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Abstract 

In recent years, advancements in machine learning based interpolation methods have enabled the production of high-resolution 

maps of sea surface partial pressure of CO2 (pCO2) derived from observations extracted from databases such as the Surface 

Ocean CO2 Atlas (SOCAT). These pCO2-products now allow quantifying the oceanic air-sea CO2 exchange based on 

observations. However, most of them do not yet explicitly include the coastal ocean. Instead, they simply extend the open 15 

ocean values onto the nearshore shallow waters, or their spatial resolution is simply so coarse that they do not accurately 

capture the highly heterogeneous spatiotemporal pCO2 dynamics of coastal zones. Until today, only one global pCO2-product 

was specifically designed for the coastal ocean (Laruelle et al., 2017). This product however has shortcomings because it only 

provides a climatology covering a relatively short period (1998-2015), thus hindering its application to the evaluation of the 

interannual variability and the long-term trends of the coastal air-sea CO2 exchange, a temporal evolution that is still poorly 20 

understood and highly debated. Here we aim at closing this knowledge gap and update the coastal product of Laruelle et al. 

(2017) to investigate the longest global monthly time series available for the coastal ocean from 1982 to 2020. The method 

remains based on a 2-step Self Organizing Maps and Feed Forward Network method adapted for coastal regions, but we 

include additional environmental predictors and use a larger pool of training and validation data with ~ 18 million direct 

observations extracted from the latest release of the SOCAT database. Our study reveals that the coastal ocean has been acting 25 

as an atmospheric CO2 sink of -0.4 Pg C yr-1 (-0.2 Pg C yr-1 with a narrower coastal domain) on average since 1982, and the 

intensity of this sink has increased at a rate of 0.1 Pg C yr-1 decade-1 (0.03 Pg C yr-1 decade-1 with a narrower coastal domain) 

over time. Our results also show that the temporal trend in the air-sea pCO2 gradient plays a significant role in the decadal 

evolution of the coastal CO2 sink, along with wind speed and sea-ice coverage changes that can also play an important role in 
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some regions, particularly at high latitudes. This new reconstructed coastal pCO2-product (Roobaert et al., 2023, 30 

https://www.ncei.noaa.gov/archive/accession/0279118) allows establishing regional carbon budgets requiring high-resolution 

coastal flux estimates and provides new constraints for closing the global carbon cycle. 

 

Short summary 

Advancements in understanding the coastal air-sea CO2 exchange (FCO2) have been made, but long-term temporal trends 35 

remain unclear. Our research, based on observations and a machine learning approach, reconstructs the longest global time 

series of coastal FCO2 (1982 to 2020). Results show the coastal ocean acts as a CO2 sink, with increasing intensity over time. 

This new coastal FCO2 product allows establishing regional carbon budgets and provides new constraints for closing the global 

carbon cycle. 

1 Introduction 40 

The exchange of carbon dioxide (CO2) between the atmosphere and the ocean depends on the gradient between the partial 

pressure of CO2 (pCO2) at the surface of the ocean and that of the overlying air. Over the past decade, the number of high-

quality measurements of sea surface pCO2 collected by research field programs and ships of opportunities have considerably 

increased. Moreover, large-scale community efforts have led to the compilation of tens of millions of sea surface pCO2 

measurements into uniform quality-controlled databases such as SOCAT (for Surface Ocean CO₂ Atlas, Bakker et al., 2014), 45 

allowing for the quantification of the global oceanic CO2 sink. However, in spite of this tremendous increase in data coverage, 

once gridded monthly at a typical spatial resolution of 1° for the open ocean and 0.25° for the coastal ocean, pCO2 

measurements remain largely discontinuous in time and space. The remaining regions and periods of time devoid of data thus 

prevent one from fully quantifying the air-sea CO2 exchange and its full spatiotemporal variability based on measurements 

alone.  50 

 

Therefore, in parallel to the on-going measurement synthesis efforts, another research branch aiming at developing robust 

interpolation techniques to circumvent the spatial and temporal gaps in the data products has emerged. These techniques allow 

creating maps of pCO2 that are continuous in space and time, typically at the monthly resolution (e.g., Chau et al., 2022; Gloege 

et al., 2022; Gregor & Gruber, 2021; Landschützer et al., 2014; Rödenbeck et al., 2014, 2015). The resulting observation-based 55 

continuous products (called hereafter ‘pCO2-products’) however differ in their spatial resolutions (e.g., from 0.25°x 0.25° in 

Chau et al. (2023) over 1° x 1° in Landschützer et al., 2014 to 4° x 5° in Majkut et al., 2014), their temporal coverage and their 

method of interpolation. Several studies have relied on direct interpolations of available pCO2 measurements (e.g., Jones et 

al., 2015; Rödenbeck et al., 2014; Shutler et al., 2016) while others have first established linear (e.g., Iida et al., 2015; Park et 

al., 2010; Schuster et al., 2013) or nonlinear (e.g., Landschützer et al., 2014; Nakaoka et al., 2013; Zeng et al., 2014) predictive 60 

regression equations between a set of environment parameters (available everywhere and at everytime within the domain of 
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interest) and observed pCO2 to perform the spatiotemporal extrapolation. These complementary pCO2-products provide a 

better quantification of the spatial and temporal variability of the global oceanic CO2 sink and its associated uncertainty on 

different time scales, going from seasonal fluctuations to decadal trends through interannual variability, while providing much 

improved observation-based benchmarks against which outputs from global model results can be evaluated (e.g., Hauck et al., 65 

2020).  

 

While significant efforts have been invested by the community to develop pCO2-products for the global ocean, leading to a 

growing number of assessments of the CO2 sink, most of these pCO2-products ignore the coastal ocean (e.g., Landschützer et 

al., 2014) or resolve it by simply combining the coast with the open ocean (Chau et al., 2023). Indeed, the spatiotemporal 70 

investigations are performed for the entire ocean using the full set of observed pCO2 data (coast and open ocean) in such a way 

that the specific conditions characteristic of coastal settings are not accurately accounted for in these products (e.g., Chau et 

al., 2022; Rödenbeck et al., 2013). In response to this shortcoming, other continuous pCO2-products have been developed at 

the regional scale for several well monitored coastal seas (e.g., Bai et al., 2015; Hales et al., 2012; Jamet et al., 2007; Ono et 

al., 2004; Sarma et al., 2006) such as the California Current system (Sharp et al., 2022), European shelves (Becker et al., 2021) 75 

or the West Florida shelf (Chen et al., 2016). At the global scale, a significant step forward was made by Laruelle et al. in 2017 

when the first global coastal pCO2-product at high spatial resolution (0.25°) was released for the entire coastal domain. This 

product, which is still, to date, the only one available specifically developed for the global coastal ocean, is based on gridded 

coastal pCO2 observations and nonlinear predictive regression equations between a set of environmental variables (drivers) 

and observed pCO2 to perform the spatiotemporal extrapolation (the Self Organizing Map and Feed Forward Network coastal 80 

pCO2-product, ULB-SOM-FFN-coastalv1, Laruelle et al., 2017). This global coastal pCO2-product provided a climatological 

mean (period 1998-2015) which allowed unprecedented investigation of the spatial distribution of the CO2 sources and sinks 

in the global coastal ocean, especially for regions lacking data or regional assessments. It also allowed resolving the seasonal 

variability of the air-sea CO2 exchange in the coastal domain (Roobaert et al., 2019). Moreover, it was recently merged with 

an open ocean product to obtain a global reconstruction of the ocean CO2 sink (Landschützer et al., 2020) and has been 85 

subsequently used to reduce the spread in global reconstructions (Fay et al., 2021). However, the ULB-SOM-FFN-coastalv1 

pCO2-product remains limited in its applications because it only provides a climatology covering a relatively short period 

(1998-2015) and is thus not suitable to evaluate the interannual variability or the long-term trends of the coastal air-sea CO2 

exchange. Such questions currently are at the forefront of the coastal research community’s preoccupations (Bauer et al., 2013; 

Lacroix et al., 2021a; Laruelle et al., 2018; Regnier et al., 2013; Resplandy et al., in rev.; Wang et al., 2017) but, because of 90 

the lack of adequate product, our confidence in the extent to which humans have perturbed the coastal air-sea CO2 exchange 

since pre-industrial times remains low (Regnier et al., 2022). Moreover, the limitations of the ULB-SOM-FFN-coastalv1 do 

not yet allow producing robust trends in coastal pCO2 fields against which global model outputs can be evaluated (e.g., 

Resplandy et al., in rev.). 

