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Abstract 13 

Land evapotranspiration (ET) plays a crucial role in Earth's water-carbon cycle, and 14 

accurately estimating global land ET is vital for advancing our understanding of land-15 

atmosphere interactions. Despite the development of numerous ET products in recent 16 

decades, widely used products still possess inherent uncertainties arising from using 17 

different forcing inputs and imperfect model parameterizations. Furthermore, the lack 18 

of sufficient global in-situ observations makes direct evaluation of ET products 19 

impractical, impeding their utilization and assimilation. Therefore, establishing a 20 

reliable global benchmark dataset and exploring evaluation methodologies for ET 21 

products is paramount. This study aims to address these challenges by (1) proposing a 22 

collocation-based method that considers non-zero error cross-correlation for merging 23 

multi-source data and (2) employing this merging method to generate a long-term 24 

daily global ET product at resolutions of 0.1° (2000-2020) and 0.25° (1980-2022), 25 

incorporating inputs from ERA5L, FluxCom, PMLv2, GLDAS, and GLEAM. The 26 

resulting product is the Collocation-Analyzed Multi-source Ensembled Land 27 

Evapotranspiration Data (CAMELE). CAMELE exhibits promising performance 28 

across various vegetation coverage types, as validated against in-situ observations. 29 

The evaluation process yielded Pearson correlation coefficients (R) of 0.63 and 0.65, 30 

root-mean-square-errors (RMSE) of 0.81 and 0.73 mm/d, unbiased root-mean-square-31 

errors (ubRMSE) of 1.20 and 1.04 mm/d, mean absolute errors (MAE) of 0.81 and 32 

0.73 mm/d, and Kling-Gupta efficiency (KGE) of 0.60 and 0.65 on average over 33 

resolutions of 0.1° and 0.25°, respectively. In addition, comparisons indicate that 34 

CAMELE can effectively characterize the multi-year linear trend, mean average, and 35 

extreme values of ET. However, it exhibits a tendency to overestimate seasonality. In 36 

summary, we propose a reliable set of ET data that can aid in understanding the 37 

variations in the water cycle and has the potential to serve as a benchmark for various 38 

applications.  39 
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1. Introduction 40 

Land evapotranspiration (ET) plays a critical role in the global water and energy 41 

cycles, encompassing various processes such as soil evaporation, vegetation 42 

transpiration, canopy interception, and surface water evaporation (Zhang et al., 2019; 43 

Zhao et al., 2022; Lian et al., 2018). Accurately estimating global land 44 

evapotranspiration is vital for understanding the hydrological cycle and land-45 

atmosphere interactions, as it serves as an intermediary variable connecting soil 46 

moisture, air temperature and humidity (Miralles et al., 2019; Gentine et al., 2019). 47 

Therefore, providing a reliable ET dataset as a benchmark for further research is 48 

crucial. 49 

In recent decades, numerous studies have focused on estimating global land 50 

evapotranspiration, resulting in many datasets (Yang et al., 2023). However, 51 

discrepancies often arise among these simulations due to algorithm and principle 52 

variations (Restrepo-Coupe et al., 2021; Han and Tian, 2020). Additionally, 53 

evaluating ET products is challenging due to the limited availability of global-scale 54 

observations, which hampers their direct use (Pan et al., 2020; Baker et al., 2021).  55 

The fusion of multi-source data is a suitable option to address these uncertainties. 56 

Recent studies have explored several approaches to integrate multiple ET products, 57 

including Simple Average (SA) (Ershadi et al., 2014), Bayesian Model Average 58 

(BMA) (Hao et al., 2019; Ma et al., 2020; Zhu et al., 2016), Reliability Ensemble 59 

Average (REA) (Lu et al., 2021), Empirical Orthogonal Functions (EOF) (Feng et al., 60 

2016) and machine-learning-based methods (Chen et al., 2020; Yin et al., 2021). 61 

However, the primary challenge lies in calculating reliable input weights based on a 62 

selected "truth" (Koster et al., 2021), which can involve averaging or incorporating 63 

other relevant geographical information as a benchmark. 64 

Recently, collocation methods have emerged as promising techniques for estimating 65 

random error variances and data-truth correlations in collocated inputs (Stoffelen, 66 

1998; Li et al., 2022, 2023c; Park et al., 2023). These methods consider the errors 67 
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associated with collocated datasets as an accurate representation of uncertainty 68 

without assuming the absence of errors in any datasets. It is important to note that 69 

while collocation methods, such as the triple collocation (TC) and the extended 70 

double instrumental variable technique (EIVD), can estimate the variance (or 71 

covariance) of random errors, they cannot evaluate the bias of the products. One 72 

primary advantage of collocation analysis is that it does not require a high-quality 73 

reference dataset (Su et al., 2014; Wu et al., 2021). However, a crucial prerequisite for 74 

applying collocation methods is the availability of many spatially and temporally 75 

corresponding datasets. For instance, the classic TC method requires a trio of 76 

independent datasets. Su et al. (2014) used the instrumental regression method and 77 

considered lag-1 time series as the third input, proposing the single instrumental 78 

variable algorithm (IVS). Dong et al. (2019) introduced the lag-1 time series from 79 

both inputs, proposing the double instrumental variable algorithm (IVD) for a more 80 

robust solution. Gruber et al. (2016a) extended the original algorithm to incorporate 81 

more datasets, partially addressing the independence assumption to calculate a portion 82 

of error cross-correlation (ECC) by using the extended collocation (EC) method. 83 

Dong et al.(2020a) further proposed the EIVD method, enabling ECC estimation 84 

using three datasets. Collocation methods have found widespread application in the 85 

evaluation of geophysical variable estimates, including soil moisture (Deng et al., 86 

2023; Ming et al., 2022), precipitation (Dong et al., 2022; Li et al., 2018), ocean wind 87 

speed (Vogelzang et al., 2022; Ribal and Young, 2020), leaf area index (Jiang et al., 88 

2017), total water storage (Yin and Park, 2021) sea ice thickness and surface salinity 89 

(Hoareau et al., 2018), and near-surface air temperature (Sun et al., 2021).  90 

Recently, many studies have utilized collocation approaches to evaluate 91 

evapotranspiration products, with the TC method to assess uncertainties. For example, 92 

Barraza Bernadas et al. (2018) considered the uncertainties of ET from the Breathing 93 

Earth System Simulator, BESS (Jiang et al., 2020; Jiang and Ryu, 2016), Moderate 94 

Resolution Imaging Spectroradiometer, MOD16 (Mu et al., 2011), and a hybrid 95 
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model; Khan et al. (2018) utilized extended triple collocation (ETC) (McColl et al., 96 

2014) to investigate the reliability of ET from MOD16, The Global Land Data 97 

Assimilation System (GLDAS) (Rodell et al., 2004) and the Global Land Evaporation 98 

Amsterdam Model (GLEAM) (Martens et al., 2017) over East Asia; Li et al. (2022) 99 

employed five collocation methods (e.g., IVS, IVD, TC, EIVD, and EC) to analyze 100 

the uncertainties of ET from ERA5-Land (ERA5L) (Muñoz-Sabater et al., 2021), 101 

GLEAM, GLDAS, FluxCom (Jung et al., 2019), and the Penman-Monteith-Leuning 102 

Evapotranspiration V2 (PMLv2) (Zhang et al., 2019).  103 

Moreover, error information derived from collocation analysis is valuable for merging 104 

multi-source data. This was initially applied by Yilmaz et al. (2012) in the fusion of 105 

multi-source soil moisture products and later improved by Gruber et al. (2017) and 106 

further applied in the production of the European Space Agency Climate Change 107 

Initiative (ESA CCI) global soil moisture product (Gruber et al., 2019). Dong et al. 108 

(2020b) also adopted this approach to fusing multi-source precipitation products. In 109 

the study of evapotranspiration, Li et al. (2023c) and Park et al.(2023) utilized a 110 

weight calculation method that does not consider non-zero ECC and fused multiple 111 

ET products in the Nordic and East Asia, respectively, achieving satisfactory fusion 112 

results.  113 

Although the above studies have demonstrated that collocation analysis can 114 

effectively assess the random error variance of ET products and integrate error 115 

information from multiple data sources, these studies have primarily overlooked a 116 

critical aspect: non-zero ECC between ET products. Li et al. (2022) global ET product 117 

evaluation research revealed clear non-zero ECC conditions between ERA5L, 118 

GLEAM, PMLv2, and FluxCom. In TC analysis, non-zero ECC can result in 119 

significant biases in TC-based results (Yilmaz and Crow, 2014). Furthermore, when 120 

using TC-based error information for fusion, it is crucial to consider the information 121 

related to ECC, as this can help improve the fusion accuracy (Dong et al., 2020b; Kim 122 

et al., 2021b). 123 
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It is worth noting that non-zero ECC conditions pose unique challenges. Unlike other 124 

violations of mathematical assumptions adopted by TC, they cannot be effectively 125 

mitigated through rescaling or compensated for by equal magnitude adjustments 126 

across inputs. Thus, the implications of non-zero ECC in the context of merging 127 

strategies are a critical consideration often overlooked in previous research. This 128 

oversight can lead to significant biases and inaccuracies. We aim to bridge this gap by 129 

systematically accounting for non-zero ECC in weight calculation, contributing to a 130 

more robust and accurate assessment. 131 

In this study, we proposed a collocation-based data ensemble method, considering 132 

non-zero ECC conditions, for merging multiple ET products to create the Collocation-133 

