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Abstract  9 

Earth system models (ESMs) are progressively advancing towards the kilometer scale (k-scale). 10 

However, the surface parameters for Land Surface Models (LSMs) within ESMs running at the k-11 

scale are typically derived from coarse resolution and outdated datasets. This study aims to develop 12 

a new set of global land surface parameters with a resolution of 1 km for multiple years from 2001 13 

to 2020, utilizing the latest and most accurate available datasets. Specifically, the datasets consist 14 

of parameters related to land use and land cover, vegetation, soil, and topography. Differences 15 

between the newly developed 1k land surface parameters and conventional parameters emphasize 16 

their potential for higher accuracy due to the incorporation of the most advanced and latest data 17 

sources. To demonstrate the capability of these new parameters, we conducted 1 km resolution 18 

simulations using the E3SM Land Model version 2 (ELM2) over the contiguous United States. 19 

Our results demonstrate that land surface parameters contribute to significant spatial heterogeneity 20 

in ELM2 simulations of soil moisture, latent heat, emitted longwave radiation, and absorbed 21 

shortwave radiation. On average, about 31% to 54% of spatial information is lost by upscaling the 22 

1 km ELM2 simulations to a 12 km resolution. Using eXplainable Machine Learning (XML) 23 

methods, the influential factors driving the spatial variability and spatial information loss of ELM2 24 

simulations were identified, highlighting the substantial impact of the spatial variability and 25 

information loss of various land surface parameters, as well as the mean climate conditions. The 26 

new land surface parameters are tailored to meet the emerging needs of k-scale LSMs and ESMs 27 

modeling with significant implications for advancing our understanding of water, carbon, and 28 

energy cycles under global change. The 1 km land surface parameters are publicly available at 29 

https://doi.org/10.25584/PNNLDH/1986308 (Li et al., 2023).  30 

https://doi.org/10.25584/PNNLDH/1986308


 

 

1. Introduction 31 

Aided by advancements in computing power, it has become increasingly feasible to run land 32 

surface models (LSMs) and Earth system models (ESMs) at the kilometer scale (k-scale) to 33 

improve our understanding of Earth system processes. The emergence of k-scale modeling has the 34 

potential to improve the accuracy of climate simulations significantly and allow for explicit 35 

modeling of physical processes that were previously poorly represented in climate models (Nat. 36 

Clim. Chang. 2022), such as modeling of mesoscale convective systems in the atmosphere (Slingo 37 

et al., 2022) and mesoscale eddies in ocean (Hewitt et al., 2022). Simultaneously, land modeling 38 

has also witnessed a surge of interest in hyper-resolution modeling, initially proposed by Wood et 39 

al. (2011), which aims to model land surface processes at a horizontal resolution of 1 km globally 40 

and 100 m or finer for continental or regional domains. The motivation behind hyper-resolution 41 

modeling is to address the requirements of operational forecasting like extreme events, and to 42 

enhance our understanding of hydrological and biogeochemical cycling, and land–atmosphere 43 

interactions. High-resolution LSMs have been increasingly applied in various fields, as 44 

demonstrated by recent examples, such as 30-meter soil moisture simulations over the contiguous 45 

United States (CONUS) (Vergopolan et al., 2020, 2021, 2022), 500-meter hyper-resolution 46 

modeling of surface and root zone soil moisture over Oklahoma (Rouf et al., 2021), 1-km 47 

simulations over Southwestern US (Singh et al., 2015), 3-km simulations over eastern Tibetan 48 

Plateau to understand hydrological changes over mountainous regions (Yuan et al., 2018; Ji and 49 

Yuan, 2018), 6-km simulations over China to reduce simulations errors of hydrological variables 50 

(Ji et al., 2023). High-resolution modeling can better capture the land surface heterogeneity and 51 

could improve simulations of terrestrial water and energy cycles (Giorgi and Avissar, 1997; 52 

Chaney et al., 2018; Xu et al., 2023), biogeochemical cycles (Chaney et al., 2018), as well as land–53 



 

 

atmosphere coupling (Liu et al., 2017; Zhou et al., 2019; Bou-Zeid et al., 2020). For example, 54 

Singh et al. (2015) demonstrated that increasingly capturing topography and soil texture 55 

heterogeneity at finer resolutions (e.g., 1 km) improves land surface modeling of water and energy 56 

variables. Li et al. (2022) have shown that the spatial heterogeneities of land surface parameters 57 

(including land use and land cover (LULC) and topography) are essential for modeling the spatial 58 

variability of land surface energy and water partitioning. Hao et al. (2022) found that 1 km 59 

simulations with sub-grid topographic configurations can better capture the topographic effects on 60 

surface fluxes. 61 

 62 

The parameters for LSMs within ESMs being run at the k-scale are typically derived from coarse 63 

resolution datasets or outdated datasets. Consequently, k-scale modeling may not accurately 64 

represent fine-scale land surface heterogeneity unless high-resolution land surface parameters at 65 

the kilometer or finer scales are utilized. Publicly available land surface parameters are primarily 66 

provided at coarse resolutions and based on outdated datasets (see details in Table 1). For example, 67 

the Community Land Model version 5 (CLM5; Lawrence et al., 2019) typically relies on land 68 

surface parameters with spatial resolutions ranging from 1km to 0.5º based on source datasets that 69 

were processed more than 10 years ago (see Table 1 for details). Although LULC-related 70 

parameters are available at a relatively high resolution of 0.05º, they are temporally static and were 71 

derived from a combination of data from different years spanning 1993 to 2012 (Table 1). Leaf 72 

area index (LAI) was derived from the now outdated products of Moderate Resolution Imaging 73 

Spectroradiometer (MODIS) collection 4 (Myneni et al., 2002). The canopy height for tree Plant 74 

Functional Types (PFTs) is based on forest canopy height data derived from the Geoscience Laser 75 

Altimeter System (GLAS) aboard ICESat, collected in 2005 (Simard et al., 2011). Canopy height 76 



 

 

for short vegetation is represented by PFT-specific values that remain invariant in space (Bonan et 77 

al., 2002). Soil sand and clay content were obtained from the International Geosphere-Biosphere 78 

Programme (IGBP) soil dataset (Global Soil Data Task 2000) consisting of 4931 soil mapping 79 

units (IGBP, 2000). These CLM5 land surface parameters have been widely utilized in the LSMs 80 

and ESMs communities, despite being developed over a decade ago. Subsequently, Ke et al. (2012; 81 

hereafter referred to as K2012) developed an updated set of LULC and vegetation-related land 82 

surface parameters for CLM4 at a resolution of 0.05º. These parameters were developed based on 83 

MODIS collection 5 products or datasets derived from MODIS collection 5 products, including 84 

PFTs and non-vegetation land cover, LAI, and Stem Area Index (SAI). K2012 has also been widely 85 

used by LSMs, including CLM (e.g., Leng et al., 2013; Ke et al., 2013; Singh et al., 2015; Xia et 86 

al., 2017) and the Energy Exascale Earth System Model (E3SM) Land Model (ELM) (e.g., 87 

Caldwell et al., 2019; Leung et al., 2020; Li et al., 2022). However, the CLM5 and K2012 datasets, 88 

with their relatively coarse resolution and reliance on outdated data from over a decade ago, may 89 

not fully meet the requirements for k-scale modeling. Additionally, these datasets include LULC, 90 

LAI, and SAI that are year invariant. Consequently, they are inappropriate for studies involving 91 

LULC changes, such as urbanization. In addition, some recently developed land surface processes 92 

and their associated parameters are not included in previous datasets. For instance, Hao et al. (2021) 93 

introduced a sub-grid topographic parameterization of solar radiation with five associated 94 

topographic factors in ELM, which have been found to significantly affect the surface energy 95 

budget. the surface energy budget. 96 

 97 

High-resolution and up-to-date datasets at kilometer or finer resolutions are now widely available 98 

and can be utilized to derive more accurate land surface parameters for k-scale LSM simulations. 99 



 

 

For example, the MODIS Land Cover Type Collection 6 (MCD12Q1 C6) data product provides 100 

global land cover types yearly from 2001 to the present (Friedl et al., 2019; Sulla-Menashe et al., 101 

