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Abstract  9 

Earth system models (ESMs) are progressively advancing towards the kilometer scale (k-scale). 10 

However, the surface parameters for Land Surface Models (LSMs) within ESMs running at the k-11 

scale are typically derived from coarse resolution and outdated datasets. This study aims to develop 12 

a new set of global land surface parameters with a resolution of 1 km for multiple years from 2001 13 

to 2020, utilizing the latest and most accurate available datasets. Specifically, the datasets consist 14 

of parameters related to land use and land cover, vegetation, soil, and topography. Differences 15 

between the newly developed 1k land surface parameters and conventional parameters emphasize 16 

their potential for higher accuracy due to the incorporation of the most advanced and latest data 17 

sources. To demonstrate the capability of these new parameters, we conducted 1 km resolution 18 

simulations using the E3SM Land Model version 2 (ELM2) over the contiguous United States. 19 

Our results demonstrate that land surface parameters contribute to significant spatial heterogeneity 20 

in ELM2 simulations of soil moisture, latent heat, emitted longwave radiation, and absorbed 21 

shortwave radiation. On average, about 31% to 54% of spatial information is lost by upscaling the 22 

1 km ELM2 simulations to a 12 km resolution. Using eXplainable Machine Learning (XML) 23 

methods, the influential factors driving the spatial variability and spatial information loss of ELM2 24 

simulations were identified, highlighting the substantial impact of the spatial variability and 25 

information loss of various land surface parameters, as well as the mean climate conditions. The 26 

comparison against four benchmark datasets indicates that ELM generally performs well in 27 

simulating soil moisture and surface energy fluxes. The new land surface parameters are tailored 28 

to meet the emerging needs of k-scale LSMs and ESMs modeling with significant implications for 29 

advancing our understanding of water, carbon, and energy cycles under global change. The 1 km 30 

land surface parameters are publicly available at https://zenodo.org/records/10523833 (Li et al., 31 

2024).  32 

Deleted: https://doi.org/10.25584/PNNLDH/1986308 (Li et 33 
al., 2023)…34 

https://zenodo.org/records/10523833
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1. Introduction 35 

Aided by advancements in computing power, it has become increasingly feasible to run land 36 

surface models (LSMs) and Earth system models (ESMs) at the kilometer scale (k-scale) to 37 

improve our understanding of Earth system processes. The emergence of k-scale modeling has the 38 

potential to improve the accuracy of climate simulations significantly and allow for explicit 39 

modeling of physical processes that were previously poorly represented in climate models (Nat. 40 

Clim. Chang. 2022), such as modeling of mesoscale convective systems in the atmosphere (Slingo 41 

et al., 2022) and mesoscale eddies in ocean (Hewitt et al., 2022). Simultaneously, land modeling 42 

has also witnessed a surge of interest in hyper-resolution modeling, initially proposed by Wood et 43 

al. (2011), which aims to model land surface processes at a horizontal resolution of 1 km globally 44 

and 100 m or finer for continental or regional domains. The motivation behind hyper-resolution 45 

modeling is to address the requirements of operational forecasting like extreme events, and to 46 

enhance our understanding of hydrological and biogeochemical cycling, and land–atmosphere 47 

interactions. High-resolution LSMs have been increasingly applied in various fields, as 48 

demonstrated by recent examples, such as 30-meter soil moisture simulations over the contiguous 49 

United States (CONUS) (Vergopolan et al., 2020, 2021, 2022), 500-meter hyper-resolution 50 

modeling of surface and root zone soil moisture over Oklahoma (Rouf et al., 2021), 1-km 51 

simulations over Southwestern US (Singh et al., 2015), 3-km simulations over eastern Tibetan 52 

Plateau to understand hydrological changes over mountainous regions (Yuan et al., 2018; Ji and 53 

Yuan, 2018), 6-km simulations over China to reduce simulations errors of hydrological variables 54 

(Ji et al., 2023). High-resolution modeling can better capture the land surface heterogeneity and 55 

could improve simulations of terrestrial water and energy cycles (Giorgi and Avissar, 1997; 56 

Chaney et al., 2018; Xu et al., 2023), biogeochemical cycles (Chaney et al., 2018), as well as land–57 
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atmosphere coupling (Liu et al., 2017; Zhou et al., 2019; Bou-Zeid et al., 2020). For example, 58 

Singh et al. (2015) demonstrated that increasingly capturing topography and soil texture 59 

heterogeneity at finer resolutions (e.g., 1 km) improves land surface modeling of water and energy 60 

variables. Li et al. (2022) have shown that the spatial heterogeneities of land surface parameters 61 

(including land use and land cover (LULC) and topography) are essential for modeling the spatial 62 

variability of land surface energy and water partitioning. Hao et al. (2022) found that 1 km 63 

simulations with sub-grid topographic configurations can better capture the topographic effects on 64 

surface fluxes. 65 

 66 

The parameters for LSMs within ESMs being run at the k-scale are typically derived from coarse 67 

resolution datasets or outdated datasets. Consequently, k-scale modeling may not accurately 68 

represent fine-scale land surface heterogeneity unless high-resolution land surface parameters at 69 

the kilometer or finer scales are utilized. Publicly available land surface parameters are primarily 70 

provided at coarse resolutions and based on outdated datasets (see details in Table 1). For example, 71 

the Community Land Model version 5 (CLM5; Lawrence et al., 2019) typically relies on land 72 

surface parameters with spatial resolutions ranging from 1km to 0.5º based on source datasets that 73 

were processed more than 10 years ago (see Table 1 for details). Although LULC-related 74 

parameters are available at a relatively high resolution of 0.05º, they are temporally static and were 75 

derived from a combination of data from different years spanning 1993 to 2012 (Table 1). Leaf 76 

area index (LAI) was derived from the now outdated products of Moderate Resolution Imaging 77 

Spectroradiometer (MODIS) collection 4 (Myneni et al., 2002). The canopy height for tree Plant 78 

Functional Types (PFTs) is based on forest canopy height data derived from the Geoscience Laser 79 

Altimeter System (GLAS) aboard ICESat, collected in 2005 (Simard et al., 2011). Canopy height 80 
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for short vegetation is represented by PFT-specific values that remain invariant in space (Bonan et 81 

al., 2002). Soil sand and clay content were obtained from the International Geosphere-Biosphere 82 

Programme (IGBP) soil dataset (Global Soil Data Task 2000) consisting of 4931 soil mapping 83 

units (IGBP, 2000). These CLM5 land surface parameters have been widely utilized in the LSMs 84 

and ESMs communities, despite being developed over a decade ago. Subsequently, Ke et al. (2012; 85 

hereafter referred to as K2012) developed an updated set of LULC and vegetation-related land 86 

surface parameters for CLM4 at a resolution of 0.05º. These parameters were developed based on 87 

MODIS collection 5 products or datasets derived from MODIS collection 5 products, including 88 

PFTs and non-vegetation land cover, LAI, and Stem Area Index (SAI). K2012 has also been widely 89 

used by LSMs, including CLM (e.g., Leng et al., 2013; Ke et al., 2013; Singh et al., 2015; Xia et 90 

al., 2017) and the Energy Exascale Earth System Model (E3SM) Land Model (ELM) (e.g., 91 

Caldwell et al., 2019; Leung et al., 2020; Li et al., 2022). However, the CLM5 and K2012 datasets, 92 

with their relatively coarse resolution and reliance on outdated data from over a decade ago, may 93 

not fully meet the requirements for k-scale modeling. Additionally, these datasets include LULC, 94 

LAI, and SAI that are year invariant. Consequently, they are inappropriate for studies involving 95 

LULC changes, such as urbanization. In addition, some recently developed land surface processes 96 

and their associated parameters are not included in previous datasets. For instance, Hao et al. (2021) 97 

introduced a sub-grid topographic parameterization of solar radiation with five associated 98 

topographic factors in ELM, which have been found to significantly affect the surface energy 99 

budget. the surface energy budget. 100 

 101 

High-resolution and up-to-date datasets at kilometer or finer resolutions are now widely available 102 

and can be utilized to derive more accurate land surface parameters for k-scale LSM simulations. 103 
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For example, the MODIS Land Cover Type Collection 6 (MCD12Q1 C6) data product provides 104 

global land cover types yearly from 2001 to the present (Friedl et al., 2019; Sulla-Menashe et al., 105 

2019) at 500-meter resolution. Compared to the MODIS Collection 4 (used in CLM5 land surface 106 

parameters) and Collection 5 products (used in K2012 land surface parameters), the C6 data 107 

represents a significant advancement in algorithm improvements and the quality of land cover 108 

information. Despite the availability of high-resolution MODIS LAI products, such as the 500 m 109 

