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Abstract. Net primary production of the oceans contributes approximately half of the total global net 

primary production and long-term observational records are required to assess any climate driven changes. 

The Ocean Colour Climate Change Initiative (OC-CCI) has proven to be robust, whilst also being one of 

the longest records of ocean colour. However, to date only one primary production algorithm has been 

applied to this data product with other algorithms typically applied to single sensor missions. The data 

product presented here addresses this issue by applying five algorithms to the OC-CCI data product, which 

allows the user to interrogate the range of distribution across multiple models and to identify consensus or 

outliers for their specific region of interest. Outputs are compared to single sensor data missions 

highlighting good overall global agreement, with some small regional discrepancies. Inter-model 

assessments address the source of these discrepancies, highlighting the choice of the mixed layer data 

product as a vital component for accurate primary production estimates. 
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1 Introduction 

 

Phytoplankton primary production and associated spatial and temporal variability play an important role in 

the carbon cycle, being responsible for approximately 50% of total global net primary production (NPP) 

(Lurin, 1994; Longhurst et al., 1995; Field et al., 1998; Carr et al., 2006; Buitenhuis et al., 2013). Global 

NPP estimates are in the order of 50 Gt C per year (Longhurst et al., 1995; Field et al., 1998; Carr et al., 

2006; Buitenhuis et al., 2013; Antoine et al., 1996; Silsbe et al., 2016; Johnson and Bif, 2021). When this 

organic carbon is sequestered to the ocean interior via the biological carbon pump (BCP) it offsets the flux 

of upwelled pre-industrial dissolved inorganic carbon (DIC) (Mikaloff Fletcher et al., 2007; Gruber et al., 

2009), where DIC is the carbon source for phytoplankton photosynthesis. In that sense, in the contemporary 

period, it does not play a significant role in the ocean uptake of anthropogenic carbon dioxide (CO2). 

However, the magnitude of the BCP is predicted to change in response to global climate change, which will 

alter the ocean’s ability to store carbon and therefore impact atmospheric levels of CO2 (Henson et al., 

2011; Bopp et al., 2013; Boyd et al., 2015; Tagliabue et al., 2021). Such changes are of concern because of 

alterations in the contribution that the BCP plays in offsetting upwelled DIC will impact the net uptake of 

anthropogenic CO2 (Henson et al., 2011). As such any natural or anthropogenic perturbations to the strength 

and efficiency of the BCP have the potential to drive important feedbacks on global climate change and 

thus need to be considered for a comprehensive understanding of the trajectory of the ocean carbon sink. 

Recent studies have estimated that global NPP is indeed changing, with declines ranging from 0.6 to 13% 

across equatorial and temperate regions (Gregg and Rousseaux, 2019; Polovina et al., 2011; Chavez et al., 

2010; Behrenfeld et al., 2006) and increases of up to 2% at the Bermuda Atlantic Time Series and Hawaii 

Oceanic Time Series (Saba et al., 2010). NPP also plays an important role in supporting ecosystem function 

by sustaining biodiversity and the transfer of carbon, energy, and nutrients through pelagic and benthic food 

webs. As such, any changes to the amount of bulk carbon being produced is likely to impact the amount of 

carbon available for transfer to higher trophic levels via the marine food web with implications for 

ecosystem health and fisheries success. It is the seasonal cycle that sets much of the environmental 

variability in the factors that drive NPP, and it is the dominant mode of variability that couples the physical 

mechanisms of climate forcing to ecosystem response in production, diversity and carbon export (Monteiro 

et al., 2011). As such, understanding the seasonal evolution of NPP can provide a sensitive index of climate 

variability through its dependence on physical processes that transport nutrients and control the exposure 

of phytoplankton to sunlight (Summer and Lengfeller, 2008; Henson et al., 2009). It is with this in mind 

that we seek to provide a data product that can be used to understand the extent to which the seasonal 
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characteristics of NPP are being modified by environmental conditions over sufficiently long time periods. 

NPP has already been highlighted as a better indicator of environmental change and disturbances in 

comparison to chlorophyll-a (Tilstone et al., 2023), with environmental disturbances (i.e, changes in 

nutrient inputs) being detected through changes in phytoplankton photosynthetic rates and NPP (Boalch, 

1987), highlighting its suitability for ecosystem assessment of tipping points and abrupt change. 

Phytoplankton NPP is strongly influenced by the physico-chemical conditions of the ocean, including light, 

temperature and nutrient availability. Climate change has already begun to elicit widespread changes to 

these conditions, for example increases in temperature and heat content, increased sea ice melt and 

enhanced precipitation all contribute to alterations of oceanic density and the subsequent nutrient supply 

into the euphotic zone (Field et al., 2014; Rhein et al., 2013). Being able to understand how these climate 

driven changes in the physico-chemical environment impact phytoplankton NPP is key to addressing one 

of the most important scientific and policy challenges of the 21st century, namely being able to predict long 

term trends in the ocean carbon - climate system. This challenge is exacerbated by the sparsity of NPP data 

and a lack of continuous or regular in situ measurements for long enough periods to address multi decadal 

changes associated with climate forcing (Johnson and Bif, 2021).  

Satellite based remote sensing of ocean colour is the only observational capability that can provide synoptic 

views of upper ocean phytoplankton characteristics at high spatial and temporal resolution (~1km, ~daily) 

and high temporal extent (global scales, years to decades). In many cases these are the only systematic 

observations available for chronically under-sampled marine systems such as the Southern Ocean. 