 95 
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To address these limitations, this study expands and improves upon the version of the global coastal pCO2-product of Laruelle 

et al. (2017) by extending its temporal coverage to four decades (1982-2020) and updating the methodology to resolve longer-

terms changes in pCO2, as described in the following section. The evaluation of this new product (ULB-SOM-FFN-coastalv2, 

Roobaert et al., 2023, https://www.ncei.noaa.gov/archive/accession/0279118) is done both spatially and for each decade 

individually, which represents an improvement compared to Laruelle et al. (2017) where the ULB-SOM-FFN-coastalv1 100 

evaluation was limited to spatial and climatological seasonal cycles only. Using ULB-SOM-FFN-coastalv2 that relies on ~ 18 

million coastal direct observations from the SOCATv2022 database, we recalculate the coastal air-sea CO2 exchange (FCO2) 

for the 1982-2020 period and briefly describe the temporal evolution of the global coastal CO2 sink over this timeframe. In the 

future, these updated pCO2 and FCO2 products can be used as benchmark for global oceanic models resolving trends in the 

coastal CO2 dynamics, fulfilling a key knowledge gap identified in the latest Regional Carbon Cycle Assessment and Processes 105 

coastal synthesis (RECCAP2, Resplandy et al., in rev.). 

2. Methods  

This section first describes the 2-step interpolation method used to generate the new version of the coastal pCO2-product (Sect. 

2.1) and the different datasets involved in this two steps procedure (Sect. 2.2). We then describe how the coastal air-sea CO2 

exchange is calculated (Sect. 2.3) and finally explain the approach used to quantify the uncertainties associated with our new 110 

pCO2 and FCO2 products (Sect. 2.4). 

2.1 Self Organizing Maps and Feed Forward Network 

We build upon the method described in Laruelle et al. (2017) to construct an updated observation-based continuous monthly 

pCO2-product for the coastal ocean (ULB-SOM-FFN-coastalv2) at a 0.25° spatial resolution over the 1982 to 2020 period. 

The method is based on the application of two artificial neural networks (the Self Organizing Map, SOM and the Feed Forward 115 

Network, FFN). The SOM first clusters the global coastal ocean into provinces characterized by similar environmental 

properties. In each province, the FFN then establishes nonlinear relationships between the observed pCO2 and a set of 

environmental drivers of the coastal pCO2 dynamics (which may be different from those used by the SOM). These relationships 

are then used to perform the spatiotemporal extrapolation of pCO2 in each region defined by the SOM. This method was 

originally developed for the open ocean and is extensively described in Landschützer et al. (2013, 2014). It was later adapted 120 

for the global coastal ocean by Laruelle et al. (2017). We thus provide only a brief description of the methodology and focus 

here on the modifications introduced in this study. 

 

In a first step, the global coastal ocean is divided into 10 biogeochemical provinces using the SOM clustering algorithm. Each 

resulting province is characterized by similar spatiotemporal patterns of a set of environmental variables, or drivers. In this 125 

study, we use the same drivers as in Laruelle et al. (2017), which consist of the wind speed calculated at 10 meters above the 

sea surface (U10), the Sea Surface Temperature (SST), the Sea Surface Salinity (SSS), the bathymetry, and the rate of change 
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of the sea ice coverage (see Sect. 2.2 for a description of the datasets). The SOM uses a neural network to detect similarities 

within multivariate datasets and uses an iterative procedure to distribute them into a predefined number of clusters. For each 

environmental driver, continuous monthly maps at the spatial resolution of 0.25° are used as inputs for the neural network and 130 

each 0.25° cell is allocated to one of the 10 provinces (or neurons). This procedure aims at minimizing the Euclidean distance 

between all points within each neuron of the network (see Landschützer et al., 2013 for more details). The spatial extension of 

these provinces varies from one month to the other because of the seasonal variations of the environmental drivers in such a 

way that a fixed grid cell in space may be assigned to several provinces over the course of a year. The choice of 10 provinces 

in the SOM stems from a sensitivity analysis that minimizes the average deviation between the observed pCO2 and those 135 

simulated by the FFN algorithm (see second step below) while ensuring the presence of a minimum number of grid cells 

(>100) that can be used for the validation in each province (Laruelle et al., 2017). While their spatial extent varies seasonally, 

each province remains associated with specific regions over the course of the entire 1982-2020 period and the province 

occurring most often in each grid cell is shown in Fig. 1. Broadly, these provinces represent: Province 1 (P1) the Antarctic 

shelf, P2-P3 two subpolar/temperate coastal provinces of the South Hemisphere, P4 and P6 the large tropical coastal provinces, 140 

P5 a temperate province of the Northern Hemisphere which includes the Mediterranean Sea and the Norwegian Sea. P7, P8 

and P10 represent high latitudes of the Northern Hemisphere provinces that are seasonally partly covered by sea-ice (with the 

Baltic Sea and the Hudson Bay in P8) while P9 represent a permanent and cold polar province.  

 

In a second step, within each biogeochemical province identified in step 1 (SOM), a FFN algorithm establishes nonlinear 145 

relationships between the observed sea surface pCO2 and independent variables, or drivers, that are known to control its spatial 

and temporal variability. For each province, the FFN algorithm calculates relationships between a target variable (here pCO2 

using pCO2 observations from the SOCAT_a dataset - see below) and inputs (environmental drivers - see below and Table 1) 

by adjusting weighting factors of a sigmoid activation function (one sigmoid function per neuron in the hidden layer) following 

an iterative procedure, i.e., a Levenberg-Marquardt backpropagation algorithm. At the first iteration, the weights of neurons 150 

are randomly assigned and the estimated pCO2 is compared with the actual pCO2 observations. Based on the resulting 

mismatch, the network weights are iteratively updated in a way that the error function - in our case the mean squared error 

between network output and actual observations - gets minimized. For each iteration, the FFN algorithm uses a fraction of the 

pCO2 observations for the actual training of the network (i.e., the adjustment of the neuron weights), while another randomly 

selected fraction of the dataset is used to independently evaluate the performance of the algorithm. The final coefficients are 155 

obtained when the pCO2 simulated from the validation data does not significantly improve relative to the observations, to 

prevent overfitting. The final neuron weights and thus the resulting input-output relationships are used to calculate pCO2 in 

each cell and for each month during the 1982-2020 period.  

 

 160 
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The predictors used for the FFN are U10, SST, SSS, the atmospheric pCO2, the rate of change in sea ice coverage (except in 

regions not covered by sea ice, i.e., in P2, P3, P4 and P6), the bathymetry and the chlorophyll-a concentration (Chl-a). The 

Chl-a is expressed as log10(Chl-a) to minimize the influence of its skewed distribution (Wrobel-Niedzwiecka et al., 2022) . In 

P1, P8 and P9, we do not use Chl-a as a driver because of the poor data coverage resulting from recurring cloud and/or sea-ice 

coverage in those provinces (see Sect. 2.2). This incomplete data coverage for Chl-a is incidentally the reason why this 165 

predictor is not used at the SOM stage because it requires complete global datasets. Atmospheric pCO2, which was not included 

in the ULB-SOM-FFN-coastalv1, is also used as a driver of multi-decadal changes induced by the increasing atmospheric 

pCO2 concentration. Finally, we smooth spatially the monthly-resolved coastal pCO2 field generated by the FFN using a 

moving 3 by 3 pixel window to remove abrupt pCO2 transitions sometimes occurring at the boundaries between provinces. 

This smoothing procedure is described by Landschützer et al. (2014) and was also used in the ULB-SOM-FFN-coastalv1.  170 

 

The surface pCO2 data used by the FFN are extracted from the SOCATv2022 database (Bakker et al., 2022) that originally 

contains ~ 40 million pCO2 measurements for the entire global ocean (open and coastal seas combined). We follow the 

recommendation of the SOCAT community and use their accuracy criteria to only retain the data with the highest accuracy. 

