
Thank you for your interest in our work and taking the time to review our submission. Your constructive 

comments and suggestions are of great help to improving our dataset and manuscript. Our responses to 

the comments are listed below. 
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Line numbers before and inside the bracket refer to those in revised manuscript with and without track 

of changes, respectively. 

 

To fully address reviewers’ concerns and further improve the model and subsequent DMS data product, 

we have reconstructed a new model. This involved incorporating additional training data, changing the 

data sources of input features, and implementing more reasonable data processing strategies. A new 

global daily multiyear DMS gridded dataset was obtained, and all figures in the manuscript have been 

updated accordingly. Before the point-to-point responses to your comments, we provide an overview 

of the major modifications we have made in the model development and evaluation. 

1. We included more DMS observation data for training. These data originate from eight 

campaigns that have not been incorporated into the GSSD database but included in Hulswar et 

al. (2022). The number of those new samples is 6711. 

2. We changed the data sources of Chl a, nitrate, phosphate, silicate, and DO. Currently, the time 

resolutions of all input features are one day. 

3. We adjusted the fraction of coastal samples in training, validation, and testing sets to mitigate 

the overrepresentation of coastal regions. We also applied a weighted resampling strategy in 

data split process to mitigate the data imbalance between the extreme and moderate DMS values. 

This treatment will mildly decrease the overall performance (a slight increase in overall RMSE), 

but significantly reduce the prediction biases for extremely high and extremely low DMS 

concentrations. 

4. Other minor adjustments to make the model development and evaluation procedures more 

reasonable: 

a. We adjusted the model structure and applied L2 regularization to prevent overfitting. 

b. The fraction of the testing set was elevated, and the figures (e.g., Fig. 4c in the revised 

manuscript) to demonstrate model performance are based on the testing set, not based 

on training and validation sets as before. 

c. The discussion of fitting residual and bias has been added. 

d. To further increase the data volume for training, the data of the first two NAAMES 

campaigns were moved to the training set. We keep the third NAAMES campaign for 

independent testing. 

e. When comparing the predictions and observations for TRANSBROM SONNE and 

NAAMES campaigns, the data were not binned into 1°×1° first. Instead, they were 

binned into 0.05°×0.05°, following the treatment for the training set. 

  



The manuscript by Zhou et al. offers a 20-year (1998-2017) global sea surface dimethyl sulfide (DMS) 

dataset with daily resolution. The new dataset is developed with an artificial neural network (ANN) 

ensemble model based on 9 environmental parameters. DMS is produced biogenically in the ocean and 

its emissions contribute to aerosol radiative forcing in the troposphere. There are a few other global ocean 

DMS emissions datasets, including one based on an artificial neural network. What makes this dataset 

unique is that it offers a high time resolution data product covering a 20 year period. The authors claim 

it is an improved emission inventory of oceanic DMS which can facilitate improved simulations of 

aerosols derived from DMS. This is a useful dataset with unique features that suits the Earth System 

Science Data Journal goals of publishing articles on original datasets. However, I would like to see the 

authors address my comments and questions below before the publication of the manuscript. 

My primarily concerns are centered around the comparisons between the ANN product and actual data 

displayed in Fig. 3. The statistical metrics chosen for arguing good agreement between the ANN product 

and the observations are R2 and root mean square error (RMSE). These metrics are appropriate for testing 

the predictive capability of linear regressions, in other words the accuracy of a linear model, but they do 

not necessarily address the fidelity of the model data to reality. If we are to prefer the ANN data product 

over the observations to estimate DMS flux, the manuscript needs to present convincing evidence that 

the model vs. observations relationship is not only linear but also has a slope that centers around 1:1. In 

this context, it is not enough to show that there is a strong linear relationship between the ANN product 

and the observations, rather the slope of the linear relationship should be quantified and ideally shown 

to be statistically indistinguishable from 1. 

Thank you for your comments. First, we think that the observational data would absolutely be more 

reliable than the ANN data product to estimate DMS flux if they were available. However, the DMS 

observations are still very sparse in both spatial and temporal dimensions, not allowing for analysis of 

the long-term variability of regional sea surface DMS distribution or investigation of the atmospheric 

effects of DMS emissions on a regional scale. Therefore, we need to fill in the observational gaps and 

reconstruct a spatiotemporally continuous sea surface DMS field. Here our approach is utilizing machine 

learning techniques to capture the underlying dependence of sea surface DMS concentration on other 

environmental variables, for which spatiotemporally continuous data are available. Then we can combine 

the machine learning model with the spatiotemporally continuous datasets of those environmental 

variables to reconstruct the spatiotemporally continuous distributions of sea surface DMS. 