Empirical expressions of estimating NPP are built around long recognised dependencies between 

phytoplankton biomass and environmental conditions (e.g., temperature, light and nutrients), with a 

succinct review available in Westberry et al. (2023). The vertically Generalized Production Model (VGPM) 

(Eppley, 1972; Behrenfeld and Falkowski, 1997) is a simpler satellite NPP model that relies on the 

relationship between chlorophyll and temperature derived growth rates with no explicit spectral, temporal, 

or vertical resolution. The Carbon-based Production Models (CbPM; Behrenfeld et al., 2005; Westberry et 

al., 2008) rely on particulate backscattering estimates of phytoplankton carbon as a biomass indicator 

instead of chlorophyll. This approach allows for some of the variability in chlorophyll to be attributed to 

physiological adjustments to light and nutrients (e.g., photoacclimation), independent of changes in NPP. 

The more recent CAFE model (Silsbe et al., 2016) builds upon this approach but in addition incorporates 

the influence of non-algal absorption on the attenuation of the underwater light field, which if not accounted 

for has a tendency to overestimate NPP (notably in coastal waters). Recently, considerable effort has been 

invested by the European Space Agency to provide one of the longest records of ocean colour for detecting 
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climate variability by merging data, from SeaWIFS, MODIS, MERIS, VIIRS, Sentinel 3A OLCI and 

Sentinel 3B OLCI, and correcting inter-sensor biases from the multiple ocean colour satellite sensors 

(Sathyendranath et al., 2019a), known as the Ocean Colour Climate Change Initiative (OC-CCI). This time 

series of 25 years (as of 2023) has already been utilised to provide estimates of trends in global NPP (Kulk 

et al., 2020), with results showing that trends in NPP were linked to trends in chlorophyll-a and related to 

changes in the physico-chemical conditions of the water column from inter-annual and multi-decadal 

climate oscillations. However, this study only investigated one NPP algorithm as opposed to using a suite 

of different algorithms with varying sensitivities to specific processes, as is done for the assessments of 

predicted change from earth system models in the coupled model intercomparison project (CMIP). It is 

worth noting however, that previous studies have performed a series of statistical evaluations of a range of 

NPP models, known as Primary Production Algorithm Round Robin (Campbell, et al., 2002; Carr et al., 

2006; Friedrichs et al., 2009; Saba et al., 2011; Lee et al., 2015). Utilising in situ measurements and satellite 

matchups to assess their relative performance, with the CAFE model most recently having the lowest bias 

and error in comparison to all other algorithms available at the time.  

Given the importance of NPP for assessing carbon budgets, ecosystem health and environmental change it 

is becoming increasingly clear that users require easy access to appropriate data products. Unfortunately, 

the global NPP algorithm applied to OC-CCI by Kulk et al. (Kulk et al., 2020) is not available for download 

on the OC-CCI server. Although an NPP data product is available from Copernicus Marine Services, this 

is only applied to the temporally limited GlobColour data product and similarly is only available for a single 

NPP algorithm (Antoine and Morel, 1996). The most comprehensive suite of NPP algorithms is provided 

by the Ocean Productivity website (http://sites.science.oregonstate.edu/ocean.productivity/custom.php), 

however these are also only applied to single sensor missions (SeaWIFS, MODIS, VIIRS) thus restricting 

time periods of interest and preventing any longer-term assessments of change. Furthermore, it is difficult 

for the user to ascertain exactly which ancillary data products (i.e., MLD criterion, nitracline) were used in 

the empirical derivations of the single sensor NPP products available for download.  

Here we present a new ocean colour data product that incorporates 5 NPP algorithms applied to the 25-year 

merged sensor OC-CCI time series. This multi-model data product provides a range of estimates of global 

NPP from 1998 to 2022 at both 8-day and monthly resolution and at a spatial coverage of 25 km. The 

distribution of the models are assessed across different oceanic biomes and long term observatory sites to 

highlight either consensus or outliers. The outputs of these algorithms are assessed for any biases or 

differences in comparison to the original outputs from single sensor missions and intra-algorithm 

differences for the multi-sensor satellite record.  
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2 Materials and Methods 

25 years of ocean colour data from 1998 – 2022 were downloaded from the OC-CCI server (8-day; 4 km; 

v6.0; Sathyendranath et al., 2019), in which the latest version v6.0 includes an updated MERIS-4th 

reprocessing, the inclusion of Sentinel 3B OLCI, the dropping of MODIS and VIIRS data after 2019 and 

the use of the Quasi-Analytical algorithm (QAA) (Lee et al., 2002). The data variables downloaded from 

OC-CCI v6.0 include chlorophyll a concentration (chl-a; mg m-3), backscatter at 443 nm (bbp; m
-1), the 

diffuse attenuation coefficient at 490 nm (Kd 490; m-1), the phytoplankton absorption coefficient at 443 nm 

(aph; m
-1) and the detrital absorption coefficient at 443 nm (adg; m

-1). As the spectral slope of bbp (η; m-1 nm-

1) is not a variable provided by the OC-CCI project it had to be calculated following equation 1 from Pitarch 

et al. (2019) using remote sensing reflectance (Rrs) at 443 and 560 nm. Daily integrated photosynthetically 

active radiation (PAR; mol photons m-2 d-1) data were downloaded from Glob-Colour 

(http://www.globcolour.info/). Sea surface temperature (SST; °C) data were downloaded from the Group 

for High Resolution Sea Surface Temperature (GHRSST; https://www.ghrsst.org/). The Hadley EN4.2.2 

gridded temperature and salinity profiles (Good et al., 2013) were converted to density (σ; kg m-3) to derive 

mixed layer depth (MLD; m) using the density thresholds of 0.03 kg m-3 (de Boyer Montégut et al., 2004) 

and 0.125 kg m-3 (Suga et al., 2004). Additional data for MLD were retrieved from HYCOM 

(https://www.hycom.org/data/glba0pt08), for both density criteria (downloaded from 

http://sites.science.oregonstate.edu/ocean.productivity/).  