To do so, we first select sea surface measurements expressed in fugacity of CO2 (fCO2) with a quality flag ranging from A to 175 

D (which corresponds to an estimated accuracy better than 5 µatm) and a World Ocean Circulation Experiment (WOCE) flag 

of 2 (good dataset following SOCAT) for the 1982-2020 period. Following Laruelle et al. (2017), we also remove fCO2 values 

< 30 µatm and > 1000 µatm that are likely derived from estuarine or fresh water systems that are not included in our coastal 

domain. We then randomly divide this dataset rich of ~ 32 million fCO2 measurements into a group of data used for the FFN 

algorithm (‘a’, 80 % of the original dataset) and a group of data that we use to validate our reconstructed pCO2 (‘b’, 20 % of 180 

the original dataset). The two sets of data (SOCAT_a and SOCAT_b) are then gridded for each month at 0.25° using the 

average of all fCO2 values in each cell. Values are then converted from fCO2 to pCO2 using the equation of Takahashi et al. 

(2012, page 6) and a coastal mask is applied on both gridded pCO2 products. In this study, the coastal domain (total surface 

area of 76 million km², Laruelle et al., 2017) excludes the Black Sea, estuaries as well as inland water bodies and its outer limit 

is defined as whichever point is furthest from the shoreline between the 1000 m isobath and a fixed 300 km distance (roughly 185 

the outer edge of territorial waters), following the coarse SOCAT definition of the coastal oceanic domain. At the end of this 

entire procedure, a total of ~ 14 million and ~ 4 million coastal data have been allocated to SOCAT_a and SOCAT_b, 

respectively.  

2.2 Environmental variables  

The observational SST and SSS fields used as inputs for the SOM-FFN algorithm are calculated as the monthly means of the 190 

daily NOAA OI SST V2 (Reynolds et al., 2007) and of the daily Hadley center EN4 SSS (Good et al., 2013), respectively 

(Table 1). For U10, we use the monthly mean of the 0.25° resolution product of the global atmospheric reanalysis ERA-interim 

wind product (Dee et al., 2011), which has a native temporal resolution of 6 hours. The monthly mean of the daily 0.25° dataset 
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of Reynolds et al. (2007) is used for the sea-ice coverage. The rate of change in the sea-ice coverage for a given month x is 

then calculated as the difference between the sea-ice coverages of months x+1 and x-1. The atmospheric pCO2 is calculated 195 

from the dry air mixing ratio of CO2 (xCO2) provided by the NOAA Marine Boundary Layer reference product 

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/) assuming 100 % humidity at the air-sea interface (following calculation specified 

in Dickson et al., 2007) and using the NCEP reanalysis total pressure at sea level (Kalnay et al., 1996). It should be noted that, 

due to the proximity to the continent of the coastal ocean, the latter might be more exposed to anthropogenic sources of CO2 

and thus higher atmospheric pCO2 compared with the global oceanic average. The use of spatially resolved dry air mixing 200 

ratio of CO2 datasets such as the one from the NASA’s Orbiting Carbon Observatory 2 Goddard Earth Observing System 

(OCO-2 GEOS, Eldering et al., 2017) instead of the product used in this study might be more appropriate to include this effect. 

However, OCO-2 GEOS only covers the 2015-2022 period, which is too short for the purpose of our study. It is also expected 

that the choice of the atmospheric pCO2 does not considerably influence our FCO2 calculations as the air-sea pCO2 difference 

is mainly controlled by the oceanic pCO2 (see Sect. 2.4). We use the bathymetry from the 2 min global ETOPO2 database (US 205 

Department of Commerce, 2006) and the Chl-a field derived from the monthly 4 km merged globcolour product from the U.U 

Copernicus Marine Service information (https://doi.org/10.48670/moi-00281), which is the product with the longest Chl-a 

temporal coverage (1998-2020 period). However, because of recurrent cloud coverage everywhere and sea-ice coverage at 

high latitudes, the monthly averaged Chl-a field at a 0.25° resolution is discontinuous with grid cells devoid of data. We fill 

these cells (9 % excluding high latitude coastal regions) using a cascade of interpolation methods, which order depends on 210 

data availability in time and space in the surrounding cells : for an empty cell of the month x, the interpolation is performed 

by computing (1) the mean of the next neighboring cells of the month x, (2) the mean value of the month x+1 and month x-1 

of the same cell, (3) the monthly mean value x of the cell for the entire 1998-2020 period, (4) the annual mean value of the 

cell for the entire 1998-2020 period. At high latitudes, where none of these options are feasible because of large bands without 

any data, we assign the modal value of Chl-a as default value in order to ensure the continuity of the maps that is required for 215 

the FFN algorithm. From this continuous gridded Chl-a product over the recorded period, we then calculate for each cell a 

monthly seasonal climatology and attribute the climatological values to the unrecorded period (1982-1997). This means that, 

in our calculations, Chl-a does not contribute to long-term changes in pCO2 before 1997. All observational fields are converted 

from their original spatiotemporal resolution to monthly 0.25° gridded resolution for the 1982-2020 period (except for the 

bathymetry which is constant over time) to match the observational pCO2 product (SOCAT_a) resolution (Table 1). 220 

2.3 Air-sea CO2 exchange  

The pCO2 field generated by the SOM-FFN algorithm (ULB-SOM-FFN-coastalv2) is used to calculate the air-sea CO2 

exchange for each grid cell at the monthly time scale over the 1982-2020 period following Eq. (1): 
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𝐹𝐶𝑂 = 𝑘 𝐾  ∆𝑝𝐶𝑂  (1 − 𝑖𝑐𝑒)                  (1) 225 

 

where FCO2 (mol C m-2 yr-1) represents the coastal air-sea CO2 exchange, ∆𝑝𝐶𝑂  (atm) is the gradient between the oceanic 

pCO2 and the atmospheric pCO2 and K0 (mol m-3 atm-1) is the CO2 solubility in seawater which is a function of SST and SSS 

following the equation of Weiss (1974). k (m yr-1) represents the gas exchange transfer velocity which is a function of the 

second moment of the wind speed at 10 meters above sea level and is calculated using the equation of Ho et al. (2011) and 230 

using the Schmidt number based on the equation of Wanninkhof (2014). The sea-ice coverage for each grid cell is represented 

by the term ice and ranges from 0 (no ice cover) to 1 (100 % ice cover). By convention a positive FCO2 value corresponds to 

a source of CO2 for the atmosphere. We use the same U10, SST, SSS, sea-ice coverage and atmospheric pCO2 datasets (see 

Sect. 2.2) to calculate FCO2 and perform the FFN pCO2-reconstruction. Our reconstructed coastal FCO2 is also compared with 

coastal FCO2 estimates derived from a synthesis of 214 regional FCO2 estimations (Dai et al., 2022) and from the FCO2-235 

product derived from the original ULB-SOM-FFN-coastalv1 pCO2-product (Roobaert et al., 2019).  