Second, we think R2 and RMSE are two most commonly used metrics to test the fidelity of a model for 

a regression task, as demonstrated in previous studies on using machine learning to predict sea surface 

DMS concentration (Wang et al., 2020; McNabb and Tortell, 2022, 2023). R2 explains how much of the 

variance in actual data can be reproduced by the predicted data, while RMSE (𝑅𝑀𝑆𝐸 ൌ ට∑ ሺ௬ො೔ି௬೔ሻమ೙
೔సభ

௡
, 

where 𝑦ො௜ and 𝑦௜ denote the predicted and actual data, respectively) represents the average difference 

between predicted and actual values. However, we also acknowledge the importance of considering the 

slope, as it conveys valuable information on the systematic modelling bias. Ideally, the slope would be 

statistically indistinguishable from 1. In this study, the slopes are statistically lower than 1, attributed to 

the systematic biases in both extremely high and extremely low ends. The detailed discussion was given 

in the response to subsequent comments. 

 



Fig. 3 offers only qualitative information about the value of the slopes. I found the data density color 

scale helpful in trying to estimate what the slope of the best fits to these scatter plots might be, but the 

slopes should really be quantified in the manuscript. The manuscript includes a passing reference to a 

potential bias issue with regards to the coastal region. I agree that, if the bias is limited to high 

concentrations in that region alone, this would not be a big deal. However, looking at Fig. 3, I suspect 

that the slopes might be different than unity for multiple regions, although I cannot be not certain without 

seeing a proper analysis. The fact that the entire analysis is in log-log space makes me more worried 

because small looking deviations in a log-log linear relationship can result in significant biases in actual 

concentration and flux calculations.   

One can think of many different ways to conduct this type of analyses, but I would advise investigating 

the residuals of the scatter plots in Fig. 3 from the 1:1 slope versus the DMS_obs. Fitting linear regression 

lines to these residuals-plots would be a good way to test for biases; ideally these slopes should equal 

zero within uncertainties, meaning the residuals do not have a positive or negative relationship with 

DMS_obs.  

Thank you for your comments and suggestions. First, using log-log space for figure plot and statistics 

metric calculation is due to the data distribution of observed DMS concentrations. In linear space, the 

distribution is highly skewed (Fig. C1). This skewness significantly impacts certain statistical metrics 

(R2, RMSE, slope, etc.) by being disproportionately influenced by a few high concentration values, thus 

hindering an accurate reflection of the model's predictive accuracy for the majority of the data. 

Additionally, plotting scatter plots in linear space results in most data points being obscured. Conversely, 

after logarithmic transformation of DMS concentrations, a more favorable normal distribution is 

observed (Fig. C1), allowing the statistical metrics and scatter plots to better reflect the characteristics of 

the main body of the data. In log space, the absolute deviation between predicted and actual values 

corresponds to the ratio in linear space. For example, a deviation of 0.2 in log space represents a ratio of 

10^0.2, which equals 1.58 in linear space. 

We conducted a correlation analysis between prediction residuals and observed values. The 

corresponding slopes of linear fits (denoted as S) are provided in the figures. The slope of the linear fit 

between predicted and observed values equals 1 minus S. For both training and testing sets, the S values 

for the nine regions are all significantly greater than 0 (Fig. C2-C3), ranging from 0.400 to 0.673. This 

is attributed to a systematic bias in the model predictions for extremely high and extremely low DMS 

concentrations, i.e., significant underestimation for higher concentrations and overestimation for lower 

concentrations. This phenomenon arises from the fact that most DMS observations cluster around 

intermediate values, with relatively few samples at the extremes (samples with DMS concentrations 

exceeding 15 nM or falling below 0.3 nM only represent 6.9%). The underestimation of few extremely 

high values results in a negative mean bias in DMS concentrations in linear space. We calculated the 

mean bias (MB) of predicted values relative to observed values (linear space) and normalized mean bias 

(MB/mean observed concentration, denoted as NMB) for each region. The NMB values range from -5.9% 

to -28.5% across different regions, and an overall NMB corresponding to the entire sample set is -23.6% 

(Table C2). It is worth noting that these biases are compared against historical DMS observations, which 

were conducted within a very limited geographical area and time periods. Thus, they cannot be 

interpreted as the actual mean modeling bias for the entire region. 

