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Abstract. The oceanic emission of dimethyl sulfide (DMS) plays a vital role in the Earth's climate system and constitutes a
substantial source of uncertainty in evaluating aerosol radiative forcing. Currently, the widely used monthly climatology of
sea surface DMS concentration falls short of meeting the requirement for accurately simulating DMS-derived aerosols by
chemical transport models. Hence, there is an urgent need for a high-resolution, multi-year global sea surface DMS dataset.
Here we develop an artificial neural network ensemble model using 9 environmental factors as input features, which exhibits

atienswell captures the variabilities of DMS concentration across

different oceanic regions. Subsequently, a global sea surface DMS concentration and flux dataset (1°x1°) with daily resolution

spanning from 1998 to 2017 is established. According to this dataset, the global annual average concentration was ~1.72-71
nM, and the annual total emission was ~17.6-2 TgS yr !, with ~6+60% originating from the southern hemisphere. While overall
seasonal variations are consistent with previous DMS climatologies, notable differences exist in regional-scale spatial
distributions. The new dataset enables further investigations into daily and decadal variations. Throughout the period 1998—
2017, the global annual average concentration exhibited a slight decrease, while total emissions showed no significant trend.
The DMS flux from our dataset showed a stronger correlation with observed atmospheric methanesulfonic acid concentration
compared to those from previous monthly climatologies. Therefore, it can serve as an improved emission inventory of oceanic

DMS and has the potential to enhance the simulation of DMS-derived aerosols and associated radiative effects. The new DMS
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gridded products are available at https://doi.org/10.5281/zenodo.11879900kttps:Hzenode-orglrecordsHH09061+0+ (Zhou et al.,
2024).

1 Introduction

Dimethyl sulfide (DMS), primarily produced by ocean biota, accounts for more than half of natural sulfur emissions and
significantly contributes to sulfur dioxide in the troposphere (Sheng et al., 2015; Andreae, 1990), which can be oxidized to
sulfuric acid and form sulfate aerosols (Barnes et al., 2006; Hoffmann et al., 2016). Sulfate aerosols play an important role in
climate systems by scattering solar radiation, changing cloud condensation nuclei (CCN) population, and altering cloud
properties (Masson-Delmotte et al., 2021). Recent studies have proven that CCN over the remote ocean and polar regions are
primarily composed of non-sea-salt sulfate (nss-SO4>) (Quinn et al., 2017; Park et al., 2021). Given the weak influence of
anthropogenic SO, over open oceans, marine biogenic DMS emerges as a crucial source of nss-SO4>, regulating oceanic
climate (McCoy et al., 2015). Accordingly, DMS has been suggested to be the key substance in the postulated feedback loop
of marine phytoplankton to climate warming (the “CLAW” hypothesis) (Charlson et al., 1987), albeit facing several
controversies (Quinn and Bates, 2011). To accurately simulate the climate effects of DMS-derived aerosols, high-fidelity and
high-resolution data on sea surface DMS concentrations and emission fluxes are required, along with further exploration of
complex atmospheric chemical and physical processes (Hoffmann et al., 2016; Novak et al., 2021). It has been indicated that
the uncertainty in DMS emission flux is the second largest contributor to the overall uncertainty associated with natural
aerosols in evaluating the aerosol indirect radiative forcing (Carslaw et al., 2013). Therefore, understanding the spatiotemporal

variations of DMS in global oceans is currently an important task.

There are complex production and consumption mechanisms of DMS in the upper ocean, which makes it difficult to well
capture the dynamics and distributions of sea surface DMS across different regions. Dimethylsulfoniopropionate (DMSP), the
major precursor of DMS, is synthesized mainly by phytoplankton in the photic zone and plays a variety of physiological
functions in algal cells (Stefels, 2000; Sunda et al., 2002; McParland and Levine, 2018). The DMSP yield varies significantly
among algal species (Stefels et al., 2007; Keller et al., 1989), and DMS can be produced through DMSP intracellular and
extracellular cleavage by both algae and bacteria (Alcolombri et al., 2015; Zhang et al., 2019). Therefore, the oceanic DMS
produced via multiple pathways can be affected by many biotic and abiotic factors, including temperature, salinity, solar
radiation, mixed layer depth, nutrients, oxygen, acidity, etc. (Simo6 and Pedros-Alid, 1999a; Vallina and Simd, 2007; Stefels,
2000; Zindler et al., 2014; Six et al., 2013; Omori et al., 2015; Stefels et al., 2007). In addition, seawater DMS undergoes
various removal pathways (bacterial consumption, photodegradation, sea-to-air ventilation, etc.), further complicating its
cycling (Stefels et al., 2007; Gali and Simd, 2015; Hopkins et al., 2023). Therefore, although previous studies have developed
several empirical algorithms (Simé and Dachs, 2002; Belviso et al., 2004b; Vallina and Sim¢, 2007) and process-embedded
prognostic models (Kloster et al., 2006; Vogt et al., 2010; Belviso et al., 2011; Wang et al., 2015) based on relevant variables
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(mixed layer depth, chlorophyll a, nutrients, radiation, phytoplankton group, etc.) to estimate the distribution of DMS, their
results showed significantly different patterns and inconsistency with observations in many regions (Tesdal et al., 2016;
Belviso et al., 2004a). Recently, Gali et al. (2018) developed a new empirical algorithm following a parameterization of DMSP
(Gali et al., 2015). The estimated DMS field exhibited a generally higher consistency with observations than those derived
from previous algorithms SD02 (Sim6 and Dachs, 2002) and VS07 (Vallina and Simd, 2007), but this method did not consider

the influences of nutrients and still exhibited substantial biases in certain regions (e.g., near the Antarctic).

Since Lovelock et al. (1972) first discovered the ubiquitous presence of DMS in seawater, numerous observations of sea
surface DMS have been conducted worldwide, yielding a substantial volume of observational data to date. Based on these
worldwide measurements, monthly climatology of global DMS can be generated through interpolation and extrapolation
(Hulswar et al., 2022; Kettle et al., 1999; Lana et al., 2011). The latest version incorporated 873,539 raw observations (48,898
after data filtration and unification for climatology development), and the estimated global annual mean concentration and
total flux are 2.26 nM and 27.1 TgS yr!, respectively (Hulswar et al., 2022). However, despite the abundance of data,
significant spatial and temporal disparities persist, potentially introducing large uncertainties in regions or periods with sparse
observations. Furthermore, the observational data from different years within a particular month were combined together for

interpolation and extrapolation, and the interannual variations cannot be investigated by this approach.

In recent years, the application of data-driven approaches like machine learning to Earth system science has drawn more and
more attention. Compared with traditional approaches, machine learning explores larger function space and captures more
hidden information from the big data, hence it often provides a better prediction performance (Reichstein et al., 2019; Zheng
et al., 2020; Bergen et al., 2019). For instance, a recent study demonstrated that artificial neural network (ANN) can capture
much more (~66%) of the raw data variance than multilinear regression (~39%), and a global monthly climatology of sea
surface DMS concentration has been developed based on ANN model (Wang et al., 2020). The machine learning techniques
have also been used to simulate the distribution of DMS in the Arctic (Humphries et al., 2012; Qu et al., 2016), North Atlantic
Ocean (Bell et al., 2021; Mansour et al., 2023), Northeast Pacific Ocean (McNabb and Tortell, 2022), Southern Ocean
(McNabb and Tortell, 2023), and East Asia (Zhao et al., 2022).