2019) at 500-meter resolution. Compared to the MODIS Collection 4 (used in CLM5 land surface 102 

parameters) and Collection 5 products (used in K2012 land surface parameters), the C6 data 103 

represents a significant advancement in algorithm improvements and the quality of land cover 104 

information. Despite the availability of high-resolution MODIS LAI products, such as the 500 m 105 

MCD15A2H (Myneni et al., 2021), they suffer from noise and gaps with spatially and temporally 106 

inconsistent values due to clouds, seasonal snow cover, instrument issues, and uncertainties in 107 

retrieval algorithms (Yuan et al., 2011). To address these limitations, Yuan et al. (2011) 108 

reprocessed MODIS LAI products and generated a more accurate and spatiotemporally continuous 109 

and consistent LAI dataset that is available continuously to the present period. Additional high-110 

resolution and up-to-date datasets are available for preparing land surface parameters, such as soil 111 

texture and soil organic matter at 250-meter resolution (Poggio et al., 2021) and vegetation height 112 

at 10-m resolution (Lang et al., 2023). 113 

 114 

This study aims to develop a new set of global land surface parameters with a resolution of 1 km 115 

for multiple years, utilizing the latest and most accurate available datasets. These parameters will 116 

be tailored to meet the needs of k-scale Earth system modeling. The newly developed land surface 117 

parameters include four categories: (1) LULC-related parameters, such as the spatial distributions 118 

of PFTs, lakes, wetlands, urban areas, and glaciers; (2) vegetation-related parameters, including 119 

PFTs' LAI and SAI for multiple years ranging from 2001 to 2021, and the canopy top and bottom 120 

height; (3) soil-related parameters, such as soil textures and soil organic matter; and (4) 121 

topography-related parameters, such as elevation, slope, aspect, and sub-grid topographic factors. 122 



 

 

We conducted a comparison of the new 1k parameters against the K2012 and ELM2/CLM5 default 123 

parameters. Utilizing ELM version 2 (ELM2) as a testbed, we demonstrated the modeling 124 

capability enabled by the new high-resolution parameters through a 5-year simulation at 1 km 125 

resolution over the CONUS. We performed a spatial scaling analysis on four ELM2 simulated 126 

variables, which included soil moisture, latent heat, emitted longwave radiation, and absorbed 127 

shortwave radiation, to underscore the significance of high-resolution land surface parameters on 128 

ELM2 simulations. We employed eXplainable Machine Learning (XML) methods to evaluate the 129 

most important factors of land surface parameters and climate conditions (e.g., mean temperature 130 

and precipitation) in driving the spatial variability and spatial information loss of ELM2 131 

simulations.  132 



 

 

2. Development of 1km land surface parameters 133 

In this study, all the land surface parameters were developed globally at a resolution of 134 

approximately 1 km (i.e., 1/120°, hereafter referred to as 1 km; Table 1). The LULC-related 135 

parameters, soil properties, canopy height, and elevation were processed via Google Earth Engine 136 

(GEE; Gorelick et al., 2017). The LAI was processed using an area-weighted average from its 137 

original 450 m resolution obtained from Beijing Normal University (Yuan et al., 2011). All data 138 

sources utilized in this study have been rigorously validated in their respective original 139 

publications. The detailed methods for deriving these parameters are described below. 140 

  141 



 

 

Table 1 Comparison between new and previous land surface parameters 142 

Category Land surface 
parameters This study ELM2 / CLM5 * K2012 

LULC 

PFTs, 
Lake, 

Glacier, 
Urban 

• Resolution: 1 km, yearly, 2001-2020 
 

• Data source: 500 m, yearly, MODIS 
collection 6 (Friedl et al., 2019) 

• Resolution: 0.05°, temporally static, processed 
based on data from mixed years 
 

• PFTs data source: mixed years from 1993 to 
2001; 500 m, MODIS Vegetation Continuous 
Fields (Hansen et al., 2003); 1 km, tree cover 
(Defries et al., 2000); 10 km (5 arc minutes), 
cropland (Ramankutty and Foley, 1999); 1 km, 
MODIS land cover collection 4 (Friedl et al., 
2002) 

 
• Lake data source: 3 km (90 arc seconds) lake 

data (Kourzeneva 2009, 2010) 
• Glacier data source: glacier and ice sheet vector 

data (Arendt et al. 2012; Rastner et al. 2012) 
• Urban data source: 1 km urban data (Jackson et 

al., 2010) 
 

• Resolution: 0.05°, year 2005 
 

• Data source: 500 m, yearly, 
MODIS collection 5 (Friedl 
et al., 2010) 

Vegetation 

LAI, 
SAI 

• Resolution: 1 km, monthly, 2001-
2020 
 

• Data source: 450 m, 8-day, 
reprocessed MODIS collection 6 LAI 
(Yuan et al., 2011; Friedl et al., 2019) 

• Resolution: 0.5°, 12 months 
 

• Data source: 1 km, 8-day, MODIS collection 4 
LAI (Myneni et al., 2002) 

• Resolution: 0.05°, year 2005 
 

• Data source: 450 m, 8-day, 
reprocessed MODIS 
collection 5 LAI (Yuan et al., 
2011; Friedl et al., 2010) 

Canopy top height, 
Canopy bottom height 

• Resolution: 1 km, temporally static 
 

• Data source: 10 m, vegetation canopy 
height (Lang et al., 2023) 

• Resolution: 0.5° or PFT specified value, 
temporally static 

 
• Tree PFT data source: 1 km, forest canopy 

height derived using 2005 GLAS aboard ICESat 
data (Simard et al., 2011);  

 
• Short vegetation data source: PFT specific 

values (Bonan et al., 2002) 
 

-- 

Soil 

Percent sand, 
Percent clay 

• Resolution: 1 km, temporally static 
 

• Data source: 250 m, Soilgrid v2 
(Poggio et al., 2021) 

• Resolution: 10 km (0.083°), temporally static 
 

• Data source: IGBP soil data of 4931 mapping 
units (IGBP, 2000) 

-- 
Soil organic matter 

Topography 

Elevation, 
Slope, 

Standard deviation of 
elevation 

• Resolution: 1 km, temporally static 
 

• Data source: 90 m, MERIT Hydro 
elevation (Yamazaki et al., 2019) 

• Resolution: merge of 1 km and 10 arc minutes, 
temporally static 
 

• Data source: global most regions are based on 
USGS HYDRO1k (Verdin and Greenlee 1996); 
but 10 arc minute data is used over Greenland 
and Antarctica. 

-- 

Aspect,  
Sky view factor, 

Terrain configuration 
factor 

• Resolution: 1 km, temporally static 
 

• Data source: 90 m, MERIT Hydro 
elevation (Yamazaki et al., 2019) 

-- 
 

* ELM2 and CLM5 share the same default land surface parameters, detailed descriptions available at: 143 
https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/tech_note/index.html. 144 
 145 
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2.1 LULC-related parameters 147 

In this study, the MODIS MCD12Q1 version 6 (Friedl et al., 2022) was employed to ascertain the 148 

Plant Functional Types (PFT) as well as other non-vegetative land categories at a spatial resolution 149 

of 1 km spanning the years 2001 to 2020. The integrity of the MODIS land cover product has been 150 

established through a 10-fold cross-validation accuracy assessment using the Terrestrial 151 

Ecosystem Parameterization database (Sulla-Menashe et al., 2019). This land cover product offers 152 

richer and more flexible land cover data with higher accuracy and substantially less year-to-year 153 

stochastic variation in classification results (Sulla-Menashe et al., 2019). Being the sole operational 154 

global land cover product available with annual intervals, it addresses a significant gap in the realm 155 

of global change research. 156 

 157 

The original MODIS land cover data was first resampled to 1 km from its original 500 m resolution 158 

using a majority resampling method in GEE. At such a high 1km resolution, we did not consider 159 

the proportion of different land cover types within each grid. Instead, we assigned 100% of a grid 160 

cell to the major land cover type. Specifically, the MCD12Q1 LC_Type 5 PFT classification layer 161 

was used to determine the distributions of the seven PFTs, as well as lake, urban, and glacier, 162 

following the method outlined in Ke et al. (2012) and summarized below: 163 

• The seven PFTs include needleleaf evergreen trees, needleleaf deciduous trees, broadleaf 164 

evergreen trees, broadleaf deciduous trees, shrub, grass, and crop. These PFTs were further 165 

reclassified into 15 categories (Table S1) that are typically used in LSMs based on the rules 166 

presented in Bonan et al. (2002a) with the assistance of 1 km precipitation and surface air 167 

temperature from WorldClim V1 (Hijmans et al., 2005).  168 



 