To improve the model's ability to predict extreme concentration values, we implemented a weighted 

resampling strategy prior to training to increase the proportion of samples with extreme concentration 



values on both sides (see Section 2.3 for details). The new model has indeed shown some improvement 

on this issue, significantly reducing the S values and biases for Polar_N, Polar_S, Westerlies_N_Pacific, 

Westerlies_N_Atlantic, and Westerlies_S regions (Fig. C4-C5 and Table C2). The overall NMB value is 

reduced to -16.2%. However, the phenomenon of underestimation for high values and overestimation for 

low values still persists, and this issue cannot be completely resolved solely through resampling without 

significantly sacrificing the model's accuracy for intermediate concentrations and avoiding overfitting. 

Nonetheless, due to the low proportion of extreme values, most residuals are distributed around 0, 

indicating that the overall performance of the model remains relatively robust. In other words, the general 

large-scale spatiotemporal variations can be reasonably captured by our model. 

We have revised the manuscript and added the discussion accordingly. 

 

 

Figure C1. The probability density function of observed DMS concentrations and those after log 

transformation. 



 

Figure C2. Scatter density plot for prediction residuals of log10(DMS) versus observed values in different 

regions based on the previous version of our ANN model. The results correspond to training set. 



 
Figure C3. Correlations between prediction residuals of log10(DMS) and observed values across 

different regions based on the previous version of our ANN model. The results correspond to testing set. 

 

Table C1. Mean bias and normalized mean bias of predicted DMS concentrations versus observed values 

across different regions based on the previous version of our ANN model. 

Region Mean bias (nM) Normalized mean bias 

Coastal -1.37 -28.5% 

Polar_N -1.14 -26.0% 

Polar_S -2.09 -27.4% 

Westerlies_N_Pacific -0.89 -18.8% 

Westerlies_N_Atlantic -0.68 -21.6% 

Westerlies_S -0.52 -20.0% 

Trades_Pacific -0.14 -5.9% 

Trades_Indian -0.61 -21.3% 

Trades_Atlantic -0.17 -8.8% 

Global -1.09 -23.6% 

 



 

Figure C4 (Figure S6 in revised manuscript). Scatter density plot for prediction residuals of log10(DMS) 

versus observed values in different regions based on the retrained ANN model. The results correspond 

to training set. 

 



 

Figure C5 (Figure 5 in revised manuscript). Scatter density plot for prediction residuals of log10(DMS 

versus observed values in different regions based on the retrained ANN model. The results correspond 

to testing set. 

 

Table C2 (Table 2 in revised manuscript). Mean bias and normalized mean bias of predicted DMS 

concentrations versus observed values across different regions based on the retrained ANN model. 

Region Mean bias (nM) Normalized mean bias 

Coastal -1.48 -29.6% 

Polar_N -0.62 -14.9% 

Polar_S -1.09 -13.0% 

Westerlies_N_Pacific -0.74 -15.3% 

Westerlies_N_Atlantic -0.25 -11.1% 

Westerlies_S -0.44 -17.1% 

Trades_Pacific -0.23 -10.3% 

Trades_Indian -0.88 -32.1% 

Trades_Atlantic -0.24 -13.6% 

Global -0.77 -16.2% 



Lines 210-225 (185-199): Apart from the data imbalance between coastal and non-coastal regions, there 

exists an imbalance across different DMS concentration ranges. As shown in Fig. 3b, the majority of 

DMS concentration values (78.6%) fall within the range of 0.8 to 10 nM (log10(DMS) between -0.1 to 

1). Samples with DMS concentrations exceeding 15 nM or falling below 0.3 nM only represent 6.9% of 

the entire sample set. Here we implemented a weighted resampling strategy to mitigate this imbalance 

and enhance the model's capability in predicting extreme values. We randomly sampled 50,000 samples 

with replacement from the remaining sample set. The probability of each sample being selected is 

proportional to the weighting factor shown in Fig. 3b, which is dependent on its DMS concentration. 