However, to our best knowledge, there is currently no global-scale sea surface gridded DMS dataset with both high time
resolution (daily) and long-term coverage (> 10 years). Such a dataset is urgently needed for modeling the atmospheric
processes and climatic implications of oceanic DMS. The sea surface concentration and sea-to-air emission flux of DMS can
vary greatly from day to day (Simo6 and Pedros-Alid, 1999b), and the emitted DMS exerts effects on the atmosphere over time
scales of several hours to days. Relying solely on monthly climatology of DMS as the emission inventory may fail to capture
important details and could lead to large modeling biases compared to observed concentrations of atmospheric DMS or its

oxidation products (Chen et al., 2018; Fung et al., 2022).
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Here, we build a 20-year (1998 — 2017) global sea surface DMS gridded dataset (1°x1°) with a daily resolution based on a
data-driven machine learning approach (ANN ensemble). This product can improve our understanding of the spatiotemporal
variations of oceanic DMS. More importantly, it can serve as an updated emission inventory of marine biogenic DMS for
chemical transport models, which is beneficial for enhancing the simulation of atmospheric processes of DMS and reducing
the uncertainties in marine aerosol’s climate effects. The paper consists of four main parts as depicted in Fig. 1: (1) the
development of machine learning model based on global DMS measurements and 9 ancillary environmental variables; (2) the
derived spatial and temporal distributions of DMS and comparisons with previous estimates; (3) an example showing the
superiority of our newly developed DMS field through its correlation with atmospheric biogenic sulfur; and (4) the

uncertainties and limitations inherent in our approach and the resulting data product.
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110  Figure 1. Flowchart of this study, including the development of ANN ensemble model, construction of new DMS gridded

111 dataset, and subsequent evaluations of this product.

112 2 Methodology
113 2.1 Input datasets

114  The in-situ DMS measurement data used for training the machine learning model primarily sourced from the Global Surface
115 Seawater DMS (GSSD) database (Kettle et al., 1999). The GSSD database contains a total of 87,801 DMS measurements
116 collected across 266 cruise and fixed-site observation campaigns from 11 March 1972 to 27 August 2017

117  (https://saga.pmel.noaa.gov/dms/, last access: 1 April 2020). Hulswar et al. (2022) consolidated other DMS measurements not

118 included in the GSSD database to establish an updated DMS climatology. Here we incorporated these additional data predating
119 2017, originating from 8 campaigns (number of samples = 6,711). The spatial distribution of theses combined 94,512 in-situ

120 observational data is shown in Fig. S1, which covers all major regions of the global ocean.
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We selected 9 environmental variables relevant to DMS biogeochemical processes as input features, including chlorophyll a
(Chl a), sea surface temperature (SST), mixed layer depth (MLD), nitrate, phosphate, silicate, dissolved oxygen (DO),
downward short-wave radiation flux (DSWF), and sea surface salinity (SSS). The data sources and relevant information of
these 9 input variables and DMS are listed in Table 1. Chl a data were obtained from both in-situ observations, co-located with
DMS data, and satellite remote sensing products (Copernicus-GlobColour, Level-4, daily, 0.042°x0.042°). The Copernicus-
GlobColour Level-4 dataset integrates multiple upstream sensors including SeaWiFS, MODIS-Aqua & Terra, MERIS, VIIRS-
SNPP & JPSS1, and OLCI-S3A & S3B, with an interpolation procedure applied to fill missing data (Garnesson et al., 2019).
Daily SST data (0.25°x0.25°) were from the NOAA OI SST V2 high-resolution blended reanalysis dataset (Huang et al.,
2021). Daily MLD, DSWF, and SSS were from the modeling outputs of NASA’s "Estimating the Circulation and Climate of
the Ocean" (ECCO) consortium, Version 4 Release 4 (V4r4) (Forget et al., 2015). Thes sea surface concentrations of nitrate,
phosphate, silicate, and DO were from the CMEMS global biogeochemical multi-year hindcast dataset (daily, 0.25°%0.25°).
The surface wind speed (WS) and sea ice fraction (SI) data are needed in the calculation of sea-to-air flux (details are provided
in Section 2.4.2). Here we utilized the daily 10-meter WS data from ECCO V4r4 and the daily SI data from NOAA OI SST
V2. Since there are multiple different spatial grids among all datasets, the data match-up has been conducted as described in

the next section.



137 Table 1. The data sources and related-relavant information of variables used for model development, DMS simulation, and
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ghres.html

Variable Data source URL Tempo'r al Temporal Spatial grid
resolution  coverage
GSSD database il(‘ﬁgz;//saga.pmel.noaa.gov In-situ 1;‘/[;1; 12%7127 -
DMS Other campaigns integrated in https://data.mendeley.com/ In-situ Feb. 2000 —
Hulswar et al. (2022) datasets/hyn62spny?2/1 Jun. 2016
https://saga.pmel.noaa.gov . Oct. 1980 —
GSSD database Jdms/ In-situ Aug. 2017
https://data.marine.coperni
. cus.eu/product/OCEANC . Sep. 1997 — o o
Copernicus-GlobColour Level-4 OLOUR GLO BGC L4_ Daily present 0.042°%0.042
Chl 4 MY 009 104/description
CMEMS global biogeochemical
multi-year hindcast (only used https://data.marine.coperni
for the simulation of DMS cus.eu/product/GLOBAL Dail Jan. 1993 — 0.25°%0.25°
concentration in polar regions MULTIYEAR BGC 001 y present ’ )
when satellite Chl a is 029/description
unavailable)
https://psl.noaa.gov/data/gr Sep. 1981 —
SST NOAA OI SST V2 idded/data.noaa.oisst.v2.hi  Daily °p- 0.25°%0.25°
ghres.html present
MLD
https://data.nas.nasa.gov/ec
DSWE  NASA ECCO V4r4 co/data.php?dir=/eccodata/ Daily . 12%9127 - %ILOCEI?I) (22 -
llc_ 90/ECCOv4/Release4 '
SSS
_Nitrate https://data.marine.coperni
Phosphate  CMEMS global biogeochemical cus.eu/product/GLOBAL Dail Jan. 1993 — 0.25°%0 25°
Silicate multi-year hindcast MULTIYEAR BGC 001 _ y present ’ ’
DO 029/description
https://data.nas.nasa.gov/ec
WS NASA ECCO V4r4 co/data.php?dir=/eccodata/  Daily g:c' 12%9127 B IIJ{JOC 1?1?1) (22 -
llc 90/ECCOv4/Release4 )
https://psl.noaa.gov/data/gr Sep. 1981 —
SI NOAA OI SST V2 idded/data.noaa.oisst.v2.hi  Daily prfgent 0.25°x0.25°

2.2 Data preprocessing for model development

The data extraction and match-up were performed based on the sampling location and time associated with each DMS

measurement record, as well as the temporal range and grid distribution of each variable. For satellite-retrieved Chl a, the data

of the grids covering DMS sampling locations were extracted. If the data of the corresponding grid is missing, the average
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value of the 5x5 grids nearby was calculated and used. For other variables, only values in the grids matching the DMS sampling

locations were extracted.

There are in-situ Chl @ measurements co-located with certain GSSD data. They were also used along with satellite-retrieved
Chl a. In-situ Chl @ measurements with low precision (defined as < 0.1 mg m3, and the number of significant digits is 1) were
removed. For a specific in-situ observation campaign, if the number of low-precision values is larger than 10 and accounts for
more than half, all in-situ Chl a data from this campaign were excluded. In addition, the in-situ Chl a data in the GSSD database
were measured by two different methods: Turner fluorometry and high-performance liquid chromatography (HPLC). In order
to improve mutual consistency, a conversion between the data from these two methods was applied and then the in-situ Chl a
concentrations were adjusted to match up with satellite Chl a following the functions described in Gali et al. (2015). After that,
the statistical outliers for all log;o(Chl @) (outside the range of average + 3 standard deviations) were eliminated. The
comparison between in-situ and satellite-retrieved Chl a data is shown in Fig. S2. A strong consistency between in-situ and
daily satellite Chl a data (R?> 0.5, RMSE < 0.4) suggests the rationale for integrating these datasets. The logo transformation
was applied to make the data distribution close to normal distribution. When finally selecting the logio(Chl a) corresponding

to each DMS data, in-situ data were prioritized where available; otherwise, the satellite-retrieved data were used.