Analyzed Multi-source Ensembled Land Evapotranspiration data, abbreviated as 134 

CAMELE. The second section of this paper presents the selected data information for 135 

this study. In the third section, we explained the error calculation method for 136 

collocation analysis and the weighted calculation method that considered ECC. The 137 

fourth section analyzed the global errors of different ET products obtained through 138 

these calculations and the distribution patterns of the corresponding weights. We 139 

evaluated the accuracy of the fused products and compared them with existing 140 

products using reference values from site measurements. In the fifth section, we 141 

discussed the inherent errors in the methods, analyzed the ECC between the products, 142 

and compared the differences between different fusion schemes. Finally, in the sixth 143 

section, we summarized the results obtained from this research. 144 

2. Datasets 145 

We selected five widely used ET products that spanned the period from 1980 to 2022. 146 

When selecting these products, our aims are to ensure: (1) consistency in original 147 

spatiotemporal resolution among the products: minimize potential downscaling 148 

operations and avoid introducing additional errors; (2) having three or more products 149 

within the same resolution or period: incorporate more information for effective 150 
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fusion; (3) products with extensive global observational sequences: gain basic 151 

recognition from the community. While we acknowledge the existence of other 152 

higher-precision products, their integration would require either downscaling or 153 

upscaling other products, potentially introducing uncertainties. Therefore, we chose 154 

the combination outlined in the manuscript. Despite its relatively lower resolution 155 

compared to some products, it still contributes to our understanding of ET variations, 156 

facilitating advantageous exploration. Furthermore, we incorporated in-situ 157 

observations and Lu et al.'s (2021) global 0.25° daily-scale ET product derived using 158 

Reliability Ensemble Averaging (denoted as REA) to compare our merged product 159 

comprehensively. Table 1 shows the spatial and temporal resolutions of the input 160 

datasets. 161 

Table 1 Summary of evapotranspiration products involved. 162 

Name Schemes Resolution Period Reference 

ERA5-Land H-TESSEL 0.1° hourly 1950-present 

(Muñoz-

Sabater et 

al., 2021) 

GLDAS-2 
CLSM/Noah

/LSM 
0.25° 

3-hourly 

daily 

2.0: 1948-2014 

2.1: 2000-present 

2.2: 2003-present 

(Li et al., 

2019a; 

Rodell et 

al., 2004) 

GLEAM-3.7 
GLEAM 

model 
0.25° daily 

3.7a: 1980-2022 

3.7b: 2003-2022 

(Martens et 

al., 2017) 

PMLv2-v017 

Penman-

Monteith-

Leuning 

0.083° 
8-day 

average 
2000-2020 

(Zhang et 

al., 2019) 

FluxCom 
Machine 

learning 
0.083° 

8-day 

average 
2001-2015 

(Jung et al., 

2019) 

2.1. ERA5-Land 163 

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces the 164 

latest advanced ERA5L, a global hourly reanalysis dataset with a spatial resolution of 165 
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0.1°. It covers the period from January 1950 until approximately one week before the 166 

present (Muñoz-Sabater et al., 2021). ERA5-Land is derived from the land component 167 

of the ECMWF climate reanalysis, incorporating numerous improvements over 168 

previously released versions. It is based on the Tiled ECMWF Scheme for Surface 169 

Exchanges over Land incorporating land surface hydrology (H-TESSEL), utilizing 170 

version CY45R1 of the ECMWF's Integrated Forecasting System (IFS). The dataset 171 

benefits from atmospheric forcing data, which acts as an indirect constraint on the 172 

model-based estimates (Hersbach et al., 2020). The dataset is available through the 173 

Climate Change service of the Copernicus Center at http://cds.climate.copernicus.eu. 174 

Evapotranspiration in ERA5L, defined as "total evaporation," represents the 175 

accumulated amount of water that has evaporated from the Earth's surface, including a 176 

simplified representation of transpiration from vegetation into the vapor in the air. 177 

The soil water and energy balance are computed using standard soil discretization. 178 

Readers could consult section 8.6.5 of the IFS documentation (ECMWF, 2014). The 179 

original dataset is interpolated from (1801, 3600) to (1800, 3600) using kriging 180 

interpolation and then upscaled from an hourly to a daily resolution, changing spatial 181 

resolution from 0.1° to 0.25°. 182 

2.2. GLDAS 183 

The Global Land Data Assimilation System (GLDAS) product utilizes advanced data 184 

assimilation methodologies, integrating model and observation datasets for land-185 

surface simulations (Rodell et al., 2004). GLDAS employs multiple land-surface 186 

models (LSMs), namely Noah, Mosaic, Variable Infiltration Capacity (VIC), and the 187 

Community Land Model (CLM). Together, these models generate global 188 

evapotranspiration estimates at fine and coarse spatial resolutions (0.01° and 0.25°) 189 

and temporal resolutions (3-hourly and monthly). The most recent iteration of 190 

GLDAS, version 2, consists of three components: GLDAS-2.0, GLDAS-2.1, and 191 

GLDAS-2.2. GLDAS-2.0 relies entirely on the Princeton meteorological forcing input 192 

http://cds.climate.copernicus.eu/
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data, providing a consistent temporal series from 1948 to 2014 (Sheffield et al., 2006). 193 

The GLDAS-2.1 simulation commences on January 1, 2000, utilizing the conditions 194 

from the GLDAS-2.0 simulation. On the other hand, GLDAS-2.2 is simulated from 195 

February 1, 2003, employing the conditions from GLDAS-2.0 and forcing with 196 

meteorological analysis fields from the ECMWF Integrated Forecasting System (IFS). 197 

Additionally, the GRACE satellite's total terrestrial water anomaly observation is 198 

assimilated into the GLDAS-2.2 product (Li et al., 2019a). 199 

This study aimed to cover the research period from 1980 to 2022. Non-zero ECC 200 

between the transpiration estimates of GLDAS-2.2 and ERA5L has been reported in a 201 

recent study (Li et al., 2023a). Considering the similarities in the calculation of ET 202 

and transpiration of GLDAS and ERA5L, this report partially indicates a correlation. 203 

Therefore, GLDAS-2.0 and GLDAS-2.1 were selected as inputs instead. The 204 

"Evap_tavg" parameter representing evapotranspiration is derived from the original 205 

products and aggregated to a daily scale. For more detailed information on the 206 

GLDAS-2 models, please refer to NASA's Hydrology Data and Information Services 207 

Center at http://disc.sci.gsfc.nasa.gov/hydrology. 208 

Despite the same forcing between GLDAS-2.1 and GLDAS-2.2, significant 209 

differences exist between the model results of different GLDAS versions (Qi et al., 210 

2020, 2018; Jiménez et al., 2011). The non-zero ECC will generally still be met 211 

between different versions. Thus, we still need to analyze the non-zero ECC situations 212 

between ERA5L and GLDAS-2.0 and 2.1, which will be assessed in the discussion 213 

sections. 214 

2.3. GLEAM 215 

The version of the Global Land Evaporation Amsterdam Model 3.7 (GLEAM-3.7) 216 

dataset (Martens et al., 2017; Miralles et al., 2011) at 0.25° is used. This version of 217 

GLEAM provides daily estimations of actual evaporation, bare soil evaporation, 218 

canopy interception, transpiration from vegetation, potential evaporation, and snow 219 

http://disc.sci.gsfc.nasa.gov/hydrology
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sublimation. The third version of GLEAM contains a new DA scheme, an updated 220 

water balance module, and evaporative stress functions. Two datasets that differ only 221 

in forcing and temporal coverage are provided: GLEAMv3.7a-43-year period (1980 222 

to 2022) based on satellite and reanalysis (ECMWF) data; GLEAMv3.7b-20-year 223 

period (2003 to 2022) based on only satellite data. GLEAMv3.7a is used in this study. 224 

The data are freely available on the GLEAM website (https://www.gleam.eu ).  225 

The cover-dependent potential evaporation rate (𝐸𝑃) is calculated using the Priestley-226 

Taylor equation (Priestley and TAYLOR, 1972). Then a multiplicative stress factor is 227 

used to convert 𝐸𝑃 into actual transpiration and bare soil evaporation, which is the 228 

function of microwave vegetation optimal depth (VOD) and root-zone soil moisture. 229 

For detailed description, please refer to the paper by Martens et al., (2017). The 230 

GLEAM data were validated at 43 FluxNet flux sites and have been proven to provide 231 

reliable ET estimations (Majozi et al., 2017). 232 

2.4. PMLv2 233 

The Penman-Monteith-Leuning version 2 global evaporation model (PMLv2) has 234 

been developed based on the Penman-Monteith-Leuning model (Zhang et al., 2019; 235 

Leuning et al., 2009). Initially proposed by Leuning et al. (2008), the PML model 236 

underwent further enhancements by Zhang et al. (2010). The PML version 1 (PMLv1) 237 

incorporates a biophysical model that considers canopy physiological processes and 238 

soil evaporation to estimate surface conductance accurately (𝐺𝑠), which is the focus of 239 

the PM-based method. This version was subsequently enhanced by incorporating a 240 

canopy conductance (𝐺𝑐 ) model that couples vegetation transpiration with gross 241 

primary productivity, resulting in the development of PML version 2 (PMLv2) as 242 

described by Gan et al. (2018). Zhang et al. (2019) applied the PMLv2 model globally. 243 