 

• Grass was reclassified as C3 and C4 grass using the approach presented by Still et al. (2003), 169 

with the assistance of monthly LAI (processed in section 2.2.1) and meteorological 170 

variables from WorldClim V1. 171 

• The "non-vegetated land" was classified as barren soil class. 172 

• The "permanent snow and ice" was assigned as the glacier land unit. 173 

• Global lakes were identified based on the classification of "water bodies" over the global 174 

land, constrained using the global land mask obtained from Natural Earth 175 

(https://www.naturalearthdata.com/). 176 

• The urban land unit was determined based on the MODIS "urban and built-up" 177 

classification. These urban grids were further classified into three urban classes, namely, 178 

tall building district (TBD), high density (HD), and medium density (MD), based on 179 

Jackson et al. (2010; hereinafter referred to as J2010). J2010 generated global urban extent 180 

maps for the TBD, HD, and MD classes at a spatial resolution of 1 km, based on rules of 181 

building height and vegetation coverage fraction 182 

(https://gdex.ucar.edu/dataset/188a_oleson/file.html). However, the J2010 dataset is 183 

temporally static and cannot reflect changes in urban boundaries over time. Therefore, we 184 

reclassified the yearly MODIS urban land class as TBD, HD, and MD based on the J2010 185 

dataset using the nearest neighbor sampling method for each year. 186 

After determining the distribution of 15 PFTs, bare soil, lake, glacier, and urban land, any 187 

remaining 1 km grids were assigned as ocean (Table S1). It should be noted that the wetland land 188 

unit was not explicitly classified in this study. This is because, instead of treating wetlands as an 189 

individual land unit, many LSMs (e.g., ELM2 and CLM5) integrate wetland functioning processes 190 

https://www.naturalearthdata.com/
https://gdex.ucar.edu/dataset/188a_oleson/file.html


 

 

prognostically within other land units where a surface water storage component is implemented to 191 

represent wetland functioning. 192 

 193 

2.2 Vegetation-related parameters 194 

2.2.1 Monthly LAI and SAI 195 

The monthly LAI parameters were obtained from Beijing Normal University (BNU_LAI; Yuan et 196 

al., 2011). BNU_LAI, an enhanced version of the MODIS LAI product, has been subjected to 197 

thorough quality control, incorporating multiple algorithms for improved accuracy (Yuan et al., 198 

2011). Its validation involved an extensive array of LAI reference maps and employed the bottom-199 

up approach advocated by the CEOS Land Product Validation sub-group (Morisette et al., 2006). 200 

Compared to the original MODIS LAI, the BNU_LAI dataset exhibits superior performance, along 201 

with enhanced spatiotemporal continuity and consistency. The 8-day BNU_LAI product at a 202 

resolution of 15 seconds (~450 m) over 2001–2020 was downloaded from 203 

http://globalchange.bnu.edu.cn/research/laiv061. Subsequently, the data were resampled to a 204 

resolution of 1 km using an area-weighted average method and averaged temporally for each 205 

month. The processed monthly LAI at 1 km resolution was subsequently assigned to each of the 206 

15 PFTs described above at each grid. The monthly SAI was then calculated based on the 207 

processed monthly LAI using the methods and PFT parameters described in Zeng et al. (2002). 208 

 209 

2.2.2 Vegetation canopy height 210 

We leveraged a global vegetation canopy height dataset sourced from Lang et al. (2023). This 211 

dataset, derived using a probabilistic deep learning model, fuses Sentinel-2 images with the Global 212 

Ecosystem Dynamics Investigation (GEDI) to retrieve canopy height. It stands out as the inaugural 213 

http://globalchange.bnu.edu.cn/research/laiv061


 

 

global canopy height dataset offering consistent, wall-to-wall coverage at a 10 m spatial resolution 214 

across all vegetation types. Assessments using hold-out GEDI reference data and comparisons 215 

with independent airborne LiDAR data demonstrate that the approach outlined by Lang et al. (2023) 216 

produces a meticulously quality-controlled, state-of-the-art global map product, accompanied by 217 

quantitative uncertainty estimates. The canopy height served as the canopy top height parameter. 218 

Canopy bottom height was calculated by multiplying PFT-based ratios derived from the ratio of 219 

ELM2’s (same as CLM5) canopy top and bottom heights for different PFTs (Table S2). 220 

 221 

2.3 Soil-related parameters 222 

We obtained the Soilgrid v2 data with an original resolution of 250 m (Poggio et al., 2021) to 223 

prepare soil properties. Soilgrid is generated using machine learning based on multiple data 224 

sources of soil profiles and remote sensing data (Hengl et al., 2017). The soil product underwent 225 

rigorous quantitative evaluation using a cross-validation method, which ensures alignment with 226 

established pedo-landscape features and provides spatial uncertainty to guide product users 227 

(Poggio et al., 2021). Soilgrid v2 provides percent clay, percent sand, and soil organic matter for 228 

six standard soil layers: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm. 229 

The original SoilGrid version 2 data obtained from GEE were processed at 1 km resolution with 230 

multiple layers using an area-weighted average method. To facilitate the demonstration, we 231 

restructured the six soil layers vertically into ELM2’s ten effective soil layers (0–1.8 cm, 1.8–4.5 232 

cm, 4.5–9.1 cm, 9.1–16.6 cm, 16.6–28.9 cm, 28.9–49.3 cm, 49.3–82.9 cm, 82.9–138.3 cm, 138.3–233 

229.6 cm, and 229.6–380.2 cm) using the nearest neighboring method. It should be noted that the 234 

lake module in ELM2 and CLM5 requires soil properties, but the Soilgrid v2 data may not provide 235 



 

 

coverage over water surfaces. To address this, we utilized the nearest neighbor sampling method 236 

to map the 1 km soil properties onto the terrestrial water surface. 237 

 238 

2.4 Topography-related parameters 239 

We employed the digital elevation from the Multi-Error-Removed Improved-Terrain DEM 240 

(MERIT DEM, Yamazaki et al., 2019) to obtain topography-related parameters. The MERIT DEM 241 

provides globally consistent elevation data at 90 m resolution, distinguished by its exceptional 242 

vertical accuracy. This accuracy was rigorously validated against ICESat’s lowest elevations in 243 

both forested and non-forested regions and was further benchmarked using the UK’s premium 244 

airborne LiDAR DEM (Yamazaki et al., 2019). We first acquired the 1km elevation and standard 245 

deviation of elevation using GEE based on the original 90 m elevation. Further, we calculated the 246 

slope, aspect, sky view factor, and terrain configuration factor from the 1km elevation using the 247 

parallel computing tool developed by Dozier (2022). The sky view factor represents the proportion 248 

of visible sky limited by adjacent terrain, and the terrain configuration factor describes the 249 

proportion of adjacent terrain which is visible to the ground target. Finally, to drive the 250 

parameterization of sub-grid topographical effects on solar radiation (Hao et al., 2022) in ELM2, 251 

we calculated the sin(𝑠𝑙𝑜𝑝𝑒) ∙ sin(𝑎𝑠𝑝𝑒𝑐𝑡)  and sin(𝑠𝑙𝑜𝑝𝑒) ∙ cos(𝑎𝑠𝑝𝑒𝑐𝑡)  for calculating the 252 

local solar incident angle, and two normalized angle-related factors, the sky view factor, and terrain 253 

configuration factor by cos(𝑠𝑙𝑜𝑝𝑒). It is important to note that the standard deviation of elevation 254 

calculated in this study is specific to the 1 km resolution simulation. For applications requiring 255 

coarser resolutions (e.g., 0.5 degree), the standard deviation should be recalculated directly from 256 

the 1 km elevation, rather than averaging from the 1k standard deviation of elevation. 257 

 258 



 

 