For the primary analysis of the paper the outputs using the Hadley Δσ10m = 0.030 kg m-3 MLD data product 

was used (Ryan-Keogh, 2023d). The reason for this choice were concerns around the accuracy of the 

HYCOM MLD data product to best represent in situ conditions. A trend analysis performed on all MLD 

products and criterion (Figure A1) revealed distinct directional differences in the trends of Hadley versus 

HYCOM, with the Hadley MLD product the only one to best represent the global MLD trends as outlined 

in Sallée et al. (2021). However, the outputs using Hadley Δσ10m = 0.125 kg m-3 (Ryan-Keogh, 2023a), 

HYCOM Δσ10m = 0.030 kg m-3 (Ryan-Keogh, 2023b) and HYCOM Δσ10m = 0.125 kg m-3 (Ryan-Keogh, 

2023c) are all available. 

The nitracline depth was defined as the depth at which nitrate and nitrite was equal to 0.5 μM (Westberry 

et al., 2008), using the monthly climatology nitrate and nitrite profile data from the World Ocean Atlas 

2018 (WOA18; (Garcia et al., 2019). The total backscattering of pure seawater (bbw; m-1) was derived as a 
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function of SST and salinity following Zhang and Hu (2009), using monthly salinity data from WOA18 

averaged for the top 20 m.  

All data were regridded onto a regular grid of 25 km spatial resolution, using bilinear interpolation using 

the xESMF Python package (Zhuang, 2018), at 8-day temporal resolution. The remaining gaps were filled 

by applying a linear interpolation scheme in sequential steps of longitude, latitude and time (Racault et al., 

2014) using a three-point window. If one of the points bordering the gap along the indicated axis was invalid 

it was omitted from the calculation, whilst if two surrounding points were invalid then the gap was not 

filled. Finally, the data were smoothed by applying a moving average filter of the previous and next 

timestep. For more details on this method see Salgado-Hernanz et al. (2019). 

 NPP (mg C m-2 d-1) was calculated using 5 different algorithms, the ‘Eppley-VGPM’ model (Eppley, 1972), 

the ‘Behrenfeld-VGPM’ model (Behrenfeld and Falkowski, 1997), the ‘Behrenfeld-CbPM’ model 

(Behrenfeld et al., 2005), the ‘Westberry-CbPM’ model (Westberry et al., 2008) and the ‘Silsbe-CAFE’ 

model (Silsbe et al., 2016). Both Eppley-VGPM and Behrenfeld-VGPM models are chlorophyll-based 

production models with a temperature-dependent derivation of photosynthetic efficiencies. The Behrenfeld-

CbPM and Westberry-CbPM models are based upon deriving carbon biomass from backscatter coefficients 

and growth rates from chlorophyll-to-carbon ratios, with the Westberry-CbPM being spectrally resolved 

across 9 wavelengths. The Silsbe-CAFE model is an absorption-based model that is spectrally resolved 

across 21 wavelengths, whilst also being resolved across the diel cycle from sunrise to sunset. For more 

details on which parameters are required for each model please see Table 1.  

 

 Chl

-a 

PA

R 

bbp aph adg Kd η bbw ML

D 

SST Nitr

acli

ne 

SSS 

Eppley-VGPM ✓ ✓ × × × × × × × ✓ × × 

Behrenfeld-VGPM ✓ ✓ × × × × × × × ✓ × × 
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Behrenfeld-CbPM ✓ ✓ ✓ × × ✓ × × ✓ × × × 

Westberry-CbPM ✓ ✓ ✓ × × ✓ × × ✓ × ✓ × 

Silsbe-CAFE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ 

Table 1: Data variables, including chlorophyll-a (Chl-a; mg m-3), photosynthetically active radiation (PAR; 

mol photons m-2 d-1), backscatter at 443 nm (bbp; m
-1), phytoplankton absorption at 443 nm (aph; m

-1), detrital 

absorption at 443 nm (adg; m
-1), diffuse attenuation coefficient at 490 nm (Kd; m

-1), the spectral slope of 

backscatter (η; m-1 nm-1), the backscatter of pure water (bbw; m-1), mixed layer depth (MLD; m), sea surface 

temperature (SST; °C), nitracline depth (m) and sea surface salinity (SSS), used in the derivation of net 

primary production using 5 models including the Eppley-VGPM, Behrenfeld-VGPM, Behrenfeld-CbPM, 

Westberry-CbPM and Silsbe-CAFE. 

 

For presentation purposes the global data were separated into biomes using the classification from Fay & 

McKinley (2014), while long-term observatories were selected as the Bermuda Atlantic Time Series (30.7-

32.7°N, 59.2-61.2°W), the Hawaii Oceanic Time Series (21.8-23.8°N, 157-159°W), the Southern Ocean 

Time Series (46.0-48.0°S, 139-141°E) and the Porcupine Abyssal Plain observatory (48-50°N, 15.5-

17.5°W). 