2.4 Uncertainties of the reconstructed coastal data-products 

The uncertainties associated with our reconstructed pCO2 and FCO2 coastal products are estimated using the method proposed 

by Landschützer et al. (2014, 2018) and used by subsequent authors (e.g., Roobaert et al., 2019; Sharp et al., 2022). The FCO2 

uncertainty results from four sources of uncertainties, which are considered independent and thus summed quadratically: 240 

 

𝜎 = 𝜎∆ + 𝜎 + 𝜎 + 𝜎                                (2) 

 

Where 𝜎  represents the total FCO2 uncertainty (Petagrams of Carbon per year, Pg C yr-1), 𝜎∆  is the uncertainty of the 

air-sea pCO2 gradient, 𝜎  is the uncertainty associated with the choice of the k-formulation in Eq. (1) and 𝜎  is the 245 

uncertainty associated with the choice of the wind speed product (see Roobaert et al., 2018). We also include the effect of the 

choice of sea-ice product on the FCO2 uncertainty (𝜎 ) which was not included in the original calculations of Landschützer 

et al. (2014, 2018) but has been identified as a potential source of uncertainty in global coastal reconstructions (e.g., Resplandy 

et al., in rev.). All of these four sources of uncertainty are expressed in Pg C yr-1. 𝜎  is calculated following the strategy 

described in Roobaert et al. (2018) which consists of using the standard deviation of global FCO2 fields calculated with 3 250 

different wind products: the ERA-interim (Dee et al., 2011), the Cross-Calibrated Multi-Platform Ocean Wind Vector 3.0 

(Atlas et al., 2011) and the NCEP/NCAR reanalysis 1 (Kalnay et al., 1996). 𝜎  is estimated as the standard deviation of global 

FCO2 fields calculated with four different global-scale k-parametrizations with the same wind speed (ERA-interim). We use 

the formulations of Ho et al. (2011), Sweeney et al. (2007), Takahashi et al. (2009), and Wanninkhof (2014); all suited for 

global scale applications (see e.g., Roobaert et al., 2018). 𝜎  is calculated as the standard deviation of global FCO2 fields 255 

calculated with 2 different sea-ice products: The NOAA dataset of Reynolds et al. (2007) and the sea-ice dataset of Rayner et 
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al. (2003). 𝜎∆  mainly results from the oceanic pCO2 uncertainty since the atmospheric pCO2 uncertainty is significantly 

lower (Landschützer et al., 2018). For instance, Roobaert et al. (2019) quantified that uncertainties in atmospheric pCO2 only 

contribute to 6 % in the overall FCO2 uncertainty.  

 260 

Following Landschützer et al. (2014), the uncertainty over the oceanic pCO2 can be obtained from the quadratic sum of 3 

sources of uncertainties: 

 

𝜃 =
√

+
√

+                                            (3) 

 265 

Where 𝜃  represents the total uncertainty of the oceanic pCO2 (µatm), 𝜃  is the experimental uncertainty associated with 

the sampling on the field of the observations from the SOCAT database (µatm), 𝜃  is the uncertainty associated with the 

gridding of the observations from SOCAT into 0.25° monthly meshed maps (µatm) and 𝜃  is the uncertainty derived from 

the comparison between the reconstructed pCO2 and the observed gridded pCO2 from the SOCAT database (µatm). Following 

Sharp et al. (2022), we use accuracies that are attributed to each fCO2 measurement by the SOCAT community (flags A to D) 270 

to calculate 𝜃 . Flags ‘A’ and ‘B’ represent an estimated accuracy of 2 µatm while the accuracy of flags ‘C’ and ‘D’ is 5 

µatm. We first calculate the mean of all fCO2 flags in each grid cell for each month. We then calculate the global average 

gridded flags uncertainty of all cells for the year x (or the entire period). For 𝜃 , we first calculate in each grid cell of the 

month x the standard deviations of all fCO2 values from the SOCAT database used for the gridding. We then calculate the 

average of these standard deviations of all grid cells for the year x (or the entire period). 𝜃  is calculated as the root mean 275 

squared deviation between the reconstructed pCO2 and the gridded pCO2 observation from SOCAT. We also divide each 

source of uncertainty (i.e., 𝜃 , 𝜃  and 𝜃 ) by the square root of the number of pCO2 samples (N, see Landschützer et 

al., 2018; Roobaert et al., 2019 for details). For 𝜃 , the value of N is corrected to account for the fact that all individual 

errors are not spatially independent. To this end, we calculate the effective sample size (Neff, see Landschutzer et al., 2018) by 

randomly selecting 1000 samples (40 % of the samples if the total number of samples is < 1000) that cover our study period 280 

and calculating a lag 1 autocorrelation coefficient following equations (18) and (19) of Landschützer et al. (2018). As we only 

use a subset of 1000 samples, we perform Monte Carlo simulations where this procedure is repeated 10 times and our final 

Neff is calculated as the median of the 10 iterations. Finally, the total uncertainty on FCO2 associated with the reconstructed 

pCO2 (𝜎∆ , Pg C yr-1) is obtained by applying 𝜃  (µatm) in Eq. (1). All these procedures are performed globally for each 

year and for the entire period of our study.  285 
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3 Results and discussion 

3.1 pCO2-product evaluation 

Globally, our reconstructed coastal pCO2-product compares well with the observed pCO2 used to train the FFN algorithm 

(SOCAT_a) and reproduces all the well-known global spatial pCO2 patterns with generally low pCO2 (< 360 µatm) at 

temperate as well as high latitudes and high pCO2 (> 360 µatm) at low latitudes (contrast Fig. 2a with Fig. 2b). The spatial 290 

distribution of the temporal mean residuals (i.e., difference between the coastal pCO2-product and SOCAT_a in each grid cell 

for every month where observations are available) reveals that, in some regions, underestimations (negative mean residual, 

blue colors in Fig. 2c) or overestimations (red colors) of the pCO2 can be generated by the coastal pCO2-product. However, 

most of the calculated residuals fall within the -20 to 20 µatm range, accounting for 68 % of the grid cells, while 44 % of the 

grid cells have absolute residuals < 10 µatm (Fig. 2c and Fig. 3a).  295 

 

A global mean of the residuals (bias) value of 0 µatm and a r² of 0.7 are calculated, as expected since the algorithm minimizes 

the Root Mean Square Error (RMSE) between measurements and target observations. The global RMSE is however, 

substantially larger (29 µatm) yet still comparable to those calculated, at the regional scale, in previous coastal pCO2 studies 

based on statistical interpolations (see e.g., Chen et al., 2016) and slightly lower than the global RMSE calculated by Laruelle 300 

et al. (2017, 32 µatm). Large differences can be observed between our product and SOCAT_a locally in regions that are known 

to present large spatiotemporal variabilities in pCO2 and/or in regions lacking data to train our FFN algorithm. For instance, 

residuals and/or standard deviations > 20 µatm are encountered in the Baltic Sea (which is hence later treated as an independent 

biogeochemical province for some calculations), in upwelling regions (e.g., along the Peruvian upwelling), in coastal seas 

under the influence of seasonal changes in sea ice coverage (e.g., along the Antarctica shelf) as well as along the very nearshore 305 

coastal domain (e.g., along the California current coast, Figs. 2c, d).  

 

The overall consistency between our coastal pCO2-product and SOCAT_a is diagnosed over the entire timespan of our study, 

as illustrated by the histograms of residuals calculated for each of the four decades of our calculation period (Fig. 3a) or when 

the calculations are performed for each individual year (Table S1). This is an important test as a study by Gloege et al. (2022) 310 

suggests that decadal trends in pCO2 products may be obscured by changing residual distributions over time. In spite of the 

highly heterogeneous distribution of the number of pCO2 observations available through time (< 500 gridded cells in the 80’s 

vs > 10 000 in the 2010’s), the shape and spread of the four histograms of the residuals are closely similar between decades 

with a distribution centered on a global mean bias close to 0 µatm and most of the residuals falling in the -20 and 20 µatm 

range. This demonstrates the accuracy of the method over time despite the skewed distribution of the calibration data. The 315 

analyses performed for each individual year reveal that global biases do not exceed 5 µatm. Exceptions are observed in the 

80’s where biases (e.g., absolute bias of 6 µatm in 1987) and RMSE (e.g., 42 µatm in 1989) can be larger and partly attributed 

to an exceptionally low pCO2 observational coverage during these periods (see e.g., Bakker et al 2014). In the first version of 
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the coastal product (ULB-SOM-FFN-coastalv1), the evaluation of the pCO2-product of Laruelle et al. (2017) was restricted to 

spatial and climatological seasonal cycles. In this study, we successfully extended this analysis to the entire time period and 320 

evaluated each year and decade individually.  