The daily inputs for this model include leaf area index (LAI), broadband albedo, and 244 

emissivity obtained from the Moderate Resolution Imaging Spectroradiometer 245 

(MODIS), as well as temperature variables (daily maximum temperature-𝑇𝑚𝑎𝑥 , daily 246 

https://www.gleam.eu/
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minimum temperature-𝑇𝑚𝑖𝑛 , daily mean temperature-𝑇𝑎𝑣𝑔), instantaneous variables 247 

(surface pressure-𝑃𝑠𝑢𝑟𝑓 , atmosphere pressure-𝑃𝑎 , wind speed at 10-meter height-𝑈, 248 

specific humidity-𝑞), and accumulated variables (precipitation-𝑃𝑟𝑐𝑝, inward longwave 249 

solar radiation- 𝑅𝑙𝑛 , inward shortwave solar radiation- 𝑅𝑠 ) from GLDAS-2.0. 250 

Evaporation is divided into direct evaporation from bare soil (𝐸𝑠), evaporation from 251 

solid water sources (water bodies, snow, and ice) ( 𝐸𝑇𝑤𝑎𝑡𝑒𝑟 ), and vegetation 252 

transpiration (𝐸𝑐 ). To ensure its accuracy, the PMLv2-ET model was calibrated 253 

against 8-daily eddy covariance data from 95 global flux towers representing ten 254 

different land cover types.  255 

In this study, we employ the latest version, v017. The data is freely available through 256 

the google earth engine https://developers.google.com/earth-257 

engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017. 258 

2.5. FluxCom 259 

FluxCom is a machine-learning-based approach combining global land-atmosphere 260 

energy flux data by combining remote sensing and meteorological data (Jung et al., 261 

2019). To achieve this, FluxCom utilizes various machine-learning regression tools, 262 

including tree-based methods, regression splines, neural networks, and kernel 263 

methods. The outputs of FluxCom are designed based on two complementary 264 

strategies: (1) FluxCom-RS, which exclusively merges remote sensing data to 265 

generate high spatial resolution flux data; and (2) FluxCom-RS+METEO, which 266 

combines meteorological observations with remote sensing data at a daily temporal 267 

resolution. The exclusive use of remote sensing data in the ensemble allows 268 

producing gridded flux products at a spatial resolution of 500m, albeit with a 269 

relatively low frequency of 8 days. It is important to note that the FluxCom-RS data 270 

only covers the period after 2000 due to data availability. 271 

In contrast, the merging of meteorological and remote sensing data extends the 272 

coverage back to 1980 at the cost of a coarser spatial resolution of 0.5°. For more 273 

https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
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detailed information about the FluxCom dataset, please refer to the FluxCom website 274 

(http://FluxCom.org/ ). The data is freely available upon contacting the authors. 275 

In this study, we utilized the FluxCom-RS 8-daily 0.0833° energy flux data and 276 

converted the latent heat values to evapotranspiration using ERA5L aggregated daily 277 

air temperature. Furthermore, the original ET data were interpolated to a spatial 278 

resolution of 0.1° using the MATLAB Gaussian process regression package. 279 

2.6. Global in-situ observation: FluxNet 280 

The latest FluxNet2015 4.0 eddy-covariance data were used in our study (Pastorello et 281 

al., 2020). Following the filtering process by Lin et al. (2018) and Li et al. (2019b), 282 

firstly, only the measured and good-quality gap-filled data were used for quality 283 

control. Secondly, we excluded days with rainfall and the subsequent day after rainy 284 

events to mitigate the impact of canopy interception (Medlyn et al., 2017; Knauer et 285 

al., 2018). Additionally, previous studies have indicated an energy imbalance problem 286 

in FluxNet2015 data. Therefore, following the method proposed by Twine et al. 287 

(2000), the measured ET data were corrected using the residual method based on 288 

energy balance. 289 

After data filtering and processing, 212 sites are selected as shown in Figure 1. The 290 

selected sites are distributed globally, primarily in North America and Europe. The 291 

International-Geosphere–Biosphere Program (IGBP) land cover classification system 292 

(Loveland et al., 1999) was employed to distinguish the 13 Plant Functional Types 293 

(PFTs) across sites. The IGBP classification was determined based on metadata from 294 

the FluxNet official website, including evergreen needle leaf forests (ENF, 49 sites), 295 

evergreen broadleaf forests (EBF, 15 sites), deciduous broadleaf forests (DBF, 26 296 

sites), croplands (CRO, 20 sites), grasslands (GRA, 39 sites), savannas (SAV, 9 sites), 297 

mixed forests (MF, 9 sites), closed shrublands (CSH, 3 sites), deciduous needle leaf 298 

forests (DNF, 1 site), open shrublands (OSH, 13 sites), snow and ice (SNO, 1 site), 299 

woody savannas (WSA, 6 sites) and permanent wetland (WET, 21 sites). Changes in 300 

http://fluxcom.org/
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the IGBP classification during the study period are possible, but such information is 301 

not publicly available. Interested parties can obtain relevant information by directly 302 

contacting the site coordinators. 303 

 304 

Figure 1 Global distribution of selected FluxNet Sites. 305 

3. Method 306 

In this study, the fusion of products consisted of three steps: (1) the collocation 307 

method (IVD and EIVD) was used to calculate the random error variance of the 308 

selected input products, determine the regionally optimal products, and set an error 309 

threshold; (2) aiming for minimum mean-square-error (MSE), the weights of different 310 

products on each grid were calculated; (3) the products were fused according to the 311 

weights to obtain a long sequence of evapotranspiration products. Since IVD and 312 

EIVD were developed by combining instrumental variable regression and the 313 

extended collocation system, a description of TC and EC algorithms was also 314 

included. 315 
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3.1. Triple collocation analysis 316 

Since its development in 1998, the implications and formulations of the triple 317 

collocation problem have been investigated in many studies. Here, we used difference 318 

notation for demonstration. 319 

The commonly used error structure for triple collocation analysis (TCA) is: 320 

 𝑖 = 𝛼𝑖 + 𝛽𝑖Θ + 𝜀𝑖 (1) 

where 𝑖 ∈ [𝑋, 𝑌, 𝑍] are three spatially and temporally collocated data sets; Θ is the 321 

unknown true signal for relative geographical variable; 𝛼𝑖  and 𝛽𝑖  are additive and 322 

multiplicative bias factors against the true signal, respectively; 𝜀𝑖 is the additive zero-323 

mean random error.  324 

The above structure is also a typical instrumental variable (IV) regression. Thus, this 325 

provides another perspective to introduce more variables (>3) (Dong and Crow, 2017; 326 

Su et al., 2014) and polynomial models (Yilmaz and Crow, 2013; De Lannoy et al., 327 

2007) to the standard TC. We recommend that the readers refer to Su et al. (2014) for 328 

a more detailed discussion on using the IV framework. 329 

The basic assumptions adopted in TC are as follows: (i) Linearity between true signal 330 

and data sets, (ii) signal and error stationarity, (iii) independency between random 331 

error and true signal (error orthogonality), (iv) independence between random errors 332 

(zero ECC). Although many studies have indicated that some of these assumptions are 333 

often violated in practice (Li et al., 2018, 2022; Jia et al., 2022), the formulation based 334 

on these assumptions is still the most robust implementation (Gruber et al., 2016b). A 335 

discussion on these assumptions will be provided in the discussion section. 336 

The data sets first need to be rescaled against an arbitrary reference (e.g., 𝑋). The 337 

others are scaled through a TC-based rescaling scheme: 338 

 𝑌𝑋 = 𝛽𝑌
𝑋(𝑌 − 𝑌) + 𝑋       𝑍𝑋 = 𝛽𝑍

𝑋(𝑍 − 𝑍) + 𝑋  (2) 

The overbar denotes the mean value, and 𝛽𝑌
𝑋 and 𝛽𝑍

𝑋 are the scaling factors as: 339 
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{
 
 

 
 𝛽𝑌

𝑋 =
𝛽𝑋
𝛽𝑌
=
< (𝑋 − 𝑋)(𝑍 − 𝑍) >

< (𝑌 − 𝑌)(𝑍 − 𝑍) >
=
𝜎𝑋𝑍
𝜎𝑌𝑍

𝛽𝑍
𝑋 =

𝛽𝑋
𝛽𝑍
=
< (𝑋 − 𝑋)(𝑌 − 𝑌) >

< (𝑍 − 𝑍)(𝑌 − 𝑌) >
=
𝜎𝑋𝑌
𝜎𝑍𝑌

 (3) 

where <∙> is the average operator, 𝜎𝑖𝑗 is the covariance of data sets 𝑖 and 𝑗. 340 

Subsequently, the error variances could be estimated by averaging the cross-341 

multiplied data set differences as follows: 342 

 

{
 
 

 
 𝜎𝜀𝑋

2 =< (𝑋 − 𝑌𝑋)(𝑋 − 𝑍𝑋) >

𝜎
𝜀𝑌
𝑋
2 = 𝛽𝑌

𝑋2𝜎𝜀𝑌
2 =< (𝑌𝑋 − 𝑋)(𝑌𝑋 − 𝑍𝑋) >

𝜎
𝜀𝑍
𝑋
2 = 𝛽𝑍

𝑋2𝜎𝜀𝑍
2 =< (𝑍𝑋 − 𝑋)(𝑍𝑌 − 𝑌𝑋) > 

 (4) 