MCD15A2H (Myneni et al., 2021), they suffer from noise and gaps with spatially and temporally 110 

inconsistent values due to clouds, seasonal snow cover, instrument issues, and uncertainties in 111 

retrieval algorithms (Yuan et al., 2011). To address these limitations, Yuan et al. (2011) 112 

reprocessed MODIS LAI products and generated a more accurate and spatiotemporally continuous 113 

and consistent LAI dataset that is available continuously to the present period. Additional high-114 

resolution and up-to-date datasets are available for preparing land surface parameters, such as soil 115 

texture and soil organic matter at 250-meter resolution (Poggio et al., 2021) and vegetation height 116 

at 10-m resolution (Lang et al., 2023). 117 

 118 

This study aims to develop a new set of global land surface parameters with a resolution of 1 km 119 

for multiple years, utilizing the latest and most accurate available datasets. These parameters will 120 

be tailored to meet the needs of k-scale Earth system modeling. The newly developed land surface 121 

parameters include four categories: (1) LULC-related parameters, such as the spatial distributions 122 

of PFTs, lakes, wetlands, urban areas, and glaciers; (2) vegetation-related parameters, including 123 

PFTs' LAI and SAI for multiple years ranging from 2001 to 2021, and the canopy top and bottom 124 

height; (3) soil-related parameters, such as soil textures and soil organic matter; and (4) 125 

topography-related parameters, such as elevation, slope, aspect, and sub-grid topographic factors. 126 
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We conducted a comparison of the new 1k parameters against the K2012 and ELM2/CLM5 default 127 

parameters. Utilizing ELM version 2 (ELM2) as a testbed, we demonstrated the modeling 128 

capability enabled by the new high-resolution parameters through a 5-year simulation at 1 km 129 

resolution over the CONUS. We performed a spatial scaling analysis on four ELM2 simulated 130 

variables, which included soil moisture, latent heat, emitted longwave radiation, and absorbed 131 

shortwave radiation, to underscore the significance of high-resolution land surface parameters on 132 

ELM2 simulations. We employed eXplainable Machine Learning (XML) methods to evaluate the 133 

most important factors of land surface parameters and climate conditions (e.g., mean temperature 134 

and precipitation) in driving the spatial variability and spatial information loss of ELM2 135 

simulations.  136 
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2. Development of 1km land surface parameters 137 

In this study, all the land surface parameters were developed globally at a resolution of 138 

approximately 1 km (i.e., 1/120°, hereafter referred to as 1 km; Table 1). The LULC-related 139 

parameters, soil properties, canopy height, and elevation were processed via Google Earth Engine 140 

(GEE; Gorelick et al., 2017). The LAI was processed using an area-weighted average from its 141 

original 450 m resolution obtained from Beijing Normal University (Yuan et al., 2011). All data 142 

sources utilized in this study have been rigorously validated in their respective original 143 

publications. The detailed methods for deriving these parameters are described below. 144 

  145 
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Table 1 Comparison between new and previous land surface parameters 146 

Category Land surface 
parameters This study ELM2 / CLM5 * K2012 

LULC 

PFTs, 
Lake, 

Glacier, 
Urban 

• Resolution: 1 km, yearly, 2001-2020 
 

• Data source: 500 m, yearly, MODIS 
collection 6 (Friedl et al., 2019) 

• Resolution: 0.05°, temporally static, processed 
based on data from mixed years 
 

• PFTs data source: mixed years from 1993 to 
2001; 500 m, MODIS Vegetation Continuous 
Fields (Hansen et al., 2003); 1 km, tree cover 
(Defries et al., 2000); 10 km (5 arc minutes), 
cropland (Ramankutty and Foley, 1999); 1 km, 
MODIS land cover collection 4 (Friedl et al., 
2002) 

 
• Lake data source: 3 km (90 arc seconds) lake 

data (Kourzeneva 2009, 2010) 
• Glacier data source: glacier and ice sheet vector 

data (Arendt et al. 2012; Rastner et al. 2012) 
• Urban data source: 1 km urban data (Jackson et 

al., 2010) 
 

• Resolution: 0.05°, year 2005 
 

• Data source: 500 m, yearly, 
MODIS collection 5 (Friedl 
et al., 2010) 

Vegetation 

LAI, 
SAI 

• Resolution: 1 km, monthly, 2001-
2020 
 

• Data source: 450 m, 8-day, 
reprocessed MODIS collection 6 LAI 
(Yuan et al., 2011; Friedl et al., 2019) 

• Resolution: 0.5°, 12 months 
 

• Data source: 1 km, 8-day, MODIS collection 4 
LAI (Myneni et al., 2002) 

• Resolution: 0.05°, year 2005 
 

• Data source: 450 m, 8-day, 
reprocessed MODIS 
collection 5 LAI (Yuan et al., 
2011; Friedl et al., 2010) 

Canopy top height, 
Canopy bottom height 

• Resolution: 1 km, temporally static 
 

• Data source: 10 m, vegetation canopy 
height (Lang et al., 2023) 

• Resolution: 0.5° or PFT specified value, 
temporally static 

 
• Tree PFT data source: 1 km, forest canopy 

height derived using 2005 GLAS aboard ICESat 
data (Simard et al., 2011);  

 
• Short vegetation data source: PFT specific 

values (Bonan et al., 2002) 
 

-- 

Soil 

Percent sand, 
Percent clay 

• Resolution: 1 km, temporally static 
 

• Data source: 250 m, Soilgrid v2 
(Poggio et al., 2021) 

• Resolution: 10 km (0.083°), temporally static 
 

• Data source: IGBP soil data of 4931 mapping 
units (IGBP, 2000) 

-- 
Soil organic matter 

Topography 

Elevation, 
Slope, 

Standard deviation of 
elevation 

• Resolution: 1 km, temporally static 
 

• Data source: 90 m, MERIT Hydro 
elevation (Yamazaki et al., 2019) 

• Resolution: merge of 1 km and 10 arc minutes, 
temporally static 
 

• Data source: global most regions are based on 
USGS HYDRO1k (Verdin and Greenlee 1996); 
but 10 arc minute data is used over Greenland 
and Antarctica. 

-- 

Aspect,  
Sky view factor, 

Terrain configuration 
factor 

• Resolution: 1 km, temporally static 
 

• Data source: 90 m, MERIT Hydro 
elevation (Yamazaki et al., 2019) 

-- 
 

* ELM2 and CLM5 share the same default land surface parameters, detailed descriptions available at: 147 
https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/tech_note/index.html. 148 
 149 
  150 

https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/tech_note/index.html
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2.1 LULC-related parameters 151 

In this study, the MODIS MCD12Q1 version 6 (Friedl et al., 2022) was employed to ascertain the 152 

Plant Functional Types (PFT) as well as other non-vegetative land categories at a spatial resolution 153 

of 1 km spanning the years 2001 to 2020. The integrity of the MODIS land cover product has been 154 

established through a 10-fold cross-validation accuracy assessment using the Terrestrial 155 

Ecosystem Parameterization database (Sulla-Menashe et al., 2019). This land cover product offers 156 

richer and more flexible land cover data with higher accuracy and substantially less year-to-year 157 

stochastic variation in classification results (Sulla-Menashe et al., 2019). Being the sole operational 158 

global land cover product available with annual intervals, it addresses a significant gap in the realm 159 

of global change research. 160 

 161 

The original MODIS land cover data was first resampled to 1 km from its original 500 m resolution 162 

using a majority resampling method in GEE. At such a high 1km resolution, we did not consider 163 

the proportion of different land cover types within each grid. Instead, we assigned 100% of a grid 164 

cell to the major land cover type. Specifically, the MCD12Q1 LC_Type 5 PFT classification layer 165 

was used to determine the distributions of the seven PFTs, as well as lake, urban, and glacier, 166 

following the method outlined in Ke et al. (2012) and summarized below: 167 

• The seven PFTs include needleleaf evergreen trees, needleleaf deciduous trees, broadleaf 168 

evergreen trees, broadleaf deciduous trees, shrub, grass, and crop. These PFTs were further 169 

reclassified into 15 categories (Table S1) that are typically used in LSMs based on the rules 170 

presented in Bonan et al. (2002a) with the assistance of 1 km precipitation and surface air 171 

temperature from WorldClim V1 (Hijmans et al., 2005).  172 
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• Grass was reclassified as C3 and C4 grass using the approach presented by Still et al. (2003), 173 

with the assistance of monthly LAI (processed in section 2.2.1) and meteorological 174 

variables from WorldClim V1. 175 

• The "non-vegetated land" was classified as barren soil class. 176 

• The "permanent snow and ice" was assigned as the glacier land unit. 177 

• Global lakes were identified based on the classification of "water bodies" over the global 178 

land, constrained using the global land mask obtained from Natural Earth 179 

(https://www.naturalearthdata.com/). 180 

• The urban land unit was determined based on the MODIS "urban and built-up" 181 

classification. These urban grids were further classified into three urban classes, namely, 182 

tall building district (TBD), high density (HD), and medium density (MD), based on 183 