Samples exhibiting high or low DMS concentration values are more likely to be selected, whereas those 

with intermediate concentrations are less likely to be selected. The details of the weighting factor are 

explained in Appendix B. We also controlled the Fcoastal value of the resampled data equals to 9.7% by 

the same method as described above, i.e., applying the resampling process to coastal and non-coastal 

samples separately and combining them together afterwards. The data distribution of DMS 

concentrations after the resampling process is shown in Fig. 3c. The fraction of samples with DMS 

concentrations above 15 nM or below 0.3 nM is elevated to 15.0%. The 50,000 samples were then 

randomly split to a training set (80%) and a validation set (20%). Since there are duplicate samples in 

the resampled dataset, the random data split was conducted based on the original sample ID before 

resampling to ensure that there was no sample overlap between the training and validation sets. 



 

Figure 3. Data split and resampling strategy for ANN model training and testing. (a) Flowchart of the 

data split and resampling procedures. N and Fcoastal denote the number of samples and the fraction of 

coastal samples, respectively. (b) The probability distribution of raw log10(DMS) values and the 

relationship between the weighting factor for weighted resampling and log10(DMS) value. PDF 

represents the probability density function. (c) The probability distribution of log10(DMS) values after 

weighted resampling. 

 

Lines 317- 335 (265-283): While we have implemented a weighted resampling strategy to bolster the 

number of samples with extreme DMS concentrations prior to training, aiming to enhance the model 

performance in predicting such extreme values, the model still tends to underestimate the extremely high 

DMS concentrations and overestimate the extremely low concentrations (Fig. 4 and Fig. S4). 

Consequently, significant positive correlations emerge between prediction residuals (observation – 

prediction) and observed log10(DMS), particularly evident in Coastal and Trades regions, where the 

slopes exceed 0.55 (Fig. 5 and Fig. S6). Given the scarcity of observational data in these high-DMS and 



low-DMS regimes, it is considerable challenge to completely address this issue without succumbing to 

overfitting via purely data-driven approaches. The data augmentation by weighted resampling can only 

partially alleviate this issue. It underscores imperative for acquiring more observational data on sea 

surface DMS in future endeavours. Moreover, integrating DMS biogeochemical mechanisms with 

machine learning techniques may offer a promising avenue to tackle this challenge. 

Owing to the underestimation of high DMS concentrations, a negative mean bias (MB) in DMS 

concentration is evident across all regions, ranging from -0.23 to -1.48 nM (Table 2). The normalized 

mean bias (NMB, the ratio between mean bias and mean observed concentration) ranges from -11.1% to 

-32.1%. The most significant NMB emerges in Coastal and Trades_India regions, while NMB remains 

within -20% for other regions. The global MB and NMB are -0.77 nM and -16.2%, respectively. It is 

worth noting that these biases are compared against historical DMS observations, which were conducted 

within a very limited geographical area and time periods. Thus, they cannot be interpreted as the actual 

mean modelling bias for the entire region. On the other hand, these extreme DMS concentrations 

represent only a minority of the entire sample set. Our model adeptly reproduces the majority of 

observations with moderate DMS concentrations across all regions, with the percentage of simulated 

values falling within 1/3 to 3 times of observations ranging from 88.0% to 99.3%. 

 



 

Figure 4. Comparisons between ANN-simulated and observed DMS concentrations. (a) Scatter density 

for simulated versus observed DMS concentrations of the samples used in ANN training. This plot 

corresponds to the original data before resampling and only a subset of coastal data are included to 

maintain Fcoastal at 9.7%, which aligns with data composition in training. (b) Comparison between the 

simulated versus observed DMS concentrations of testing set. (c) Comparison between the simulated 

versus observed DMS concentrations of testing set across 9 regions. The number of data points (n), the 

log10 space R2 and the root mean square error (RMSE) are also displayed. 

 

For example, Figs. 4b,c display linear fits to the data and these slopes are different from unity. This is 

also noticeable in Fig. 4a as most of the higher concentrations during July-Aug are underestimated by 

the model and conversely the lower concentrations in the winter tend to be overestimated, leading to a 



damped seasonal cycle. I grant that the differences look small in Fig. 4a, but given that this figure too is 

on a logarithmic scale, it would be good to see a formal quantification of fluxes generated with observed 

data versus the simulated ones. Do under and over estimations at either end cancel each other out or does 

one win out over the other, leading to biases in the annual fluxes?  