 

At the regional scale, 7 out of the 10 biogeochemical provinces yield RMSEs against SOCAT_a close to 20 µatm or lower 

with the best fit in P2 (RMSE = 13 µatm, Table 2). This is a significant improvement over the ULB-SOM-FFN-coastalv1 

product which only had 3 provinces with RMSE < 20 µatm (Laruelle et al., 2017) and none < 15 µatm. We attribute this 325 

improvement to our advanced setup of the method such as the inclusion of the atmospheric pCO2 as a driver as well as an 

increased number of available observations to train our FFN algorithms. In three provinces (P1, P5 and P7) however, the 

RMSE exceeds 35 µatm. Such values can partly be explained by the complex dynamics of the sea ice in the Antarctic Shelf 

(P1) and by the limited number of observational data combined with the inclusion of coastal regions that present large 

spatiotemporal variabilities and cover two disconnected temperate basins (P5 and P7) of the Northern Hemisphere. This 330 

discrepancy was also highlighted by Landschützer et al. (2020). High discrepancies are further observed in the Baltic Sea 

(Figs. 2c-d) which is analyzed as a separate province (RMSE value of 43 µatm, Table 2). Excluding the Baltic Sea from P8 

considerably reduces RMSE from 42 to 23 µatm. The inclusion of the Baltic Sea in P8 can likely also explain the large RMSE 

calculated by Laruelle et al. (2017) for the corresponding province of the ULB-SOM-FFN-coastalv1 coastal pCO2-product (~ 

47 µatm). 335 

3.2 Validation against independent data  

Our reconstructed coastal pCO2-product is also validated against an independent dataset that is derived from pCO2 observations 

from the SOCATv2022 that were not used for the training of the FFN algorithm (see Sect. 2.1). This dataset consists of a pool 

of 404,206 gridded cells that are uniformly distributed between both hemispheres (SOCAT_b, Fig. S1) and presents a good 

correspondence with SOCAT_a (93 % of the residuals between SOCAT_b and SOCAT_a are < 5 µatm and with a global 340 

RMSE value of 6 µatm, Fig. S2). Globally, a good match is observed between the coastal pCO2-product and SOCAT_b with 

a global bias and a RMSE of 0 and 30 µatm, respectively. These values are similar to those derived from the statistical analysis 

performed against SOCAT_a. At the biogeochemical provinces scale, RMSEs generally do not exceed 23 µatm (maximum 

value in P6, Table 2), except where important RMSEs (~ 35 µatm for P1, P5 and P7) had already been calculated during the 

comparison with SOCAT_a (i.e., in regions under the sea-ice coverage dynamics and poor data coverage and provinces which 345 

encompass regions with high spatiotemporal pCO2 dynamics).  

 

As with SOCAT_a, the analysis against SOCAT_b demonstrates a good performance of our reconstructed coastal pCO2-

product over time with the histograms of the residuals calculated for each of the four decades presenting the same shape and 

spread in spite of the marked decrease of grid cells numbers over time (1054 grid cells in 80’ vs 248,626 grid cell in 2010’, 350 

Fig. 3b). Each of these histograms shows a distribution centered on a value of 0 µatm with 50 % of the grid cell residuals 
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falling between -10 and 10 µatm. This is also true at the scale of the biogeochemical provinces with the four histograms of the 

residuals revealing global mean biases of 0 µatm and ~ 50 % of the residual falling in the -10 and 10 µatm range. Only P8 

stands as an exception (where 50 % of the residuals are between -40 and 40 µatm, Fig. S3), mainly due to the presence of the 

Baltic Sea in this province. 355 

 

Finally, we also present pCO2 time series derived from our reconstructed coastal pCO2-product and compare them to data 

extracted from SOCAT_b for 8 coastal sites (Fig. 4). The choice of these coastal regions is motivated by their data coverage 

extending over 30 years (Fig. 4a) and the fact that it is possible in these grid cells to reconstruct a spatially complete seasonal 

climatological cycle (i.e., data are available for all 12 months). For each region, we only extracted cells for which observations 360 

extended > 30 years and reconstructed their times series from the coastal pCO2-product and SOCAT_b, respectively (Figs. 4b-

i). For most of the regions, the pCO2-product properly captures the temporal dynamics of pCO2 derived from the observations, 

bearing slight underestimations or overestimations in specific areas such as along the Cascadian shelf and the East coast of 

Australia (Figs. 4d and 4g). For the 8 coastal sites, absolute biases are all < 10 µatm with a minimum absolute bias of 1 µatm 

in the Irminger Sea and a maximum absolute bias of 9 µatm along the New Zealand coast. Except along the Cascadian Shelf, 365 

all coastal sites present RMSEs lower than ~30 µatm (5 over the 8 regions show RMSEs < ~20 µatm) which falls in the range 

of our global and regional RMSE values. Largest RMSE is calculated along the Cascadian shelf (62 µatm) and can partly be 

explained by the large spatial pCO2 variability in SOCAT_b (as shown by the vertical bars in Fig. 4d) because of the riverine 

influence in the region. The overall good agreement in terms of biases and RMSEs lends confidence to our ability to unravel 

the long-term temporal coastal pCO2 evolution with the newly reconstructed pCO2-product. For example, our results show that 370 

for all the 8 studied regions, an increase in pCO2 over time comprised between 10 and 20 µatm decade-1 is calculated with our 

pCO2 product, a range in good agreement with the 12-18 µatm decade-1 obtained with SOCAT_b. Although New Zealand 

shows the largest bias between SOCAT_b and the pCO2-product, they both agree that this region displays the fastest trend in 

terms of pCO2 rise (18 µatm decade-1 and 20 µatm decade-1 for SOCAT_b and the pCO2-product, respectively).  

3.3 Air-sea CO2 exchange  375 

This section describes the coastal air-sea CO2 exchanges patterns that are calculated using our new reconstructed pCO2-product 

over the 1982-2020 period. The spatial and seasonal FCO2 patterns are only briefly discussed (Sect. 3.3.1) since those have 

been extensively discussed in previous studies (see e.g., Dai et al., 2022; Resplandy et al., in rev.; Roobaert et al., 2019). We 

thus focus on the long-term FCO2 trends (Sect. 3.3.2), which are still poorly understood and highly debated (e.g., Lacroix et 

al., 2021a; Laruelle et al., 2018; Resplandy et al., in rev.). 380 

3.3.1 Spatial and seasonal dynamics  

The spatial distribution of the climatological mean coastal FCO2 shows that coastal regions in temperate areas (between 40°- 

60° in both hemisphere) and at high latitude (beyond 60° in both hemisphere) mainly act as a CO2 sinks while CO2 sources are 
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mainly encountered in the sub-tropical band (Fig. 5a) which is consistent with the global latitudinal pattern established by 

previous studies (e.g., Borges, 2005; Borges et al., 2005; Cai, 2011; Cao et al., 2020; Chen et al., 2013; Dai et al., 2022; 385 

Laruelle et al., 2010, 2014; Roobaert et al., 2019). Globally, with the coastal delineation used in this study (‘wide coastal 

ocean’, 76 million km²), the coastal ocean absorbs on average 0.4 Pg C per year (with an uncertainty of ± 0.03 Pg C yr-1, see 

section 3.3.3) over the 1982-2020 period. Using the shelf break as the outer limit of the coastal domain (‘narrow coastal ocean’, 

28 million km²) which is a more common delineation of the coastal ocean, the globally integrated coastal sink amounts to -0.2 

± 0.01 Pg C yr-1 which is consistent with the latest estimates (e.g., -0.2 Pg C yr-1 in Roobaert et al. (2019) and -0.25 Pg C yr-1 390 

in Dai et al. (2022)). It should be noted that these comparisons are not straightforward because they do not cover the same time 

periods (i.e., 1998-2015 period in Roobaert et al. (2019), 1998-present in Dai et al. (2022) and 1982-2020 in this study) and 

older assessments often do not report an explicit calculation period (Regnier et al., 2022).  