Jackson et al. (2010; hereinafter referred to as J2010). J2010 generated global urban extent 184 

maps for the TBD, HD, and MD classes at a spatial resolution of 1 km, based on rules of 185 

building height and vegetation coverage fraction 186 

(https://gdex.ucar.edu/dataset/188a_oleson/file.html). However, the J2010 dataset is 187 

temporally static and cannot reflect changes in urban boundaries over time. Therefore, we 188 

reclassified the yearly MODIS urban land class as TBD, HD, and MD based on the J2010 189 

dataset using the nearest neighbor sampling method for each year. 190 

After determining the distribution of 15 PFTs, bare soil, lake, glacier, and urban land, any 191 

remaining 1 km grids were assigned as ocean (Table S1). It should be noted that the wetland land 192 

unit was not explicitly classified in this study. This is because, instead of treating wetlands as an 193 

individual land unit, many LSMs (e.g., ELM2 and CLM5) integrate wetland functioning processes 194 

https://www.naturalearthdata.com/
https://gdex.ucar.edu/dataset/188a_oleson/file.html
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prognostically within other land units where a surface water storage component is implemented to 195 

represent wetland functioning. 196 

 197 

2.2 Vegetation-related parameters 198 

2.2.1 Monthly LAI and SAI 199 

The monthly LAI parameters were obtained from Beijing Normal University (BNU_LAI; Yuan et 200 

al., 2011). BNU_LAI, an enhanced version of the MODIS LAI product, has been subjected to 201 

thorough quality control, incorporating multiple algorithms for improved accuracy (Yuan et al., 202 

2011). Its validation involved an extensive array of LAI reference maps and employed the bottom-203 

up approach advocated by the CEOS Land Product Validation sub-group (Morisette et al., 2006). 204 

Compared to the original MODIS LAI, the BNU_LAI dataset exhibits superior performance, along 205 

with enhanced spatiotemporal continuity and consistency. The 8-day BNU_LAI product at a 206 

resolution of 15 seconds (~450 m) over 2001–2020 was downloaded from 207 

http://globalchange.bnu.edu.cn/research/laiv061. Subsequently, the data were resampled to a 208 

resolution of 1 km using an area-weighted average method and averaged temporally for each 209 

month. The processed monthly LAI at 1 km resolution was subsequently assigned to each of the 210 

15 PFTs described above at each grid. The monthly SAI was then calculated based on the 211 

processed monthly LAI using the methods and PFT parameters described in Zeng et al. (2002). 212 

 213 

2.2.2 Vegetation canopy height 214 

We leveraged a global vegetation canopy height dataset sourced from Lang et al. (2023). This 215 

dataset, derived using a probabilistic deep learning model, fuses Sentinel-2 images with the Global 216 

Ecosystem Dynamics Investigation (GEDI) to retrieve canopy height. It stands out as the inaugural 217 

http://globalchange.bnu.edu.cn/research/laiv061
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global canopy height dataset offering consistent, wall-to-wall coverage at a 10 m spatial resolution 218 

across all vegetation types. Assessments using hold-out GEDI reference data and comparisons 219 

with independent airborne LiDAR data demonstrate that the approach outlined by Lang et al. (2023) 220 

produces a meticulously quality-controlled, state-of-the-art global map product, accompanied by 221 

quantitative uncertainty estimates. The canopy height served as the canopy top height parameter. 222 

Canopy bottom height was calculated by multiplying PFT-based ratios derived from the ratio of 223 

ELM2’s (same as CLM5) canopy top and bottom heights for different PFTs (Table S2). 224 

 225 

2.3 Soil-related parameters 226 

We obtained the Soilgrid v2 data with an original resolution of 250 m (Poggio et al., 2021) to 227 

prepare soil properties. Soilgrid is generated using machine learning based on multiple data 228 

sources of soil profiles and remote sensing data (Hengl et al., 2017). The soil product underwent 229 

rigorous quantitative evaluation using a cross-validation method, which ensures alignment with 230 

established pedo-landscape features and provides spatial uncertainty to guide product users 231 

(Poggio et al., 2021). Soilgrid v2 provides percent clay, percent sand, and soil organic matter for 232 

six standard soil layers: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm. 233 

The original SoilGrid version 2 data obtained from GEE were processed at 1 km resolution with 234 

multiple layers using an area-weighted average method. To facilitate the demonstration, we 235 

restructured the six soil layers vertically into ELM2’s ten effective soil layers (0–1.8 cm, 1.8–4.5 236 

cm, 4.5–9.1 cm, 9.1–16.6 cm, 16.6–28.9 cm, 28.9–49.3 cm, 49.3–82.9 cm, 82.9–138.3 cm, 138.3–237 

229.6 cm, and 229.6–380.2 cm) using the nearest neighboring method. It should be noted that the 238 

lake module in ELM2 and CLM5 requires soil properties, but the Soilgrid v2 data may not provide 239 
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coverage over water surfaces. To address this, we utilized the nearest neighbor sampling method 240 

to map the 1 km soil properties onto the terrestrial water surface. 241 

 242 

2.4 Topography-related parameters 243 

We employed the digital elevation from the Multi-Error-Removed Improved-Terrain DEM 244 

(MERIT DEM, Yamazaki et al., 2019) to obtain topography-related parameters. The MERIT DEM 245 

provides globally consistent elevation data at 90 m resolution, distinguished by its exceptional 246 

vertical accuracy. This accuracy was rigorously validated against ICESat’s lowest elevations in 247 

both forested and non-forested regions and was further benchmarked using the UK’s premium 248 

airborne LiDAR DEM (Yamazaki et al., 2019). We first acquired the 1km elevation and standard 249 

deviation of elevation using GEE based on the original 90 m elevation. Further, we calculated the 250 

slope, aspect, sky view factor, and terrain configuration factor from the 1km elevation using the 251 

parallel computing tool developed by Dozier (2022). The sky view factor represents the proportion 252 

of visible sky limited by adjacent terrain, and the terrain configuration factor describes the 253 

proportion of adjacent terrain which is visible to the ground target. Finally, to drive the 254 

parameterization of sub-grid topographical effects on solar radiation (Hao et al., 2022) in ELM2, 255 

we calculated the sin(𝑠𝑙𝑜𝑝𝑒) ∙ sin(𝑎𝑠𝑝𝑒𝑐𝑡)  and sin(𝑠𝑙𝑜𝑝𝑒) ∙ cos(𝑎𝑠𝑝𝑒𝑐𝑡)  for calculating the 256 

local solar incident angle, and two normalized angle-related factors, the sky view factor, and terrain 257 

configuration factor by cos(𝑠𝑙𝑜𝑝𝑒). It is important to note that the standard deviation of elevation 258 

calculated in this study is specific to the 1 km resolution simulation. For applications requiring 259 

coarser resolutions (e.g., 0.5 degree), the standard deviation should be recalculated directly from 260 

the 1 km elevation, rather than averaging from the 1k standard deviation of elevation. 261 

 262 
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2.5 Comparison between new and existing land surface parameters 263 

In this study, since the data sources used to develop the 1k global land surface parameters have 264 

already undergone rigorous validation, we do not perform additional evaluations against reference 265 

datasets (e.g., observations). Instead, our focus is on comparing the newly developed 1k 266 

parameters with those from K2012 and the ELM2/CLM5 default parameters. The K2012 267 

parameters, obtained through personal communication (refer to the data availability section for 268 

details). The ELM2/CLM5 default parameters were sourced from the CESM input data repository 269 

(https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/). Given the different resolutions of 270 

these datasets—our new parameters at 1km, K2012 at 0.05 degree, and ELM2/CLM5 defaults with 271 

varying resolutions—we adapt our comparison at different resolutions for different variables. 272 

For PFT parameters, we aggregated both the 1k new parameters and the 0.05-degree K2012 data 273 

to the 0.5-degree resolution of the ELM2/CLM5 default. For non-vegetated land units (i.e., urban, 274 

glacier, and lake), we upscaled the 1k new parameters to a 0.05-degree resolution to align with the 275 