Thanks for your comments on this issue. We have changed the y-aixs of Fig. 6a (Fig. 4a in previous 

version) to linear scale. We acknowledge that the predictions generally underestimate the higher 

concentrations during summer, which aligns with our above statement that our ANN model cannot 

reproduce the extremes perfectly. We have emphasized this point in the revised manuscript. The 

significant overestimation of the lower concentrations during winter has been largely mitigated with 

current model. 

Our product is a global-scale dataset with a spatial resolution of 1°×1°, primarily focusing on capturing 

large-scale spatiotemporal variations. Consequently, while we recognize the presence of substantial bias 

in extreme values within specific small regions, it remains within acceptable bounds for our main 

objectives. Regarding the quantification of annual fluxes, we think it is difficult to tell the bias in the 

annual fluxes based on these data, since the observations were only conducted in very limited area and 

time points. Each single data point represents a single measurement taken at a specific time point within 

that month rather than a monthly mean. Therefore, we decided not to take further explore on this issue.  

Lines 371-383 (316-326): It can be seen that the model effectively captures the seasonal variation in 

Northeast Pacific, which is generally August > June > February (Fig. 6a). However, the small-scale 

spatial variations can only be partially reproduced by the model in certain campaigns, such as those in 

June and August of 2007, June of 2009, August of 2012, and August of 2016. Notably, the model 

generally underestimates high DMS concentrations during summer, particularly those exceeding 10 nM, 

consistent with earlier discussions. Aggregating data from all campaigns across three regions, the log10 

space RMSE of simulated DMS concentrations against observations is 0.294, marginally higher than the 

training set. Most simulated values (87.8%) are within the range of 1/3 to 3 times of observations. The 

results further evidence that there is no significant overfitting in our model. When data from each 

campaign are binned, simulations demonstrate high consistency with observations, as depicted in Fig. 6c 

(RMSE = 0.278, R2 = 0.651). In summary, although our ANN ensemble model may not precisely 

reproduce small-scale variations and extreme values in specific regions and periods, it reasonably 

captures overall large-scale variations. 



 

Figure 6. Comparisons between the ANN predictions and observations from fully independent 

campaigns. (a) Time series of simulation results and DMS observational data obtained from Line P 

Program. The different markers represent different stations of Line P. The blue shades cover the data 

obtained from the cruises included in the GSSD database but with a different method. (b) Scatter plot of 

simulated versus observed DMS concentrations. (c) The same as panel b but for averaged data of each 

cruise. The yellow lines and shaded bands are linear fittings and corresponding 95% confidence intervals 

for log10 space data. The R2 and RMSE displayed in the figure also correspond to log10 space data. 

 

I have a cautionary note when conducting linear fits. For your raw data, I’m guessing the errors for 

individual DMS_obs will be very small compared with the dynamic range of the dataset, therefore the x 

errors can be ignored. Likewise, it is probably reasonable to assume y errors are uniform, meaning 

standard (least-squares in y direction) linear regression analyses could be safely implemented. For the 

regionally-averaged data show in Fig. 4c, the x errors look very large and both x and y errors look 

nonuniform, meaning a standard linear regression approach will yield inaccurate estimates of the slope 

and its confidence band. 

Thank you for pointing out that. Actually, the error bar in previous figure does not represents error but 

the standard deviation of raw data in calculating the average DMS concentration of each campaign. We 

find it is unnecessary and have removed it. 

 

Some other shorter general comments and questions: 

I’m confused about how the data from different time periods are treated during the training and validation 

steps of ANN model development. As far as I can tell, you use all data from all periods in training and 

validation. Once you have the ANN model, you input time variable parameters to estimate temporal 

changes in concentrations and fluxes, is this correct? Your criticism of previous work for using data from 



different time periods to estimate a global average flux does not seem justified because you seem to 

develop your model in the same fashion, or am I missing something? 

