob. Biogeochem. Cycles, 18, 784 

10.1029/2003gb002193, 2004a. 785 

Belviso, S., Moulin, C., Bopp, L., and Stefels, J.: Assessment of a global climatology of oceanic dimethylsulfide (DMS) 786 

concentrations based on SeaWiFS imagery (1998-2001), Canadian Journal of Fisheries and Aquatic Sciences, 61, 804-816, 787 

10.1139/f04-001, 2004b. 788 

Belviso, S., Masotti, I., Tagliabue, A., Bopp, L., Brockmann, P., Fichot, C., Caniaux, G., Prieur, L., Ras, J., Uitz, J., Loisel, 789 

H., Dessailly, D., Alvain, S., Kasamatsu, N., and Fukuchi, M.: DMS dynamics in the most oligotrophic subtropical zones of 790 

the global ocean, Biogeochemistry, 110, 215-241, 10.1007/s10533-011-9648-1, 2011. 791 

Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth 792 

geoscience, Science, 363, eaau0323, 10.1126/science.aau0323, 2019. 793 

Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster, P. M., Mann, G. W., Spracklen, D. V., 794 

Woodhouse, M. T., Regayre, L. A., and Pierce, J. R.: Large contribution of natural aerosols to uncertainty in indirect forcing, 795 

Nature, 503, 67-71, 10.1038/nature12674, 2013. 796 

Charlson, R. J., Lovelock, J. E., Andreaei, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud 797 

albedo and climate, Nature, 326, 655-661, 10.1038/326655a0, 1987. 798 

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.: SMOTE: synthetic minority over-sampling technique, 799 

Journal of artificial intelligence research, 16, 321-357, 2002. 800 

Chen, Q., Sherwen, T., Evans, M., and Alexander, B.: DMS oxidation and sulfur aerosol formation in the marine troposphere: 801 

a focus on reactive halogen and multiphase chemistry, Atmos. Chem. Phys., 18, 13617-13637, 10.5194/acp-18-13617-2018, 802 

2018. 803 

Dubitzky, W., Granzow, M., and Berrar, D. P.: Fundamentals of data mining in genomics and proteomics, Springer Science 804 

& Business Media, 2007. 805 



51 
 

Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: An integrated framework 806 

for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071-3104, 2015. 807 

Friedland, K. D., Mouw, C. B., Asch, R. G., Ferreira, A. S. A., Henson, S., Hyde, K. J. W., Morse, R. E., Thomas, A. C., and 808 

Brady, D. C.: Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales, Global 809 

Ecology and Biogeography, 27, 551-569, 10.1111/geb.12717, 2018. 810 

Fung, K. M., Heald, C. L., Kroll, J. H., Wang, S., Jo, D. S., Gettelman, A., Lu, Z., Liu, X., Zaveri, R. A., Apel, E. C., Blake, 811 

D. R., Jimenez, J. L., Campuzano-Jost, P., Veres, P. R., Bates, T. S., Shilling, J. E., and Zawadowicz, M.: Exploring dimethyl 812 

sulfide (DMS) oxidation and implications for global aerosol radiative forcing, Atmos. Chem. Phys., 22, 1549-1573, 813 

10.5194/acp-22-1549-2022, 2022. 814 

Galí, M., Devred, E., Levasseur, M., Royer, S.-J., and Babin, M.: A remote sensing algorithm for planktonic 815 

dimethylsulfoniopropionate (DMSP) and an analysis of global patterns, Remote Sensing of Environment, 171, 171-184, 816 

10.1016/j.rse.2015.10.012, 2015. 817 

Galí, M., and Simó, R.: A meta-analysis of oceanic DMS and DMSP cycling processes: Disentangling the summer paradox, 818 

Glob. Biogeochem. Cycles, 29, 496-515, 10.1002/2014gb004940, 2015. 819 

Galí, M., Levasseur, M., Devred, E., Simó, R., and Babin, M.: Sea-surface dimethylsulfide (DMS) concentration from satellite 820 

data at global and regional scales, Biogeosciences, 15, 3497-3519, 10.5194/bg-15-3497-2018, 2018. 821 