ELM2/CLM5 default. It is important to note that the urban parameter in K2012 is only available 276 

for the northern hemisphere, due to limitations in data acquisition. 277 

When comparing LAI, we aggregated the 1k new and K2012 LAI to 0.5-degree resolution, 278 

matching the ELM2/CLM5 default LAI/SAI resolution. We excluded the comparison of SAI from 279 

our analysis due to the limited availability of the global K2012 dataset, from which we only 280 

acquired coverage for North America. We have not included a comparison of vegetation canopy 281 

height (top and bottom parameters) in our study. This is because the K2012 dataset does not 282 

contain these parameters, and the ELM2/CLM5 default parameters in the CESM input data 283 

repository provide only tabular values for each PFT, rather than spatially variable canopy heights 284 

for tree PFTs. 285 

https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/
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For soil and topography-related parameters, our comparison was limited to the 1k new parameters 286 

and the ELM2/CLM5 default, as K2012 does not include these parameters. Specifically, for soil 287 

comparisons, we aggregated the new 1k parameters to 0.083° resolution to match the ELM2/CLM5 288 

default soil parameters. For topography, given that the ELM2/CLM5 default parameters is a 289 

combination of 1k and 10 arc-minute data sources, we simplify the comparison by aggregating 290 

both the new 1k parameters and ELM2/CLM5 default to 0.5-degree resolution, including elevation 291 

and slope. 292 

  293 
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3. K-scale demonstration simulation over CONUS  294 

3.1 Experiment design  295 

To demonstrate the capability of 1 km datasets, we conducted ELM2 simulations over CONUS at 296 

the resolution of 1 km, using the newly developed 1 km land surface parameters for 2010. We used 297 

atmospheric forcing from the Global Soil Wetness Project Phase 3 (GSWP3; Kim, 2017) with a 298 

spatial resolution of 0.5º to drive ELM. The spatial homogeneity of atmospheric forcings within 299 

0.5º grid cell guarantees that the spatial variability of ELM simulated variables (e.g., latent heat) 300 

within 0.5º grid cell is solely attributable to the heterogeneity of the 1 km land surface parameters. 301 

There are approximately 12 million effective grids over CONUS. We ran ELM for five years 302 

(2010–2014), and the last year’s simulation was used for analysis. We specifically analyzed the 303 

annual mean of surface layer soil moisture (SM, 𝑚!/𝑚! ), latent heat (LH, 𝑊/𝑚" ), emitted 304 

longwave radiation (ELR, 𝑊/𝑚"), and absorbed shortwave radiation (ASR, 𝑊/𝑚"). 305 

3.2 Spatial scaling analysis 306 

We conducted a spatial scaling analysis following the method described in Vergopolan et al. (2022) 307 

on the 1 km ELM simulation data to better understand how k-scale spatial heterogeneity in the 308 

four ELM-simulated variables (mentioned in Section 3.1) induced only by spatial heterogeneity of 309 

land surface parameters changes across spatial scales. First, we performed upscaling by averaging 310 

the 1 km (=1/120°) land surface parameters and the four ELM-simulated variables to coarser 311 

spatial scales, 𝜆#$%&'of 1/60°, 1/40°, 1/30°, 1/24°, 1/20°, and 1/10°, and calculated the spatial 312 

standard deviation (𝜎#$%&') within each 0.5° × 0.5° box at each spatial scale (Table 2). Second, we 313 

quantified the changes in spatial variability at different spatial scales compared to the original 1km 314 

resolution by calculating the ratio of 𝜎#$%&'  to 𝜎(	*+ . Third, we fitted a log	(,!"#$%
,&	()

) ∝315 

𝛽 × log	(-!"#$%
-&	()

) relationship, where 𝛽 is an indicator to quantify data spatial variability persistence 316 
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across scales (Hu et al., 1997). A more negative 𝛽 indicates a larger dependency of data spatial 317 

variability on spatial scales, resulting in a higher information loss, denoted as 𝛾#$%&' =318 

(1 − 𝜎#$%&' 𝜎(	./⁄ ) × 100%. In this study, we focus on information loss at a 12 km scale, denoted 319 

as 𝛾("	*+. For simplicity in subsequent discussion, 𝛾("	*+ will be referred to as 𝛾 in the results 320 

section. Given the possibility that β may not demonstrate significant temporal variation (Mälicke 321 

et al., 2020), and considering that our scaling analysis is intended for demonstration purposes, our 322 

spatial scaling analysis is based on the annual mean of ELM2 simulations.  323 

It is crucial to clarify that the upscaled 1 km simulation results in the spatial scaling analysis are 324 

not equivalent to the results obtained from a coarse resolution ELM conducted using upscaled 325 

parameters. The spatial scaling analysis is intended to emphasize the value of high-resolution 326 

modeling in capturing fine-scale spatial variabilities, and to highlight the contributions of high-327 

resolution land surface parameters on the simulated variables. 328 

Table 2. Spatial resolution and pixel number at different spatial scales. 329 

𝜆#$%&' 𝜆(	./⁄  1 2 3 4 5 6 12 

Spatial resolution 1km 
(1/120°) 

2km 
(1/60°) 

3km 
(1/40°) 

4km 
(1/30°) 

5km 
(1/24°) 

6km 
(1/20°) 

12km 
(1/10°) 

Pixel number within 
0.5° × 0.5° box 60 × 60 30 × 30 20 × 20 15 × 15 12 × 12 10 × 10 5 × 5 

 330 

3.3 Attribution analysis utilizing XML methods 331 

We conducted additional analysis to determine the primary land surface parameters that influence 332 

the spatial scaling of ELM simulations. We employed XML methods, specifically the eXtreme 333 

Gradient Boosting (XGBoost; Chen and Guestrin, 2016) machine learning algorithm and the game 334 

theoretic approach SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017; Lundberg et 335 

al., 2018, 2020). XML methods were utilized to assess the influence of land surface parameters on 336 

the spatial variability and information loss of ELM2 simulations across the CONUS. Taking spatial 337 
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variability as an example, we first computed the standard deviation (σ) within each 0.5º x 0.5º grid 338 

for both 1 km resolution land surface parameters and simulations. Then, we train a machine 339 

learning model to predict the spatial variability of each simulated variable (i.e., SM, LH, ELR, 340 

ASR). We used the spatial variability (i.e., σ) and mean (µ) of the land surface parameters and µ 341 

of precipitation and temperature as predictor variables, and the simulated variable's σ as the target 342 

variable. After training the machine learning model, we used SHAP to quantify the relative 343 

importance and determine which factors were most important in driving the spatial variability of 344 

the simulations. Similarly, we used this approach to identify the most critical drivers of information 345 

loss. 346 

3.4 Reference datasets for evaluating ELM simulation 347 

We also performed a comparison of all four ELM-simulated variables against reference datasets. 348 

It is important to note that we used the default model parameters and did not perform any 349 

calibration (see discussions for details). For reference datasets, soil moisture was obtained from 350 

the Global Land Evaporation Amsterdam Model (GLEAM; Martens et al., 2017), latent heat flux 351 

data was from the MODIS product (Running et al., 2021), and both ELR and ASR data were 352 

processed from the land component of the fifth generation of European ReAnalysis (ERA5_Land; 353 

Muñoz-Sabater et al., 2021). For the soil moisture evaluation, we compared the surface layer soil 354 

moisture from GLEAM (10 cm depth) with the weighted average of the first four-layer soil 355 

moisture from ELM (about 11 cm depth).  To ensure comparability, we unified the spatial 356 

resolution of both reference datasets and ELM simulations to a 0.5-degree resolution and focused 357 

our analysis on the annual mean data for 2014. 358 

 359 

  360 
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4. Results 361 

4.1 Demonstration of the global 1km land surface parameters 362 

LAI generally shows high values in humid and warm regions, such as tropical rainforests, 363 

southeastern US, and southern Asia, and low values over arid or cold regions, such as central 364 

Australia, southwestern US, Middle East, Central Asia, and northern Canada (Figure 1a). At high 365 

resolution, the LAI dataset clearly reflects the detailed heterogeneity of vegetation distributions. 366 

In subregion R1 (Figure 1b), a relatively small LAI is distributed over mountain ridges and zero 367 

LAI over water surfaces (e.g., lakes). In subregion R2 (Figure 1c), the LAI pattern shows a large 368 

proportion of forest fragmentation caused by deforestation. In subregion R3 (Figure 1d), the LAI 369 

shows the distribution of agricultural land along with the river, river mouth, and lakes under an 370 

arid climate. R4 shows how urbanization affects vegetation distributions (Figure 1e). 371 

Figure 2 demonstrates the distribution of plant functional types and other non-vegetation land units. 372 

High-resolution LULC types over multiple years can benefit studies related to LULC changes like 373 

urbanization and deforestation. Canopy height generally follows a similar spatial pattern with LAI, 374 

with high values in humid and warm regions and low values over arid or cold regions (Figure 3a). 375 