Expanding the bracket and expressing the rescaling factors yields: 343 

 

{
 
 

 
 𝜎𝜀𝑋

2 = 𝜎𝑋
2 −

𝜎𝑋𝑌𝜎𝑋𝑍
𝜎𝑌𝑍

𝜎𝜀𝑌
2 = 𝜎𝑌

2 −
𝜎𝑌𝑋𝜎𝑌𝑍
𝜎𝑋𝑍

𝜎𝜀𝑍
2 = 𝜎𝑍

2 −
𝜎𝑍𝑋𝜎𝑍𝑌
𝜎𝑋𝑌

 

 (5) 

When selecting various scaling references, it is essential to note that the absolute error 344 

variances remain consistent. However, this choice can have an impact on the 345 

estimation of data sensitivity to the actual signal (𝛽𝑖
2𝜎Θ

2), which serves as a crucial 346 

indicator for comparing spatial error patterns. In order to address the reliance on a 347 

specific scaling reference, Draper et al. (2013) introduced the fractional root-mean-348 

squared-error (𝑓𝑀𝑆𝐸𝑖). This measure is obtained by normalizing the unscaled error 349 

variance with respect to the true signal variance: 350 

  𝑓𝑀𝑆𝐸𝑖 =
𝜎𝜀𝑖
2

𝜎𝑖
2 =

𝜎𝜀𝑖
2

𝛽𝑖
2𝜎Θ

2 + 𝜎𝜀𝑖
2
=

1

1 + 𝑆𝑁𝑅𝑖
 (6) 

where 𝑆𝑁𝑅𝑖 =
𝛽𝑖
2𝜎Θ

2

𝜎𝜀𝑖
2 ∈ [0,1]  is the normalized signal-to-noise ratio. 𝑆𝑁𝑅 = 0 351 

indicates a noise-free observation, while 𝑆𝑁𝑅 = 1 corresponds that the variances of 352 

estimates equal that of the true signal.  353 

Following similar ideas, Mccoll et al. (2014) extended the framework to estimate the 354 
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data-truth correlation, known as the ETC: 355 

 
𝑅𝑖
2 =

𝛽𝑖
2𝜎Θ

2

𝛽𝑖
2𝜎Θ

2 + 𝜎𝜀𝑖
2
=

𝑆𝑁𝑅𝑖
1 + 𝑆𝑁𝑅𝑖

 

𝑅𝑖
2 = 1 − 𝑓𝑀𝑆𝐸𝑖 

(7) 

In comparison to the conventional coefficient of determination 𝑅𝑖𝑗 , which is 356 

influenced by data noise and sensitivity. It is important to note that 𝑅𝑖
2 is merely based 357 

on the data set 𝑖 , whereas 𝑅𝑖𝑗 is influenced by both data set 𝑖 and reference 𝑗. In other 358 

words, 𝑅𝑖
2 incorporates the dependency on the chosen reference. Thus, TC-derived 359 

𝑓𝑀𝑆𝐸𝑖 and 𝑅𝑖
2 serve as superior indicators for assessing the actual quality of data, as 360 

discussed by Kim et al. (2021b) and Gruber et al. (2020).  361 

3.2. Double instrumental variable technique 362 

The assumed error structure in TC is also a typical instrumental variable (IV) 363 

regression. In practical usage, finding three completely independent sets of products is 364 

usually tricky. Su et al. (2014) effectively improve the applicability of the TC method 365 

by using the lag-1 time series (e.g., 𝑋𝑡−1 = 𝛼𝑋 + 𝛽𝑋Θ𝑡−1 + 𝜀𝑋,𝑡−1 ) from one of the 366 

two sets of data as the third input for TC. In this way, we only need two independent 367 

products for input.  368 

Such process includes another assumption that all data sets contain serially white 369 

errors (i.e., < 𝜀𝑖,𝑡𝜀𝑖,𝑡−1 >= 0, zero auto-correlation). Building upon this, Dong et al. 370 

(2019) utilizes the lag-1 time series from both data sets as inputs and propose the 371 

more stable IVD method. 372 

For a double input [𝑋, 𝑌 with 𝜎𝜀𝑋𝜀𝑌 = 0], the linear error model and related lag-1 373 

time series can be expressed as: 374 

 {
𝑋 = 𝛼𝑋 + 𝛽𝑋Θ + ε𝑋                   𝐼 = 𝛼𝑋 + 𝛽𝑋Θ𝑡−1 + 𝜀𝑋𝑡−1
𝑌 = 𝛼𝑌 + 𝛽𝑌Θ + ε𝑌                    𝐽 = 𝛼𝑌 + 𝛽𝑌Θ𝑡−1 + 𝜀𝑌𝑡−1

 (8) 

where 𝐼 and 𝐽 are the lag-1 time series of 𝑋 and 𝑌, respectively. 375 

Assuming product errors are mutually independent and orthogonal to the truth, the 376 
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covariance between the products is expressed as: 377 

 {

𝜎𝑋
2 = 𝛽𝑋

2𝜎Θ
2 + 𝜎𝜀𝑋

2      𝜎𝑌
2 = 𝛽𝑌

2𝜎Θ
2 + 𝜎𝜀𝑌

2

𝜎𝑋𝑌 = 𝛽𝑋𝛽𝑌𝜎Θ
2

𝜎𝐼𝑋 = 𝛽𝑋
2𝐿ΘΘ      𝜎𝐽𝑌 = 𝛽𝑌

2𝐿ΘΘ

 (9) 

where 𝐿𝑖𝑖 =< 𝑖𝑡𝑖𝑡−1 > is the auto-covariance. Therefore, the IVD-estimated dynamic 378 

range ratio scaling factors yields: 379 

 𝑠𝑖𝑣𝑑 ≡
𝛽𝑋
𝛽𝑌
= √

𝜎𝐼𝑋
𝜎𝐽𝑌

 (10) 

Hence, the random error variances of 𝑋 and 𝑌 can be solved as: 380 

 {

𝜎𝜀𝑋
2 = 𝜎𝑋

2 − 𝜎𝑋𝑌 ∗ 𝑠𝑖𝑣𝑑

𝜎𝜀𝑌
2 = 𝜎𝑌

2 −
𝜎𝑋𝑌
𝑠𝑖𝑣𝑑

 (11) 

3.3. Extended double instrumental variable technique 381 

Furthermore, by adopting the designed matrix in the EC method (Gruber et al., 2016a), 382 

Dong et al. (2020a) present the EIVD method to estimate the error variance matrix 383 

with only two independent data sets.  384 

For a triplet input [𝑖, 𝑗, 𝑘 with 𝜎𝜀𝑖𝜀𝑗 ≠ 0]. The dynamic range ratio scaling factors can 385 

be estimated as follows: 386 

 𝑠𝑖𝑗 ≡
𝛽𝑖
𝛽𝑗
= √

𝐿𝑖𝑖
𝐿𝑗𝑗

 (12) 

where 𝐿𝑖𝑖 =< 𝑖𝑡𝑖𝑡−1 > is the auto-covariance of inputs. Subsequently, the sensitivity 387 

and absolute error variance of the data set follow: 388 

 𝛽𝑗
2𝜎Θ

2 = 𝜎𝑖𝑗√
𝐿𝑖𝑖
𝐿𝑗𝑗
             𝜎𝜀𝑗

2 = 𝜎𝑖𝑗√
𝐿𝑖𝑖
𝐿𝑗𝑗

− 𝜎𝑖
2 (13) 

The cross-multiplied factors can be estimated by: 389 

 𝛽𝑖𝛽𝑗𝜎Θ
2 = 𝜎𝑖𝑘√

𝐿𝑗𝑗

𝐿𝑘𝑘
= 𝜎𝑗𝑘√

𝐿𝑖𝑖
𝐿𝑘𝑘

     𝜎𝜀𝑖𝜀𝑗 = 𝜎𝑖𝑗 − 𝛽𝑖𝛽𝑗𝜎Θ
2 (14) 
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Hence, for a triplet with the input of [𝑋, 𝑌, 𝑍 with 𝜎𝜀𝑋𝜀𝑌 ≠ 0]: the matrix notation of 390 

the above system with 𝐲 = 𝐀𝐱 is given as: 391 

𝐲 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜎𝑋
2

𝜎𝑌
2

𝜎𝑍
2

𝜎𝑋𝑌

𝜎𝑋𝑍√
𝐿𝑋𝑋
𝐿𝑍𝑍

𝜎𝑌𝑍√
𝐿𝑌𝑌
𝐿𝑍𝑍

𝜎𝑍𝑋√
𝐿𝑍𝑍
𝐿𝑋𝑋

𝜎𝑍𝑌√
𝐿𝑍𝑍
𝐿𝑌𝑌

𝜎𝑋𝑍√
𝐿𝑌𝑌
𝐿𝑍𝑍

𝜎𝑌𝑍√
𝐿𝑋𝑋
𝐿𝑍𝑍)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟏𝟎𝐱𝟏

𝐀 =

(

 
 
 
 

𝐈𝟒𝐱𝟒 𝐈𝟒𝐱𝟒

(

  
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1)