As an additional comparison to the OC-CCI outputs presented here, monthly NPP data of Eppley-VGPM, 

Behrenfeld-VGPM, Westberry-CbPM and Silsbe-CAFE were downloaded from the Ocean Productivity 

website (http://sites.science.oregonstate.edu/ocean.productivity/) for SeaWIFS (1998 - 2007) and MODIS 

(2003 - 2019). Unfortunately, the NPP data for the Behrenfeld-CbPM is no longer available as it has been 

superseded by the Westberry-CbPM NPP data. Pearson's correlation coefficients (R2) were calculated 

between the SeaWIFS/MODIS derived NPP and the OC-CCI derived NPP.  
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3 Results & Discussion 

Comparing intra-model climatological means 

The climatological means of each NPP model show a large degree of spatial heterogeneity, with higher 

values associated with western boundary currents and at the equator (Figure 1). The temperature based 

Eppley-VGPM and Behrenfeld-VGPM models (Figure 1a,b) show good agreement in terms of their ranges 

and means (Table 2), but there are large differences particularly in the North Atlantic and the Arabian Sea 

and equatorial Pacific. The carbon based Behrenfeld-CbPM and Westberry-CbPM models (Figure 1c,d) 

show very good agreement in terms of their climatological means although discrepancies are nonetheless 

evident (e.g. higher NPP in the Southern Ocean and North Atlantic in the Behrenfeld-CbPM and higher 

NPP in the equatorial region in the Westberry-CbPM). The absorption based Silsbe-CAFE model (Figure 

1e) has a much smaller range across the global ocean. A map of the coefficient of variation (CV = 

σNPP/<NPP>; Figure 2a) shows the highest values (depicting disagreement between models) in the high 

latitudes and in coastal regions. Unlike the comparison in Westberry et al. (2023) (which included 

Behrenfeld-VGPM, Westberry-CbPM and Silsbe-CAFE applied to MODIS data from 2003 to 2019), we 

do not find lower CV values to be specifically associated with highly productive waters, nor do we find a 

similar distribution for very high CV values. The Silsbe-CAFE model has the most peaked probability 

distributions (PDF) of all the models (Figure 2b) with a narrow range, which is similar to that reported in 

Westberry et al. (2023). The other models show a much lower peak and broader range with the two CbPM 

models centred around a lower median distribution of NPP (more similar to that of Silsbe-CAFE) than the 

slightly higher median NPP of the two VGPM models. When we examine the cumulative distributions 

(CDF) of each model (Figure 2c), the medians were an order of magnitude higher in the Eppley-VGPM 

(1019.5 mg C m-2 d-1) and Behrenfeld-VGPM (1206.6 mg C m-2 d-1) in comparison to the Behrenfeld-CbPM 

(298.2 mg C m-2 d-1), Westberry-CbPM (531.1 mg C m-2 d-1) and Silsbe-CAFE (495.5 mg C m-2 d-1). Whilst 

the median values for both Westberry-CbPM and Silsbe-CAFE are similar to those reported in Westberry 

et al. (2023), the Behrenfeld-VGPM values are much higher than what was previously reported (332 mg C 

m-2 d-1), which is not necessarily surprising when considering that different SST, PAR and Chl-a products 

are being used in this analysis.  
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Figure 1: Climatological means of net primary productivity (NPP) for the period of 1998-01-01 to 2022-

12-31 for the (a) Eppley-VGPM, (b) Behrenfeld-VGPM, (c) Behrenfeld-CbPM, (d) Westberry-CbPM, (e) 

Silsbe-CAFE model and (f) the mean of all models. 
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Figure 2: The distribution of the model net primary production (NPP) values. (a) the coefficient of variation, 

calculated as the inter-model standard deviation normalised to the inter-model mean. (b) Probability 

distributions (PDF) of the climatological mean NPP for each of the models. (c) Cumulative distributions 

(CDF) of the climatological mean NPP for each of the models. 

 

 MLD criterion Min Max Mean±Stdev Median IQR Global 

NPP 

Eppley- n/a 12.8 19274.4      459.3±466.5 348.6 314.2 55.3±1.7      
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VGPM 

Behrenfel

d-VGPM 

n/a 12.0 17014.3 458.9±471.1      351.6      321.3 52.2±1.4 

Behrenfel

d-CbPM 

Hadley Δσ10m = 

0.03 kg m-3 

1.2 × 10-5 5734.2 578.7±338.8 508.3 352.3 63.4±1.6 

Hadley Δσ10m = 

0.125 kg m-3 

8.3 × 10-10 5261.0 446.6±276.2 380.6 297.7 53.1±1.3       

HYCOM Δσ10m 

= 0.03 kg m-3 

1.1 × 10-12 7668.9 544.2±303.9 474.9      319.7 60.8±2.6 

HYCOM Δσ10m 

= 0.125 kg m-3 

1.1 × 10-12 7668.9 469.5±288.7 399.0 301.2 53.9±2.4 

Westberry

-CbPM 

Hadley Δσ10m = 

0.03 kg m-3 

3.6 × 10-12 6992.5 544.3±289.5 476.3 329.9 66.2±2.1 

Hadley Δσ10m = 

0.125 kg m-3 

3.9 × 10-12 6641.2 456.8±279.5 379.7 314.9 58.8±2.0 

HYCOM Δσ10m 

= 0.03 kg m-3 

5.9 × 10-11 3834.4 519.3±262.9 460.1 313.7 62.8±2.6 

HYCOM Δσ10m 

= 0.125 kg m-3 

2.1 × 10-12 3853.0 466.0±268.4 396.4 306.2 58.3±2.5 
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Silsbe-

CAFE 

Hadley Δσ10m = 

0.03 kg m-3 

22.1 1230.7 389.8±99.8 389.8      135.5 46.4±3.0 

Hadley Δσ10m = 

0.125 kg m-3 

22.1 1230.7 384.4±100.5 367.0 139.9 46.4±3.0 

HYCOM Δσ10m 

= 0.03 kg m-3 

22.3 1230.7 389.4±100.5 373.9 139.6 46.5±3.1      

HYCOM Δσ10m 

= 0.125 kg m-3 

22.1 1230.7 386.3±101.1 368.9 141.9 46.5±3.0 

Table 2: The climatological global minimum, maximum, mean±standard deviation, median and 

interquartile range (IQR: 75th - 25th) for each net primary production model. Included is the sum of the 

global NPP (Pg C m-2 yr-1) from each model (averaged for each year from 1998 to 2022, including the 

standard deviation), including the different MLD criterion used (where n/a means not applicable). 