The percent clay shows high values over Southeast Asia, India, central Africa, and southeast South 376 

America, and low content over North Europe, South Africa and Alaska (Figure 3b). The 377 

topography factors follow the elevation patterns (Figures 3c and 3d), where there are large slopes 378 

and standard deviation of elevation over mountainous regions, such as the Rocky Mountains in 379 

North America, the Himalayas Mountains in Asia, and Andes Mountains in South America. 380 

Deleted: 3381 



 21 

 382 

Figure 1. The spatial pattern of LAI (annual mean in 2010) over (a) global land and (b)~(e) four 383 

subregions R1~R4 within 2-degree boxes marked in (a). Subregions R1~R4 represent 384 

topography, deforestation, irrigations, and urbanization effects on LAI. 385 

  386 
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 387 

Figure 2. Global LULC distribution in year 2010. PFT abbreviations include: Bare Soil, Needleleaf 388 

Evergreen Trees in temperate (NET-Temperate) and boreal (NET-Boreal) regions, Needleleaf 389 

Deciduous Trees in boreal regions (NDT-Boreal), Broadleaf Evergreen Trees in tropical (BET-390 

Tropical) and temperate (BET-Temperate) regions, Broadleaf Deciduous Trees in tropical (BDT-391 

Tropical), temperate (BDT-Temperate), and boreal (BDT-Boreal) regions, Broadleaf Evergreen 392 

Shrubs in temperate regions (BES-Temperate), Deciduous Shrubs in temperate (BDS-Temperate) 393 

and boreal (BDS-Boreal) regions, C3 Grass in arctic (C3G-Arctic) and general (C3G) varieties, 394 

C4 Grass (C4G), Crop, Lake, Glacier, and Urban.  395 
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 396 

Figure 3. Demonstration of global 1km datasets (a) Canopy top height, (b) percent clay, (c) 397 

standard deviation of elevation, and (d) slope. 398 

 399 

4.2 Comparison between new and existing land surface parameters 400 

The global distributions of different PFTs show varying degrees of difference when comparing the 401 

new parameters with the K2012 and ELM2/CLM5 default parameters (Figure 4 and 402 

Supplementary Figures S1 to S16). Predominant types such as bare soil, BET-Tropical tree, C3 403 

and C4 grass, and crop are found consistently across all datasets. Notable differences include less 404 

bare soil in the new parameters and K2012 compared to ELM2/CLM5 default, especially in high-405 

latitude North America, western US, South Africa, Central Asia, and Central Australia (Figure S1). 406 

While the new NDT PFT shows larger coverage in Siberia than K2012 and ELM2/CLM5 (Figure 407 

S4), BET-Tropical PFT is more prevalent in the new parameters across Central and South America 408 

(Figure S5). BET-Temperate PFT has greater area coverage in southern China in the new 409 

parameters (Figure S6). For BDT-Tropical, BDT-Temperate, and BDT-Boreal PFTs, both the new 410 

Deleted: 3411 



 24 

and ELM2/CLM5 default parameters surpass K2012 data in coverage (Figures S7 to S9). The 412 

coverage of new BDS-Temperate PFT is smaller than K2012 but larger than ELM2/CLM5 default 413 

(Figure S11), and the new BDS-Boreal PFT is less extensive in the boreal northern hemisphere 414 

compared to both K2012 and ELM2/CLM5 defaults (Figure S12). The C3-Arctic PFT shows 415 

larger areas in the new parameters, particularly in northern Canada, with the new C4 grass PFT 416 

being similar to that of K2012 and larger than ELM2/CLM5 C4 grass. Crop PFT is less extensive 417 

in the new parameters, particularly in Southeastern China, Europe, South America, Africa, and 418 

Australia.419 

 420 

Figure 4. The global average area fractions of PFTs for three land surface parameter datasets. PFT 421 

abbreviations used on the X-axis are displayed in Figure 2. 422 

 423 

The global distributions of non-vegetated land covers of lake, glacier and urban areas vary among 424 

the datasets (Figure S17–S19). The new dataset shows slightly less lake coverage than K2012, but 425 

both are smaller than ELM2/CLM5 default, particularly in high-latitude North America (Figure 426 

S17). Glacier coverage in the new parameter is around 0.7% smaller than K2012, with noticeable 427 
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differences in the Arctic North America, while ELM2/CLM5 default shows more extensive glacier 428 

coverage in Antarctica (Figure S18). Regarding urban areas, K2012 has the smallest urban 429 

coverage in the Northern Hemisphere compared to both the new dataset and ELM2/CLM5 default 430 

(Figure S19). Meanwhile, ELM2/CLM5 default exhibits more expansive urban areas in India and 431 

China than the new dataset and K2012. 432 

 433 

The global annual mean LAI exhibits similar spatial patterns among the new parameter, K2012, 434 

and ELM2/CLM5 (Figure 5). The overall global mean LAI for the new parameter (1.28 m²/m²) is 435 

slightly higher than that of K2012 (1.14 m²/m²) and the ELM2/CLM5 default data (1.24 m²/m²). 436 

In terms of spatial pattern, the new LAI, relative to K2012 (Figure S20a), shows lower values in 437 

the NET-Boreal PFT over the northern hemisphere, but higher values in the BET-Tropical PFT 438 

over the tropics. Similarly, compared with the ELM2/CLM5 default LAI (Figure S20b), the new 439 

LAI also presents smaller values in both the NET-Boreal and NDT PFTs over the northern 440 

hemisphere, but larger values in the BET-Tropical PFT regions. 441 
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 442 

Figure 5. Comparison of global annual mean LAI for (a) new, (b) K2012, and (c) ELM2/CLM5 443 

default parameters. The global average is indicated in the subplot title. 444 

 445 

Soil parameters exhibit significant differences between the new and ELM2/CLM5 default datasets 446 

(Figures 6a-bc, S21, and S22). The global mean absolute differences between the new and 447 

ELM2/CLM5 default for percent sand, percent clay, and organic matter are 14.1%, 8.1%, and 30.5 448 

kg/m³, respectively. Generally, the new soil parameters are spatially distributed more smoothly 449 

than those from ELM2/CLM5 with more patchy patterns (Figure 6a vs. 6b). Specifically, the new 450 

percent sand is higher in regions like Europe, Siberia, South Africa, and Southern Australia, but 451 

lower in areas such as the Lower Mississippi River Basin, North Africa, and Central and 452 

Southeastern Asia (Figure 6c). The new percent clay shows larger values in the Western US, North 453 

Africa, Central Asia, and Australia, but smaller values in Alaska and Eastern Europe (Figure S21). 454 
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For organic matter, the new parameter indicates smaller values in the Northern Hemisphere but 455 

larger values in other global regions compared to the ELM2/CLM5 default (Figure S22). 456 

Topography-related parameters exhibit broadly similar spatial patterns but with notable 457 

differences between the new and ELM2/CLM5 default parameters, as seen in Figures 6d-6f and 458 

S23. The new slope parameter generally shows a larger slope relative to the ELM2/CLM5 default, 459 

particularly in mountainous regions (Figure 6f). This could be attributed to the new 1 km slope 460 

being calculated from a finer 90 m resolution elevation. Differences in elevation between the new 461 

and ELM2/CLM5 parameters are more pronounced in areas such as various mountainous regions, 462 

Greenland, the Amazon Basin, the Tibetan Plateau, and Australia (Figure S23). 463 
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 464 

Figure 6. Comparisons of percent sand and slope. (a) new and (b) ELM2/CLM5 default percent 465 

sand, along with (c) their difference (new – ELM2/CLM5 default) for percent sand; (d) new, (e) 466 

ELM2/CLM5 default, and (f) their difference for slope. The global average is shown in the subplot 467 

titles, with the global average of the absolute difference provided for (c) and (f). 468 

 469 

4.3 Demonstration 1km simulation over CONUS 470 

ELM simulations at a 1 km resolution display significant spatial heterogeneity over CONUS 471 

(Figure 7). The values of SM, LH, ELR, and ASR across CONUS follow approximately normal 472 
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distributions, with averages of 0.3 m3/m3, 39.0 W/m2, 371.7 W/m2, 156.7 W/m2, respectively (as 474 

shown in the histogram plots in Figure 7). SM shows drier conditions over the West and Southwest 475 

and wetter conditions over the Midwest, Corn Belt, Mississippi River basin, and Northeast (Figure 476 