 

Most of the intense CO2 sinks (absolute FCO2 value > 0.5 mol C m-2 yr-1) are encountered at high latitudes of the Northern 395 

Hemisphere and in the temperate regions of the southern Hemisphere while CO2 sources in the tropical bands are moderate 

except along upwelling areas such as in the Arabian Sea (Figs. 5a and 5c). A large fraction (42 % and 50 % for the wide and 

narrow domain, respectively) of the global CO2 uptake is taking place north of 60° N, which was already suggested in Laruelle 

et al. (2010) and further confirmed in subsequent studies (e.g., Cai, 2011; Dai et al., 2022, Laruelle et al., 2014; Roobaert et 

al., 2019). The spatial distribution of coastal CO2 sources and sinks also closely follows the latitudinal FCO2 profile calculated 400 

by Roobaert et al. (2019) which is based on ULB-SOM-FFN-coastalv1 (red and green lines in Fig. 5c). These global pCO2-

products however predict less variability in flux density than a compilation of regional estimations as shown in Fig. 5c when 

comparing our climatological FCO2 latitudinal profile with the synthesis of 214 regional FCO2 estimates which was already 

pointed by Dai et al. (2022) when comparing their data synthesis with the latitudinal FCO2 profile of Roobaert et al. (2019) 

suggesting strong FCO2 heterogeneities for a same latitudinal band. Finally, the seasonal coastal FCO2 variability (expressed 405 

as the RMS of the seasonal amplitude,) agrees with the few studies performed at global scale (see e.g., Dai et al., 2022; 

Roobaert et al., 2019) with high seasonal FCO2 amplitudes (rms values > 1.5 mol C m-2 yr-1) at temperate and high latitudes 

and a low amplitude over the subtropical band (Fig. 5b).  

3.3.2 Decadal trends in the coastal CO2 sink  

The rate of change in coastal FCO2 and the various parameters involved in the FCO2 calculation (i.e., ∆pCO2, wind speed and 410 

sea-ice coverage) from 1982 to 2020 are presented in Fig. 6. Our results reveal significant spatial heterogeneities between the 

long-term temporal FCO2 trends observed within different coastal regions, a finding consistent the range of varying slopes 

(including changes in sign of the slopes) already reported in local regional and discontinuous global studies (e.g., Becker et 

al., 2021; Laruelle et al., 2018; Wang et al., 2017). Our results also show that the decadal rates of changes in ∆pCO2 and FCO2 

follow each other (compare Figs. 6a with 6b). Coastal regions with negative (positive) ∆pCO2 slopes present negative (positive) 415 

FCO2 slopes, which translate into a stronger sink/weaker source (weaker sink/stronger source). Most coastal regions (~ 70 % 
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of the grid cells that present a significant trend using a Mann-Kendall statistical test with a significance threshold of 95 %) 

exhibit negative ∆pCO2 and FCO2 slopes (i.e., stronger sinks or weaker sources, blue colors in Figs. 6a, b) in agreement with 

past studies (e.g., Laruelle et al., 2018; Resplandy et al., in rev.; Wang et al., 2017). Positives ∆pCO2 and FCO2 slopes (weaker 

sink or stronger sources, red colors) can also be observed such as along the Mediterranean Sea or Southeast Asia. Stronger 420 

FCO2 rates of change (absolute value > 0.6 mol m-2 yr-1 decade-1) are mainly observed in mid-to high latitudes coastal regions 

and along upwelling regions (e.g., Moroccan upwelling current) while low latitudes coastal regions show weaker slopes. 

 

Although our results suggest that the decadal change in FCO2 intensity mainly results from that of the ∆pCO2 (compare Fig. 

6a with 6b), the rate of change in FCO2 can be amplified or dampened in some regions by changes in wind speed patterns 425 

and/or sea-ice coverage (trough their effect on Eq. (1)), in agreement with recent findings by Resplandy et al. (in rev.). For 

most of the coastal ocean, an increase in wind speed has been observed over the study period (positive slope, red colors in Fig. 

6c) with a median value for the rate of change value of 0.04 m s-1 decade-1. This increase in wind speed promotes the FCO2 

exchange through its effect on the gas exchange transfer velocity (stronger sinks/sources). Rate changes in sea-ice coverage 

reveal a general retreat of sea-ice in the Northern Hemisphere (negative slope, blue colors in Fig. 6d) and a gain along the 430 

Antarctic shelf (positive slope, red colors) in agreement with e.g., Serreze & Meier (2019). A decrease of sea-ice coverage 

favors air-sea CO2 exchange over a larger coastal surface area and during longer periods of the year, both of which strengthen 

for instance the CO2 sink in coastal regions at high latitudes of the Northern Hemisphere.  

 

Globally integrated, our results indicate that today’s coastal ocean has been acting as a CO2 sink since the beginning of our 435 

study period (1982) both in the wide coastal ocean (Fig. 7a) and in the narrow domain (Fig. 7b). For both domains this CO2 

sink however increases over time. In the wide coastal ocean, the global CO2 uptake amounted to 0.25 Pg C yr-1 in the 1980’s 

(median value over the 1982-1992 period) and reached 0.52 Pg C yr-1 in the 2010’s (mean value over the 2010-2020 period) 

with small interannual fluctuations (~ 0.01 Pg C yr-1) of the CO2 sink intensity diagnosed by our algorithm. The overall 

intensification of the coastal sink that we observe in this study (0.1 Pg Cyr-1 decade-1 and 0.03 Pg C yr-1 decade-1 for the wide 440 

and narrow coastal domain, respectively) supports the only two available observational coastal studies performed at global 

scale (i.e., Laruelle et al., 2018; Wang et al, 2017) which were however significantly limited by the small fraction of the coastal 

ocean domain investigated (e.g., 6 % in Laruelle et al., 2018) and both predict an increase in efficiency of the global coastal 

CO2 sink over the last three decades. Our results are also in agreement with the conceptual approach of Bauer et al. (2013) as 

well as modeling studies, either using box models (e.g., Mackenzie et al., 2004, 2012; Rabouille et al., 2001; Ver et al., 1999) 445 

or, more recently, global ocean biogeochemical models (Bourgeois et al., 2016; Lacroix et al., 2021a, b) that all predict an 

increase in efficiency of the global coastal CO2 sink at the century-scale.  

 

The significant strengthening of this global coastal sink that we observe in this study, which has approximately doubled 

between 1982 and 2020 (wide coastal domain) results from a general tendency towards an increase of the coastal CO2 sinks 450 
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intensities (e.g., in the high latitude of the Northern Hemisphere, Fig. 6a) combined with decreases in intensity of several CO2 

sources such as along upwelling currents (e.g., in the Arabian sea). However, since a large fraction of the global CO2 uptake 

results from coastal regions > 40° of the Northern Hemisphere and since these CO2 sinks regions present strong negative rates 

of change in FCO2 (Fig. 6a), our result suggests that the primary driver of this twofold increase of the global coastal CO2 sink 

is to be found in the high latitudes of the northern hemisphere, which contribute disproportionately to the global-scale coastal 455 

FCO2 trend. However, taking the large heterogeneity in decadal FCO2 trends, a quantitative analysis of the respective 

contributions of different coastal systems to the global strengthening of the coastal CO2 sink should be performed in the future, 

using a regionalized approach. Moreover, changes in wind speed and sea-ice coverage have likely not been constant over time 

and further analysis of their influence on the rate change of FCO2 should be analyzed for each decade individually to better 

understand the interplay between these different drivers. Overall, our results highlight the complex nature of the coastal FCO2 460 

dynamics and emphasizes the need for further investigation and understanding of the specific factors influencing the FCO2 

trends in different coastal regions. 

 

3.4 Uncertainties associated with the data-products  

The global coastal CO2 sink of -0.4 Pg C yr-1 (wide coastal domain) that we calculate in this study using the ULB-SOM-FFN-465 

coastalv2 pCO2-product is associated with a relative uncertainty that amounts to ~ 10 % (value of 0.03 Pg C yr-1 for 𝜎 , see 

Eq. (2) and Table 3). This global uncertainty mainly results from the uncertainty associated with the oceanic pCO2 ( 

𝜎∆𝑝𝐶𝑂2
, uncertainty of 0.02 Pg C yr-1). The choice of the gas exchange transfer velocity formulation yields a 7 % difference 

(𝜎 , uncertainty of 0.01 Pg C yr-1) on the global FCO2 calculation while we calculate a 4 % difference on FCO2 depending on 

the wind speed product choice (𝜎 , uncertainty of 0.01 Pg C yr-1) or on the sea-ice product choice (𝜎 , uncertainty of 0.01 470 

Pg C yr-1) on the global FCO2 calculation. Note though, that the uncertainty in the mean is substantially lower than that 

calculated for individual months (see Fig. 7) or regions (see e.g., discussion above regarding the Baltic Sea region) due to 

compensating errors as was also identified in a study by Gloege et al. (2022). 