Galí, M., Devred, E., Babin, M., and Levasseur, M.: Decadal increase in Arctic dimethylsulfide emission, P. Natl. Acad. Sci. 822 

USA, 116, 19311-19317, 10.1073/pnas.1904378116, 2019. 823 

Garnesson, P., Mangin, A., Fanton d'Andon, O., Demaria, J., and Bretagnon, M.: The CMEMS GlobColour chlorophyll a 824 

product based on satellite observation: Multi-sensor merging and flagging strategies, Ocean Science, 15, 819-830, 2019. 825 

Haibo, H., Yang, B., Garcia, E. A., and Shutao, L.: ADASYN: Adaptive synthetic sampling approach for imbalanced learning, 826 

2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, 827 

1322-1328. 828 

Hoffmann, E. H., Tilgner, A., Schroedner, R., Bräuer, P., Wolke, R., and Herrmann, H.: An advanced modeling study on the 829 

impacts and atmospheric implications of multiphase dimethyl sulfide chemistry, P. Natl. Acad. Sci. USA, 113, 11776-11781, 830 

10.1073/pnas.1606320113, 2016. 831 

Holder, C., Gnanadesikan, A., and Aude-Pradal, M.: Using neural network ensembles to separate ocean biogeochemical and 832 

physical drivers of phytoplankton biogeography in Earth system models, Geosci. Model Dev., 15, 1595-1617, 10.5194/gmd-833 

15-1595-2022, 2022. 834 

Hopkins, F. E., Turner, S. M., Nightingale, P. D., Steinke, M., Bakker, D., and Liss, P. S.: Ocean acidification and marine 835 

trace gas emissions, P. Natl. Acad. Sci. USA, 107, 760-765, 10.1073/pnas.0907163107, 2010. 836 

Hopkins, F. E., Archer, S. D., Bell, T. G., Suntharalingam, P., and Todd, J. D.: The biogeochemistry of marine dimethylsulfide, 837 

Nature Reviews Earth & Environment, 4, 361-376, 10.1038/s43017-023-00428-7, 2023. 838 



52 
 

Huang, B., Liu, C., Freeman, E., Graham, G., Smith, T., and Zhang, H.-M.: Assessment and Intercomparison of NOAA Daily 839 

Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, Journal of Climate, 34, 7421-7441, 10.1175/jcli-d-840 

21-0001.1, 2021. 841 

Huang, S., Poulain, L., van Pinxteren, D., van Pinxteren, M., Wu, Z., Herrmann, H., and Wiedensohler, A.: Latitudinal and 842 

Seasonal Distribution of Particulate MSA over the Atlantic using a Validated Quantification Method with HR-ToF-AMS, 843 

Environ. Sci. Technol., 51, 418-426, 10.1021/acs.est.6b03186, 2016. 844 

Hulswar, S., Simó, R., Galí, M., Bell, T. G., Lana, A., Inamdar, S., Halloran, P. R., Manville, G., and Mahajan, A. S.: Third 845 

revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3), Earth System Science Data, 14, 2963-2987, 846 

10.5194/essd-14-2963-2022, 2022. 847 

Humphries, G. R. W., Deal, C. J., Elliott, S., and Huettmann, F.: Spatial predictions of sea surface dimethylsulfide 848 

concentrations in the high arctic, Biogeochemistry, 110, 287-301, 2012. 849 

Johnson, M. T.: A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas, 850 

Ocean Science, 6, 913-932, 10.5194/os-6-913-2010, 2010. 851 

Keller, M. D., Bellows, W. K., and Guillard, R. R.: Dimethyl sulfide production in marine phytoplankton, in: Biogenic Sulfur 852 

in the Environment, edited by: Saltzman, E. S., and Cooper, W. J., ACS Publications, 1989. 853 

Kettle, A. J., Andreae, M. O., Amouroux, D., Andreae, T. W., Bates, T. S., Berresheim, H., Bingemer, H., Boniforti, R., Curran, 854 