7a). LH shows high values over the central and southeast, and lower values over the west and 477 

southwest (Figure 7b). The ELR generally shows higher values over regions with high surface 478 

temperature in the south (Figure 7c). The ASR shows higher values over the southwestern regions 479 

determined by incoming solar radiation and albedo (Figure 7d). Despite the high-resolution 480 

heterogeneity shown at 1 km resolution, we can still see the spatial patterns distinguished at coarse 481 

resolution, i.e., 0.5º × 0.5º. These coarser footprints are from the GSWP3 atmospheric forcing with 482 

0.5º resolution. As concluded by Li et al. (2022), atmospheric forcing is one primary heterogeneity 483 

source for land surface modeling. Therefore, k-scale atmospheric forcing needs to be developed to 484 

further advance k-scale offline land surface modeling. 485 

 486 

Figure 7. The annual mean of 1 km simulations of (a) SM, (b) LH, (c) ELR, and (d) ASR over 487 

CONUS. The 0.5° × 0.5° boxes marked as L1, L2, L3, and L4 in (a) and (b) are selected to 488 

Deleted: )489 



 30 

demonstrate the spatial scaling analysis. The inserted histogram plot illustrates the distribution of 490 

ELM2 simulations. 491 

 492 

4.4 Demonstration of spatial scaling across scales 493 

We next demonstrate the relationships between spatial variabilities and spatial scales for SM and 494 

LH. Four locations (in Figures 4a and 4b) are specifically chosen to showcase varying levels of 495 

spatial information loss: L1 and L3 demonstrate a relatively large loss for SM and LH, respectively, 496 

while L2 and L4 represent a relatively small loss for SM and LH, respectively. 497 

At location L1 (Figure 8a), when the 1 km simulation is upscaled to coarser resolutions (i.e., larger 498 

spatial scale ratios), the spatial variability of SM decreases, resulting in a negative slope of β. As 499 

shown in Figure 9a, compared to the original 1 km resolution, the information loss γ reaches up to 500 

54.9% at the 12 km spatial scale. The spatial pattern of SM is consistent with the spatial pattern of 501 

percent clay (Figures 6a vs. 6b and 6c vs. 6d), indicating that soil texture contributes significantly 502 

to the spatial variability of SM. However, SM has a more negative β than the percent clay (β = –503 

0.28 vs. –0.19 at L1, as shown in Figure 8a), suggesting that SM variability is amplified likely by 504 

other processes that are also influenced by soil texture. In contrast to location L1, location L2 505 

exhibits less negative β values for both SM and percent clay, suggesting that their spatial 506 

variabilities exhibit less scale dependence (Figures 5a, 6c, and 6d). Both SM and percent clay at 507 

location L2 approximately maintain their spatial patterns of high values in the west and low values 508 

in the east across spatial scales (Figures 6c and 6d).  509 

For LH, there is a more negative β value at location L3 than at location L4 (β = –0.27 at L3 vs. –510 

0.08 at L4, as shown in Figure 8b), which indicates a larger decrease of spatial variability across 511 

spatial scales and lower variability persistence at location L3 than location L4 (Figure 10). The 512 
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spatial pattern of LH is consistent with the spatial pattern of LAI (Figures 7a vs. 7b and 7c vs. 7d) 514 

at different spatial scales, suggesting that vegetation plays a significant role in the spatial 515 

variability of LH. Similar to comparison between SM and soil texture, LH has a more negative β 516 

than LAI (Figure 8b). 517 

 518 

Figure 8. The scaling of spatial variabilities for (a) SM and percent clay, and (b) LH and LAI. Both 519 

the x-axis and y-axis are in logarithmic scale. The slope of the linear regression line, β, quantifies 520 

the strength of the negative relationship between spatial scale and spatial variability. A more 521 

negative β value indicates a higher spatial-scale dependency and increased information loss at 522 

coarser spatial scales. Four 0.5° × 0.5° boxes (displayed in Figure 7), namely L1 to L4, are chosen 523 

to contrast larger and smaller negative β values for SM and percent clay (L1 and L2) and for LH 524 

and LAI (L3 and L4). 525 
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 526 

Figure 9. Comparison of SM and percent clay across spatial scales at locations L1 and L2 527 

highlighted in Figure 7. Each subplot displays the spatial patterns of SM or percent clay within a 528 

0.5° × 0.5° box, with the σ and γ presented in the legend.  529 
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 530 

Figure 10. Similar to Figure 9, but for LH and LAI at locations L3 and L4.  531 
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4.5 The spatial variability of water and energy simulations and their drivers 532 

We quantified the spatial variability simulated at 1 km resolution using σ within each 0.5º × 0.5º 533 

box across CONUS. Four ML models were built to explore the spatial relationships between σ and 534 

its potential drivers including σ of the land surface parameters and the temperature and 535 

precipitation averaged over the grid box. Overall, the ML models performed well in predicting the 536 

σ of the simulated variables, with small root mean square error (RMSE) and large R2 (see Figure 537 

S24). SM shows larger spatial variability in the US Southern Coastal Plain, lower Mississippi 538 

River, Northeast, Southeast, and regions around the Great Lake (Figure 11a), which is roughly 539 

consistent with the spatial heterogeneity of the high-resolution SM simulation in Vergopolan et al. 540 

(2022). Based on the SHAP method, the spatial variability of SM across CONUS is driven by 541 

various factors, mainly including the spatial variabilities of percent sand and percent clay, mean 542 

precipitation, the σ and µ of soil organic matter, the σ of canopy height, and mean temperature 543 

(Figure 11b). Mean precipitation and temperature reflect climate conditions (Figure S26), which 544 

are related to the water supply and water demand of soil water content. The spatial heterogeneity 545 

of soil properties, such as texture and organic matter content, affects soil hydraulic properties and 546 

generate more spatially variable soil water content. Vegetation characteristics, such as canopy 547 

height and LAI, could influence SM spatial variability through their effect on roughness length 548 

and rooting depth. 549 

The spatial variability of LH is large in the southeastern, central, and western mountainous regions 550 

of the US (Figure 11c). Vegetation properties and climate conditions mainly drive the variability 551 

of LH (Figure 11d). The µ and σ of LAI can affect transpiration and soil evaporation, while canopy 552 

height can influence surface roughness length and, in turn, evapotranspiration. Mean precipitation 553 
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and temperature reflect the overall climate conditions related to the water and energy available for 555 

latent heat. 556 

ELR and ASR exhibit large spatial variability mainly over the western US, with ASR additionally 557 

showing significant spatial variability across the Northern US (Figures 8e and 8g). This variability 558 

is primarily driven by climate conditions such as mean precipitation and temperature, topographic 559 

features such as standard deviation of elevation and slope, and vegetation properties including LAI 560 

and canopy height (Figures 8f and 8h). These factors are related to the radiation input and surface 561 

properties, such as albedo and roughness length, which impact the energy cycles and availability 562 

of ELR and ASR. 563 
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 564 

Figure 11. The spatial variability over each 0.5º × 0.5º grid cell (left plots) and the top eight most 565 

important drivers (right plots) of the spatial variability for SM, LH, ELR, and ASR. The inserted 566 
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histogram plot illustrates the probability distribution of the spatial variability across CONUS. The 567 

relative importance of each variable in determining the spatial variability is calculated as the ratio 568 

of the mean |SHAP value| of the variable to the sum of the mean |SHAP value| of all variables. 569 

Therefore, the sum of the relative importance of all variables is 100%.  570 

 571 

4.6 The information loss of water and energy simulations and their drivers 572 

We also evaluated the information loss in simulations when upscaling from 1 km to 12 km 573 

resolution and analyzed the drivers of their spatial patterns over CONUS. Four ML models were 574 

built to explore the relationships between the g of the simulations and its drivers including the g of 575 

the land surface parameters and the mean temperature and precipitation averaged over the 0.5º × 576 

0.5º box. These ML models performed well in predicting the simulations' γ, with small RMSE and 577 

large R2 (Figure S25). 578 

Significant information loss ranging from 31% to 54% with maximum values exceeding 90% is 579 

observed for SM, LH, ELR, and ASR simulations (Figure 12). Their spatial patterns and drivers 580 

show distinct variations. 𝛾01 is primarily driven by the information loss of percent clay and sand, 581 

mean soil organic matter, and mean temperature, which affects the soil hydraulic properties and 582 

soil water balance (Figures 9a and 9b). 𝛾23 displays high values in the eastern US and low values 583 

in the western US (Figure 12c). It is primarily contributed by the information loss of vegetation 584 

properties such as LAI and canopy height, and mean LAI, which influences the partitioning of LH 585 

and sensible heat, and the partitioning of transpiration and evaporation (Figure 12d). 𝛾425 exhibits 586 

high values in the central and eastern US, particularly in the northeastern US, while 𝛾605 has high 587 

values almost all over the US, especially in the eastern regions (Figures 9e and 9g). 𝛾425 and 𝛾605 588 

are largely driven by vegetation properties such as LAI and canopy height, which are associated 589 
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with energy processes such as albedo (Figures 9f and 9h). Additionally, topography factors of 591 

standard deviation of elevation and slope also slightly contribute to 𝛾605. 592 
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 593 