  
 

𝟔𝐱𝟒

𝟎𝟔𝐱𝟒

)

 
 
 
 

𝟏𝟎𝐱𝟖

𝐱 =

(

 
 
 
 
 
 
 

𝛽𝑋
2𝜎Θ

2

𝛽𝑌
2𝜎Θ

2

𝛽𝑍
2𝜎Θ

2

𝛽𝑋𝛽𝑌𝜎Θ
2

𝜎𝜀𝑋
2

𝜎𝜀𝑌
2

𝜎𝜀𝑍
2

𝜎𝜀𝑋𝜀𝑌 )

 
 
 
 
 
 
 

𝟖𝐱𝟏

 (15) 

Likewise, the least-squared solution for unknown 𝐱 is then solved by: 392 

 𝐱 = (𝐀𝐓𝐀)−𝟏𝐀𝐓𝐲 (16) 

3.4. Weight Estimation 393 

Our objective is to predict an uncertain variable, such as evapotranspiration (ET) over 394 

time at a specific location, by utilizing parent products that may contain random errors. 395 

The underlying concept of weighted averaging is to extract independent information 396 

from multiple data sources to enhance prediction accuracy by mitigating the effects of 397 

random errors. The effectiveness of this approach relies on the independence of the 398 

individual data sources under consideration. Weighted averaging has found 399 

applications in various fields following the influential work of Bates and Granger 400 

(1969), who proposed the optimal combination of forecasts based on a minimum 401 

MSE criterion. In this context, the term "optimal" refers to minimizing the variance of 402 

residual random errors in the least squares sense. Mathematically, this weighted 403 
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average can be expressed as follows: 404 

 𝑥 = 𝐖⃗⃗⃗ T𝐗⃗⃗ = ∑𝜔𝑖𝑥𝑖

𝑁

𝑖=1

 (17) 

where 𝑥 is the merged estimate; 𝐗⃗⃗ = [𝑥1, … , 𝑥𝑛]
T contains the temporally collocated 405 

estimates from 𝑁 different parent products, which are merged with relative zero-mean 406 

random error 𝒆⃗ = [𝜀1, … , 𝜀𝑛]
T; and 𝐖⃗⃗⃗ = [𝜔1, … , 𝜔𝑛]

T contains the weights assigned 407 

to these estimates, where 𝜔𝑖 ∈ [0,1] and ∑𝜔𝑖 = 1 ensuring an unbiased prediction. 408 

The averaging weights can be expressed as the solution to the problem: 409 

 min𝑓(𝐖⃗⃗⃗ ) = 𝔼(𝒆⃗ T𝐖⃗⃗⃗ )2 (18) 

where 𝔼() is the operator for mathematical expectation, the solution of this problem is 410 

determined by the individual random error characteristics of the input data sets and 411 

can be derived from their covariance matrix (Bates and Granger, 1969; Gruber et al., 412 

2017; Kim et al., 2021b): 413 

 
𝐖⃗⃗⃗ = (𝐈 T𝔼(𝒆⃗ 𝒆⃗ T)−1𝐈 )

−1
𝔼(𝒆⃗ 𝒆⃗ T)−1𝐈  

𝜎𝜀𝑥
2 = (𝐈 T𝔼(𝒆⃗ 𝒆⃗ T)−1𝐈 )

−1
 

(19) 

where 𝔼(𝒆⃗ 𝒆⃗ T) is the 𝑁 ×𝑁  error covariance matrix that holds the random error 414 

variance 𝜎𝜀𝑖
2  of the parent products in the diagonals and relative error covariances 𝜎𝜀𝑖𝜀𝑗 415 

in the off-diagonals; 𝐈 = [1,… ,1]T  is an ones-vector of length 𝑁 ; and 𝜎𝜀𝑥
2  is the 416 

resulting random error variances of the merged estimate. 417 

When only two groups of products are used as input (𝑁 = 2), it is generally assumed 418 

that the errors between them are independent. In this case, the weights are as follows: 419 

 

𝔼(𝒆⃗ 𝒆⃗ T) = [
𝜎𝜀1
2 0

0 𝜎𝜀2
2 ] 

𝜔1 =
𝜎𝜀2
2

𝜎𝜀1
2 + 𝜎𝜀2

2
          𝜔1 =

𝜎𝜀1
2

𝜎𝜀1
2 + 𝜎𝜀2

2
 

(20) 

In most cases, we can identify three sets of products as inputs (𝑁 = 3). In this 420 

scenario, we consider the possibility of error homogeneity, assuming a non-zero ECC 421 
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exists between inputs 1 and 2. In this case, the error matrix can be represented as: 422 

 𝔼(𝒆⃗ 𝒆⃗ T) = [

𝜎𝜀1
2 𝜎𝜀1𝜀2 0

𝜎𝜀1𝜀2 𝜎𝜀2
2 0

0 0 𝜎𝜀3
2

] (21) 

The weights can then be written as: 423 

 

𝐖⃗⃗⃗ =

{
 
 
 

 
 
 

𝜎𝜀2
2 − 𝜎𝜀1𝜀2

(𝜎𝜀1
2 𝜎𝜀2

2 − 𝜎𝜀1𝜀2
2 ) ∗ 𝕫

𝜎𝜀1
2 − 𝜎𝜀1𝜀2

(𝜎𝜀1
2 𝜎𝜀2

2 − 𝜎𝜀1𝜀2
2 ) ∗ 𝕫

1

𝜎𝜀3
2 ∗ 𝕫

 

𝕫 =
𝜎𝜀1
2 + 𝜎𝜀2

2 − 2𝜎𝜀1𝜀2
𝜎𝜀1
2 𝜎𝜀2

2 − 𝜎𝜀1𝜀2
2

+
1

𝜎𝜀3
2

 

(22) 

It is essential to acknowledge that before applying these weights for merging the data 424 

sets, it is necessary to address any existing systematic differences. Typically, this is 425 

achieved by rescaling the data sets to a standardized data space. Consequently, the 426 

weights can be derived from the rescaled data sets using Eq (2)-(3) and converge 427 

accordingly. This procedure ensures the accuracy and reliability of the merged data 428 

sets for further analysis. 429 

If ECC is not considered (i.e., setting 𝜎𝜀1𝜀2 = 0), Eq (22) represents the weight 430 

calculation method commonly used in most TC fusion studies. In contrast to the 431 

fusion studies mentioned above for evapotranspiration products, for the first time, the 432 

consideration of non-zero ECC is incorporated into the fusion process and integrated 433 

into the weight calculation. Yilmaz and Crow (2014) have demonstrated that TC 434 

underestimates error variances when the zero ECC assumption is violated. Li et al. 435 

(2022), in their evaluation study of global ET products using the collocation method, 436 

also indicated the existence of error homogeneity issues between commonly used ET 437 

products (such as ERA5L and GLEAM), necessitating the consideration of the 438 

influence of non-zero ECC. The merging technique employed in this study provides a 439 

more explicit characterization of product errors and facilitates the derivation of more 440 
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reliable weight coefficients, thereby achieving promising fusion outcomes. 441 

The differences in results are evaluated at the site scale by contrasting the scenarios 442 

without considering non-zero ECC and directly using simple averages to compare and 443 

validate the advantages of the weight calculation method used in our study. 444 

3.5. Merging combination 445 

In this study, we employ five commonly used global land surface ET products as 446 

described in the datasets section. PMLv2 and FluxCom-RS have an original resolution 447 

of 0.083° and an 8-day average. In this research, they are interpolated to 0.1° 448 

resolution, and the values for each data period of 8 days are kept consistent. For 449 

example, the values for March 5 to March 12, 2000, are the same. ET values often 450 

exhibit variability over an 8-day period, making the use of an 8-day average to 451 

represent temporal dynamics potentially introducing further uncertainties. This 452 

operation is performed to ensure adequate data for the collocation analysis (Kim et al., 453 

2021a). We openly acknowledge the possible sources of error and express our 454 

commitment to addressing and improving them in future work. 455 

As mentioned in the methodology section, it is vital to consider the issue of random 456 

error homogeneity among different products before applying the collocation method. 457 

Although EC or EIVD methods can be used to calculate the ECC between specific 458 

pairs of products, it is necessary to determine which pairs of products have non-zero 459 

ECC conditions. In previous research, Li et al.(2022) employed five collocation 460 

methods (IVS/IVD/TC/EIVD/EC) to analyze the performance of five sets of ET 461 

products (ERA5L/ PMLv2/FluxCom/GLDAS2/GLEAMv3) at the global scale, and 462 

applied EC and EIVD methods to calculate the ECC between different products. The 463 

results indicated a relatively significant error homogeneity between PMLv2 and 464 

FluxCom at a resolution of 0.1° (with a global average ECC of approximately 0.3). 465 

The error homogeneity could be attributed to both products utilizing GLDAS 466 

meteorological data as input, despite their different methods for ET estimation. At a 467 
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resolution of 0.25°, ERA5L and GLEAM exhibited a more apparent error correlation 468 

(with a global average ECC of approximately 0.4). Considering the long temporal 469 

data of GLEAMv3 version a, ECMWF meteorological data was chosen as the driving 470 

force, making the error correlation between the two products predictable. 471 

Therefore, this study assumes that non-zero ECC situations occur between PMLv2-472 