Thank you for your comments. In this study, the data of each input feature are from global-scale multi-

year continuous datasets. For any given sample, if all input features possess valid values, it will be used 

for training and validation. Those valid samples are mainly distributed between 1997 and 2017. After 

constructing the model, wherein the dependence of DMS concentration on input features is captured, we 

use these multi-year continuous input datasets to obtain the global-scale multi-year continuous 

distribution of DMS. Therefore, we can obtain the interannual variations of sea surface DMS 

concentrations. Our concern is that previous DMS concentration fields based on 

interpolation/extrapolation approach combine observations within the same region and month but across 

different years for spatial interpolation and extrapolation. As a result, the obtained DMS distribution 

fields are monthly climatological averages rather than multi-year continuous data products, thereby 

lacking information on interannual variations. We have made a modification to the sentence to make it 

clearer. 

Lines 89-90 (80-81): Furthermore, the observational data from different years within a particular month 

were combined together for interpolation and extrapolation, and the interannual variations cannot be 

investigated by this approach. 

 

It would be good see how much data each region contributes to the full dataset. The coastal region appears 

to contribute the most even though the emissions from the coastal regions constitute only 3% of the 

global DMS flux, and conversely the trades regions have little data even though the integrated fluxes in 

these regions are high. Did you try training the model without the coastal data to see if the model results 

change? 

Thank you for your comments. The number of data points in each region (the value of n) has been 

provided in the scattering plots (Fig. 3 in previous manuscript, and Fig. 4, S4 and S5 in revised version). 

As you pointed out, there is a notable disparity in data density between coastal and open ocean regions. 

Specifically, samples from the Coastal biome constitute 27.3% of the entire sample set, despite the 

coastal area representing only 9.7% of the global ocean area. This disproportionality could potentially 

lead to a bias in the model, emphasizing coastal regions and decreasing the capability of capturing the 

data patterns in open oceans. To mitigate this data imbalance issue, we adjusted the data distribution 

during model training and validation processes. Specifically, we adjusted the fraction of coastal samples 

to match the area fraction. The details are explained in the manuscript. 

Lines 194-200 (169-175): It is noteworthy that there are 11,237 samples in the Coastal region, 

constituting 27.3% of the entire sample set, despite the Coastal biome accounting for only 9.7% of the 

global ocean area. Given the distinct seawater physiochemical and biological conditions in coastal seas 

compared to other regions, the disproportionately higher density of samples within the Coastal biome 

might cause the model to overly prioritize this region. To mitigate this data imbalance and ensure the 

model captures broader patterns in open oceans, we adjusted the data distribution during model training 

and validation processes. Specifically, we adjusted the fraction of coastal samples to match the area 

fraction. Further details are provided in the subsequent section and visualized in Fig. 3a. 

Lines 206-225 (181-199): We randomly selected 10% of the samples (n = 4,116) to be entirely excluded 

from training, as a testing subset for global validation and overfitting test. The testing subset was 



controlled to contain a proportion of coastal samples (denoted as Fcoastal) at 9.7%. Specifically, 401 

samples were randomly selected from Coastal biome, while 3,715 samples were selected from other 

biomes to compose the testing subset. Then, the remaining samples (n = 37,041) were utilized for training 

and cross validation. Apart from the data imbalance between coastal and non-coastal regions, there exists 

an imbalance across different DMS concentration ranges. As shown in Fig. 3b, the majority of DMS 

concentration values (78.6%) fall within the range of 0.8 to 10 nM (log10(DMS) between -0.1 to 1). 

Samples with DMS concentrations exceeding 15 nM or falling below 0.3 nM only represent 6.9% of the 

entire sample set. Here we implemented a weighted resampling strategy to mitigate this imbalance and 

enhance the model's capability in predicting extreme values. We randomly sampled 50,000 samples with 

replacement from the remaining sample set. The probability of each sample being selected is proportional 

to the weighting factor shown in Fig. 3b, which is dependent on its DMS concentration. Samples 

exhibiting high or low DMS concentration values are more likely to be selected, whereas those with 

intermediate concentrations are less likely to be selected. The details of the weighting factor are explained 

in Appendix B. We also controlled the Fcoastal value of the resampled data equals to 9.7% by the same 

method as described above, i.e., applying the resampling process to coastal and non-coastal samples 

separately and combining them together afterwards. The data distribution of DMS concentrations after 

the resampling process is shown in Fig. 3c. The fraction of samples with DMS concentrations above 15 

nM or below 0.3 nM is elevated to 15.0%. The 50,000 samples were then randomly split to a training set 

(80%) and a validation set (20%). Since there are duplicate samples in the resampled dataset, the random 

data split was conducted based on the original sample ID before resampling to ensure that there was no 

sample overlap between the training and validation sets. 