Figure 12. Same to Figure 11 but for information loss. 594 
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4.7 Comparison of ELM simulation against reference data 595 

The average spatial biases between ELM and reference datasets across CONUS are relatively small, 596 

with SM bias at -0.01 m³/m³, LH bias at 1.8 W/m², ELR bias at -3.8 W/m², and ASR bias at 1.1 597 

W/m² (Figure 13 and Figure S27). The correlation coefficient (R2) between ELM and reference 598 

datasets was relatively high at 0.60 (for SM), 0.70 (for LH), 0.96 (for ELR), and 0.90 (for ASR). 599 

However, the spatial distribution of these biases exhibits variability, with some areas showing 600 

more pronounced biases than others. Specifically, in comparison with GLEAM SM, ELM tends 601 

to underestimate SM in the southeastern Texas and across the eastern and southeastern CONUS, 602 

while it overestimates SM in the western, central, and southwestern CONUS, including the central 603 

eastern US which are primarily agricultural areas. For LH, ELM simulates higher values than the 604 

MODIS LH dataset in the western and central US and Florida, but lower values in regions such as 605 

the eastern and northeastern CONUS, the western US coastal areas, and the Pacific Northwest. 606 

Regarding radiation variables, ELM generally underestimates ELR across nearly all of CONUS 607 

and tends to overestimate ASR, particularly in the southwestern, southern, eastern, northeastern, 608 

and northern regions of CONUS. 609 
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 610 

Figure 13. Annual mean bias between ELM-simulated variables and reference datasets over 611 

CONUS: (a) SM, (b) LH, (c) ELR, and (d) ASR. The negative values indicate lower ELM values 612 

compared to the reference data. The inserted histogram plot illustrates the distribution of grid 613 

values. For spatial patterns of the reference datasets, refer to Figure S27. The correlation 614 

coefficient (R²) between the ELM simulation and the reference dataset is calculated and displayed 615 

in the title of each subplot.”  616 
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5. Discussion 617 

The development of new 1 km land surface parameter datasets in this study marks a substantial 618 

improvement over commonly used land surface parameters such as CLM5 and K2012, leveraging 619 

the latest high-resolution data sources with rigorous validation, including MODIS PFTs, enhanced 620 

LAI and canopy height, soil properties, and topography factors. When compared with K2012 and 621 

ELM2/CLM5 default datasets, the new 1k parameters exhibit notable differences, suggesting 622 

potential improvement due to the use of more advanced data sources. Distinct features of the new 623 

parameters include a reduction in bare soil compared to ELM2/CLM5, especially in regions like 624 

North America and Central Asia, and diverse coverage of specific PFTs such as NDT and BET-625 

Tropical in areas like Siberia and South America. The LAI of the new parameters diverges from 626 

K2012 and ELM2/CLM5, showing lower values in NET-Boreal PFT of the northern hemisphere 627 

but higher BET-Tropical PFT in the tropics. The soil parameters, particularly in regions like 628 

Europe, Central Asia, and the Western US, show significant differences between the new and 629 

ELM2/CLM5 defaults. Moreover, the new parameters indicate larger slopes in mountainous 630 

regions and more distinct elevation differences in areas such as Greenland and the Tibetan Plateau 631 

compared to ELM2/CLM5. These differences potentially highlight enhanced accuracy and 632 

sophistication of the new 1k parameters. Their enhanced resolution and rigorous validation suggest 633 

a substantial capacity to improve ESMs modeling. Additionally, the richness of multi-year data 634 

for LULC, LAI, and SAI in these datasets is especially valuable for examining land use and cover 635 

changes, urbanization trends, deforestation impacts, and agricultural transformations. 636 

 637 

The new 1 km land surface parameters can improve k-scale offline LSMs modeling by better 638 

capturing spatial surface heterogeneity. As evidenced by the 1 km ELM simulation over CONUS, 639 
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soil properties, vegetation properties, and topographic factors contribute a lot to the spatial 640 

heterogeneities of ELM water and energy simulations. Upscaling 1 km to a coarser 12 km 641 

resolution, we observe significant spatial information loss, with SM experiencing an average loss 642 

of 31%, and LH, ELR, and ASR experiencing around 50% information loss on average (Figure 643 

12). This conclusion is in line with the results of Vergopolan et al. (2022), which showed a 644 

substantial loss of spatial information in soil moisture when upscaling from 30 m to 1 km resolution, 645 

with an average loss of approximately 48% and up to 80% over the CONUS region. The XML 646 

analysis reveals that the spatial variability and information loss of ELM2 simulations are 647 

influenced by the spatial variability and information loss of the different variables of land surface 648 

parameters, as well as the mean precipitation and temperature (Figures 11 and 12). Our findings 649 

highlight the critical role of land surface parameters in contributing to the spatial variability of 650 

water and energy in land surface simulations, showcasing the value of the developed high-651 

resolution datasets. Another implementation example where our 1 km land surface parameters can 652 

be beneficial is in hillslope-scale simulations, which are fundamental for organizing water, energy, 653 

and biogeochemical processes (Fan et al., 2019). Krakauer et al. (2014) have highlighted the 654 

significance of between-cell groundwater flow, which becomes comparable in magnitude to 655 

recharge at grid spacings smaller than 10 km. Advancements have been made in ESMs to address 656 

hillslope-scale processes, including the representation of intra-hillslope lateral subsurface flow 657 

within grid cells in CLM5 (Swenson et al., 2019), the development of explicit lateral flow 658 

processes between grid cells (Qiu et al., 2023), and the incorporation of topographic radiation 659 

effects within and between grid cells (Hao et al., 2021). Another notable example is the integrated 660 

hydrology-land surface model ParFlow-CLM, which incorporates three-dimensional groundwater 661 

flow, two-dimensional overland flow, and land surface exchange processes (Maxwell, 2013). 662 
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ParFlow-CLM has demonstrated remarkable reliability in reproducing hydrologic processes, such 663 

as its simulations at 3 km resolution for pan-European and 1 km resolution for CONUS (Naz et al., 664 

2023; O’Neill et al., 2021). More recently, Fang et al. (2022) coupled ParFlow with ELM and the 665 

Functionally Assembled Terrestrial Ecosystem Simulator (FATES) to simulate carbon-hydrology 666 

interactions at hillslope scale. By incorporating our 1 km datasets and leveraging these 667 

advancements, we can improve simulations of hillslope-scale processes and enhance our 668 

understanding of water and energy dynamics within ESMs. 669 

 670 

Additionally, the new land surface parameters are also a timely resource for supporting the 671 

emerging need for k-scale Earth system modeling, particularly in improving land-atmosphere 672 

interaction processes. Representing the impact of spatial heterogeneity on land-atmosphere 673 

interaction processes is a major challenge in Earth system modeling. Taking E3SM as an example, 674 

researchers have proposed three key approaches to enhance spatial heterogeneity representation to 675 

address this challenge. In line with these approaches, our newly developed 1 km land surface 676 

parameters offer promising opportunities for improving land-atmosphere coupling within ESMs. 677 

The first approach to enhance the representation of spatial heterogeneity is to directly conduct 678 

simulations at high resolution. For instance, the Simple Cloud-Resolving E3SM Atmosphere 679 

Model (SCREAM) has been used to perform global simulations at 3.25 km (Caldwell et al., 2021), 680 

although the land surface parameters were based on coarser resolution datasets. By utilizing the 681 

new 1 km land surface parameters, we can enhance the representation of land surface heterogeneity 682 

within the ELM component of SCREAM, potentially improving modeling of land–atmosphere 683 

coupling. The second and third approaches focus on improving the representation of land surface 684 

heterogeneity within ESMs run at a coarse resolution while accounting for subgrid heterogeneity 685 
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in two different ways. In the second approach, the Cloud Layers Unified By Binormals (CLUBB) 686 

has been implemented in E3SM Atmosphere Model (EAM) version 1 (Rasch et al., 2019; 687 

Bogenschutz et al., 2013), to better account for subgrid atmospheric heterogeneity of turbulent 688 

mixing, shallow convection, and cloud macrophysics. Recently, Huang et al. (2022) developed a 689 

novel land-atmosphere coupling scheme in EAM that enables the communication of subgrid land 690 

surface heterogeneity information to the atmosphere model with CLUBB, significantly impacting 691 

boundary layer dynamics. The new 1km datasets can provide more accurate land surface 692 

representations of the variability of individual patches and the inter-patch variability that were 693 

used in Huang et al. (2022). The third approach is the Multiple Atmosphere Multiple Land (MAML) 694 

approach used in the multiscale modeling framework (MMF) in which a cloud resolving model 695 