FluxCom and ERA5L-GLEAM. We also calculated the possible ECC situations 473 

among other products, presented in the discussion section and the appendix. Based on 474 

the analysis, our assumed non-zero ECC situations align reasonably well with the 475 

actual circumstances.  476 

In addition, previous research suggests that the IVD method outperforms the IVS 477 

method in scenarios involving two sets of inputs, while the EIVD method is 478 

considered more reliable than the TC method in situations with three sets of inputs (Li 479 

et al., 2022; Kim et al., 2021a). Therefore, in this study, the IVD and EIVD methods 480 

are selected for computation based on different combinations of inputs. Table 2 481 

presents the data and methods used during corresponding periods. When only two sets 482 

of products are available, we employ the IVD method for fusion and calculate weights 483 

using Eq. (20). When three sets of products are available, we utilize the EIVD method 484 

for fusion and calculate weights using Eq. (22).  485 

Table 2 Combination of inputs and accessible methods 486 

Scenario 1 (0.1°) 

Period Selected Inputs Method 

（2000.02.26-2000.12.31) ERA5L/ PMLv2 IVD 

（2001.01.01-2015.12.27) ERA5L/ FluxCom/ PMLv2 EIVD 

（2015.12.28-2020.12.26) ERA5L/ PMLv2 IVD 

Scenario 2 (0.25°) 

Period Selected Inputs Method 

（1980.01.01-1999.12.31) ERA5L/ GLDAS20/ GLEAMv3.7a 
EIVD 

（2000.01.01-2022.12.31) ERA5L/ GLDAS21/ GLEAMv3.7a 

It should be noted that the same product can have different versions. In this study, 487 
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appropriate versions are selected based on the following principles: (1) Selection 488 

based on the corresponding data coverage duration and ensuring more products to 489 

gain more information; (2) Choosing the latest version while considering the 490 

assumption of non-zero ECC conditions; (3) Making efforts to select the exact 491 

product versions for different periods, to avoid uncertainties caused by version 492 

changes. We selected a subset of sites to compare the fusion results using different 493 

versions, and the corresponding details will be presented in the discussion section. 494 

3.6. Evaluation indices 495 

Five statistical indicators, namely Root-mean-squared-error (𝑅𝑀𝑆𝐸) , Pearson's 496 

correlation coefficient (𝑅), Mean-absolute-error (𝑀𝐴𝐸), unbiased 𝑅𝑀𝑆𝐸 (𝑢𝑏𝑅𝑀𝑆𝐸) 497 

and Kling-Gupta Efficiency ( 𝐾𝐺𝐸 ), are selected for comparison with existing 498 

products. The relative equations are shown as follows: 499 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)2
𝑛
𝑖=1

𝑛
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𝑅 =
∑ (𝑠𝑖𝑚𝑖 − 𝑠𝑖𝑚)
𝑛
𝑖=1 (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠)

√∑ (𝑠𝑖𝑚𝑖 − 𝑠𝑖𝑚)
2

𝑛
𝑖=1 ∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠)

2
𝑛
𝑖=1

 

−1 ≤ 𝑅 ≤ 1 

 

(24) 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖|

𝑛

𝑖=1

 
 
(25) 

 𝑢𝑏𝑅𝑀𝑆𝐸 = √
∑ [(𝑠𝑖𝑚𝑖 − 𝑠𝑖𝑚) − (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠)]

2
𝑛
𝑖=1

𝑛
 

 
(26) 

Where 𝑠𝑖𝑚 is the simulations, 𝑜𝑏𝑠 is the observation as reference. 500 

The modified 𝐾𝐺𝐸  (Kling et al., 2012) offers insights into reproducing temporal 501 

dynamics and preserving the distribution of time series, which are increasingly used 502 

to calibrate and evaluate hydrological models (Knoben et al., 2019). For a better 503 

understanding of the KGE statistic and its advantages over the Nash-Sutcliffe 504 

Efficiency (𝑁𝑆𝐸), please refer to Gupta et al. (2009). The equation is given by: 505 
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 𝐾𝐺𝐸 = 1 −√(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

− 1)
2

+ (
𝜎𝑠𝑖𝑚/𝜇𝑠𝑖𝑚
𝜎𝑜𝑏𝑠/𝜇𝑜𝑏𝑠

− 1)
2

 
 
(27) 

Where 𝜎𝑜𝑏𝑠  and 𝜎𝑠𝑖𝑚  are the standard deviations of observations and simulations; 506 

𝜇𝑜𝑏𝑠 and 𝜇𝑠𝑖𝑚 are the mean of observations and simulations. Similar to 𝑁𝑆𝐸, 𝐾𝐺𝐸 = 1 507 

indicates perfect agreement of simulations, while 𝐾𝐺𝐸 < 0 reveals that the average of 508 

observations is better than simulations (Towner et al., 2019). 509 

4. Results 510 

In this study, we aimed to compare and evaluate the performance of fused products at 511 

both site and global scales. At the site scale, the performance of the fused products 512 

was evaluated against 212 FluxNet observations and compared with other products, 513 

including the simple average. At the global scale, the mean and temporal variations of 514 

the land surface ET calculated by the fused products were compared with those of 515 

other products.  516 

4.1. Analysis of error variances and weights 517 

This section examines the random error variances and identifies the predominant 518 

product based on assigned weights for the 0.1° and 0.25° inputs obtained through the 519 

EIVD method. 520 
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 521 

Figure 2 Global distribution of absolute error variances (𝜎𝜀𝑖
2 ) of ERA5L, FluxCom, 522 

and PMLv2 using EIVD at 0.1° from 2001 to 2015, depicted alongside corresponding 523 

variation curves of average 𝜎𝜀𝑖
2  with latitude. 524 

Figure 2 represents the random errors of the correlation products calculated using the 525 

EIVD method from 2001 to 2015 at 0.1°, where a non-zero ECC is assumed between 526 

FluxCom and PMLv2. The areas with missing values are due to the absence of data 527 

from either FluxCom or PMLv2 in those regions. The global random error variances 528 

(mean±standard deviation) obtained using the EIVD method are as follows: ERA5L: 529 

0.58±0.53 mm/day, FluxCom: 0.12±0.13 mm/day, PMLv2: 0.17±0.14 mm/day. 530 

These results indicate that FluxCom performs best overall, while ERA5L performs the 531 

poorest. Regarding spatial distribution, regions with more significant random errors in 532 
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ERA5L are mainly located in East Asia, Australia, and southern Africa. On the other 533 

hand, FluxCom and PMLv2 show relatively more considerable uncertainties in the 534 

southeastern United States. The latitude distribution reveals that ERA5L has the 535 

highest uncertainty, primarily in the vicinity of 20° to 30° north and south, consistent 536 

with its spatial distribution. 537 

It is important to note that due to missing data in specific regions at 0.1°, such as 538 

Northern Africa, the Sahara Desert region, Northwestern China, and Australia, the 539 

error results obtained may not accurately reflect the performance of FluxCom and 540 

PMLv2 in these areas. Considering the current results, we can cautiously conclude 541 

that FluxCom and PMLv2 demonstrate better performance. Future data 542 

supplementation in these regions would further enhance our ability to analyze the 543 

products' accuracy. 544 
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 545 

Figure 3 Global distribution of absolute error variances (𝜎𝜀𝑖
2 ) of ERA5L, GLDAS2.0, 546 

and GLEAMv3.7a using EIVD at 0.25° from 1980 to 1999, depicted alongside 547 

corresponding variation curves of average with latitude. 548 

The distribution of random error variance for ERA5L (0.59±0.58 mm/d), GLDAS2.0 549 

(0.37±0.44 mm/d), and GLEAMv3.7a (0.38±0.36 mm/d) from 1980 to 1999 at 0.25° 550 

is shown in Figure 3. Here, we assumed a non-zero ECC between ERA5L and 551 

GLEAM. The ERA5L data was resampled from a 0.1° resolution to 0.25°, and its 552 

error distribution pattern is like that of the 0.1° resolution. It exhibits higher 553 

uncertainties in East Asia, Australia, and southern Africa. GLDAS and GLEAM 554 

exhibit relatively higher uncertainty over the southeastern United States and the 555 

Amazon Plain. GLDAS and GLEAM show similar performance among the three 556 
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products, while ERA5L performs relatively worse. Regarding the average distribution 557 

with latitude, ERA5L demonstrates a more even distribution, whereas GLDAS and 558 

GLEAM exhibit relatively higher uncertainties in tropical regions. 559 

The ET calculations in both GLDAS and GLEAM involve complex surface 560 

parameterization processes. In tropical regions, the high non-heterogeneity in land 561 

covers poses a challenge, and the 0.25° resolution grid may not capture the intricacies 562 

of the underlying surface conditions. This mismatch could impact the 563 

parameterization process, leading to errors. Future work could involve in-depth model 564 

analyses or sensitivity experiments to identify sources of error in complex ET models, 565 

facilitating improvements. 566 

 567 

Figure 4 Global distribution of absolute error variances (𝜎𝜀𝑖
2 ) of ERA5L, GLDAS2.1, 568 
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and GLEAMv3.7a using EIVD at 0.25° from 2000 to 2022, depicted alongside 569 

corresponding variation curves of average with latitude. 570 

In addition, Figure 4 presents the distribution of random error variance for ERA5L 571 