2.5 Comparison between new and existing land surface parameters 259 

In this study, since the data sources used to develop the 1k global land surface parameters have 260 

already undergone rigorous validation, we do not perform additional evaluations against reference 261 

datasets (e.g., observations). Instead, our focus is on comparing the newly developed 1k 262 

parameters with those from K2012 and the ELM2/CLM5 default parameters. The K2012 263 

parameters, obtained through personal communication (refer to the data availability section for 264 

details). The ELM2/CLM5 default parameters were sourced from the CESM input data repository 265 

(https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/). Given the different resolutions of 266 

these datasets—our new parameters at 1km, K2012 at 0.05 degree, and ELM2/CLM5 defaults with 267 

varying resolutions—we adapt our comparison at different resolutions for different variables. 268 

For PFT parameters, we aggregated both the 1k new parameters and the 0.05-degree K2012 data 269 

to the 0.5-degree resolution of the ELM2/CLM5 default. For non-vegetated land units (i.e., urban, 270 

glacier, and lake), we upscaled the 1k new parameters to a 0.05-degree resolution to align with the 271 

ELM2/CLM5 default. It is important to note that the urban parameter in K2012 is only available 272 

for the northern hemisphere, due to limitations in data acquisition. 273 

When comparing LAI, we aggregated the 1k new and K2012 LAI to 0.5-degree resolution, 274 

matching the ELM2/CLM5 default LAI/SAI resolution. We excluded the comparison of SAI from 275 

our analysis due to the limited availability of the global K2012 dataset, from which we only 276 

acquired coverage for North America. We have not included a comparison of vegetation canopy 277 

height (top and bottom parameters) in our study. This is because the K2012 dataset does not 278 

contain these parameters, and the ELM2/CLM5 default parameters in the CESM input data 279 

repository provide only tabular values for each PFT, rather than spatially variable canopy heights 280 

for tree PFTs. 281 

https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/


 

 

For soil and topography-related parameters, our comparison was limited to the 1k new parameters 282 

and the ELM2/CLM5 default, as K2012 does not include these parameters. Specifically, for soil 283 

comparisons, we aggregated the new 1k parameters to 0.083° resolution to match the ELM2/CLM5 284 

default soil parameters. For topography, given that the ELM2/CLM5 default parameters is a 285 

combination of 1k and 10 arc-minute data sources, we simplify the comparison by aggregating 286 

both the new 1k parameters and ELM2/CLM5 default to 0.5-degree resolution, including elevation 287 

and slope. 288 

  289 



 

 

3. K-scale demonstration simulation over CONUS  290 

3.1 Experiment design  291 

To demonstrate the capability of 1 km datasets, we conducted ELM2 simulations over CONUS at 292 

the resolution of 1 km, using the newly developed 1 km land surface parameters for 2010. We used 293 

atmospheric forcing from the Global Soil Wetness Project Phase 3 (GSWP3; Kim, 2017) with a 294 

spatial resolution of 0.5º to drive ELM. The spatial homogeneity of atmospheric forcings within 295 

0.5º grid cell guarantees that the spatial variability of ELM simulated variables (e.g., latent heat) 296 

within 0.5º grid cell is solely attributable to the heterogeneity of the 1 km land surface parameters. 297 

There are approximately 12 million effective grids over CONUS. We ran ELM for five years 298 

(2010–2014), and the last year’s simulation was used for analysis. We specifically analyzed the 299 

annual mean of surface layer soil moisture (SM, 𝑚!/𝑚! ), latent heat (LH, 𝑊/𝑚" ), emitted 300 

longwave radiation (ELR, 𝑊/𝑚"), and absorbed shortwave radiation (ASR, 𝑊/𝑚"). 301 

3.2 Spatial scaling analysis 302 

We conducted a spatial scaling analysis following the method described in Vergopolan (2022) on 303 

the 1 km ELM simulation data to better understand how k-scale spatial heterogeneity in the four 304 

ELM-simulated variables (mentioned in Section 3.1) induced only by spatial heterogeneity of land 305 

surface parameters changes across spatial scales. First, we performed upscaling by averaging the 306 

1 km (=1/120°) land surface parameters and the four ELM-simulated variables to coarser spatial 307 

scales, 𝜆#$%&'of 1/60°, 1/40°, 1/30°, 1/24°, 1/20°, and 1/10°, and calculated the spatial standard 308 

deviation (𝜎#$%&') within each 0.5° × 0.5° box at each spatial scale (Table 2). Second, we quantified 309 

the changes in spatial variability at different spatial scales compared to the original 1km resolution 310 

by calculating the ratio of 𝜎#$%&'  to 𝜎(	*+ . Third, we fitted a log	(,!"#$%
,&	()

) ∝ 𝛽 × log	(-!"#$%
-&	()

) 311 

relationship, where 𝛽 is an indicator to quantify data spatial variability persistence across scales 312 



 

 

(Hu et al., 1997). A more negative 𝛽 indicates a larger dependency of data spatial variability on 313 

spatial scales, resulting in a higher information loss, denoted as 𝛾#$%&' = (1 − 𝜎#$%&' 𝜎(	./⁄ ) ×314 

100%. In this study, we focus on information loss at a 12 km scale, denoted as 𝛾("	*+ . For 315 

simplicity in subsequent discussion, 𝛾("	*+ will be referred to as 𝛾 in the results section. Given the 316 

possibility that β may not demonstrate significant temporal variation (Mälicke et al., 2020), and 317 

considering that our scaling analysis is intended for demonstration purposes, our spatial scaling 318 

analysis is based on the annual mean of ELM2 simulations. 319 

Table 2. Spatial resolution and pixel number at different spatial scales. 320 

𝜆#$%&' 𝜆(	./⁄  1 2 3 4 5 6 12 

Spatial resolution 1km 
(1/120°) 

2km 
(1/60°) 

3km 
(1/40°) 

4km 
(1/30°) 

5km 
(1/24°) 

6km 
(1/20°) 

12km 
(1/10°) 

Pixel number within 
0.5° × 0.5° box 60 × 60 30 × 30 20 × 20 15 × 15 12 × 12 10 × 10 5 × 5 

 321 

3.3 Attribution analysis utilizing XML methods 322 

We conducted additional analysis to determine the primary land surface parameters that influence 323 

the spatial scaling of ELM simulations. We employed XML methods, specifically the eXtreme 324 

Gradient Boosting(XGBoost; Chen and Guestrin, 2016) machine learning algorithm and the game 325 

theoretic approach SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017; Lundberg et 326 

al., 2018, 2020). XML methods were utilized to assess the influence of land surface parameters on 327 

the spatial variability and information loss of ELM2 simulations across the CONUS. Taking spatial 328 

variability as an example, we first computed the standard deviation (σ) within each 0.5º x 0.5º grid 329 

for both 1 km resolution land surface parameters and simulations. Then, we train a machine 330 

learning model to predict the spatial variability of each simulated variable (i.e., SM, LH, ELR, 331 

ASR). We used the spatial variability (i.e., σ) and mean (µ) of the land surface parameters and µ 332 



 

 

of precipitation and temperature as predictor variables, and the simulated variable's σ as the target 333 

variable. After training the machine learning model, we used SHAP to quantify the relative 334 

importance and determine which factors were most important in driving the spatial variability of 335 

the simulations. Similarly, we used this approach to identify the most critical drivers of information 336 

loss. 337 

 338 

3. Results 339 

3.1 Demonstration of the global 1km land surface parameters 340 

LAI generally shows high values in humid and warm regions, such as tropical rainforests, 341 

southeastern US, and southern Asia, and low values over arid or cold regions, such as central 342 

Australia, southwestern US, Middle East, Central Asia, and northern Canada (Figure 1a). At high 343 

resolution, the LAI dataset clearly reflects the detailed heterogeneity of vegetation distributions. 344 

In subregion R1 (Figure 1b), a relatively small LAI is distributed over mountain ridges and zero 345 

LAI over water surfaces (e.g., lakes). In subregion R2 (Figure 1c), the LAI pattern shows a large 346 

proportion of forest fragmentation caused by deforestation. In subregion R3 (Figure 1d), the LAI 347 

shows the distribution of agricultural land along with the river, river mouth, and lakes under an 348 

arid climate. R4 shows how urbanization affects vegetation distributions (Figure 1e). 349 