 

What are the contributions of the 9 different model parameters to the final outcome? Which parameters 

carry more important information according to your ANN model? 

We have done an extensive analysis of the feature importance for each region, and the results are depicted 

in Fig. C6. Chl a is the most important factor in coastal region and the second most important factor in 

Arctic region. This aligns with the existing understanding that the oceanic DMS cycling in these regions 

is under a “bloom-forced regime” (Toole and Siegel, 2004), wherein the DMS production is controlled 

by the phytoplankton biomass. The importance of SSS in Arctic region may reflect the inflow of more 

saline, warmer and nutrient-rich Atlantic water mass (the so-called "Atlantification"), where high 

abundances of Phaeocystis pouchetii were generally found (Vogt et al., 2012; Schoemann et al., 2005). 

In other regions, DSWF and MLD generally rank among the top three key factors, consistent with the 

significant role of solar radiation dose in controlling the DMS variation in upper mixed layer (Vallina 

and Simó, 2007; Vallina et al., 2007). Macronutrients and SST also demonstrate noteworthy importance 

in specific regions. However, we think delving into the explanation of the model will make the 

manuscript too long and it is not the main objective of the manuscript. Hence, we decided not to include 

it. 



 

Figure C6. The feature importance in each region. 

 

Was the ANN allowed to freely chose model equations, did you impose any restrictions or try other 

models? 

Thanks for raising these questions. In artificial neural networks (ANN), the model's architecture is 

inherently characterized by a network of connections (weighting factors) linking nodes across adjacent 

layers, augmented by a bias term in each hidden layer node after aggregating preceding layer information, 

and culminating in an activation function. Therefore, an ANN cannot be expressed by an explicit 

mathematical equation. 

Throughout the training process, we implemented L2 regularization to counteract overfitting and 

improve the model generalization. Different lambda values of L2 regularization spanning 2E-4, 5E-4, 

1E-3, and 5E-3 have been tried. We have also employed early stopping to further mitigate overfitting. 

This mechanism halts the training process if the validation loss exceeds or equals the minimum validation 

loss computed so far 20 times in a row. We have also tried other machine learning algorithms, including 

random forest and gaussian processing regression. As for ANN, we investigated different architectures, 

including single-layer configurations with 10, 20, and 30 nodes, as well as two-layer configurations with 

10, 15, and 20 nodes in each layer. By evaluating the model performance on testing set, we determined 

that a two-layer ANN with 15 nodes in each layer yielded optimal performance. We added more detailed 

information on the current model into the manuscript. However, the detailed information of how we 

determine the model structure is not included, since we believe it is not of significance for the main 

objective of this study and the manuscript. 



Lines 226-230 (200-204): Our feedforward fully connected neural network comprises two hidden layers, 

with 15 nodes in each layer. The activation functions for the first and second layers are ReLU and tanh, 

respectively. We applied L2 regularization (lambda = 5E-4) to counteract overfitting. The loss function 

is mean square error (MSE). Training stops if the validation loss is greater than or equal to the minimum 

validation loss computed so far 20 times in a row. The training processes were carried out with Statistics 

and Machine Learning Toolbox on Matlab 2022b. 

 

Minor comments/corrections as they appear in the manuscript: 

Line 81-82: This sentence here gives the impression that you are not using all data from all years with 

equal weight.    

Thank you for your question. We are using all samples with valid input feature data for model 

development. Please see our response to the first shorter general comment. 

 

Line 113: Are you using exactly the same data that went into Hulswar et al (2022)? 

For the previous version of the model, we relied on the GSSD database for its development. For the 

current version, we have incorporated additional data that were not encompassed within the GSSD 

database but were utilized in Hulswar et al (2022). Because there are three input features (SST, MLD, 

and SSS) sourced from NASA ECCO dataset, which just extends up to the year 2017, the data after 2017 

in Hulswar et al (2022) were not integrated. 

Lines 125-127 (115-117): Hulswar et al. (2022) consolidated other DMS measurements not included in 

the GSSD database to establish an updated DMS climatology. Here we incorporated these additional data 

predating 2017, originating from 8 campaigns (number of samples = 6,711). 

 

Lines 128-131: What happens in SI covered areas? What level of SI cover lead to zero emissions? 