(0.32±0.33 mm/d), GLDAS2.1 (0.35±0.29 mm/d), and GLEAMv3.7a (0.38±0.36 572 

mm/d) from 2000 to 2022 at a resolution of 0.25°. The non-zero ECC assumption was 573 

made between ERA5L and GLEAM. In this combination, ERA5L shows significantly 574 

lower errors than in previous periods, indicating improved ERA5L performance 575 

during this time frame. However, ERA5L still exhibits more significant errors in the 576 

East Asia and Australia regions compared to the other two datasets. The overall errors 577 

for GLDAS and GLEAM have also decreased, but there are still random error 578 

variances exceeding 1.0 mm/d in the Amazon plain and Indonesia region. Regarding 579 

the latitudinal distribution, ERA5L shows relatively smooth changes, while GLDAS 580 

and GLEAM exhibit similar trends. However, GLEAM demonstrates a noticeable 581 

increase in errors near the Arctic. 582 

Next, in Figure 5, we present the dominant product for each grid cell in the three 583 

scenarios, where dominance refers to the product with the highest assigned weight. 584 

The results in Figure 5 indicate that at 0.1° resolution, the weights for FluxCom and 585 

PMLv2 are significantly higher than ERA5L, aligning with the error calculations 586 

presented in Figure 2. This underscores the effectiveness of error and weight analysis 587 

based on collocation in reflecting product performance, thereby allowing for a rational 588 

adaptation of weights. At 0.25° resolution, the dominant regions for ERA5L, 589 

GLDAS-2, and GLEAM products are relatively balanced. In the fusion scenario from 590 

1980 to 1999, GLDAS20 predominantly covers the Northern Hemisphere, while 591 

GLEAM dominates the Southern Hemisphere, with ERA5L prevalent in the Amazon 592 

region. However, in the fusion scenario from 2000 to 2022, GLEAM's dominant 593 

region significantly expanded, primarily covering the central United States and 594 

southeastern China. The Amazon region continues to be dominated by ERA5L. The 595 

variation in dominant products highlights that the calculation of product weights 596 
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evolves with changes in the fusion scenario. The error and weight computation 597 

methods based on collocation can only provide the minimum MSE solution for a 598 

given combination of inputs. It is important to note that changes in inputs will impact 599 

the results. 600 
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 601 

Figure 5 Map of the prevailing product at individual pixels based on scenario-specific 602 

weights. 603 

For the analysis at a resolution of 0.1°, we also applied the IVD method to calculate 604 
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the errors between ERA5L and PMLv2 for two time periods: 2000 and 2015 to 2020. 605 

Since the analysis of product errors is not the focus of this paper, we provide the 606 

results of the IVD in the appendix. Grids with higher random error variances 607 

correspond to smaller weights when calculating the weights. The weight distribution 608 

calculated at different time intervals is available in the appendix. 609 

4.2. Site-scale evaluation and comparison 610 

At the site scale, the performance of CAMELE was compared with FluxNet as the 611 

reference. In this subsection, Figure 6 and Table 3 correspond to each other, as they 612 

integrate data from 212 sites for all available periods, allowing for a comparative 613 

analysis of the performance of different products at different times. Similarly, Figure 614 

7 and Table 4 correspond to each other, where different product metrics were 615 

calculated for each site, and the calculated metric results were subjected to statistical 616 

analysis. 617 
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Figure 6 Scatter plots of product corresponding to the available period data from 212 619 

FluxNet sites. The colorbar represents the density, with darker colors indicating 620 

higher concentration. The left and right columns present results for 0.1° and 0.25° 621 

resolutions, respectively, with "SA" indicating the results for simple average. 622 

Relevant statistical metrics are annotated in their respective figures. 623 

The scatter plots in Figure 6 demonstrate that CAMELE consistently performs at 0.1° 624 

and 0.25° resolutions. At 0.1° resolution, FluxCom and PMLv2 showed superior 625 

performance with fewer data points due to their original 8-day average resolution. 626 

CAMELE exhibited a performance like ERA5L. At 0.25° resolution, CAMELE 627 

performed comparably to the other datasets, demonstrating reasonable accuracy. 628 

Notably, there was an improvement in the KGE and R indices. The fitted line closely 629 

approximated the 1:1 line, indicating a solid agreement with the observed values. 630 

Moreover, the results obtained from the simple average were also acceptable, but SA 631 

(0.25°) had a concentration of data points between (2-4 mm/d), possibly due to the 632 

inputs having a high concentration within that range. The assumption that a simple 633 

average implies equal performance of each product on every grid cell is inaccurate; 634 

variations in performance exist among different products across distinct grid cells 635 

(regions). 636 

Table 3 Average values of different metrics for CAMELE and other fusion schemes 637 

corresponding to the available period data from 212 FluxNet sites. The bolded 638 

sections indicate the schemes with the best performance in their respective metrics. 639 

Product 
RMSE 

(mm/d) 

ubRMSE 

(mm/d) 

MAE 

(mm/d) 
KGE R 

0.1°-daily 

CAMELE 1.21 1.20 0.81 0.61 0.63 

SA 1.23 1.21 0.83 0.61 0.62 

ERA5L 1.22 1.20 0.82 0.60 0.62 

FluxCom 1.03 1.02 0.69 0.59 0.69 

PMLv2 1.06 1.06 0.70 0.57 0.64 

0.25°-daily 
CAMELE 1.06 1.04 0.73 0.65 0.68 

SA 1.16 1.14 0.80 0.63 0.64 
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REA 1.09 1.03 0.79 0.63 0.69 

GLDAS21 1.23 1.21 0.85 0.59 0.62 

GLEAMv3.7a 1.16 1.14 0.79 0.60 0.61 

The information in Table 3 corresponds to Figure 6 and presents the results of 640 

various product indicators. The bolded parts indicate the products with the best 641 

corresponding indicators. The results indicate that CAMELE performed well at both 642 

0.1° and 0.25° resolutions, mainly showing improvements in the KGE and R 643 

indicators. FluxCom exhibited the best performance; however, considering that this 644 

product utilized FluxNet sites for result calibration, this phenomenon is reasonable. In 645 

this study, we pooled the data from all 212 available periods at the stations as a 646 

reference without considering the differences between individual sites. This approach 647 

provided an initial validation of the reliability of CAMELE at all sites. 648 

The information in Figure 7 corresponds to the data presented in Table 4, which 649 

involves the calculation of five indicators at each site, followed by statistical analysis 650 

of these indicators. From the distribution of the violin plots, it can be observed that a 651 

violin plot with a closer belly to 1 indicates better results in terms of the R and KGE 652 

indicators. CAMELE performs well overall, closely resembling PMLv2 and FluxCom. 653 

On the other hand, the results obtained from the Simple Average are relatively poorer. 654 

Regarding the RMSE, ubRMSE, and MAE indicators, a violin plot with a closer belly 655 

to 0 suggests less errors. CAMELE demonstrates a notable enhancement in 656 

performance at the 0.1° level. This suggests that the fusion method effectively reduces 657 

errors, aligning with the original intention of weight calculation, and it compares 658 

favorably with the products used in the merging scheme. 659 

Additionally, FluxCom and PMLv2 also exhibit minimal errors, which is expected 660 

considering their utilization of FluxNet sites for error correction. Furthermore, SA 661 

shows significantly larger errors. Although the simple average method can 662 

compensate for positive and negative errors between inputs in some instances, it can 663 

also lead to error accumulation, as evidenced by the results in the violin plots. 664 

 665 
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 666 

Figure 7 Violin plots obtained by aggregating five different statistical indicators, 667 

calculated separately for each site. In each violin plot, the left side represents the 668 
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distribution, with the shaded area indicating the box plot, the dot representing the 669 

mean, and the right side showing the histogram. 670 

Table 4 Average values of indicators corresponding to different products, calculated 671 

based on the comprehensive results obtained for each site. The bolded sections 672 

indicate the schemes with the best performance in their respective metrics. 673 

Product 
RMSE 

(mm/d) 

ubRMSE 

(mm/d) 

MAE 

(mm/d) 
KGE R 

0.1°-daily 

CAMELE 0.83 0.71 0.64 0.57 0.71 

SA 1.05 0.93 0.82 0.47 0.61 

ERA5L 1.05 0.94 0.82 0.47 0.63 

FluxCom 1.07 0.93 0.64 0.55 0.74 

PMLv2 0.84 0.74 0.84 0.47 0.61 

0.25°-daily 

CAMELE 1.03 0.87 0.75 0.51 0.67 

SA 0.97 0.84 0.80 0.48 0.66 

REA 1.02 0.86 0.80 0.48 0.67 

GLDAS21 1.10 0.97 0.83 0.46 0.63 

GLEAMv3.7a 1.03 0.93 0.79 0.49 0.64 

Table 4 presents the average values of different metrics in Figure 7, boldly 674 

highlighting the optimal products corresponding to each metric. It can be observed 675 

that CAMELE exhibits significant improvements in performance at a resolution of 676 

0.1°, particularly in terms of the error metrics RMSE and ubRMSE, surpassing other 677 

products. This further confirms the effectiveness of our fusion scheme in reducing 678 

product errors. Additionally, although the performance of CAMELE at a resolution of 679 