Figure 2 demonstrates the distribution of plant functional types and other non-vegetation land units. 350 

High-resolution LULC types over multiple years can benefit studies related to LULC changes like 351 

urbanization and deforestation. Canopy height generally follows a similar spatial pattern with LAI, 352 

with high values in humid and warm regions and low values over arid or cold regions (Figure 3a). 353 

The percent clay shows high values over Southeast Asia, India, central Africa, and southeast South 354 

America, and low content over North Europe, South Africa and Alaska (Figure 3b). The 355 



 

 

topography factors follow the elevation patterns (Figures 3c and 3d), where there are large slopes 356 

and standard deviation of elevation over mountainous regions, such as the Rocky Mountains in 357 

North America, the Himalayas Mountains in Asia, and Andes Mountains in South America. 358 

 359 

Figure 1. The spatial pattern of LAI (annual mean in 2010) over (a) global land and (b)~(e) four 360 

subregions R1~R4 within 2-degree boxes marked in (a). Subregions R1~R4 represent 361 

topography, deforestation, irrigations, and urbanization effects on LAI. 362 

  363 



 

 

 364 

Figure 2. Global LULC distribution in year 2010. PFT abbreviations include: Bare Soil, Needleleaf 365 

Evergreen Trees in temperate (NET-Temperate) and boreal (NET-Boreal) regions, Needleleaf 366 

Deciduous Trees in boreal regions (NDT-Boreal), Broadleaf Evergreen Trees in tropical (BET-367 

Tropical) and temperate (BET-Temperate) regions, Broadleaf Deciduous Trees in tropical (BDT-368 

Tropical), temperate (BDT-Temperate), and boreal (BDT-Boreal) regions, Broadleaf Evergreen 369 

Shrubs in temperate regions (BES-Temperate), Deciduous Shrubs in temperate (BDS-Temperate) 370 

and boreal (BDS-Boreal) regions, C3 Grass in arctic (C3G-Arctic) and general (C3G) varieties, 371 

C4 Grass (C4G), Crop, Lake, Glacier, and Urban.  372 



 

 

 373 

Figure 3. Demonstration of global 1km datasets (a) Canopy top height, (b) percent clay, (c) 374 

standard deviation of elevation, and (d) slope. 375 

 376 

3.2 Comparison between new and existing land surface parameters 377 

The global distributions of different PFTs show varying degrees of difference when comparing the 378 

new parameters with the K2012 and ELM2/CLM5 default parameters (Figure 4 and 379 

Supplementary Figures S1 to S16). Predominant types such as bare soil, BET-Tropical tree, C3 380 

and C4 grass, and crop are found consistently across all datasets. Notable differences include less 381 

bare soil in the new parameters and K2012 compared to ELM2/CLM5 default, especially in high-382 

latitude North America, western US, South Africa, Central Asia, and Central Australia (Figure S1). 383 

While the new NDT PFT shows larger coverage in Siberia than K2012 and ELM2/CLM5 (Figure 384 

S4), BET-Tropical PFT is more prevalent in the new parameters across Central and South America 385 

(Figure S5). BET-Temperate PFT has greater area coverage in southern China in the new 386 

parameters (Figure S6). For BDT-Tropical, BDT-Temperate, and BDT-Boreal PFTs, both the new 387 



 

 

and ELM2/CLM5 default parameters surpass K2012 data in coverage (Figures S7 to S9). The 388 

coverage of new BDS-Temperate PFT is smaller than K2012 but larger than ELM2/CLM5 default 389 

(Figure S11), and the new BDS-Boreal PFT is less extensive in the boreal northern hemisphere 390 

compared to both K2012 and ELM2/CLM5 defaults (Figure S12). The C3-Arctic PFT shows 391 

larger areas in the new parameters, particularly in northern Canada, with the new C4 grass PFT 392 

being similar to that of K2012 and larger than ELM2/CLM5 C4 grass. Crop PFT is less extensive 393 

in the new parameters, particularly in Southeastern China, Europe, South America, Africa, and 394 

Australia.395 

 396 

Figure 4. The global average area fractions of PFTs for three land surface parameter datasets. PFT 397 

abbreviations used on the X-axis are displayed in Figure 2. 398 

 399 

The global distributions of non-vegetated land covers of lake, glacier and urban areas vary among 400 

the datasets (Figure S17–S19). The new dataset shows slightly less lake coverage than K2012, but 401 

both are smaller than ELM2/CLM5 default, particularly in high-latitude North America (Figure 402 

S17). Glacier coverage in the new parameter is around 0.7% smaller than K2012, with noticeable 403 



 

 

differences in the Arctic North America, while ELM2/CLM5 default shows more extensive glacier 404 

coverage in Antarctica (Figure S18). Regarding urban areas, K2012 has the smallest urban 405 

coverage in the Northern Hemisphere compared to both the new dataset and ELM2/CLM5 default 406 

(Figure S19). Meanwhile, ELM2/CLM5 default exhibits more expansive urban areas in India and 407 

China than the new dataset and K2012. 408 

 409 

The global annual mean LAI exhibits similar spatial patterns among the new parameter, K2012, 410 

and ELM2/CLM5 (Figure 5). The overall global mean LAI for the new parameter (1.28 m²/m²) is 411 

slightly higher than that of K2012 (1.14 m²/m²) and the ELM2/CLM5 default data (1.24 m²/m²). 412 

In terms of spatial pattern, the new LAI, relative to K2012 (Figure S20a), shows lower values in 413 

the NET-Boreal PFT over the northern hemisphere, but higher values in the BET-Tropical PFT 414 

over the tropics. Similarly, compared with the ELM2/CLM5 default LAI (Figure S20b), the new 415 

LAI also presents smaller values in both the NET-Boreal and NDT PFTs over the northern 416 

hemisphere, but larger values in the BET-Tropical PFT regions. 417 



 

 

 418 

Figure 5. Comparison of global annual mean LAI for (a) new, (b) K2012, and (c) ELM2/CLM5 419 

default parameters. The global average is indicated in the subplot title. 420 

 421 

Soil parameters exhibit significant differences between the new and ELM2/CLM5 default datasets 422 

(Figures 6a-bc, S21, and S22). The global mean absolute differences between the new and 423 

ELM2/CLM5 default for percent sand, percent clay, and organic matter are 14.1%, 8.1%, and 30.5 424 

kg/m³, respectively. Generally, the new soil parameters are spatially distributed more smoothly 425 

than those from ELM2/CLM5 with more patchy patterns (Figure 6a vs. 6b). Specifically, the new 426 

percent sand is higher in regions like Europe, Siberia, South Africa, and Southern Australia, but 427 

lower in areas such as the Lower Mississippi River Basin, North Africa, and Central and 428 

Southeastern Asia (Figure 6c). The new percent clay shows larger values in the Western US, North 429 

Africa, Central Asia, and Australia, but smaller values in Alaska and Eastern Europe (Figure S21). 430 



 

 

For organic matter, the new parameter indicates smaller values in the Northern Hemisphere but 431 

larger values in other global regions compared to the ELM2/CLM5 default (Figure S22). 432 

Topography-related parameters exhibit broadly similar spatial patterns but with notable 433 

differences between the new and ELM2/CLM5 default parameters, as seen in Figures 6d-6f and 434 

S23. The new slope parameter generally shows a larger slope relative to the ELM2/CLM5 default, 435 

particularly in mountainous regions (Figure 6f). This could be attributed to the new 1 km slope 436 

being calculated from a finer 90 m resolution elevation. Differences in elevation between the new 437 

and ELM2/CLM5 parameters are more pronounced in areas such as various mountainous regions, 438 

Greenland, the Amazon Basin, the Tibetan Plateau, and Australia (Figure S23). 439 



 

 

 440 

Figure 6. Comparisons of percent sand and slope. (a) new and (b) ELM2/CLM5 default percent 441 

sand, along with (c) their difference (new – ELM2/CLM5 default) for percent sand; (d) new, (e) 442 

ELM2/CLM5 default, and (f) their difference for slope. The global average is shown in the subplot 443 

titles, with the global average of the absolute difference provided for (c) and (f). 444 