Investigating the difference in climatological means between each model and the ensemble model mean 

highlights the regional distribution of positive and negative biases relative to the ensemble model mean 

(Figure A2). For example, the two VGPM models show an opposite distribution in their relative differences 

with Behrenfeld-VGPM being higher in the North-Atlantic, Arctic and Antarctic Circumpolar Current 

(ACC) regions while Eppley-VGPM is higher in the equatorial region. Both CbPM models show a tendency 

to overestimate NPP compared to other models except in the Arctic where the Westberry-CbPM is instead 

lower than the ensemble model mean. Interestingly, although the climatological mean of the Silsbe-CAFE 

appears lower than all other models (Figure 1) this is not globally consistent when expressed as a difference 

which instead highlights that the Silsbe-CAFE overestimates NPP relative to other models in the 

oligotrophic gyres and ACC region. Finally, if we compare global oceanic NPP from the models with 

previous IPCC estimates of 50 Pg C m-2 yr-1, all models have similar ranges between 46.4 – 66.2 Pg C m-2 

yr-1 to those previously reported (32.0 - 70.7 Pg C m-2 yr-1; Buitenhuis et al., 2013; Sathyendranath et al., 

2019b). 
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Interrogating spatio-temporal patterns of NPP Data Products 

Fay and McKinley (2014) classified the global ocean into 17 biomes (Figure 3) according to distinct 

biological (chl-a concentrations) and physical characteristics (SST, MLD and ice fraction). Splitting the 

NPP data according to these biomes allows a regional comparison of inter model differences and 

similarities. The annual model means of each NPP product range from a minimum value of 212.15±39.25 

mg C m-2 d-1 in the Southern Ocean subpolar seasonally stratified (SO SPSS) biomes (Figure 3s) to a 

maximum value of 654.50±141.18 mg C m-2 d-1 in the East Pacific equatorial biome (PEQU E) biome 

(Figure 3g). When globally averaged (Figure 3s) the models appear to agree very well in their annual 

climatologies of NPP, however when interrogated on a per biome basis, some discrepancies emerge. For 

example, although there is particular good agreement in NPP in the oligotrophic gyres (Figure 3e,h,l,n), 

large intra-model differences are particularly evident in the equatorial biomes (Figure 3f,g,m) and the high 

latitude Atlantic and Pacific (Figure 3b,c,i,j). In some biomes there is also a tendency for models to merge 

or diverge over time. For example, there is a large inter model spread in the early 2000’s in the North 

Atlantic and Southern Ocean ICE biomes (Figure 3 i, r), which narrows over time, while the opposite is 

apparent in the North Atlantic Subpolar seasonally stratified biome (NA SPSS) biome (Figure 3j). Also 

worth noting are regions where all models agree except one, for example the comparatively lower NPP for 

the Behrenfeld-VGPM model in the West Pacific equatorial biome (PEQU W) (Figure 3f). 
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Figure 3: (a) Map of the mean biomes from Fay and McKinley (2014), where white areas represent regions 

which do not fit into any biome classification. Annual means of net primary productivity (NPP; mg C m-2 

d-1) from the Eppley-VGPM, Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE 

model for the (b) North Pacific Ice biome (NP ICE), (c) North Pacific Subpolar seasonally stratified biome 
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(NP SPSS), (d) North Pacific Subtropical seasonally stratified biome (NP STSS), (e) North Pacific 

Subtropical permanently stratified biome (NP STPS), (f) West Pacific equatorial biome (PEQU W), (g) 

East Pacific equatorial biome (PEQU E), (h) South Pacific Subtropical permanently stratified biome (SP 

STPS), (i) North Atlantic ice biome (NA ICE), (j) North Atlantic Subpolar seasonally stratified biome (NA 

SPSS), (k) North Atlantic Subtropical seasonally stratified biome (NA STSS), (l) North Atlantic Subtropical 

permanently stratified biome (NA STPS), (m) Equatorial Atlantic biome (AEQU), (n) South Atlantic 

Subtropical permanently stratified biome (SA STPS), (o) Indian Subtropical permanently stratified biome 

(IND STPS), (p) South Ocean Subtropical seasonally stratified biome (SO STSS), (q) Southern Ocean 

Subpolar seasonally stratified biome (SO SPSS), (r) Southern Ocean ice biome (SO ICE) and (s) the global 

ocean.  

 

In the next model comparison, we combine biomes into three regions; the northern high latitude, equatorial 

and southern high latitude to examine the seasonal cycle in NPP across the five models. Here, inter-model 

differences become even more pronounced in terms of their minima, maxima and phenology of the seasonal 

cycle (Figure 4). In the northern hemisphere biomes (Figure 4a; North Pacific and North Atlantic ice, 

subpolar seasonally stratified and subtropical seasonally stratified biomes) there is a large range of 

variability in maximum NPP, with the Behrenfeld-VGPM and Behrenfeld-CbPM exhibiting the highest 

peak values (963.08 and 984.36 mg C m-2 d-1, respectively) and the Silsbe-CAFE model exhibiting the 

lowest peak value (512.57 mg C m-2 d-1). The timing of the peaks are also offset with the earliest peak 

occurring in the Eppley-VGPM, Behrenfeld-VGPM and Silsbe-CAFE models at the start of June while the 

Behrenfeld-CbPM and Westberry-CbPM models puts the timing of the peak a few weeks later in mid-June. 