M. A. J., DiTullio, G. R., Helas, G., Jones, G. B., Keller, M. D., Kiene, R. P., Leck, C., Levasseur, M., Malin, G., Maspero, 855 

M., Matrai, P., McTaggart, A. R., Mihalopoulos, N., Nguyen, B. C., Novo, A., Putaud, J. P., Rapsomanikis, S., Roberts, G., 856 

Schebeske, G., Sharma, S., Simo, R., Staubes, R., Turner, S., and Uher, G.: A global database of sea surface dimethylsulfide 857 

(DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month, Glob. 858 

Biogeochem. Cycles, 13, 399-444, 10.1029/1999gb900004, 1999. 859 

Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere 860 

system–a global model study, Biogeosciences, 3, 29-51, 2006. 861 

Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, 862 

J., Johnson, J. E., and Liss, P. S.: An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the 863 

global ocean, Glob. Biogeochem. Cycles, 25, GB1004, 10.1029/2010gb003850, 2011. 864 

Li, H., Zhou, S., Zhu, Y., Zhang, R., Wang, F., Bao, Y., and Chen, Y.: Atmospheric Deposition Promotes Relative Abundances 865 

of High‐Dimethylsulfoniopropionate Producers in the Western North Pacific, Geophys. Res. Lett., 48, e2020GL092077, 866 

10.1029/2020GL092077, 2021. 867 

Longhurst, A. R.: Ecological Geography of the Sea, Academic Press, 1998. 868 

Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric Dimethyl Sulphide and the Natural Sulphur Cycle, Nature, 869 

237, 452-453, 10.1038/237452a0, 1972. 870 



53 
 

Mansour, K., Decesari, S., Ceburnis, D., Ovadnevaite, J., and Rinaldi, M.: Machine learning for prediction of daily sea surface 871 

dimethylsulfide concentration and emission flux over the North Atlantic Ocean (1998-2021), Sci. Total. Environ., 871, 162123, 872 

10.1016/j.scitotenv.2023.162123, 2023. 873 

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. 874 

I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, R. 875 

e.: IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment 876 

Report of the Intergovernmental Panel on Climate Change, 2021. 877 

McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M., Ma, P. L., Rasch, P. J., and Hartmann, D. L.: Natural 878 

aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo, Science Advances, 1, e1500157, 879 

10.1126/sciadv.1500157, 2015. 880 

McNabb, B. J., and Tortell, P. D.: Improved prediction of dimethyl sulfide (DMS) distributions in the northeast subarctic 881 

Pacific using machine-learning algorithms, Biogeosciences, 19, 1705-1721, 10.5194/bg-19-1705-2022, 2022. 882 

McNabb, B. J., and Tortell, P. D.: Oceanographic controls on Southern Ocean dimethyl sulfide distributions revealed by 883 

machine learning algorithms, Limnology and Oceanography, 68, 616-630, 10.1002/lno.12298, 2023. 884 

McParland, E. L., and Levine, N. M.: The role of differential DMSP production and community composition in predicting 885 

variability of global surface DMSP concentrations, Limnol. Oceanogr., 64, 757-773, 10.1002/lno.11076, 2018. 886 

Moradkhani, H., DeChant, C. M., and Sorooshian, S.: Evolution of ensemble data assimilation for uncertainty quantification 887 

using the particle filter-Markov chain Monte Carlo method, Water Resources Research, 48, 10.1029/2012wr012144, 2012. 888 

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: 889 

In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers, Glob. Biogeochem. 890 

Cycles, 14, 373-387, 10.1029/1999gb900091, 2000. 891 

Novak, G. A., Fite, C. H., Holmes, C. D., Veres, P. R., Neuman, J. A., Faloona, I., Thornton, J. A., Wolfe, G. M., Vermeuel, 892 

M. P., Jernigan, C. M., Peischl, J., Ryerson, T. B., Thompson, C. R., Bourgeois, I., Warneke, C., Gkatzelis, G. I., Coggon, M. 893 