DMS and extracted MLD and three nutrients (nitrate, phosphate, silicate) were also performed log;o transformation. The
statistical outliers of each variable were excluded as mentioned above. After data filtration, a total of 633,361 samples with
valid data for all variables were obtained. To avoid data aggregation bias stemming from multiple data points gathered within
a narrow temporal and spatial range (i.e., the same day and within a region smaller than 0.05°%0.05°), these data points were
averaged. Consequently, 41,157 binned samples were utilized for subsequent model development, with their spatial

distribution depicted in Fig. 2a.

We divided the global ocean into 9 regions based on Longhurst’s biomes (Longhurst, 1998). There are 6 biomes in
Longhurst’s definition, including Coastal, Polar N, Polar_S, Westerlies N, Westerlies_S, and Trades (the .shp file of

Longhurst’s biomes and provinces was downloaded from https://www.marineregions.org/downloads.php#longhurst). We

further divided Westerlies N into Westerlies N Pacific and Westerlies N_Atlantic, and divided Trades into Trades_Pacific,
Trades Indian, and Trades Atlantic by different oceanic basins, as shown in Fig. 2b. It is noteworthy that there are 11,237
samples in the Coastal region, constituting 27.3% of the entire sample set, despite the Coastal biome accounting for only
9.7% of the global ocean area. Given the distinct seawater physiochemical and biological conditions in coastal seas
compared to other regions, the disproportionately higher density of samples within the Coastal biome might cause the model
to overly prioritize this region. To mitigate this data imbalance and ensure the model captures broader patterns in open
oceans, we adjusted the data distribution during model training and validation processes. Specifically, for each training

session, a portion of coastal samples is randomly removed, ensuring the proportion of coastal samples in the total sample set
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Figure 2. (a) The distribution of 41,157 DMS observational data after matchup, filtration, and binning for constructing the

ANN model. The grid size is 1°x1°. (b) Nine oceanic regions separated based on Longhurst’s biomes (Longhurst, 1998).

2.3 Artificial neural network training and validation

The 41,157 binned samples after the previously mentioned data preprocessing were used to develop the artificial neural
network (ANN) model. The target feature is logio(DMS), and the input features are logio(Chl a), SST, logio(MLD),
logio(nitrate), logio(phosphate), logio(silicate), DO, DSWEF, and SSS. The data of all variables were standardized before

training.

We randomly selected 10% of the samples (n = 4,116) to be entirely excluded from training, as a testing subset for global

validation and overfitting test.

- eeas!ﬂ-l}

at-9-7%—Specifically, 401 samples were randomly selected from Coastal biome, andwhile 3,715 samples were selected from

10



189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

206
|207
208
209
|210
211
212
213
214
215
216
217

218

other biomes to compose the testing subset, matching the proportion of coastal area in global oceans (9.7%). Then, the

remaining samples (n = 37,041) were utilized for training and cross validation-, with a constraint of Fiasaiequal to 9.7% in

each training session as mentioned above.-A

Our feedforward fully connected neural network comprises two hidden layers, with 15 nodes in each layer. The activation
functions for the first and second layers are ReLU and tanh, respectively. We applied L2 regularization (lambda = SE1E-4) to
counteract overfitting. The loss function is mean square error (MSE). Training stops if the validation loss is greater than or
equal to the minimum validation loss computed so far 20 times in a row. The training processes were carried out with Statistics
and Machine Learning Toolbox on Matlab 2022b. We repeated the data resampling-split—_(for training and validation sets)
and training processes for 100 times and obtained 100 neural networks. The average prediction results of multiple ANNs shows
a much higher consistency with the observations than a single ANN (Fig. S3). As the number of ANNS (Niraining) increases, the
accuracy of model predictions initially improves and then diminishes-eventuallystabilizingstabilizes. We adopted the average
output of +6-20 ANNS as the final output, balancing performance and computational costs effectively. This kind of multiple-
training approach, often termed “ANN ensemble” or “Monte Carlo cross-validation”, has been widely used to improve the
model generalization and performance (Sigmund et al., 2020; Holder et al., 2022) as well as get a better model evaluation

(Dubitzky et al., 2007).
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2.4 Deriving the 20-year global DMS distributions
2.4.1 Simulation of sea surface DMS concentrations

First, we constructed the daily gridded dataset of input variables with a spatial resolution of 1°x1° from 1998 to 2017 using
based on the data sources listed in Table 1 (except in-situ Chl a data). Datasets with a higher spatial resolution than 1°x1° were
binned into 1°x1°. In polar regions, the satellite Chl a data are missing during winter, and the Chl a data from CMEMS global
biogeochemical multi-year hindcast were used to fill the missing values. Then, the obtained gridded dataset was fed into the
ANN ensemble model, and the 20-year global distribution of sea surface DMS concentration with daily resolution was

simulated.

2.4.2 Calculation of sea-to-air fluxes

The sea-to-air fluxes of DMS were calculated on the basis of simulated surface DMS concentrations following equation (1):

DMS,

=) (1)

Here DMS,, and DMS, are DMS concentrations in surface seawater and air, respectively. H is Henry’s law constant of DMS.

DMS flux = Kt x (DMS,, —

Since DAZIS“ is usually «< DMS,,, this term was omitted in the calculation. Kt is the total transfer velocity considering the sea

ice coverage fraction (S7):

Kt =k, x (1-SI) (2)
k; s the total transfer velocity without considering sea ice which is calculated by equation (3):
1_ 1,1 3)

ke kw  kqxH

Here k., and k, are the water-side transfer velocity and air-side transfer velocity, respectively. We used the same approach as
Gali et al. (2019) to obtain k., k., and H for DMS, where the effect of wind speed was considered for 4,, and the influences of
SST and SSS were considered for A. The calculations of k, and H followed the parameterizations of Johnson (2010). As for
ky calculation, we adopted the bubble scheme (Woolf, 1997), which divided the sea-to-air mass transfer process into
turbulence- and bubble-mediated gas exchange. The calculated %, based on the bubble scheme is lower than that of
Nightingale’s scheme (Nightingale et al., 2000) under conditions of high wind speed, exhibiting a smaller deviation from the
actual-valsemeasurements (Beale et al., 2014; Gali et al., 2019). Before calculation, WS and SI data were also binned by 1°x1°
grid. By using WS and SI together with SST and SSS datasets, we obtained the daily gridded K¢ and then calculated the sea-
to-air DMS fluxes (daily, 1998-2017) by multiplying simulated DMS concentrations by K¢ values.
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3 Results

3.1 Model performance

As shown in Fig. 4a3a, the newly developed ANN ensemble model captures a substantial part of data variance globally (logio
space R? = 0.612-651 and RMSE = 0.276262). 91-692.8% of ANN simulated concentration values fall within 1/3 to 3 times of
corresponding true values. The performance for testing set (R? = 0.606640, RMSE = 0.282267, and 99-892.7% of data within
the range of 1/3 to 3 times of observations) is very close to that for the training dataset (Fig. 4b3b), suggesting no obvious
overfitting. The ANN model exhibits better performance compared to previous empirical and process-based models (R? =
0.01~0.14) (Tesdal et al., 2016) as well as the satellite-based algorithm (R? = 0.50) (Gali et al., 2018). The ANN model
developed by Wang et al. (2020) showed a slightly-highersimilar performance (R? = 0.66, RMSE = 0.264 for training dataset)
than-to our model, Hikely-due-todespite their more complex ANN configuration (two hidden layers with 128 nodes each) and
the inelading-inclusion of sample location and time into input features. However, the more complex model will significantly
increase the computational cost, and the incorporation of location and time information may weaken the physical
interpretability. i
oo