The southern hemisphere biomes (Figure 4c; Southern Ocean ice, subpolar seasonally stratified and 

subtropical seasonally stratified biomes) similarly express a large range in amplitude of the seasonal peak 

across all models, with both CbPM models exhibiting the highest values (776.17 and 700.27 mg C m-2 d-1, 

respectively) whereas the Eppley-VGPM exhibits the lowest peak value (380.82 mg C m-2 d-1). The timing 

of the peak is similar for Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE in January with the 

Eppley-VGPM and Behrenfeld-VGPM models placing the bloom peak earlier in December. The low 

latitude and equatorial biomes (Figure 4b; North & South Pacific subtropical permanently stratified, North 

& South Atlantic subtropical permanently stratified, Indian subtropical permanently stratified, Atlantic and 

Pacific equatorial biomes) do not exhibit any clear seasonal cycle and have a lower range of variability 

across all the models. The range of divergence is more similar to that of the seasonal troughs of NPP in the 
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Northern and Southern high latitude regions, although rates of NPP are not as low (mean for all models for 

the time series = 420.69±75.06 mg C m-2 d-1).  

 

 

Figure 4: The seasonal cycle of net primary productivity (NPP; mg C m-2 d-1) from the Eppley-VGPM, 

Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE models for (a) the northern 

high latitude regions (NA ICE, NP ICE, NA SPSS, NP SPSS, NA STSS and NP STSS), (b) the equatorial 

and low latitude regions (AEQU, PEQU E, PEQU W, IND STPS, NA STPS, SA STPS, NP STPS, SP 

STPS) and (c) the southern high latitude regions (SO ICE, SO SPSS and SO STSS). Data is averaged across 
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the time period 1998 – 2022. Please note that for panel c the data has been shifted for the peak to appear in 

the centre of the plot. The circles represent the timing of the annual maximum. 

We further examined the variability between models by choosing 4 long-term observatory sites; the 

porcupine abyssal plain observatory (PAP; Figure 5a), the Bermuda Atlantic Time Series (BATS; Figure 

5b), the Hawaii Oceanic Time Series (HOTS; Figure 5c) and the Southern Ocean Time Series (SOTS; 

Figure 5d). The BATS site has the lowest range of NPP with the smallest inter-model differences 

(310.11±35.37 mg C m-2 d-1), while HOTS and SOTS express a similar range in NPP (352.86±73.46 & 

345.79±62.22 mg C m-2 d-1, respectively) and the PAP site has the highest range in NPP and greatest inter-

model differences (632.00±180.45 mg C m-2 d-1).  

 

Figure 5: Annual means of net primary productivity (NPP; mg C m-2 d-1) from the Eppley-VGPM, 

Behrenfeld-VGPM, Behrenfeld-CbPM, Westberry-CbPM and Silsbe-CAFE models for (a) the Porcupine 

Abyssal Plain (PAP) observatory, (b) the Bermuda Atlantic Time Series (BATS), (c) the Hawaii Oceanic 

Time Series (HOTS), and (d) the Southern Ocean Time Series (SOTS). 
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Comparison with MODIS and SeaWIFS derived NPP 

When first designed, these NPP models were originally implemented on both SeaWIFS and MODIS data 

products. As such, we are able to compare the new OC-CCI derived NPP for all models presented here with 

the original NPP from both SeaWIFS and MODIS that is downloadable from the Ocean Productivity 

website (http://sites.science.oregonstate.edu/ocean.productivity/). Spatial correlation maps were 

subsequently derived for the Eppley-VGPM, Behrenfeld-VGPM, Westberry-CbPM and Silsbe-CAFE 

models using both SeaWIFS and OC-CCI derived NPP for the period of 1998-01-01 to 2007-12-31 (Figure 

A3) and the MODIS and OC-CCI derived NPP for the period 2003-01-01 to 2019-12-31 (Figure A4). 

Results show very good agreement for Eppley-VGPM (Figure A3a,b; Figure A4a,b) and Behrenfeld-

VGPM (Figure A3c,d; Figure A4c,d) for both SeaWIFS (median R2 = 0.83 and 0.87 respectively) and 

MODIS (median R2 = 0.85 and 0.90 respectively) with some lower R2 values evident in the equatorial 

region. Correlations were generally poor for the Westberry-CbPM model for both SeaWIFS (median R2 = 

0.41) and MODIS (median R2 = 0.52). Correlations against the Silsbe-CAFE model were good at higher 

latitudes for both SeaWIFS and MODIS but poor in the equatorial region with the overall correlation being 

worse for MODIS (median R2 = 0.66) than for SeaWIFS (median R2 = 0.70). However, the NPP data 

products generated from SeaWIFS and MODIS for these respective time periods were derived using the 

HYCOM MLD data product and not Hadley (as per the OC-CCI NPP product), which may account for 

some of the observed variability and poor correlations. For consistency, we can instead similarly use the 

HYCOM MLD with a density criterion of Δσ10m = 0.030 kg m-3 (Figure A5) to derive the OC-CCI NPP 

product for comparison with SeaWIFS and MODIS products for the Westberry-CbPM and Silsbe-CAFE 

models (which both use MLD as input criteria unlike the VGPM models) (Ryan-Keogh, 2023b). Here we 

see an overall improvement in the spatial correlation maps and distribution of R2 which for Westberry-

CbPM increased in both SeaWIFS and MODIS to an R2 = 0.51 and 0.60, respectively, while for the Silsbe-

CAFE model the correlation increased to an R2 = 0.76 and 0.70 (for SeaWIFS and MODIS, respectively).  