 

The total uncertainty of the oceanic pCO2 (𝜃 , value of 0.6 µatm, see Eq. (3)) mainly results from the SOM-FFN mapping 475 

method to reconstruct the coastal pCO2-product (𝜃  = 29 µatm, Table 3). This uncertainty falls within the range of values 

reported in the literature from different statistical interpolation methods to generate coastal pCO2 data-products (RMSE values 

generally between 10 and 35 µatm, see Chen et al. (2016)) which are calculated from regional studies and would be expected 

to be smaller than those calculated for global scale analysis (or even the performance of our algorithm at the scale of its 

provinces, which generally cover a much larger surface area than most regional studies). The 𝜃  uncertainty calculated in 480 

this study is however higher than reported for the open ocean (typical RMSE values < 20 µatm, e.g., Landschutzer et al., 2014), 

mainly because of the complex biogeochemical dynamics and larger variability observed in the coastal seas compared with 

the open ocean. We calculate a global value of 3 µatm for 𝜃 , the uncertainty on the sampling in the field of the observations 
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from the SOCAT database, which is slightly higher than the value reported by Pfeil et al. (2013, value of 2 µatm). For 𝜃 , 

the uncertainty associated with the meshing of the observations from SOCAT to gridded 0.25° monthly maps, we calculate a 485 

global mean value of 6 µatm, which is close to the value reported by Sabine et al. (2013, 5 µatm) for the open ocean. It should 

be noted that all these uncertainties are calculated globally and can be display large variations the regional scale (see e.g., 

Roobaert et al., 2019) as exemplified by the uncertainty associated with the choice of wind speed product on the FCO2 

calculation (see Roobaert et al., 2018). Moreover, due to the temporal heterogeneity of the data coverage in the SOCAT 

database, our FCO2 uncertainties can also vary temporally. As shown in Fig. 7, the global FCO2 uncertainties that we report 490 

for each year (dashed black lines) are largest in the 80’s (e.g., global 𝜎 value of 0.10 Pg C yr-1 in 1987) because of the 

scarcity of pCO2 measurements before 1990 in the SOCAT database and decrease over time. Our global uncertainties are also 

slightly larger along the nearshore domain of the coastal ocean. Using the narrow definition of the coastal domain (i.e., the 

shelf break as the outer limit), we calculate a global value of 0.01 Pg C yr-1 for 𝜎  (7 % uncertainty on the global FCO2, 

which is consistent with the global FCO2 uncertainty calculated by Roobaert et al. (2019, 10 %)), 7 % FCO2 difference depend 495 

on the k-formulation use (𝜎  value of 0.01), 2 % difference on the FCO2 calculation depending on the wind product choice 

(𝜎  = 0.002 Pg C yr-1), 8 % for the sea-ice choice (𝜎  = 0.01 Pg C yr-1), 36 µatm for 𝜃 , 8 µatm for 𝜃  and 3 µatm 

for 𝜃 .  

4 Conclusions and directions for future research 

The release of the global coastal pCO2-product in 2017 by Laruelle et al. was a significant step forward for the investigation 500 

of the spatial distribution of CO2 sources and sinks as well as their seasonal variabilities in the shallow portion of the ocean. It 

was also instrumental to the completion and harmonization of global ocean air-sea CO2 fluxes (Fay et al., 2021), hence 

supporting global carbon budget analyses (Friedlingstein et al, 2022). However, this product was not designed or evaluated 

regarding its ability to resolve the interannual variability and the long-term evolution of the coastal air-sea CO2 exchange, 

which are still poorly understood (e.g., Bauer et al., 2013; Lacroix et al., 2021a; Laruelle et al., 2018; Regnier et al., 2013; 505 

Regnier et al., 2022; Resplandy et al., in rev.; Wang et al., 2017). In this study, we presented a new coastal pCO2-product for 

the 1982-2020 period using ~ 18 million direct coastal observations from the latest release of the SOCAT database combined 

with an updated version of the coastal 2-step SOM and FFN method used by Laruelle et al. (2017). We also provided a new 

coastal air-sea CO2 exchange product for the same period and examined the temporal evolution of the global coastal CO2 sink 

over the past four decades. This analysis reveals that the long-term temporal trend of the air-sea pCO2 gradient drives most of 510 

the decadal evolution of the coastal CO2 sink, wind speed and sea-ice coverage playing a significant role regionally. Trends 

analysis of the coastal FCO2 has also been attempted using global ocean pCO2 products that cover the coastal domain 

(Resplandy et al., in rev.). However, these investigation have been inconclusive, likely because global ocean pCO2-products 

cannot yet sufficiently well capture the specific and changing conditions occurring along the coastal domain (e.g., Chau et al, 

2022; Rödenbeck et al., 2013 see Resplandy et al., in rev.). Our updated coastal pCO2-product circumvents these limitations 515 
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and provides a first robust assessment against which outputs from global oceanic modes results can be evaluated (e.g., 

Resplandy et al., in rev.). It will thus help better constrain the anthropogenic perturbation of the global ocean carbon cycle. In 

the future, our machine-learning approach could also be used to diagnose the main drivers of change in the global coastal ocean 

sink and more specifically, changes in the decadal evolution of the coastal pCO2 field. This approach, in conjunction with 

process-based simulations, is critically needed to evaluate and mitigate the impact of multiple anthropogenic perturbations 520 

(e.g., atmospheric pCO2 increase, physical climate, eutrophication and hypoxia) on the global coastal carbon cycle and 

associated biodiversity loss and other marine stressors.        

Data availability 

The ULB-SOM-FFN-coastalv2 pCO2 and FCO2 products can be found here: 

https://www.ncei.noaa.gov/archive/accession/0279118 (Roobaert et al., 2023). The bathymetry derived from the 2 min global 525 

ETOPO2 database (US Department of Commerce, 2006, Table 1), the Chl-a from the  monthly 4 km merged globcolour 

product for the 1998-2020 period from the U.U Copernicus Marine Service information (https://doi.org/10.48670/moi-00281), 

the SST and SSS from the daily NOAA OI SST V2 (Reynolds et al., 2007) and of the daily Hadley center EN4 SSS (Good et 

al., 2013), respectively. We use the dry air mixing ratio of CO2 (xCO2) provided by the NOAA Marine Boundary Layer 

reference product (https://www.esrl.noaa.gov/gmd/ccgg/mbl/) assuming 100 % humidity at the air-sea interface (following 530 

calculation specified in Dickson et al., 2007) and using the NCEP reanalysis total pressure at sea level (Kalnay et al., 1996) to 

calculated the atmospheric pCO2. The sea-ice coverage derived from the monthly mean of the daily 0.25° dataset of Reynolds 

et al. (2007), the wind speed from the 6 hours first moment of the 0.25° resolution product of the global atmospheric reanalysis 

ERA-interim wind product (Dee et al., 2011). The pCO2 observations derived from the SOCAT database v2022 (Bakker et al., 

2022). 535 
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Figure 1: Coastal biogeochemical provinces generated by the Self Organizing Map clustering algorithm (SOM). The spatial extension 
of these provinces can vary from one month to another due to seasonal variations of the environmental drivers used during SOM. 
Here we present their modal spatial distribution (see Sect. 2.1 for further details). 780 

 

 

Table 1: Environmental drivers used for the Self Organizing Map (SOM) and the Feed Forward Network (FFN) artificial neural 
networks to reconstruct the coastal pCO2. These datasets are also used to calculate the coastal air-sea CO2 exchange.  

environmental drivers period  resolution manipulation name and/or references 

      

 Sea Surface Temperature (SST, in °C) 1982-2020 0.25°, daily monthly mean NOAA OI SSTv2 (Reynold et al., 2007) 

 Sea Surface Salinity (SSS, in PSU) 1982-2020 0.25°, daily monthly mean EN4.2 SSS (Good et al., 2013) 

 Wind speed at 10 meters above sea 
level (U10, in m s-1) 

1982-2020 0.25°, 6 hours monthly first moment  ERA-Interim (Dee et al., 2011) 