The performance of the model was evaluated across each of the nine oceanic regions. As illustrated in Fig. 4e3c and 4, the
logio space RMSE:s are all below 0.33-32 (equivalent to a concentration ratio of 2.43-09 in linear space), except for the Coastal

region (training: RMSE = 0.362-322, R? = 0.479; testing: RMSE = 0.332, R? = 0.480and-R*=0.384). Since the Coastal region

comprises only 9.7% of the global oceanic area, the comparatively lower performance in this area has minimal impact on the
overall ability to predict the spatiotemporal distributions of DMS on a global scale. Despite the R? values in Trades Pacific
and Trades_Atlantic being lower than 0.5, which is related to the relatively narrow variation range of DMS concentration, the
RMSEs in these regions remain quite low and comparable to those of other regions. In general, our ANN ensemble model

demonstrates a satisfactory capacity to reproduce variations in DMS concentrations across diverse oceanic regions.

However, it is noteworthy that our model tends to underestimate extremely high DMS concentrations and overestimate

extremely low concentrations. Overall, the linear regressions between ANN-predicted and observed DMS concentrations yield

slopes significantly lower than unity across all regions (Fig. 3¢ and 4), and there are significantly positive correlations between

prediction residuals (observation — prediction) and observed log;o(DMS) (Fig. S5 and S6). From a data perspective, this may

be partly due to the insufficient number of samples with extreme DMS concentrations (known as underrepresentation), making

it difficult to adequately capture the relevant information during training process. To test this point, we adopted a weighted

resampling strategy to bolster the number of samples in the minority class before training, which has been widely used in
machine learning to deal with the data imbalance issue (Haibo et al., 2008; Yu and Zhou, 2021; Chawla et al., 2002). The basic

idea is to set a higher probability of being sampled for the minority class with extreme DMS concentrations, and the details
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are illustrated in Fig. S7 and explained in Appendix B. The results indicate that the weighted resampling scheme cannot fully

alleviate the model bias. Although it does elevate the overall prediction-versus-observation slopes from ~0.59 to ~0.63, this

improvement is marginal (Fig. S8 and S9). In several regions like Westerlies_S and Trades biomes, the slopes are even lower

than original values. Furthermore, the data become more scattered after implementing the weighted resampling, resulting in

increased RMSE and decreased R2. Therefore, there are other potential issues causing the model bias, which are discussed in

Section 4. The original model, trained without weighted resampling, was adopted for subsequent analysis and the construction

of the gridded DMS dataset.

OwingPrimarily owing to the underestimation of high DMS concentrations, a negative mean bias (MB) in DMS concentration

is evident across all regions, ranging from -0.23-18 to -+-482.02 nM (Table 2). The normalized mean bias (NMB, the ratio
between mean bias and mean observed concentration) ranges from -+H-18.7% to -32.42%. The most significant NMB emerges
in Coastal and Trades_India regions, while NMB remains within -2025% for other regions. The global MB and NMB are -
0-771.05 nM and -+6:222.1%, respectively. It is worth noting that these biases are compared against historical DMS
observations, which were conducted within a very limited geographical area and time periods. Thus, they cannot be interpreted

as the actual mean modelling bias for the entire region. On the other hand, the negative biases at high end of the concentrations

are partially cancelled out by the positive biases at low end during the averaging over the entire region. The bias at a specific

grid could be much larger. Nevertheless, these-those extreme DMS concentrations (> 15 nM or < 0.3 nM), exhibiting the most

significant modeling bias, represent only a minority of the entire sample set (6.9%). Our model adeptly reproduces the majority

of observations with moderate DMS concentrations across all regions, with the percentage of simulated-predicted values falling
within 1/3 to 3 times of observations ranging from 8887.0% to 99:398.8%.
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Figure 43. Comparisons between ANN-simulated and observed DMS concentrations. (a) Scatter density for simulated versus
observed DMS concentrations of the samples used in ANN training. Fhis—plot-ecerresponds—to—the—eriginal-data—before

g orh—a-subsctofecoastal-data-areineludedto-mattain a9 20 which-aligns—with-data-composition-n
training—(b) Comparison between the simulated versus observed DMS concentrations of testing set. (¢) Comparison between

the simulated versus observed DMS concentrations of the samples used in ANN trainingtesting-set across 9 regions. The

number of data points (n), the-logio space R?, -and-the-root mean square error (RMSE), and linear regression slope are also

displayed.
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325 Figure 4. Comparisons between the simulated versus observed DMS concentrations of the testing set across 9 regions.
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Table 2. The mean bias and normalized mean bias of the ANN-predicted DMS concentrations against observations across

different regions.

Region

Coastal
Polar N

—+438
-0-62

-29:6%
—+4-.9%

19




333

334
335
336
337
338
339
340
341
342
343
344
345
346
347

Polast —00 —lehe
Global -0.77 -16:2%
Region Mean bias (nM) Normalized mean bias
Coastal -1.55 -32.2%
Polar N -0.90 -21.4%
Polar_S -2.02 -24.1%
Westerlies N_Pacific -0.91 -18.8%
Westerlies N_Atlantic -0.24 -10.4%
Westerlies_S -0.36 -14.1%
Trades_Pacific -0.19 -8.7%
Trades_Indian -0.73 -26.7%
Trades_Atlantic -0.18 -10.1%
Global -1.05 -22.1%

It is worth noting that there may be intrinsic connections between the 10% excluded testing subset and the training set, because
the data from the same cruise or fixed-site campaign have certain continuity. To further evaluate the reliability of the ANN
model, we compared the simulated DMS concentrations with the observational data from fully independent campaigns, which
are obtained from 33 cruises in Northeast Pacific, West Pacific, and North Atlantic (number of data = 6,478). These data
include (1) discrete sampling and measurement during 31 cruises of Line P Program in Northeast Pacific (Steiner et al., 2011)
(9 February 2007 — 26 August 2017, number of data = 177, https://www.waterproperties.ca/linep/index.php, last access: 23
November 2020), (2) underway measurements during SONNE cruise 202/2 (TRANSBROM) in West Pacific (Zindler et al.,
2013) (9 — 23 October 2009, number of data = 115, https://doi.org/10.1594/PANGAEA.805613, last access: 23 November

2020), (3) underway measurements during the third North Atlantic Aerosols and Marine Ecosystems Study (NAAMES)
campaign (Behrenfeld et al., 2019; Bell et al., 2021) (6 — 24 September 2017, number of data = 1,025,

https://seabass.gsfc.nasa.gov/naames, last access: 27 November, 2020). Before the comparison, the data measured within a