 

The reasons for discrepancies between NPP products derived from OC-CCI versus SeaWIFS/MODIS can 

culminate from differences in the satellite products themselves (which will not be investigated here), but 

also from additional sources of variability that stem primarily from differences in the criteria of input 

variables. For instance, the original Westberry-CbPM study used a mixed layer definition of ΔT10m = 0.5°C, 

whereas the NPP products applied here use a density criteria of Δσ10m = 0.030 kg m-3. If we instead derive 

NPP from an MLD that is defined with a density criteria of Δσ10m = 0.125 kg m-3 (as per the alternative 

MLD criterion listed on the Ocean Productivity website 
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(http://sites.science.oregonstate.edu/ocean.productivity/)) (Ryan-Keogh, 2023c) we see a further 

improvement in the spatial correlation of NPP for the Westberry-CbPM (Figure A5a-d), for both SeaWIFS 

(R2 = 0.65) and MODIS time periods (R2 = 0.74) as well as the Silsbe-CAFE model for both SeaWIFS (R2 

= 0.83) and MODIS (R2 = 0.77), with poor agreement still persisting in the equatorial Atlantic and Arabian 

Sea.  

Another potential source of variability for the Westberry-CbPM model specifically lies in the data source 

used for determining the nitracline depth. Westberry et al. (2008) originally used the WOA01 data product 

whereas here we have used the updated WOA18 product. As a brief investigation on differences between 

datasets we looked at examples of the total number of nitrate data points in WOA09 and WOA13, 1186280 

and 3603293 respectively, compared to WOA18, 4097914, representing increases of 203% and 14% 

respectively. Further analysis investigated differences in the nitracline depth if derived using WOA13 

versus WOA18 (Figure A7) results show that differences occupy the same spatial extent as the areas of 

poor spatial correlation. Future versions of this product will need to incorporate updates to global nitrate 

climatologies, such as the planned release of WOA23 which will greatly improve estimates of the nitracline 

depth. 

The remaining potential sources of variability, specific to the Silsbe-CAFE model, are the choice of salinity 

data for deriving the backscattering of pure water (bbw) and the derivation of the spectral slope of bbp (η). 

In Silsbe et al. (2016) they assumed a constant salinity of 32.5 for simplicity, whereas here we have used 

monthly means of salinity taken from WOA18. The difference between this reference value and the monthly 

means (Figure A8) show that areas such as the equatorial Pacific and Atlantic, which had the lowest spatial 

correlations for the Silsbe-CAFE model, have some of the biggest differences in salinity. A sensitivity 

analysis of the Zhang and Hu (2009) derivation of backscattering by pure water shows that the incorrect 

implementation of salinity can have significant implications on the final value (Figure A9). As such we 

recommend the use of monthly climatologies, but in the future it will become necessary to account for 

changing salinities, particularly in polar regions where changes in sea ice extent is resulting in freshening 

(Haumann et al., 2020). One potential data product could be the climate change initiative satellite based sea 

surface salinity product (Boutin et al., 2021), which has already shown strong promise of capturing 

variations in salinity that match in situ measurements from both Argo floats and ships. As OC-CCI does 

not release η as a standard product we had to derive it using the Rrs data following equation 1 from Pitarch 

et al. (2019). However, the wavelengths required for this derivation are 443 and 555 nm, with OC-CCI 

having only 560 nm. Nevertheless, we find good agreement between MODIS derived η and OC-CCI η 

across the global ocean (Figure A10), with only a few areas in the Arctic that have very low agreement 
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(median R2 = 0.78). The differences highlighted here in η and the inherent optical properties (IOP), which 

are required for the derivation of each NPP algorithm, can be explained by the use of different ocean colour 

algorithms. For example, OC-CCI uses QAA that requires multiple Rrs bands (typically 6 or more) and can 

account for variability in the spectral shape of reflectance and the IOPs (i.e., bbp, aph, adg). This makes 

this algorithm suitable for multiple water types from the open ocean to optically complex coastal waters. A 

different algorithm which is typically used to process data from MODIS is the Garvel-Siegel-Maritorena 

(GSM) (Garver and Siegel, 1997; Maritorena et al., 2002) algorithm that only requires 3 Rrs bands, and 

therefore does take into account spectral variability meaning it is typically only suited for open ocean 

waters. Indeed, some studies have highlighted how the GSM model can sometimes overestimate bbp (λ443) 

values (Brewin et al. 2015), which would directly impact the NPP algorithms here which use this IOP to 

estimate phytoplankton carbon. 

 

4 Conclusion 

The data product presented here provides a continuous record of global satellite derived NPP at 8-day and 

monthly resolution using multiple algorithms applied to the OC-CCI product as the longest continuing 

record of satellite ocean colour (Sathyendranath et al., 2019a). The purpose is not to advocate for the 

suitability of one NPP model over another, as other studies have already highlighted the strengths and 

weaknesses of different satellite NPP algorithms ability to capture the appropriate range of in situ NPP 

measurements (Saba et al., 2011; Friedrichs et al., 2009; Carr et al., 2006; Campbell et al., 2002). Rather, 

the strength in this multi-model data product lies in its ability to offer a range of NPP across different 

algorithms either as a climatology or as a long-term climatic trend for a user's specific region of interest. 

Additionally, by providing multiple algorithms the user can interrogate the distribution of NPP across 

different models to identify consensus or outliers that can inform decisions on whether or not to retain or 

reject specific algorithms in their regional analysis. Flexibility also exists on decisions around the mixed 

layer depth with two different density criteria (Δσ10m = 0.030 or 0.125 kg m-3) or products (HYCOM versus 

Hadley) that can be altered to ensure that the MLD input best reflects the user's region of interest. Currently 

the OC-CCI is released on an annual basis with specific corrections and adjustments made based upon 

assessments of previous single sensor data streams and any new data sources. The multi-model data product 

presented here will be updated on the same regular basis as and when OC-CCI data is updated, with 

backwards corrections similarly applied to prevent the retention of erroneous values in the data record. 