 445 

3.3 Demonstration 1km simulation over CONUS 446 

ELM simulations at a 1 km resolution display significant spatial heterogeneity over CONUS 447 

(Figure 7). The values of SM, LH, ELR, and ASR across CONUS follow approximately normal 448 



 

 

distributions, with averages of 0.3 m3/m3, 39.0 W/m2, 371.7 W/m2, 156.7 W/m2, respectively (as 449 

shown in the histogram plots in Figure 7). SM shows drier conditions over the West and Southwest 450 

and wetter conditions over the Midwest, Corn Belt, Mississippi River basin, and Northeast (Figure 451 

7a). LH shows high values over the central and southeast, and lower values over the west and 452 

southwest (Figure 7b). The ELR generally shows higher values over regions with high surface 453 

temperature in the south (Figure 7c). The ASR shows higher values over the southwestern regions 454 

determined by incoming solar radiation and albedo (Figure 7d). Despite the high-resolution 455 

heterogeneity shown at 1 km resolution, we can still see the spatial patterns distinguished at coarse 456 

resolution, i.e., 0.5º × 0.5º. These coarser footprints are from the GSWP3 atmospheric forcing with 457 

0.5º resolution. As concluded by Li et al. (2022), atmospheric forcing is one primary heterogeneity 458 

source for land surface modeling. Therefore, k-scale atmospheric forcing needs to be developed to 459 

further advance k-scale offline land surface modeling. 460 

 461 

Figure 7. The annual mean of 1 km simulations of (a) SM, (b) LH, (c) ELR, and (ASR) over 462 

CONUS. The 0.5° × 0.5° boxes marked as L1, L2, L3, and L4 in (a) and (b) are selected to 463 



 

 

demonstrate the spatial scaling analysis. The inserted histogram plot illustrates the distribution of 464 

ELM2 simulations. 465 

 466 

3.4 Demonstration of spatial scaling across scales 467 

We next demonstrate the relationships between spatial variabilities and spatial scales for SM and 468 

LH. Four locations (in Figures 4a and 4b) are specifically chosen to showcase varying levels of 469 

spatial information loss: L1 and L3 demonstrate a relatively large loss for SM and LH, respectively, 470 

while L2 and L4 represent a relatively small loss for SM and LH, respectively. 471 

At location L1 (Figure 8a), when the 1 km simulation is upscaled to coarser resolutions (i.e., larger 472 

spatial scale ratios), the spatial variability of SM decreases, resulting in a negative slope of β. As 473 

shown in Figure 9a, compared to the original 1 km resolution, the information loss γ reaches up to 474 

54.9% at the 12 km spatial scale. The spatial pattern of SM is consistent with the spatial pattern of 475 

percent clay (Figures 6a vs. 6b and 6c vs. 6d), indicating that soil texture contributes significantly 476 

to the spatial variability of SM. However, SM has a more negative β than the percent clay (β = –477 

0.28 vs. –0.19 at L1, as shown in Figure 8a), suggesting that SM variability is amplified likely by 478 

other processes that are also influenced by soil texture. In contrast to location L1, location L2 479 

exhibits less negative β values for both SM and percent clay, suggesting that their spatial 480 

variabilities exhibit less scale dependence (Figures 5a, 6c, and 6d). Both SM and percent clay at 481 

location L2 approximately maintain their spatial patterns of high values in the west and low values 482 

in the east across spatial scales (Figures 6c and 6d).  483 

For LH, there is a more negative β value at location L3 than at location L4 (β = –0.27 at L3 vs. –484 

0.08 at L4, as shown in Figure 8b), which indicates a larger decrease of spatial variability across 485 

spatial scales and lower variability persistence at location L3 than location L4 (Figure 10). The 486 



 

 

spatial pattern of LH is consistent with the spatial pattern of LAI (Figures 7a vs. 7b and 7c vs. 7d) 487 

at different spatial scales, suggesting that vegetation plays a significant role in the spatial 488 

variability of LH. Similar to comparison between SM and soil texture, LH has a more negative β 489 

than LAI (Figure 8b). 490 

 491 

Figure 8. The scaling of spatial variabilities for (a) SM and percent clay, and (b) LH and LAI. Both 492 

the x-axis and y-axis are in logarithmic scale. The slope of the linear regression line, β, quantifies 493 

the strength of the negative relationship between spatial scale and spatial variability. A more 494 

negative β value indicates a higher spatial-scale dependency and increased information loss at 495 

coarser spatial scales. Four 0.5° × 0.5° boxes (displayed in Figure 7), namely L1 to L4, are chosen 496 

to contrast larger and smaller negative β values for SM and percent clay (L1 and L2) and for LH 497 

and LAI (L3 and L4). 498 



 

 

 499 

Figure 9. Comparison of SM and percent clay across spatial scales at locations L1 and L2 500 

highlighted in Figure 7. Each subplot displays the spatial patterns of SM or percent clay within a 501 

0.5° × 0.5° box, with the σ and γ presented in the legend.  502 



 

 

 503 

Figure 10. Similar to Figure 9, but for LH and LAI at locations L3 and L4.  504 



 

 

3.5 The spatial variability of water and energy simulations and their drivers 505 

We quantified the spatial variability simulated at 1 km resolution using σ within each 0.5º × 0.5º 506 

box across CONUS. Four ML models were built to explore the spatial relationships between σ and 507 

its potential drivers including σ of the land surface parameters and the temperature and 508 

precipitation averaged over the grid box. Overall, the ML models performed well in predicting the 509 

σ of the simulated variables, with small root mean square error (RMSE) and large R2 (see Figure 510 

S24). SM shows larger spatial variability in the US Southern Coastal Plain, lower Mississippi 511 

River, Northeast, Southeast, and regions around the Great Lake (Figure 11a), which is roughly 512 

consistent with the spatial heterogeneity of the high-resolution SM simulation in Vergopolan et al. 513 

(2022). Based on the SHAP method, the spatial variability of SM across CONUS is driven by 514 

various factors, mainly including the spatial variabilities of percent sand and percent clay, mean 515 

precipitation, the σ and µ of soil organic matter, the σ of canopy height, and mean temperature 516 

(Figure 11b). Mean precipitation and temperature reflect climate conditions (Figure S26), which 517 

are related to the water supply and water demand of soil water content. The spatial heterogeneity 518 

of soil properties, such as texture and organic matter content, affects soil hydraulic properties and 519 

generate more spatially variable soil water content. Vegetation characteristics, such as canopy 520 

height and LAI, could influence SM spatial variability through their effect on roughness length 521 

and rooting depth. 522 

The spatial variability of LH is large in the southeastern, central, and western mountainous regions 523 

of the US (Figure 11c). Vegetation properties and climate conditions mainly drive the variability 524 

of LH (Figure 11d). The µ and σ of LAI can affect transpiration and soil evaporation, while canopy 525 

height can influence surface roughness length and, in turn, evapotranspiration. Mean precipitation 526 



 

 

and temperature reflect the overall climate conditions related to the water and energy available for 527 

latent heat. 528 

ELR and ASR exhibit large spatial variability mainly over the western US, with ASR additionally 529 

showing significant spatial variability across the Northern US (Figures 8e and 8g). This variability 530 

is primarily driven by climate conditions such as mean precipitation and temperature, topographic 531 

features such as standard deviation of elevation and slope, and vegetation properties including LAI 532 

and canopy height (Figures 8f and 8h). These factors are related to the radiation input and surface 533 

properties, such as albedo and roughness length, which impact the energy cycles and availability 534 

of ELR and ASR. 535 



 

 

 536 

Figure 11. The spatial variability over each 0.5º × 0.5º grid cell (left plots) and the top eight most 537 

important drivers (right plots) of the spatial variability for SM, LH, ELR, and ASR. The inserted 538 



 

 

histogram plot illustrates the probability distribution of the spatial variability across CONUS. The 539 

relative importance of each variable in determining the spatial variability is calculated as the ratio 540 

of the mean |SHAP value| of the variable to the sum of the mean |SHAP value| of all variables. 541 