(CRM) is embedded within each grid cell of the atmosphere (Baker et al., 2019; Lin et al., 2023; 696 

Lee et al., 2023). In the MAML approach, each CRM column within the atmosphere grid is coupled 697 

directly with its own independent land surface. This enables a more explicit representation of the 698 

impact of spatial heterogeneity on land-atmosphere interactions within each grid and has shown 699 

notable impacts on water and energy simulations (Baker et al., 2019; Lin et al., 2023). Lee et al. 700 

(2023) highlighted the limitation of the current MAML approach, which utilizes the same land 701 

surface characteristics for each land surface model interacting with the CRM column within the 702 

same grid, which could lead to a weak representation of land-atmosphere interactions. To address 703 

this limitation, incorporating the new 1 km land surface parameters within the MAML approach 704 

can provide more detailed information about land surface heterogeneity, enabling a more accurate 705 

capture of land-atmosphere interactions. 706 

 707 
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Evaluation of k-scale simulations, while essential, faces significant challenges as merely updating 708 

the land surface input data to the new 1k parameters for k-scale simulations does not guarantee 709 

improved model performance. This is clearly evidenced in our ELM demonstration simulations, 710 

where, despite relatively low CONUS averaged biases for water and energy simulations, the spatial 711 

variation in these biases cannot be overlooked, with some regions exhibiting notably larger biases. 712 

It is important to emphasize that enhancing model performance requires not just updated input 713 

data, but also appropriate calibration of model parameters and faithful model structures to 714 

represent various processes. First, LSMs and ESMs that have been adapted for simulations at 715 

coarser resolutions commensurate with the resolutions of previous land surface data require 716 

recalibration for effective high-resolution modeling. This necessity for recalibration is echoed by 717 

Ruiz-Vásquez et al., (2023), who noted that updating the ECMWF system with new land surface 718 

data did not inherently improve performance, but improvements were seen after recalibrating key 719 

soil and vegetation-related parameters. Second, high-resolution modeling requires the 720 

incorporation of new physical processes crucial at finer scales. For example, hillslope-scale 721 

processes like lateral flow and topography-radiation interactions are key to water and energy fluxes 722 

at high resolution (Han et al., 2023; Hao et al., 2021). With increased heterogeneity at higher 723 

resolutions, larger differences in land surface properties such as vegetation water use strategies 724 

requires more attention to plant hydraulics besides the traditional focus on soil hydraulics for a 725 

more accurate depiction of plant water use, as highlighted by Li et al., (2021). Third, the lack of 726 

high-resolution benchmarks for large-scale applications, like k-scale atmospheric forcing data, 727 

remains a challenge, despite the availability of relative coarse resolution global datasets such as 728 

ERA5_Land (Muñoz-Sabater et al., 2021) and MSWX (Beck et al., 2021). Additionally, using soil 729 

moisture as an example, multiple high-resolution datasets exhibit significantly different 730 
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performance when compared to in-situ measurements (Beck et al., 2021). Lastly, when evaluating 731 

simulations against benchmarks, it is crucial not only to assess absolute differences using metrics 732 

like bias and root mean square error but also to examine other metrics, such as the relationships 733 

between physical variables (e.g., rainfall vs. runoff; soil moisture vs. evapotranspiration), 734 

information loss, and the tail quantiles of the probability distribution functions for simulations (e.g., 735 

extreme events, Li et al., 2020). 736 

 737 

There are certain opportunities for future development of 1k parameters. The urban extension may 738 

vary based on data sources, urban definitions, and the algorithms employed, such as those derived 739 

from harmonized nighttime lights (Zhao et al., 2022), global artificial impervious area (GAIA, Li 740 

et al., 2020b; Gong et al., 2020), urban expansion (Liu et al., 2020; Kuang et al., 2021), 741 

necessitating careful consideration in specific modeling applications. Additionally, urban 742 

classification in J2010, based on global building height data, is limited by the lack of a consistent 743 

and publicly accessible global dataset, despite available regional data for Europe (Frantz et al., 744 

2021), the US (Li et al., 2020a), and China (Cao and Huang, 2021; Yang and Zhao, 2022), thus 745 

posing challenges to future urban classification enhancements. Incorporating local climate zones 746 

offers a promising approach for urban classification and modeling. Moreover, the multiple-year 747 

high-resolution PFT maps like the ones developed by the European Space Agency's Climate 748 

Change Initiative could be used to further extend this dataset for a longer period (Harper et al., 749 

2023). Soil color, crucial for soil albedo and surface energy balance, lacks extensive global datasets 750 

for ESMs modeling, but the global soil color map derived by Rizzo et al. (2023) offers potential 751 

for further kilometer-scale ESMs and LSMs modeling. 752 

 753 
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The strategic aggregation of high-resolution parameters to coarser resolutions are crucial to 754 

maintain accuracy and effectiveness in modeling applications. For instance, in soil properties, the 755 

basic parameters (e.g., percent sand) are often utilized to derive secondary parameters (e.g., 756 

saturated water content). This aggregation procedure, whether performs before or after deriving 757 

secondary parameters—known as 'aggregating first' and 'aggregating after'—is influenced by the 758 

non-linear relationships between basic and derived parameters, with the latter method generally 759 

preferred (Shangguan et al., 2014; Dai et al., 2019). Our study's initial approach in upscaling soil- 760 

and topography-related parameters follows the 'aggregate first' approach, aligning with the 761 

structure of models like ELM2 and CLM5. Conversely, models such as Common Land Model 762 

(CoLM, Dai et al., 2003) and community Noah with multi-parameterization options (Noah-MP, 763 

He et al., 2023; Niu et al., 2011; Yang et al., 2011) integrate secondary derived soil related 764 

parameters directly as inputs, effectively demonstrating the advantages of the 'aggregating after' 765 

approach. By leveraging secondary derived parameters from comprehensive databases such as 766 

SoilGrids (Hengl et al., 2017) and GSDE (Shangguan et al., 2014), these models provide a valuable 767 

framework for future development of models like ELM2 and CLM5 by directly integrating 768 

secondary derived parameters. 769 

  770 
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6. Data availability 771 

The 1 km land surface parameters are publicly available at Zenodo: 772 

https://zenodo.org/records/10523833 (Li et al., 2024) and PNNL Datahub: 773 

https://doi.org/10.25584/PNNLDH/1986308 (Li et al., 2023). 774 

 775 

7. Conclusions 776 

We developed 1 km global land surface parameters using the latest available datasets covering 777 

multiple years from 2001 to 2020. These parameters comprise four categories: LULC of PFTs and 778 

non-vegetative land cover, vegetation properties, soil properties, and topographic factors. The new 779 

1k parameters, when compared to the K2012 and ELM2/CLM5 default datasets, display 780 

significant differences, indicating their potential superiority stemming from the utilization of latest 781 

and more advanced data sources. The 1 km resolution ELM simulations conducted over CONUS 782 

demonstrate the valuable capabilities of the new datasets in enabling k-scale land surface modeling. 783 

Through scaling analysis of the 1 km resolution simulations within 0.5º × 0.5º boxes where spatial 784 

heterogeneity of the simulations is induced only by spatial heterogeneity of the land surface 785 

parameters, we revealed the significant impact of land surface parameters on the spatial variability 786 

of water and energy simulations. The spatial information loss of these simulations over CONUS 787 

is significant when upscaling from 1 km to a coarser 12 km resolution, with an average ranging 788 

from 31% to 54% and up to more than 90%. The XML analysis reveals that the spatial variability 789 

and spatial information loss of ELM2 simulations are primarily impacted by the spatial variability 790 

and information loss of soil properties, vegetation properties and topography factors, as well as the 791 

mean climate conditions of precipitation and temperature. Furthermore, the spatial variability of 792 

water and energy in the 1 km simulations is not dominated by the spatial heterogeneity of any land 793 
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surface parameters, suggesting the usefulness of the multi-parameter high-resolution land surface 796 

parameter dataset. Furthermore, the comparison against four benchmark datasets indicates that 797 

ELM generally performs well in simulating soil moisture and surface energy fluxes. The 798 

availability of 1 km land surface parameters is a valuable resource that addresses the emerging 799 

needs of k-scale LSMs and ESMs modeling. By providing accurate and precise information, these 800 

1 km land surface parameters will significantly enhance our understanding of the water, carbon, 801 

and energy cycles under global change. 802 

  803 
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