M., Sekimoto, K., Bui, T. P., Dean-Day, J., Diskin, G. S., DiGangi, J. P., Nowak, J. B., Moore, R. H., Wiggins, E. B., Winstead, 894 

E. L., Robinson, C., Thornhill, K. L., Sanchez, K. J., Hall, S. R., Ullmann, K., Dollner, M., Weinzierl, B., Blake, D. R., and 895 

Bertram, T. H.: Rapid cloud removal of dimethyl sulfide oxidation products limits SO2 and cloud condensation nuclei 896 

production in the marine atmosphere, P. Natl. Acad. Sci. USA, 118, e2110472118, 10.1073/pnas.2110472118, 2021. 897 

Omori, Y., Tanimoto, H., Inomata, S., Wada, S., Thume, K., and Pohnert, G.: Enhancement of dimethylsulfide production by 898 

anoxic stress in natural seawater, Geophys. Res. Lett., 42, 4047-4053, 10.1002/2015gl063546, 2015. 899 

Osman, M. B., Das, S. B., Trusel, L. D., Evans, M. J., Fischer, H., Grieman, M. M., Kipfstuhl, S., McConnell, J. R., and 900 

Saltzman, E. S.: Industrial-era decline in subarctic Atlantic productivity, Nature, 569, 551-555, 10.1038/s41586-019-1181-8, 901 

2019. 902 



54 
 

Park, K.-T., Lee, K., Kim, T.-W., Yoon, Y. J., Jang, E.-H., Jang, S., Lee, B.-Y., and Hermansen, O.: Atmospheric DMS in the 903 

Arctic Ocean and Its Relation to Phytoplankton Biomass, Glob. Biogeochem. Cycles, 32, 351-359, 10.1002/2017gb005805, 904 

2018. 905 

Park, K. T., Yoon, Y. J., Lee, K., Tunved, P., Krejci, R., Ström, J., Jang, E., Kang, H. J., Jang, S., Park, J., Lee, B. Y., Traversi, 906 

R., Becagli, S., and Hermansen, O.: Dimethyl Sulfide‐Induced Increase in Cloud Condensation Nuclei in the Arctic 907 

Atmosphere, Glob. Biogeochem. Cycles, 35, e2021GB006969, 10.1029/2021gb006969, 2021. 908 

Qu, B., Gabric, A. J., Zeng, M., and Lu, Z.: Dimethylsulfide model calibration in the Barents Sea using a genetic algorithm 909 

and neural network, Environ. Chem., 13, 413-424, 10.1071/EN14264, 2016. 910 

Quinn, P. K., and Bates, T. S.: The case against climate regulation via oceanic phytoplankton sulphur emissions, Nature, 480, 911 

51-56, 10.1038/nature10580, 2011. 912 

Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L. M., and Bates, T. S.: Small fraction of marine cloud condensation 913 

nuclei made up of sea spray aerosol, Nat. Geosci., 10, 674-679, 10.1038/ngeo3003, 2017. 914 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process 915 

understanding for data-driven Earth system science, Nature, 566, 195-204, 10.1038/s41586-019-0912-1, 2019. 916 

Saltzman, E. S., Savoie, D. L., Zika, R. G., and Prospero, J. M.: Methane sulfonic acid in the marine atmosphere, J. Geophys. 917 

Res., 88, 10897, 10.1029/JC088iC15p10897, 1983. 918 

Savoie, D. L., Arimoto, R., Keene, W. C., Prospero, J. M., Duce, R. A., and Galloway, J. N.: Marine biogenic and 919 

anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the North Atlantic Ocean, J. Geophys. 920 

Res., 107, 4356, 10.1029/2001jd000970, 2002. 921 

Screen, J. A., Deser, C., and Simmonds, I.: Local and remote controls on observed Arctic warming, Geophys. Res. Lett., 39, 922 