Therefore, the sum of the relative importance of all variables is 100%.  542 

 543 

3.6 The information loss of water and energy simulations and their drivers 544 

We also evaluated the information loss in simulations when upscaling from 1 km to 12 km 545 

resolution and analyzed the drivers of their spatial patterns over CONUS. Four ML models were 546 

built to explore the relationships between the g of the simulations and its drivers including the g of 547 

the land surface parameters and the mean temperature and precipitation averaged over the 0.5º × 548 

0.5º box. These ML models performed well in predicting the simulations' γ, with small RMSE and 549 

large R2 (Figure S25). 550 

Significant information loss ranging from 31% to 54% with maximum values exceeding 90% is 551 

observed for SM, LH, ELR, and ASR simulations (Figure 12). Their spatial patterns and drivers 552 

show distinct variations. 𝛾01 is primarily driven by the information loss of percent clay and sand, 553 

mean soil organic matter, and mean temperature, which affects the soil hydraulic properties and 554 

soil water balance (Figures 9a and 9b). 𝛾23 displays high values in the eastern US and low values 555 

in the western US (Figure 12c). It is primarily contributed by the information loss of vegetation 556 

properties such as LAI and canopy height, and mean LAI, which influences the partitioning of LH 557 

and sensible heat, and the partitioning of transpiration and evaporation (Figure 12d). 𝛾425 exhibits 558 

high values in the central and eastern US, particularly in the northeastern US, while 𝛾605 has high 559 

values almost all over the US, especially in the eastern regions (Figures 9e and 9g). 𝛾425 and 𝛾605 560 

are largely driven by vegetation properties such as LAI and canopy height, which are associated 561 



 

 

with energy processes such as albedo (Figures 9f and 9h). Additionally, topography factors of 562 

standard deviation of elevation and slope also slightly contribute to 𝛾605. 563 



 

 

 564 

Figure 12. Same to Figure 11 but for information loss.  565 



 

 

4. Discussion 566 

The development of new 1 km land surface parameter datasets in this study marks a substantial 567 

improvement over commonly used land surface parameters such as CLM5 and K2012, leveraging 568 

the latest high-resolution data sources with rigorous validation, including MODIS PFTs, enhanced 569 

LAI and canopy height, soil properties, and topography factors. When compared with K2012 and 570 

ELM2/CLM5 default datasets, the new 1k parameters exhibit notable differences, suggesting 571 

potential improvement due to the use of more advanced data sources. Distinct features of the new 572 

parameters include a reduction in bare soil compared to ELM2/CLM5, especially in regions like 573 

North America and Central Asia, and diverse coverage of specific PFTs such as NDT and BET-574 

Tropical in areas like Siberia and South America. The LAI of the new parameters diverges from 575 

K2012 and ELM2/CLM5, showing lower values in NET-Boreal PFT of the northern hemisphere 576 

but higher BET-Tropical PFT in the tropics. The soil parameters, particularly in regions like 577 

Europe, Central Asia, and the Western US, show significant differences between the new and 578 

ELM2/CLM5 defaults. Moreover, the new parameters indicate larger slopes in mountainous 579 

regions and more distinct elevation differences in areas such as Greenland and the Tibetan Plateau 580 

compared to ELM2/CLM5. These differences potentially highlight enhanced accuracy and 581 

sophistication of the new 1k parameters. Their enhanced resolution and rigorous validation suggest 582 

a substantial capacity to improve ESMs modeling. Additionally, the richness of multi-year data 583 

for LULC, LAI, and SAI in these datasets is especially valuable for examining land use and cover 584 

changes, urbanization trends, deforestation impacts, and agricultural transformations. 585 

 586 

The new 1 km land surface parameters can improve k-scale offline LSMs modeling by better 587 

capturing spatial surface heterogeneity. As evidenced by the 1 km ELM simulation over CONUS, 588 



 

 

soil properties, vegetation properties, and topographic factors contribute a lot to the spatial 589 

heterogeneities of ELM water and energy simulations. Upscaling 1 km to a coarser 12 km 590 

resolution, we observe significant spatial information loss, with SM experiencing an average loss 591 

of 31%, and LH, ELR, and ASR experiencing around 50% information loss on average (Figure 592 

12). This conclusion is in line with the results of Vergopolan et al. (2022), which showed a 593 

substantial loss of spatial information in soil moisture when upscaling from 30 m to 1 km resolution, 594 

with an average loss of approximately 48% and up to 80% over the CONUS region. The XML 595 

analysis reveals that the spatial variability and information loss of ELM2 simulations are 596 

influenced by the spatial variability and information loss of the different variables of land surface 597 

parameters, as well as the mean precipitation and temperature (Figures 11 and 12). Our findings 598 

highlight the critical role of land surface parameters in contributing to the spatial variability of 599 

water and energy in land surface simulations, showcasing the value of the developed high-600 

resolution datasets. Another implementation example where our 1 km land surface parameters can 601 

be beneficial is in hillslope-scale simulations, which are fundamental for organizing water, energy, 602 

and biogeochemical processes (Fan et al., 2019). Krakauer et al. (2014) have highlighted the 603 

significance of between-cell groundwater flow, which becomes comparable in magnitude to 604 

recharge at grid spacings smaller than 10 km. Advancements have been made in ESMs to address 605 

hillslope-scale processes, including the representation of intra-hillslope lateral subsurface flow 606 

within grid cells in CLM5 (Swenson et al., 2019), the development of explicit lateral flow 607 

processes between grid cells (Qiu et al., 2023), and the incorporation of topographic radiation 608 

effects within and between grid cells (Hao et al., 2021). Another notable example is the integrated 609 

hydrology-land surface model ParFlow-CLM, which incorporates three-dimensional groundwater 610 

flow, two-dimensional overland flow, and land surface exchange processes (Maxwell, 2013). 611 



 

 

ParFlow-CLM has demonstrated remarkable reliability in reproducing hydrologic processes, such 612 

as its simulations at 3 km resolution for pan-European and 1 km resolution for CONUS (Naz et al., 613 

2023; O’Neill et al., 2021). More recently, Fang et al. (2022) coupled ParFlow with ELM and the 614 

Functionally Assembled Terrestrial Ecosystem Simulator (FATES) to simulate carbon-hydrology 615 

interactions at hillslope scale. By incorporating our 1 km datasets and leveraging these 616 

advancements, we can improve simulations of hillslope-scale processes and enhance our 617 

understanding of water and energy dynamics within ESMs. 618 

 619 

Additionally, the new land surface parameters are also a timely resource for supporting the 620 

emerging need for k-scale Earth system modeling, particularly in improving land-atmosphere 621 

interaction processes. Representing the impact of spatial heterogeneity on land-atmosphere 622 

interaction processes is a major challenge in Earth system modeling. Taking E3SM as an example, 623 

researchers have proposed three key approaches to enhance spatial heterogeneity representation to 624 

address this challenge. In line with these approaches, our newly developed 1 km land surface 625 

parameters offer promising opportunities for improving land-atmosphere coupling within ESMs. 626 

The first approach to enhance the representation of spatial heterogeneity is to directly conduct 627 

simulations at high resolution. For instance, the Simple Cloud-Resolving E3SM Atmosphere 628 

Model (SCREAM) has been used to perform global simulations at 3.25 km (Caldwell et al., 2021), 629 

although the land surface parameters were based on coarser resolution datasets. By utilizing the 630 

new 1 km land surface parameters, we can enhance the representation of land surface heterogeneity 631 

within the ELM component of SCREAM, potentially improving modeling of land–atmosphere 632 

coupling. The second and third approaches focus on improving the representation of land surface 633 

heterogeneity within ESMs run at a coarse resolution while accounting for subgrid heterogeneity 634 



 

 

in two different ways. In the second approach, the Cloud Layers Unified By Binormals (CLUBB) 635 

has been implemented in E3SM Atmosphere Model (EAM) version 1 (Rasch et al., 2019; 636 

Bogenschutz et al., 2013), to better account for subgrid atmospheric heterogeneity of turbulent 637 

mixing, shallow convection, and cloud macrophysics. Recently, Huang et al. (2022) developed a 638 

novel land-atmosphere coupling scheme in EAM that enables the communication of subgrid land 639 

surface heterogeneity information to the atmosphere model with CLUBB, significantly impacting 640 

boundary layer dynamics. The new 1km datasets can provide more accurate land surface 641 

representations of the variability of individual patches and the inter-patch variability that were 642 

used in Huang et al. (2022). The third approach is the Multiple Atmosphere Multiple Land (MAML) 643 

approach used in the multiscale modeling framework (MMF) in which a cloud resolving model 644 