 
Sea-ice coverage (ice, no unit) 1982-2020 0.25°, daily 

monthly mean rate 
changed in sea-ice 

coverage 
Reynolds et al. (2007) 

 

Atmospheric pCO2 (in µatm) 1982-2020 0.25°, monthly  

NOAA Marine Boundary Layer 
reference product 

(https://www.esrl.noaa.gov/gmd/ccgg/m
bl/) and Kalnay et al. (1996) 

 

Chlorophyll a (Chl-a, in mg m-3) 1998-2020 4km, monthly 
aggregated to 0.25°, 

extended the period and 
filled cells with no data 

E.U. Copernicus Marine Service 
Information 

(https://doi.org/10.48670/moi-00281) 

 
Bathymetry (in m) - 2 min aggregated to 0.25° 

ETOPO2 US Department of Commerce 
(2006) 
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Figure 2: Global maps of the climatological (1982-2020) averaged (a) reconstructed coastal pCO2-product, (b) gridded pCO2 from 
the SOCATv2022 database and used for the FFN algorithm (SOCAT_a). (c) Temporal mean of the residuals between the coastal 
pCO2-product and SOCAT_a and (d) standard deviation. All panels are expressed in µatm. 790 

 
 

 
Figure 3: Histograms of the pCO2 residuals (difference between the reconstructed coastal pCO2-product with (a) SOCAT_a and (b) 
SOCAT_b) for four decades expressed in µatm.   795 
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Table 2: Statistical analyses (bias, RMSE and r²) of the reconstructed coastal pCO2-product against SOCAT_a and SOCAT_b  for 
the different biogeochemical provinces. 

provinces bias (µatm) RMSE (µatm) r² cells 

 SOCAT_a SOCAT_b SOCAT_a SOCAT_b SOCAT_a SOCAT_b SOCAT_a SOCAT_b 

1 0.3 0.0 37 37 0.7 0.7 53256 46943 

2 0.0 0.1 13 14 0.8 0.8 11868 8898 

3 -0.1 0.3 21 22 0.6 0.5 35981 26032 

4 -0.2 -0.3 17 17 0.8 0.8 72811 54846 

5 0.1 -0.1 34 34 0.5 0.5 137754 114017 

6 0.7 0.2 23 23 0.7 0.6 69032 56322 

7 0.5 0.8 34 34 0.7 0.7 48704 41308 

8(8*) 0.5(1.5) 0.8(1.1) 42(23) 43(24) 0.9(0.9) 0.9(0.8) 18922(1086) 18039(952) 

9 -0.3 -0.2 23 22 0.8 0.8 18779 13675 

10 0.1 -0.2 19 20 0.9 0.8 5009 4172 

*Baltic Sea 0.5 0.7 43 43 0.9 0.9 18784 17911 

*Numbers in parentheses for P8 represent statistics when the Baltic Sea is removed from P8 and defined as an isolated province. 
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Figure 4. (a) Temporal coverage (in years) where pCO2 measurements extend over x years in SOCAT_b. The location of the 8 coastal 
sites for which we present pCO2 times series (black boxes) is also shown. (b-i) pCO2 times series (in µatm) from the reconstructed 805 
pCO2-product (in black), from SOCAT_b (in red), and from the atmospheric pCO2 (in blue). For each region, we only select grid 
cells that extend over 30 years of observations in SOCAT_b. Medians are represented in circles and the vertical bars represent the 
monthly pCO2 intra spatial variability in the region. For each region, we report the bias (µatm), RMSE (µatm) and number of cells 
for the calculation between the reconstructed pCO2-product and SOCAT_b as well as their respective pCO2 trend (in µatm decade-

1, which is calculate first as the slope of a linear trend using the monthly median values of the deseasonalized data). The Cascadian 810 
shelf has no value for the SOCAT_b trend since no significant trend is detected based on a Mann-Kendall statistical test. 
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Figure 5. (a) Spatial distribution of the annual average air-sea CO2 exchange (FCO2, in mol C m-2 yr-1) and (b) seasonal FCO2 
variability (expressed as the Root Mean Square (RMS, mol C m-2 yr-1)) calculated with the reconstructed coastal pCO2-product 
(ULB-SOM-FFN-coastalv2, 1982-2020 climatology). The latitudinal mean FCO2 distribution (red line) and its associated 815 
longitudinal variability (red shade) is presented in panel (c). This latter is compared to the FCO2 calculated with the ULB-SOM-
FFN-coastalv1 pCO2-product (in green, Roobaert et al., 2019) and against a synthesis of 214 regional FCO2 estimations (Dai et al., 
2022; blue dots). For consistency in the comparison in panel (c) we applied the same coastal delimitation than in Dai et al. (2022) 
and Roobaert et al. (2019) to the FCO2 ULB-SOM-FFNv2 product i.e., we used the shelf break as the outer limit of the coastal 
domain (narrow coastal ocean). Panel (c) is also reconstructed based on an overlap period between the three products (1998-2020; 820 
except FCO2 ULB-SOM-FFNv1 which is limited to the 1998-2015 period). 
 
 
 
 825 
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Figure 6. Rate of change in (a) coastal FCO2 (in mol C m-2 yr-1 decade-1), (b) the air-sea pCO2 gradient (∆pCO2, in µatm decade-1), 
(c) the wind speed at 10 meters above the sea surface (m s-1 decade-1) and (d) the sea-ice coverage (decade-1) from 1982 to 2020. For 830 
each panel, the rate change is calculated as the slope of a linear regression on the monthly median values of the deseasonalized data. 
We only present grid cells where a significant trend is detected based on a Mann-Kendall statistical test. 
 
 
 835 
  

https://doi.org/10.5194/essd-2023-228
Preprint. Discussion started: 26 June 2023
c© Author(s) 2023. CC BY 4.0 License.



31 
 

 

 

Figure 7. Evolution of the global coastal CO2 sink (FCO2, in Pg C yr-1) over time using the reconstructed coastal pCO2-product 
(black line) with its associated uncertainties (dashed black line, see Sects. 2.4 and 3.4 for further details). We use a 300 km distance 840 
from the coast as the outer limit of the coastal domain (wide coastal ocean) in panel (a) and (b) the shelf break as the outer limit of 
the coastal domain (narrow coastal ocean). 
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Table 3. Global FCO2 and pCO2 uncertainties calculated for the reconstructed data-products using the wide (narrow) definition of 845 
the coastal domain. 
 

FCO2 uncertainty (Pg C yr-1) 𝜎𝐹𝐶𝑂2
= 𝜎∆𝑝𝐶𝑂2

2 + 𝜎𝑘
2 + 𝜎𝑤𝑖𝑛𝑑

2 + 𝜎𝑖𝑐𝑒
2  

𝜎𝐹𝐶𝑂2
 0.03 (0.01)* Total FCO2 uncertainty 

𝜎∆𝑝𝐶𝑂2
 0.02 (0.01) Uncertainty of the air-sea pCO2 gradient 

𝜎  0.01 (0.01) Uncertainty associated with the choice of the k-formulation 

𝜎  0.01 (0.002) Uncertainty associated with the choice of the wind speed product 

𝜎  0.01 (0.01) Uncertainty associated with the choice of the sea-ice product 

pCO2 uncertainty (µatm) 𝜃𝑝𝐶𝑂2
=

𝜃𝑜𝑏𝑠

√𝑁

2

+
𝜃𝑔𝑟𝑖𝑑

√𝑁

2

+
𝜃𝑚𝑎𝑝

𝑁𝑒𝑓𝑓

2

 

𝜃𝑝𝐶𝑂2
 0.6 (1.1) Total uncertainty of the oceanic pCO2 

𝜃  3 (3) 
Uncertainty associated with the sampling on the field of the observations from 

the SOCAT  

𝜃   6 (8) 
Uncertainty associated with the gridding of the observations from SOCAT 

into 0.25° monthly meshed maps 

𝜃  29 (36) 
Uncertainty derived from the comparison between the reconstructed pCO2 

and the observed gridded pCO2 from the SOCAT  

* Numbers correspond to uncertainties calculated using a wide coastal delimitation, while those enclosed in brackets 
represent uncertainties calculated using a narrow coastal delimitation. 
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