0.05°%0.05° grid and at the same day were binned by arithmetic average.
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The comparisons between these observed DMS concentrations and ANN simulation are shown in Fig. 65. Regarding the Line
P Program, it should be noted that there are 7 cruises included in the GSSD database, but those data were obtained by underway
measurements, different from the discrete sampling (Niskin bottle) data used here. Hence, these cruises were retained and
marked in Fig. 6a-5a but excluded in subsequent statistical analysis (Fig. 6b5b-c). It can be seen that the model effectively
captures the seasonal variation in Northeast Pacific, which is generally August > June > February (Fig. 6a5a). However, the
small-scale spatial variations can only be partially reproduced by the model in certain campaigns, such as those in June and
August of 2007, June of 2009, August of 2012, and August of 2016. Notably, the model generally underestimates high DMS
concentrations during summer, particularly those exceeding 10 nM, consistent with earlier discussions. Aggregating data from
all campaigns across three regions, the logio space RMSE of simulated DMS concentrations against observations is 0.294274,
marginally higher than the training set. Most simulated values (87893.0%) are within the range of 1/3 to 3 times of
observations. The results further evidence that there is no significant overfitting in our model. When data from each campaign
are binned, simulations demonstrate high consistency with observations, as depicted in Fig. 6e-5¢ (RMSE = 0.278249, R? =
0.651+758). In summary, although our ANN ensemble model may not precisely reproduce small-scale variations and extreme

values in specific regions and periods, it reasonably captures overall large-scale variations.
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Figure 65. Comparisons between the ANN predictions and observations fresa-for fully independent campaigns. (a) Time series

of simulation results and DMS observational data obtained from Line P Program. The different markers represent different

stations of Line P. The blue shades cover the data obtained from the cruises included in the GSSD database but with a different

method. (b) Scatter plot of simulated versus observed DMS concentrations. (¢) The same as panel b but for averaged data of

each cruise. The yellow lines and shaded bands are linear fittings and corresponding 95% confidence intervals for logo space

data. The values of R?,-and RMSE, and slope displayed in the figure also correspond to logio space data.

3.2 DMS distribution

3.2.1 Spatial and seasonal variations

The monthly climatology of ANN-simulated DMS concentrations in the global sea surface from 1998 to 2017 is shown in Fig.

76. Overall, the DMS concentrations in mid- and high-latitude regions exhibit a significant seasonal cycle, peaking in summer

and reaching their lowest in winter. This pattern aligns with the results of many prior observational studies. In the northern

hemisphere, elevated DMS concentrations (> 2.5 nM) during summer mainly occur in two regions. One is the North Pacific

23



|377
378
|379
380
|381
382
383
384
385
386
387
388
389
390
391

392

(40°-60° N) where the concentration generally peaks in August, surpassing 10 nM (Fig. 76). The other is the subarctic North
Atlantic (45°-80° N). A notable increase of DMS concentration starts around 45°-50° N in May and gradually shifts northward
beyond 50° N by July (Fig. 76-87). This spatiotemporal evolution pattern corresponds to the evolution of solar radiation
intensity and the spring-summer bloom patterns of phytoplankton (Friedland et al., 2018; Yang et al., 2020). The peak
concentration date at the same latitude in the North Atlantic generally precedes that in the North Pacific (Fig. €7). In the
southern hemisphere, there is a conspicuous DMS-rich zone near 40° S (where the Subtropical Convergence lies) in summer,
delineating a ring-shaped high-concentration band nearly parallel to the latitude. The highest seasonal mean concentration
(December—February) occurs at 4241.5° S, reaching 4:023.71 nM (Fig. +89). Southward from this zone, a low-DMS area spans
4947°-5961° S, where the average concentration is below 2.5 nM across all seasons. However, in the coastal waters of
Antarctica (south of 60° S), significantly high concentrations also manifest in summer, surpassing 54.0 nM, even higher than
those near 40° S (Fig. 76 and +69). In addition to the above regions, several typical upwelling zones also exhibit relatively
higher DMS concentrations, such as the eastern Pacific and the Southeast Atlantic. The former, situated at lower latitudes,
shows no distinet-significant seasonal variation, while the latter exhibits higher concentrations from October to February. The
high nutrient concentrations in upwelling areas can bolster primary productivity, intensifying biological activities and

augmenting the production of biogenic sulfur.
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Figure 87. The day of the year with the highest sea surface DMS concentration for each grid point.

The spatiotemporal variation of DMS emission flux is generally consistent with that of concentration. As shown in Fig. 98,
DMS fluxes are also significantly higher in summer across most mid- and high-latitude regions, and the high-flux regions
generally overlap with the hot spots of DMS concentration. This indicates that the distribution of sea surface DMS
concentration is the main factor controlling the monthly variation pattern of DMS emissions at the global scale, and the effect
of transfer velocity is secondary. However, certain regions present inconsistencies between DMS flux and concentration
dynamics. For instance, in the Arabian Sea and the central Indian Ocean, elevated transfer velocities (Fig. S7S10) during the
June to September, driven by heightened wind speeds, markedly enhance emission fluxes, despite comparatively lower
concentrations than other months. In polar regions, especially along the coast of Antarctica, although the DMS concentration

is high in summer, sea ice coverage significantly impedes DMS release, thus the emission flux remains at a low level.

As shown in Fig. 409, the higher wind speeds in autumn and winter at mid- and high-latitudes result in higher total transfer

velocities, leading to smaller summer-to-winter ratios of DMS emission flux compared to that of DMS concentration. In low
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latitudes, the existence of the trade wind zones in both hemispheres further leads to two high-flux bands-between-5>te20°.
The emission fluxes in the equatorial region between these two trade zones are significantly lower. Although the latitudinal
distributions of mean DMS emission fluxes in the southern and northern hemispheres are almost symmetrical, the huge
difference in ocean area between the two hemispheres results in a significantly higher total emission from the southern
hemisphere. Since anthropogenic SO, emissions are mainly concentrated in the northern hemisphere, oceanic DMS plays a
much more important role in the southern hemisphere, especially over the regions south of 40° S where the DMS emission is

high and the perturbation of anthropogenic pollution is low.

According to our newly built DMS gridded dataset, the global area-weighted annual mean concentration of DMS at the sea
surface from 1998 to 2017 was ~1.72-71 nM (1.67-1.76-75 nM), which is within the range among the values (1.6 to 2.4 nM)
obtained by various methods in previous studies (Tesdal et al., 2016). The global annual mean DMS emission to the atmosphere
was 17.0-2 TgS yr! (16.69-17.4-5 TgS yr™'), with 10.3 TgS yr! (60-659.9%) from the southern hemisphere and 6.7-9 TgS yr~
1 (39:440.1%) from the northern hemisphere.
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Figure 98. Monthly climatology of global DMS sea-to-air flux from 1998 to 2017.
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Figure 109. Latitudinal distributions of sea surface DMS concentration, total transfer velocity (Kt), sea-to-air flux, and total
emission in different seasons during 1998-2017. The dashed parts of the lines represent the missing ratio of satellite Chl a data

for DMS simulation is higher than 0.5, thus most Chl a data is from CMEMS global biogeochemical multi-year hindcast.

3.2.2 Comparisons with other global DMS climatologies

Here we compare the distributions of DMS concentration derived from our ANN simulation (referred to as Z23) with four
previously constructed climatologies (Fig. ++10), including (1) L11: the widely used second version of
interpolation/extrapolation-based climatology established by Lana et al. (2011), (2) H22: an updated version of L11
incorporating much more DMS measurements and using dynamic biogeochemical provinces (Hulswar et al., 2022), (3) G18:
the DMS concentration field estimated by a two-step remote sensing algorithm (Gali et al., 2018), and (4) W20: the previous
DMS climatology simulated by ANN (Wang et al., 2020).
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Overall, all datasets exhibit the general pattern of high DMS concentration during summer and low concentration during winter,
but notable distinctions emerge in their specific distributions. Due to the limitation of the method used, DMSyi; exhibits
relatively lower spatial heterogeneity (i.e., higher patchiness), which may not well capture the detailed spatial variability on a
regional scale. Compared with DMSy ;;, DMSz3 is significantly lower at high latitudes during summer and in the South Indian
Ocean and Southwest Pacific Ocean from December to February (Fig. HalOa). Particularly in the southern polar region
(Polar_S), latitudinal averages of DMSy;; surpass 10 nM during summer, which are 1-3 times higher than DMSyz»; (Fig.
HelOe). However, DMS7»; maintains a similar level around the Antarctic in March compared to summer, and it is significantly
higher than DMSy; as well as other three climatologies. DM Sy, shows lower disparities with DMS7»3 in the Arctic, the South
Indian Ocean, and the Southwest Pacific Ocean, but the summertime concentrations in most of Polar_S region are also >2 nM
higher than DMSz»3 (Fig. H+b10b). In contrast, DMSw, in Polar S from September to November is >—~2 nM lower than
DMSz,3. The global area-weighted annual mean DMS concentrations in L11 and H22 are 2.43 nM and 2.26 nM, respectively,
which are approximately 4+-342.1% and 3+432.2% higher than Z23.