L10709, 10.1029/2012gl051598, 2012. 923 

Serreze, M. C., and Barry, R. G.: Processes and impacts of Arctic amplification: A research synthesis, Global and planetary 924 

change, 77, 85-96, 2011. 925 

Sheng, J.-X., Weisenstein, D. K., Luo, B.-P., Rozanov, E., Stenke, A., Anet, J., Bingemer, H., and Peter, T.: Global atmospheric 926 

sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation, J. 927 

Geophys. Res.-Atmos., 120, 256-276, 10.1002/2014jd021985, 2015. 928 

Sigmund, G., Gharasoo, M., Hüffer, T., and Hofmann, T.: Deep Learning Neural Network Approach for Predicting the 929 

Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials, Environ. Sci. Technol., 54, 930 

4583-4591, 10.1021/acs.est.9b06287, 2020. 931 

Simó, R., and Pedrós-Alió, C.: Role of vertical mixing in controlling the oceanic production of dimethyl sulphide, Nature, 402, 932 

396-399, 10.1038/46516, 1999a. 933 

Simó, R., and Pedrós-Alió, C.: Short-term variability in the open ocean cycle of dimethylsulfide, Glob. Biogeochem. Cycles, 934 

13, 1173-1181, 10.1029/1999gb900081, 1999b. 935 



55 
 

Simó, R., and Dachs, J.: Global ocean emission of dimethylsulfide predicted from biogeophysical data, Glob. Biogeochem. 936 

Cycles, 16, 1078, 10.1029/2001gb001829, 2002. 937 

Six, K. D., Kloster, S., Ilyina, T., Archer, S. D., Zhang, K., and Maier-Reimer, E.: Global warming amplified by reduced 938 

sulphur fluxes as a result of ocean acidification, Nat. Clim. Change, 3, 975-978, 10.1038/nclimate1981, 2013. 939 

Stefels, J.: Physiological aspects of the production and conversion of DMSP in marine algae and higher plants, J. Sea. Res., 940 

43, 183-197, 2000. 941 

Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Environmental constraints on the production and removal of the 942 

climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling, Biogeochemistry, 83, 245-275, 943 

10.1007/s10533-007-9091-5, 2007. 944 

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric 945 

Transport and Dispersion Modeling System, Bull. Am. Meteorol. Soc., 96, 2059-2077, 10.1175/bams-d-14-00110.1, 2015. 946 

Steiner, N. S., Robert, M., Arychuk, M., Levasseur, M. L., Merzouk, A., Peña, M. A., Richardson, W. A., and Tortell, P. D.: 947 

Evaluating DMS measurements and model results in the Northeast subarctic Pacific from 1996–2010, Biogeochemistry, 110, 948 

269-285, 10.1007/s10533-011-9669-9, 2011. 949 

Sunda, W., Kieber, D., Kiene, R., and Huntsman, S.: An antioxidant function for DMSP and DMS in marine algae, Nature, 950 

418, 317-320, 2002. 951 

Tesdal, J.-E., Christian, J. R., Monahan, A. H., and Salzen, K. v.: Evaluation of diverse approaches for estimating sea-surface 952 

DMS concentration and air–sea exchange at global scale, Environ. Chem., 13, 390-412, 10.1071/EN14255, 2016. 953 

Vallina, S. M., and Simó, R.: Strong relationship between DMS and the solar radiation dose over the global surface ocean, 954 

Science, 315, 506-508, 10.1126/science.1133680, 2007. 955 

Vogt, M., Vallina, S. M., Buitenhuis, E. T., Bopp, L., and Le Quéré, C.: Simulating dimethylsulphide seasonality with the 956 

Dynamic Green Ocean Model PlankTOM5, J. Geophys. Res., 115, 10.1029/2009jc005529, 2010. 957 

Wang, S., Elliott, S., Maltrud, M., and Cameron-Smith, P.: Influence of explicit Phaeocystis parameterizations on the global 958 

distribution of marine dimethyl sulfide, J. Geophy. Res.-Biogeosci., 120, 2158-2177, 10.1002/2015jg003017, 2015. 959 

Wang, W.-L., Song, G., Primeau, F., Saltzman, E. S., Bell, T. G., and Moore, J. K.: Global ocean dimethyl sulfide climatology 960 

estimated from observations and an artificial neural network, Biogeosciences, 17, 5335-5354, 10.5194/bg-17-5335-2020, 961 