Future updates to this data product will similarly incorporate not only updated climatological mean values 

(i.e., the planned release of WOA2023), but will also incorporate additional NPP algorithms, (i.e., SABPM; 
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Tao et al., 2017). to provide the user with a wide range of options for assessing climatological seasonal 

cycles as well as trends and trajectories of oceanic productivity. 

 

Appendices 

 

 

Figure A1: The annual mean trends of the different MLD data products HYCOM (a-f) and Hadley (g-l) for 

the different criterion of Δσ10m = 0.030 kg m-3 (a-c,g-i) and Δσ10m = 0.125 kg m-3 (d-f,j-l) averaged for the 

whole year (a,d,g,j), December to February (b,e,h,h) and June to August (c,f,i,l). Trend analysis performed 

as described in Ryan-Keogh et al. (2023). 
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Figure A2: The difference in climatological mean [1998-2022] NPP between the inter-model mean and (a) 

Eppley-VGPM, (b) Behrenfeld-VGPM, (c) Behrenfeld-CbPM, (d) Westberry-CbPM and (e) Silsbe-CAFE 

models.  
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Figure A3: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between 

SeaWIFS and OC-CCI for the period of 1998-01-01 to 2007-12-31 for (a,b) Eppley-VGPM, (c,d) 

Behrenfeld-VGPM, (e,f) Westberry-CbPM and (g,h) Silsbe-CAFE. Please note that for Westberry-CbPM 

and Silsbe-CAFE, the MLD product used for SeaWIFS is HYCOM and the MLD product for OC-CCI is 

Hadley, both using the Δσ10m = 0.030 kg m-3 criterion. 
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Figure A4: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between 

MODIS and OC-CCI for the period of 2003-01-01 to 2019-12-31 for (a,b) Eppley-VGPM, (c,d) Behrenfeld-

VGPM, (e,f) Westberry-CbPM and (g,h) Silsbe-CAFE. Please note that for Westberry-CbPM and Silsbe-

CAFE, the MLD product used for SeaWIFS is HYCOM and the MLD product for OC-CCI is Hadley, both 

using the Δσ10m = 0.030 kg m-3 criterion. 
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Figure A5: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values between 

SeaWIFS (a,b,e,f), MODIS (c,d,g,h) and OC-CCI for (a,b,c,d) Westberry-CbPM and (e,f,g,h) Silsbe-CAFE. 

Please note that the MLD product used is HYCOM with the Δσ10m = 0.030 kg m-3 criterion. Included in the 

histograms are the Pearson’s correlation coefficient R2 values using the Hadley MLD data product (in black) 

as displayed in Figures A3 and A4. 
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Figure A6: Spatial correlation maps and histograms of Pearson’s correlation coefficient R2 values using the 

MLD criterion of Δσ10m = 0.125 kg m-3 (in grey) for (a,b) Westberry-CbPM SeaWIFS vs OC-CCI, (c,d) 

Westberry-CbPM MODIS vs OC-CCI, (e,f) Silsbe-CAFE SeaWIFS vs OC-CCI and (a,b) CAFE MODIS 

vs OC-CCI. Included in the histograms are the Pearson’s correlation coefficient R2 values using the MLD 

criterion of Δσ10m = 0.030 kg m-3 (in black) as displayed in Figures A3 and A4. 
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Figure A7: Maps of the difference in nitracline depth, where the nitracline depth is calculated as the depth 

at which nitrate + nitrite is equal to 0.5 μM, between monthly WOA2013 and WOA2018. 
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Figure A8: Maps of the difference in sea surface salinity (SSS) from the WOA18 monthly climatology and 

the reference SSS value used in Silsbe et al. (2016) of 32.5 PSU. 
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Figure A9: Sensitivity analysis of the calculation of the total backscattering of pure seawater (bsw; m-1) as a 

function of both (a) Temperature (°C) (colour scale = Salinity) and (b) Salinity (colour scale = Temperature 

(°C)).  
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Figure A10: A spatial correlation map (a) and a histogram of Pearson’s correlation coefficient R2 values (b) 

between monthly MODIS and OC-CCI derived spectral slope of bbp (η) for the period of 2003-01-01 to 

2019-12-31. 

 

Data Availability 

The primary manuscript data are available at: https://doi.org/10.5281/zenodo.7849935 (Ryan-Keogh, 

2023d). The NPP products which used Hadley Δσ10m = 0.125 kg m-3 data are available at: 

https://doi.org/10.5281/zenodo.7858590 (Ryan-Keogh, 2023a). The NPP products which used HYCOM 

Δσ10m = 0.030 kg m-3 data are available at: https://doi.org/10.5281/zenodo.7860491 (Ryan-Keogh, 2023b). 

The NPP products which used HYCOM Δσ10m = 0.125 kg m-3 data are available at: 

https://doi.org/10.5281/zenodo.7861158 (Ryan-Keogh, 2023c). OC-CCI data were downloaded from 

https://www.oceancolour.org/. SeaWIFS and MODIS NPP data products used for the comparison were 

downloaded from the Ocean Productivity website 

(http://sites.science.oregonstate.edu/ocean.productivity/). The Hadley gridded temperature and salinity data 

were downloaded from https://www.metoffice.gov.uk/hadobs/en4/. The HYCOM MLD data were 

downloaded from the Ocean Productivity website 

(http://sites.science.oregonstate.edu/ocean.productivity/). PAR data were downloaded from 

http://www.globcolour.info/. Sea surface temperature data were downloaded from https://www.ghrsst.org/. 
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