G18 exhibits the lowest global annual mean concentration (1.63 nM) among these climatologies, approximately 5-24.7% lower
than Z23. The most notable deviation occurs in the North Pacific during boreal summer and near the Antarctic during austral
summer-and-autamn, where DMSzo3 is > 3.5 nM (> 100%) higher than DMSg5 (Fig. H+€10c). Conversely, there are high DMS
concentrations (> 5 nM) in certain coastal seas (such as the coasts of East and Northeast Asia, the coasts of Patagonia and

Peru, the southwestern coast of Africa, and the western coasts of the Sahara Desert and North America-and-the-SaharaDesert)

based on the G18 estimate. This characteristic is not fully replicated by other DMS fields, possibly due to the underestimation

of DMS by our model and other methods in coastal regions as well as the overestimation of Chl a by satellites #-eeastal

regions-caused by the interference of colored dissolved organic matters and non-algal detrital particles (Aurin and Dierssen,
2012). W20 exhibits the highest consistency with Z23 in spatiotemporal distribution patterns as well as the lowest difference
in global annual mean concentration (1.74 nM, only 1.28% higher than Z23). However, notable discrepancies exist in specific
regions. For instance, during summertime, DMSz,3 is > 1 nM (> 40%) lower than DM Sw»o in more than half of the Arctic area,
while in North Pacific and Southern Ocean DMSy»; is significantly higher than DMSwyo (Fig. ++d10d). Furthermore, only

DMSz,; forms a nearly complete high-concentration annular band at ~ 40° S during austral summer.
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seasons. The dashed parts of the Z23 lines represent the missing ratio of satellite Chl a data for DMS simulation is higher than
0.5, thus most Chl a data is from CMEMS global biogeochemical multi-year hindcast.

3.2.3 Decadal changes

One of the advantages of our ANN-derived DMS dataset is its time-resolved nature, which enables us to investigate the
interannual variations in sea surface DMS concentration and flux. Here we present the decadal trends of DMS concentration,
Kt, and emission flux spanning from 1998 to 2017 at both global and regional scales. Overall, the absolute interannual
variability of DMS concentration across most global oceanic regions appears relatively small. 85:388.4% of the global oceanic
area exhibited a differeneerange of less than 1 nM between the maximum and minimum annual average concentrations during
this 20-year period, particularly evident in tropical and subtropical regions with latitudes between 40° S and 40° N. At latitudes
higher than 40° in both hemispheres, notable decadal changes occurred (Fig. +2al1a). Annual mean DMS concentrations in
the Greenland Sea, the North Pacific, and the Southern Ocean exhibited significant decreasing trends with rates exceeding
0.03 nM yr! (P < 0.05). A significant decreasing trend was also noted in the eastern tropical Pacific Ocean, albeit at a much
lower absolute rate, primarily below 0.015 nM yr!. Conversely, there were significant increasing trends in the Labrador Sea,
the South Pacific (35° S — 60° S, 150° E — 75° W), and the southeastern Pacific, with the highest rate exceeding 0.02 nM yr~'.
The global annual mean concentration exhibited a decreasing trend with a rate of 0.0033-0035 nM yr! (P < 0.05, Fig. 11d).
The highest value (1.76-75 nM) occurred in 280681999, and the lowest concentration (1.67 nM) occurred in 2015. Due to the
primary influences of increasing WS and secondary impact of rising SST in most mid- and low-latitude regions (Fig. S8S11),
the Kt of DMS also showed an overall increasing trend, especially in the eastern Pacific and Atlantic Ocean (Fig. +2b11b).
The increase in Kt can offset the decrease in DMS concentration to some extent, resulting in no significant trend in global

DMS emissions during this 20-year period (Fig. +2d11d).

In the Arctic region, which stands as one of the most sensitive areas to climate warming (Screen et al., 2012; Serreze and
Barry, 2011), the sea ice coverage has undergone significant reduction over the past 2-two decades, particularly noticeable in
the Barents Sea and Kara Sea, and further north (> 1% yr' for annual mean SI, Fig. S8S11). The retreat of summertime sea
ice leads to an expansion of open-sea surface, potentially amplifying DMS emission (Gali et al., 2019). However, despite this
trend, there was no significant increase in the annual total emission from the Polar N region over the same period, primarily
due to a decreasing trend in DMS concentration (Fig. 4312). On the other hand, the highest emission took place in the last two
years (> 0.65-64 Tg yr!), attributed to the highest Kt. Thus, it is likely that a rise in DMS emission will appear in future Arctic
region with further loss of sea ice coverage (Gali et al., 2019). In contrast to the Arctic, the Southern Ocean has experienced a
significant increase in sea ice fraction (Fig. S8S11), leading to a significant decrease in Kt (Fig. +2b11b). Coupled with the
decreased DMS concentration, it resulted in a substantial decline in the DMS emission flux (Fig. +2e-11c and +312). The

highest annual total emission flux in the Polar S region occurred in 1998 (1.42-49 TgS), while the lowest occurred in 2013
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(1.42-02 TgS), representing a decrease of ~2432%. Across other oceanic regions, the annual average DMS concentrations in
the Westerlies N_Pacific and Trades_Pacific regions exhibit decreasing trends over the past 20 years, while the concentration

in Westerlies S and Trades Atlantic has increased (P < 0.05, Fig. 4312). Regarding DMS flux, the Westerlies N Pacific

showed a decrease, while the Westerlies N_Atlantic, Westerlies_S, and Trades_Atlantic showed an increase. There was no

significant trend in other low--and-mid-latitude regions.
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Figure 1312. The temporal changes of annual mean DMS concentration, Kt, and total emission flux in different regions from
1998 to 2017.

3.3 Connection with atmospheric biogenic sulfur

One of the primary objectives of developing this daily gridded DMS dataset (Z23) spanning multiple years is to improve the
emission inventory of marine biogenic DMS, thereby enhancing the modelling performance for atmospheric sulfur chemistry,
especially for simulating sulfur-containing aerosols. To assess whether our newly constructed DMS dataset can reach this
objective, we employed a backward trajectory-based method to examine the correlation between sea surface DMS emissions
and resulting DMS oxidation products in the atmosphere. The correlation was then compared against those derived from

previously reported DMS climatologies (i.e., L11, H22, G18, and W20).