(CRM) is embedded within each grid cell of the atmosphere (Baker et al., 2019; Lin et al., 2023; 645 

Lee et al., 2023). In the MAML approach, each CRM column within the atmosphere grid is coupled 646 

directly with its own independent land surface. This enables a more explicit representation of the 647 

impact of spatial heterogeneity on land-atmosphere interactions within each grid and has shown 648 

notable impacts on water and energy simulations (Baker et al., 2019; Lin et al., 2023). Lee et al. 649 

(2023) highlighted the limitation of the current MAML approach, which utilizes the same land 650 

surface characteristics for each land surface model interacting with the CRM column within the 651 

same grid, which could lead to a weak representation of land-atmosphere interactions. To address 652 

this limitation, incorporating the new 1 km land surface parameters within the MAML approach 653 

can provide more detailed information about land surface heterogeneity, enabling a more accurate 654 

capture of land-atmosphere interactions. 655 

 656 



 

 

Evaluation of k-scale simulations, while essential, faces significant challenges as merely updating 657 

the land surface input data to the new 1k parameters for k-scale simulations doesn't guarantee 658 

improved model performance, which depends on both input data as well as model parameters and 659 

structures. First, LSMs and ESMs that have been adapted for simulations at coarser resolutions 660 

commensurate with the resolutions of previous land surface data require recalibration for effective 661 

high-resolution modeling. This necessity for recalibration is echoed by Ruiz-Vásquez et al., (2023), 662 

who noted that updating the ECMWF system with new land surface data did not inherently 663 

improve performance, but improvements were seen after recalibrating key soil and vegetation-664 

related parameters. Second, high-resolution modeling requires the incorporation of new physical 665 

processes crucial at finer scales. For example, hillslope-scale processes like lateral flow and 666 

topography-radiation interactions are key to water and energy fluxes at high resolution (Han et al., 667 

2023; Hao et al., 2021). With increased heterogeneity at higher resolutions, larger differences in 668 

land surface properties such as vegetation water use strategies requires more attention to plant 669 

hydraulics besides the traditional focus on soil hydraulics for a more accurate depiction of plant 670 

water use, as highlighted by Li et al., (2021). Third, the lack of high-resolution benchmarks for 671 

large-scale applications, like k-scale atmospheric forcing data, remains a challenge, despite the 672 

availability of relative coarse resolution global datasets such as ERA5_Land (Muñoz-Sabater et 673 

al., 2021) and MSWX (Beck et al., 2021). Additionally, using soil moisture as an example, multiple 674 

high-resolution datasets exhibit significantly different performance when compared to in-situ 675 

measurements (Beck et al., 2021). Lastly, when evaluating simulations against benchmarks, it is 676 

crucial not only to assess absolute differences using metrics like bias and root mean square error 677 

but also to examine other metrics, such as the relationships between physical variables (e.g., 678 



 

 

rainfall vs. runoff; soil moisture vs. evapotranspiration), information loss, and the tail quantiles of 679 

the probability distribution functions for simulations (e.g., extreme events). 680 

 681 

There are certain opportunities for future development of 1k parameters. The urban extension may 682 

vary based on data sources, urban definitions, and the algorithms employed, such as those derived 683 

from harmonized nighttime lights (Zhao et al., 2022), global artificial impervious area (GAIA, Li 684 

et al., 2020b; Gong et al., 2020), urban expansion (Liu et al., 2020; Kuang et al., 2021), 685 

necessitating careful consideration in specific modeling applications. Additionally, urban 686 

classification in J2010, based on global building height data, is limited by the lack of a consistent 687 

and publicly accessible global dataset, despite available regional data for Europe (Frantz et al., 688 

2021), the US (Li et al., 2020a), and China (Cao and Huang, 2021; Yang and Zhao, 2022), thus 689 

posing challenges to future urban classification enhancements. Incorporating local climate zones 690 

offers a promising approach for urban classification and modeling. Moreover, the multiple-year 691 

high-resolution PFT maps like the ones developed by the European Space Agency's Climate 692 

Change Initiative could be used to further extend this dataset for a longer period (Harper et al., 693 

2023). Soil color, crucial for soil albedo and surface energy balance, lacks extensive global datasets 694 

for ESMs modeling, but the global soil color map derived by Rizzo et al. (2023) offers potential 695 

for further kilometer-scale ESMs and LSMs modeling. 696 

 697 

The strategic aggregation of high-resolution parameters to coarser resolutions are crucial to 698 

maintain accuracy and effectiveness in modeling applications. For instance, in soil properties, the 699 

basic parameters (e.g., percent sand) are often utilized to derive secondary parameters (e.g., 700 

saturated water content). This aggregation procedure, whether performs before or after deriving 701 



 

 

secondary parameters—known as 'aggregating first' and 'aggregating after'—is influenced by the 702 

non-linear relationships between basic and derived parameters, with the latter method generally 703 

preferred (Shangguan et al., 2014; Dai et al., 2019). Our study's initial approach in upscaling soil- 704 

and topography-related parameters follows the 'aggregate first' approach, aligning with the 705 

structure of models like ELM2 and CLM5. Conversely, models such as Common Land Model 706 

(CoLM, Dai et al., 2003) and community Noah with multi-parameterization options (Noah-MP, 707 

He et al., 2023; Niu et al., 2011; Yang et al., 2011) integrate secondary derived soil related 708 

parameters directly as inputs, effectively demonstrating the advantages of the 'aggregating after' 709 

approach. By leveraging secondary derived parameters from comprehensive databases such as 710 

SoilGrids (Hengl et al., 2017) and GSDE (Shangguan et al., 2014), these models provide a valuable 711 

framework for future development of models like ELM2 and CLM5 by directly integrating 712 

secondary derived parameters. 713 

  714 



 

 

5. Data availability 715 

The 1 km land surface parameters are publicly available at 716 

https://doi.org/10.25584/PNNLDH/1986308 (Li et al., 2023). 717 

 718 

6. Conclusions 719 

We developed 1 km global land surface parameters using the latest available datasets covering 720 

multiple years from 2001 to 2020. These parameters comprise four categories: LULC of PFTs and 721 

non-vegetative land cover, vegetation properties, soil properties, and topographic factors. The new 722 

1k parameters, when compared to the K2012 and ELM2/CLM5 default datasets, display 723 

significant differences, indicating their potential superiority stemming from the utilization of latest 724 

and more advanced data sources. The 1 km resolution ELM simulations conducted over CONUS 725 

demonstrate the valuable capabilities of the new datasets in enabling k-scale land surface modeling. 726 

Through scaling analysis of the 1 km resolution simulations within 0.5º × 0.5º boxes where spatial 727 

heterogeneity of the simulations is induced only by spatial heterogeneity of the land surface 728 

parameters, we revealed the significant impact of land surface parameters on the spatial variability 729 

of water and energy simulations. The spatial information loss of these simulations over CONUS 730 

is significant when upscaling from 1 km to a coarser 12 km resolution, with an average ranging 731 

from 31% to 54% and up to more than 90%. The XML analysis reveals that the spatial variability 732 

and spatial information loss of ELM2 simulations are primarily impacted by the spatial variability 733 

and information loss of soil properties, vegetation properties and topography factors, as well as the 734 

mean climate conditions of precipitation and temperature. Furthermore, the spatial variability of 735 

water and energy in the 1 km simulations is not dominated by the spatial heterogeneity of any land 736 

surface parameters, suggesting the usefulness of the multi-parameter high-resolution land surface 737 

https://doi.org/10.25584/PNNLDH/1986308


 

 

parameter dataset. The availability of 1 km land surface parameters is a valuable resource that 738 

addresses the emerging needs of k-scale LSMs and ESMs modeling. By providing accurate and 739 

precise information, these 1 km land surface parameters will significantly enhance our 740 

understanding of the water, carbon, and energy cycles under global change. 741 

  742 
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