Thank you for your questions. In regions covered by sea ice, the available open-water surface area for 

sea-to-air gas exchange is diminished. Thus, to calculate regional DMS flux, we apply a direct scaling 

approach the original total transfer velocity by the open-water surface area fraction. This fraction is 

represented by 1 minus the sea-ice fraction. In this calculation, a sea-ice fraction of 1 will lead to zero 

emissions. The details are given in Section 2.4.2. We have added a reference to that section in this 

sentence. 

Lines 144-146 (130-132): The surface wind speed (WS) and sea ice fraction (SI) data are also needed in 

the calculation of sea-to-air flux (details are provided in Section 2.4.2). Here we utilized the daily 10-

meter WS data from ECCO V4r4 and the daily SI data from NOAA OI SST V2. 

Lines 271-278 (227-232): The sea-to-air fluxes of DMS were calculated on the basis of simulated surface 

DMS concentrations following equation (1): 

𝐷𝑀𝑆 𝑓𝑙𝑢𝑥 ൌ 𝐾𝑡 ൈ ሺ𝐷𝑀𝑆௪ െ
஽ெௌೌ

ு
ሻ         (1) 



Here DMSw and DMSa are DMS concentrations in surface seawater and air, respectively. H is Henry’s 

law constant of DMS. Since 
஽ெௌೌ

ு
 is usually ≪ 𝐷𝑀𝑆௪, this term was omitted in the calculation. Kt is 

the total transfer velocity considering the sea ice coverage fraction (SI): 

𝐾𝑡 ൌ 𝑘௧ ൈ ሺ1 െ 𝑆𝐼ሻ           (2) 

 

Line 143: Are the SeaWiFS and Aqua-MODIS data in reasonable agreement? 

Yes, they agree quite well during their overlapping period, as displayed in Fig. C7. For the current version 

of the model, we utilized the Copernicus-GlobColour Level-4 dataset, which integrates multiple 

upstream sensors including SeaWiFS, MODIS-Aqua & Terra, MERIS, VIIRS-SNPP & JPSS1, and 

OLCI-S3A & S3B, and an interpolation procedure is applied to fill in missing data. This dataset shows 

good agreement with in-situ Chl a observations. 

 

Figure C7. Comparison between Chl a data derived from Aqua-MODIS and SeaWiFS, corresponding 

to DMS samples collected during the overlapping period of these two sensors. 

Lines 132-136 (122-125): Chl a data were obtained from both in-situ observations, co-located with DMS 

data, and satellite remote sensing products (Copernicus-GlobColour, Level-4, daily, 0.042°×0.042°). The 

Copernicus-GlobColour Level-4 dataset integrates multiple upstream sensors including SeaWiFS, 

MODIS-Aqua & Terra, MERIS, VIIRS-SNPP & JPSS1, and OLCI-S3A & S3B, with an interpolation 

procedure applied to fill missing data (Garnesson et al., 2019). 



 

Figure S2. The comparison between the in-situ Chl a from GSSD database and the Copernicus-

GlobColour Level-4 satellite-retrieved Chl a data. n is the number of samples. R2 and RMSE correspond 

to log10 space data. 

 

 

Fig. 4a: The markers look quite faint on my screen. I suggest sharper colors.   

Revised as suggested. 

 

Lines 339-344: Refer to Fig. 9 somewhere. 

Thank you for your suggestion. We have added the reference to Fig. 9 (now Fig. 11). 

Lines 478-479 (398-399): Here we compare the distributions of DMS concentration derived from our 

ANN simulation (referred to as Z23) with four previously constructed climatologies (Fig. 11), 

 

Lines 388-390: What drives the trends in Kt?  

Thank you for bringing this up. In mid- and low-latitudes, both increasing WS and rising SST have a 

positive effect on Kt, but WS is generally the dominant driver (Land et al., 2014). This point is discernible 

through the nearly identical spatial pattern of Kt changes corresponding to WS changes, contrasting with 

the less consistent spatial pattern in the changes of SST. Here we have modified the sentence to point 

this out. 

Lines 548-550 (449-451): Due to the primary influences of increasing WS and secondary impact of 

rising SST in most mid- and low-latitude regions (Fig. S8), the Kt of DMS also showed an overall 

increasing trend, especially in the eastern Pacific and Atlantic Ocean (Fig. 12b). 
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