Here we use the observed concentrations of particulate methanesulfonic acid (MSA) over the Atlantic Ocean as a reference.
MSA is one of the major end-products of DMS in the atmosphere and is solely from the oxidation of marine biogenic DMS

over remote oceans (Saltzman et al., 1983; Savoie et al., 2002; Osman et al., 2019). Therefore, there is likely to be a dependence
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of the variation of MSA concentration on the DMS emission fluxes. During four transection cruises in the Atlantic conducted
by R/V Polarstern (20 April — 20 May 2011, 28 October — 1 December 2011, 10 April — 15 May 2012, and 27 October — 27
November 2012), the MSA concentrations in submicron aerosols were measured online using a High-Resolution Time-of-
Flight Aerosol Mass Spectrometer. The ship tracks are shown in Fig. S9S12, and detailed information about the cruises and
measurement methodology was provided by Huang et al. (2016). The 72-hour air mass backward trajectories reaching the ship
position were calculated every hour by the HY SPLIT model, starting from a height of 100 m (Stein et al., 2015). Subsequently,
the air mass exposure to DMS emission (AEDMS), denoting the weighted average of DMS emission flux along the trajectory
path, was calculated following the approach of Zhou et al. (2021). We used 5 different DMS gridded datasets, including Z23,
L11,H22, G18, and W20. For Z23, the calculated daily DMS fluxes were utilized. For the remaining 4 monthly climatologies,
we applied the daily Kt data from Z23 to calculate the DMS fluxes, thus eliminating the potential confounding influences
stemming from different Kt parameterizations. In this calculation, the same concentration was assigned to all days within a

month without interpolation. Detailed procedures for the calculation of AEDMS are elucidated in Appendix C.

MSA concentrations were significantly higher in late spring than those in autumn for both North and South Atlantic Oceans
(Fig. +4al3a). For example, during the boreal spring cruise in 2011, the average MSA concentration over the North Atlantic
(0.068 pg m, north of 25° N) was about an order of magnitude higher than the average concentration over the South Atlantic
(0.006 pg m=3, south of 5° S). During the boreal autumn cruise in 2011, the average concentration over the South Atlantic
(0.034 ug m, south of 5° S) was ~5 times higher than that over the North Atlantic (0.006 ug m=, north of 25° N). In addition
to this major seasonal pattern, there was also a minor MSA concentration peak between 5°—15° N in both seasons. The spatial
and seasonal variations of AEDMS based on the Z23 dataset (referred to as AEDMS _Z23) largely coincided with these MSA
concentration patterns (Fig. +4a13a). It should be noted that the MSA/AEDMS ratio between 5°—15° N was significantly lower
than those in other high-MSA regions, which may result from the DMS simulation biases near the coast of West Africa or the
lower DMS-to-MSA conversion yields related with air temperature and oxidant species (Barnes et al., 2006; Bates et al., 1992).
There were also several AEDMS peaks in North Atlantic during November 2012, inconsistent with the continuously low MSA
concentrations. Given the high precipitation rates along the trajectory (Fig. +4al3a), a strong wet scavenging process might

significantly reduce aerosol concentrations (Wood et al., 2017).

The AEDMS derived from other DMS concentration fields showed similar variations to AEDMS 723 (Fig. +4al3a). It is not
surprising since all DMS concentration fields exhibit similar large-scale spatiotemporal patterns, and identical air mass
transport path and Kt were applied in different AEDMS calculations. However, due to the lower temporal resolutions and
absence of interannual changes in those DMS monthly climatologies, the resulting AEDMS may be less effective in capturing
variability at finer scales or across different years. Here we focus on the high-MSA periods to elaborate on this issue, which
corresponds to latitudes north of 25° N in boreal spring (S1 and S2 in Fig. +4al3a), 25° N —25° S in boreal autumn of 2011
(Al in Fig. +4al3a), and south of 5° N in boreal autumn of 2012 (A2 in Fig. +4al3a). As shown in Fig. +4b13b, hourly MSA
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concentrations exhibited significantly stronger correlations with AEDMS 723 than with other AEDMS time series in S1 and
S2, indicating AEDMS 723 can explain more (1.32-31 — 1.76-69 times) variance of MSA concentration. During A1 and A2,
the correlations between AEDMS and MSA concentration were weaker than those during S1 and S2, possibly due to higher
DMS prediction biases in South Atlantic or different influencing factors on atmospheric DMS chemistry across wide spatial
ranges. Nonetheless, AEDMS 723 still exhibited the highest correlation with MSA (Fig. +4el3c). This overall stronger
connection between Z23 and atmospheric DMS-derived acrosols mainly benefited from the combined effects of higher time
resolution and inherent interannual variations. For example, the ratio of average MSA concentration during S1 to that during
S2 (S1-to-S2 ratio) was 1.89, and the A2-to-A1 ratio was 1.75. AEDMS Z23 exhibited a slightly lower but still significant
interannual variation degree, where the S1-to-S2 ratio and A2-to-A1 ratio were 1.60-58 and 1.4546, respectively. However,
this interannual variation cannot be reproduced by other datasets, where the S1-to-S2 ratio and A2-to-Al ratio were in the
range of 1.08-1.30 and 1.19-1.29, respectively. These results manifest the potential of our newly developed DMS gridded
data product to enhance the modeling performance for atmospheric DMS processes compared with previously reported

climatologies.

It is worth noting that the satellite-based algorithms of G18 and ANN model of W20 can also be utilized to produce daily
multiyear DMS fields as Z23. Future investigations could include comparisons with these fields, facilitating a more
comprehensive assessment of the performance of each algorithm/model. Furthermore, the AEDMS method used here is a
highly simplified approach without considering the complex DMS chemistry in the atmosphere, and the intercomparisons

based on chemical transport models can be used in the future to obtain a more straightforward conclusion.
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Figure #413. (a) Time series of observed MSA concentration, AEDMS calculated based on different DMS concentration

datasets, and average precipitation along the backward trajectory (Precipitation_traj) during four Atlantic cruises in 2011-

2012. (b—c) Correlations between hourly MSA concentration and AEDMS based on different DMS concentration datasets (b)
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during periods S1 + S2 and (c) during periods A1 + A2. Data points during the periods with air mass time fraction within the

boundary layer less than 90% or Precipitation_traj larger than 0.05 mm h! were removed.

4 Uncertainties and limitations

Although our ANN ensemble model and derived DMS dataset demonstrate certain advantages compared to previous studies,
as discussed in Section 3.3, there persist notable uncertainties and limitations, which result in the ~3935% uncaptured variance

(Fig. 4a3a) and non-negligible simulation biases, e.g., underestimation of extremely high DMS concentrations and

overestimation of low DMS concentrations. Firstly, there is a mismatch in the spatial and temporal scales between the input

and target. The target, sea surface DMS concentrations, are obtained from in-situ measurements taken at specific locations and

time points. In contrast, the input data are primarily from gridded datasets where each pixel represents an average over a

defined spatial and temporal range. This is particularly significant for the ECCO variables, which have the largest spatial grid

size of 110 km. Consequently, extreme values at specific locations cannot be accurately captured by the regional averages,

resulting in dampened variations among the samples. FirsthySecondly, the data—efinputfeataresinput data from different

sources and the observed sea surface DMS concentrations inherently possess certain uncertainties, which can introduce biases

noises into the ANN learning process. Thirdly, the ANN itself may not be powerful enough to fully capture the complex input-

output relationships across different oceanic regions, especially when the samples are scarce under specific environmental

conditions. Finally, beyond the 9 variables incorporated in this study, other environmental parameters such as pH (Six et al.,

2013: Hopkins et al., 2010) and trace metal elements (Li et al., 2021) can also influence DMS concentration. Not incorporating

these factors may introduce additional biases.

The overall bias for log;oDMS is at a similar level between high- and low-concentration ends, but the DMS concentration on

a linear scale is more underestimated in the high-concentration regime than it is overestimated in the low-concentration regime.

As a result, our simulation results may tend to underestimate the annual average DMS concentration and flux. To mitigate this

critical bias and reduce model uncertainty, high-quality input datasets with finer spatial resolution are needed in the future.