2020. 962 

Wood, R., Stemmler, J. D., Rémillard, J., and Jefferson, A.: Low‐CCN concentration air masses over the eastern North 963 

Atlantic: Seasonality, meteorology, and drivers, J. Geophys. Res. Atmos., 122, 1203-1223, 10.1002/2016jd025557, 2017. 964 

Woolf, D. K.: Bubbles and their role in gas exchange, in: The Sea Surface and Global Change, edited by: Liss, P. S., and Duce, 965 

R. A., Cambridge University Press, Cambridge, 173-206, 1997. 966 

Yang, B., Boss, E. S., Haëntjens, N., Long, M. C., Behrenfeld, M. J., Eveleth, R., and Doney, S. C.: Phytoplankton Phenology 967 

in the North Atlantic: Insights From Profiling Float Measurements, Front. Mar. Sci., 7, 10.3389/fmars.2020.00139, 2020. 968 

Yu, L., and Zhou, N.: Survey of imbalanced data methodologies, arXiv preprint arXiv:2104.02240, 2021. 969 



56 
 

Zhang, X. H., Liu, J., Liu, J., Yang, G., Xue, C. X., Curson, A. R. J., and Todd, J. D.: Biogenic production of DMSP and its 970 

degradation to DMS-their roles in the global sulfur cycle, Sci. China Life Sci., 62, 1296-1319, 10.1007/s11427-018-9524-y, 971 

2019. 972 

Zhao, J., Ma, W., Bilsback, K. R., Pierce, J. R., Zhou, S., Chen, Y., Yang, G., and Zhang, Y.: Simulating the radiative forcing 973 

of oceanic dimethylsulfide (DMS) in Asia based on machine learning estimates, Atmos. Chem. Phys., 22, 9583-9600, 974 

10.5194/acp-22-9583-2022, 2022. 975 

Zheng, G., Li, X., Zhang, R. H., and Liu, B.: Purely satellite data-driven deep learning forecast of complicated tropical 976 

instability waves, Science Advances, 6, eaba1482, 10.1126/sciadv.aba1482, 2020. 977 

Zhou, S.: An artificial neural network ensemble model for sea surface DMS simulation, v2v3.0, Zenodo [Data set], 978 

https://doi.org/10.5281/zenodo.1239898510937598, 2024 979 

Zhou, S., Chen, Y., Huang, S., Gong, X., Yang, G., Zhang, H., Herrmann, H., Wiedensohler, A., Poulain, L., Zhang, Y., Wang, 980 

F., Xu, Z., and Yan, K.: A 20-year (1998-2017) global sea surface dimethyl sulfide gridded dataset with daily resolution, 981 

v3v4.0, Zenodo [Data set], https://doi.org/10.5281/zenodo.1187990010906101, 2024. 982 

Zhou, S., Chen, Y., Paytan, A., Li, H., Wang, F., Zhu, Y., Yang, T., Zhang, Y., and Zhang, R.: Non‐Marine Sources Contribute 983 

to Aerosol Methanesulfonate Over Coastal Seas, J. Geophys. Res.-Atmos., 126, e2021JD034960, 10.1029/2021jd034960, 984 

2021. 985 

Zindler, C., Bracher, A., Marandino, C. A., Taylor, B., Torrecilla, E., Kock, A., and Bange, H. W.: Sulphur compounds, 986 

methane, and phytoplankton: interactions along a north–south transit in the western Pacific Ocean, Biogeosciences, 10, 3297-987 

3311, 10.5194/bg-10-3297-2013, 2013. 988 

Zindler, C., Marandino, C. A., Bange, H. W., Schütte, F., and Saltzman, E. S.: Nutrient availability determines dimethyl sulfide 989 

and isoprene distribution in the eastern Atlantic Ocean, Geophys. Res. Lett., 41, 3181-3188, 10.1002/2014gl059547, 2014. 990 

 991 