The high-time resolution nature of the resulted daily DMS data product would be more valuable if accompanied by higher

spatial resolution. Expanding the data volume is also crucial for improving model performance. Although the current DMS

observational data covers all major oceanic basins, certain regions such as the Trades Pacific remain underrepresented.

Advances in online measurement technologies offer promising avenues for acquiring more extensive and convenient

observational data (Hulswar et al., 2022).

facilitatine-model refinement-and-updates:Additionally, incorporating more input features to the model would be beneficial.

This necessitates a comprehensive understanding of the spatiotemporal distributions of those input features, and further field

measurements are important to this end. Moreover, integrating DMS biogeochemical mechanisms with machine learning

technique, i.e., a hybrid model coupling physical processes with data-driven approach, may further improve prediction
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When using our newly developed DMS dataset, there are two issues that need to be noted. Firstly, there is a significant portion

of missing satellite Chl a data during winter in polar regions. In such instances, the modeling data from CMEMS global
biogeochemical multi-year hindcast was used, which may introduce higher uncertainty. We have provided the flags indicating
the source of Chl a data for each grid in the dataset. Nevertheless, given the low phytoplankton biomass and extensive sea ice
coverage during winter, DMS emissions are typically at the lowest level of the year, thus the satellite data missing has a
relatively small impact on investigating the subsequent effects of DMS emission on atmospheric environment. Secondly, since
the ANN ensemble model exhibits limited capacity in accurately reproducing extremely high concentrations of DMS, the DMS

concentrations in certain nearshore areas with intensive biological activity may be greatly underestimated.

45



652

653
|654
655
|656

657

658
659
660
661
662
663
664

|665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
630
681
682
683

5 Code and data availability

The generated gridded datasets of DMS concentration, total transfer velocity, and flux have been deposited at

https://doi.org/10.5281/zenodo. 11879900 https://zenede-orgirecordsH09061+04—(Zhou et al., 2024) and can be downloaded
publicly. The ANN model code and the Matlab scripts for data analysis are available from

https://doi.org/10.5281/zenodo.12398985 hitps:+Hzenodeo-orglrecordH0937598-(Zhou, 2024).

6 Conclusion

Based on the global sea surface DMS observations and associated data of 9 relevant environmental variables, an ANN
ensemble model was trained. The ANN model effectively captures the variability of DMS concentrations and demonstrates
good simulation accuracy. Leveraging this ANN model, a global sea surface DMS gridded dataset with a daily resolution
spanning 20 years (1998-2017) was constructed. The global annual average concentration was ~1.72-71 nM, falling within
the range of previous estimates, and the annual total emission was ~17.9-2 TgS yr~'. High DMS concentrations and fluxes took
place during summer in North Pacific (40°-60° N), North Atlantic (50°-80° N), the annular band around 40° S, and the
Southern Ocean. With this newly developed dataset, the day-to-day changes and interannual variations can be investigated.
The global annual average concentration shows a mild decreasing trend (~0.0033-0035 nM yr!), while the total emission
remains stable. There were more significant decadal changes in certain regions. Specifically, the annual DMS emission in the
South Pacific and North Pacific showed opposite trends.

To further validate the robustness and advantages of our new dataset, an airmass trajectory-based approach was applied to link
the DMS flux and atmospheric MSA concentration. Compared to previous monthly climatologies, the airmass exposure to
DMS calculated using our new dataset explains a greater amount of variance in atmospheric MSA concentration over the
Atlantic Ocean. Therefore, despite the presence of uncertainties and limitations, the new dataset holds the potential to serve as
an improved DMS emission inventory for atmospheric models and enhance the simulation of DMS-induced aerosols and their

associated climatic effects.

Appendix A: Acronyms

AEDMS Air mass exposure to DMS emission
ANN Artificial neural network

BLH Boundary layer height

CCN Cloud condensation nuclei

Chl a Chlorophyll a

DMS Dimethyl sulfide

DMSP Dimethylsulfoniopropionate

DO Dissolved oxygen

46



684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

711

712
713
714
715
716

DSWF Downward short-wave radiation flux
ECCO Estimating the Circulation and Climate of the Ocean
GSSD database Global Surface Seawater DMS database

Kt Total transfer velocity
MLD Mixed layer depth

MB Mean bias

MSA Methanesulfonic acid
MSE Mean square error
NAAMES North Atlantic Aerosols and Marine Ecosystems Study
NMB Normalized mean bias
RMSE Rooted mean square error
ST Sea ice fraction

SST Sea surface temperature
SSS Sea surface salinity

WS Wind speed

Appendix B: The weighted resampling strategy

Apart from the data imbalance between coastal and non-coastal regions, there exists an imbalance across different DMS

concentration ranges. The majority of DMS concentrations (78.6%) fall within the range of 0.8 to 10 nM (log;o(DMS) between

-0.1 to 1). Samples with DMS concentrations exceeding 15 nM or falling below 0.3 nM only represent 6.9% of the entire

sample set. A weighted resampling strategy was applied to mitigate this imbalance (Fig. S7). We randomly sampled 50,000

samples with replacement from the original sample set. The probability of each sample being selected is proportional to the
weighting factor shown as the red dash line in Fig. S7b, which is dependent on its DMS concentration. Perivingthe-weighting

f £ iohted T
First, tFhe probability distribution of initial log;o(DMS) values was fitting-fitted with a gamma distribution—Fhe-prebabity
density-funetion, which is given below and displayed as the blue line in Fig. S7b:3b-

fO) =

I'(k)6k
Here k and 6 represent the shape parameter and scale parameter, in this case, 100.7 and 0.044, respectively. x is the logio(DMS)

(x + 4)k—Le—(+9)/0 (A1)

value. Since gamma distribution only takes positive values, we added 4 to the original x as the dependent variable for
distribution fitting. We then obtained a new gamma distribution function with the same mode but lower shape parameter, in
which £ =40 and 8 = 0.112. The reciprocal of the new gamma distribution function was taken as the weighting factor._As a

result, samples exhibiting high or low DMS concentrations are more likely to be selected, whereas those with intermediate
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concentrations are less likely to be selected. We also controlled the Feoastal Value of the resampled data equal to 9.7%. The data

distribution of DMS concentrations after the resampling process is shown in Fig. S7c. The fraction of samples with DMS

concentrations above 15 nM or below 0.3 nM is elevated to 15.0%. The 50,000 samples were then randomly split to a training

set (80%) and a validation set (20%). Since there are duplicate samples in the resampled dataset, the random data split was

conducted based on the original sample ID before resampling to ensure that there was no sample overlap between the training

and validation sets.

Appendix C: The calculation of airmass exposure to DMS emission (AEDMS)

Here the AEDMS index followed the similar calculation of the air mass exposure to Chl a (AEC) in previous studies (Arnold
etal., 2010; Park et al., 2018; Zhou et al., 2021). We adopted the similar approach presented in Zhou et al. (2021) by replacing
the Chl a concentration with DMS flux, as shown in the following equation (A2):

2}
%72, DMS flux;-e 72920

AEDMS = BLH (A2)

L
IiZpe 72
Here i represents the i-th trajectory point of the 72-hour backward trajectory (0-th for the receptor point). DMS flux; represents
the mean-DMS flux within-aradius-of 20-km-at-the loeation-of the pixel where the i-th trajectory point locates. DMS flux; is

set to zero if the point locates on land or the air mass pressure is below 850 hPa (usually in the free troposphere with little

i D
influence of surface emission). ¢ is the tracking time of the trajectory point (unit: hour) and e 7z is the weighting factor to

assign higher values for regions closer to the receptor point. To better connect with the atmospheric concentrations in the
marine boundary layer, the normalization by boundary layer height (BLH) is added by the % term. The BLH below 50 m is

replaced by 50 m.
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