0.25° is comparable to other products, there is still a slight decline compared to its 680 

performance at 0.1°. This can be attributed partly to the inherent errors in the input 681 

products and partly to the decreasing representativeness of FluxNet, which serves as 682 

the reference at the 0.25° grid. Nevertheless, we can still consider CAMELE to have 683 

good accuracy. 684 
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 685 

Figure 8 Heatmaps of five statistical indicators, where each row corresponds to the 686 

mean value for all sites of the specific PFT, and each column corresponds to a product. 687 

The product with the best performance for that PFT is highlighted in bold within each 688 

row. (a)-(c) represent three error indicators: RMSE, ubRMSE, and MAE; (d)-(e) 689 

represent two goodness-of-fit indicators: KGE and R.  690 

Table 5 Optimal product corresponding to different PFTs under various statistical 691 

indicators against observations from FluxNet sites 692 

IGBP 

(n-sites) 
RMSE 
(mm/d) 

ubRMSE 
(mm/d) 

MAE 
(mm/d) 

KGE R 

CRO (20) CAMELE CAMELE CAMELE PMLv2 CAMELE 



39 

 

CSH (3) PMLv2 FluxCom 

FluxCom 

DBF (26) 

CAMELE 

REA 

DNF (1) FluxCom CAMELE 

EBF (15) CAMELE GLEAM 

ENF (49) 
FluxCom CAMELE 

GRA (39) PMLv2 CAMELE 

MF (9) 

CAMELE 

CAMELE REA 

FluxCom 

OSH (13) 
FluxCom CAMELE 

SAV (9) 

SNO (1) CAMELE REA 

WET (21) PMLv2 
FluxCom CAMELE 

WSA (6) CAMELE 

Furthermore, we classified 212 sites according to PFTs and analyzed the statistical 693 

indicators of different PFTs corresponding to each site. The results are represented in 694 

Figure 8 as a heatmap, and the corresponding optimal products for other PFTs sites 695 

are marked in Table 5. The results show that CAMELE performs the best in almost 696 

all PFTs categories, as indicated by various indicators. While on sites where other 697 

products perform better, CAMELE's indicators are comparable to the optimal 698 

products, albeit slightly inferior. This indicates that our fusion approach effectively 699 

combines the advantages of different products, resulting in superior fusion results 700 

across different vegetation types. 701 

From the results, it is evident that CAMELE performs well across various vegetation 702 

types. To delve deeper into the reasons behind this performance, we conduct site-scale 703 

analyses at two resolutions, evaluating errors and computed weights for different 704 

PFTs sites. These are visualized in radar chart format in Figure 9. 705 
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 706 

Figure 9 Mean collocation-based errors and weights of different products at various 707 

PFTs sites at (A) 0.1° and (B) 0.25° resolutions. The parentheses next to each PFTs 708 

name denote the corresponding number of sites. 709 

The results from Figure 9 demonstrate that the error-weighting calculation method 710 

based on collocation effectively considers the error situation of inputs, thereby 711 

providing reasonable weight assignments. At 0.1° resolution, ERA5L's error is 712 

significantly higher across all PFTs than FluxCom and PMLv2, resulting in relatively 713 

lower corresponding weights. FluxCom and PMLv2 exhibit closer performance, with 714 

higher weights at most PFT sites. At 0.25° resolution, ERA5L, GLDAS21, and 715 

GLEAM perform more evenly, with minimal differences, resulting in closer weights. 716 

The weights for different inputs vary noticeably with changes in PFTs, depending on 717 

the performance of other products within the same combination. Products with more 718 
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significant errors correspondingly have lower weights, affirming the rationale behind 719 

the fusion method. However, it is essential to note that the presented results depict the 720 

mean values of errors and weights across all sites; there might be variations among 721 

sites with the same PFTs. 722 

In summary, using the filtered daily-scale data from 212 FluxNet sites as a reference, 723 

we conducted a benchmark analysis with CAMELE and demonstrated its good fit 724 

with the observed data. Additionally, by comparing the performance of different 725 

products at each site, we further illustrated that CAMELE exhibits similar or slightly 726 

improved accuracy and minor errors compared to existing products. 727 

4.3. Assessment and comparison of multi-year average 728 

In this section, we will first analyze and compare the performance of CAMELE with 729 

other products in estimating the multi-year mean and extreme values of ET at the site 730 

scale. Subsequently, a global-scale analysis will be conducted for the same periods 731 

(0.1°: 2001 to 2015; 0.25°: 2000 to 2017) to examine the distribution of multi-year 732 

daily average ET calculated by different products. For site comparisons, we have 733 

selected monthly mean ET values and three quantiles (5th, 50th, and 95th) to 734 

represent the products' performance in estimating ET's average and extreme values. 735 

 736 
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 737 

Figure 10 Violin plots depicting the KGE and RMSE metrics calculated for 738 

CAMELE and other products based on the monthly mean, 5th, 50th, and 95th 739 

percentiles at each FluxNet site. The left four columns represent KGE plots, while the 740 

right four columns represent RMSE plots. The dots in the violin plots represent the 741 

median, and the horizontal lines represent the mean. 742 

Table 6 Average values of KGE and RMSE corresponding to different products, 743 

calculated based on the results obtained for each site. The bolded sections indicate the 744 

schemes with the best performance in their respective metrics.  745 

Product 
KGE 

Mean 5th 50th 95th  

0.1°-daily 

CAMELE 0.54  0.28  0.57  0.54  

ERA5L 0.41  0.21  0.40  0.42  

FluxCom 0.45  0.09  0.42  0.42  

PMLv2 0.52  0.19  0.46  0.50  

0.25°-daily 

CAMELE 0.47  0.26  0.50  0.45  

REA 0.40  0.21  0.46  0.50  

GLDAS21 0.37  0.23  0.37  0.40  

GLEAMv3.7a 0.43  0.22  0.42  0.40  

Product 
RMSE (mm/mon) 

Mean 5th 50th 95th  

0.1°-daily CAMELE 0.63  0.73 0.66  0.83  
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ERA5L 0.89  0.83 0.91  1.09  

FluxCom 0.87  0.83 0.89  1.07  

PMLv2 0.63  0.80 0.68  0.91  

0.25°-daily 

CAMELE 0.81  0.74  0.84  1.01  

REA 0.86  0.85  0.88  1.01  

GLDAS21 0.90  0.95  0.93  1.08  

GLEAMv3.7a 0.85  0.75  0.88  1.10  

The information in Figure 10 corresponds to the data presented in Table 6, which 746 

involves the calculation of KGE and RMSE at each site, followed by statistical 747 

analysis. From the distribution of the violin plots, it can be observed that a violin plot 748 

with a closer belly to 1 indicates better results in terms of the KGE. 749 

The results show that CAMELE outperforms other products in the estimation of 750 

monthly averages and the 5th, 50th, and 95th percentiles at both 0.1° and 0.25° 751 

resolutions. Its performance in capturing monthly averages is noteworthy, with a 752 

noticeable improvement in the KGE and RMSE metrics relative to the inputs. 753 

Examining the results for percentiles, CAMELE shows a relatively poorer estimation 754 

for shallow values (5th percentile) but still demonstrates some improvement 755 

compared to the input data, albeit influenced by input errors. 756 

At 0.1°, PMLv2 and FluxCom perform just below the fusion result, aligning with the 757 

previous error and weight analysis. At 0.25°, GLEAM and REA closely follow 758 

CAMELE, with REA exhibiting slightly better estimation results for extremely high 759 

values (95th percentile) than CAMELE. Despite this, the analysis results still indicate 760 

that the products obtained reflect well the multi-year averages and extremes of ET, 761 

holding promise as reliable products for analyzing ET variations. 762 
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 763 

Figure 11 Global distribution of multi-year daily average ET at 0.1° for CAMELE, 764 

ERA5L, FluxCom, and PMLv2, depicted alongside corresponding variation curves of 765 

multi-year daily average ET with latitude. 766 

The results in Figure 11 indicate significant differences in the multi-year daily 767 

average distribution of global evapotranspiration (ET) among different products. 768 

Specifically, ERA5L shows noticeably higher values in East Asia than other products, 769 
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while FluxCom and PMLv2 exhibit higher values in the Amazon rainforest and 770 

southern Africa regions. This distribution pattern is consistent with the error results 771 

obtained from the EIVD calculation, indicating that these products possess certain 772 

uncertainties in the regions. In terms of the latitudinal distribution pattern, except for 773 

FluxCom, which displays distinct fluctuations, the variability among the other 774 

products is relatively similar. This suggests that despite spatial differences among the 775 

different products, they maintain consistency in the overall quantity. 776 

Figure 12 presents the results with a resolution of 0.25°. It can be observed that 777 

compared to the 0.1° distribution, the spatial distribution of annual average 778 

evapotranspiration (ET) is more consistent among different products at 0.25°, 779 

showing larger ET values in tropical regions. The main differences are concentrated 780 

in the Amazon rainforest and the Congo Basin, where GLEAM and GLDAS results 781 

are higher than REA's. The assigned weights for REA's inputs (MERRA2, GLDAS, 782 

and GLEAM.) are approximately equal in these two regions, each contributing about 783 

one-third to the overall calculation (Lu et al., 2021). This balanced allocation results 784 

in the REA being distributed among them roughly equally over multiple years in these 785 

two regions. The latitude variation plots show that the results from each product are 786 

very close, providing additional evidence for the reliability of CAMELE. 787 

 788 
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 789 

Figure 12 Global distribution of multi-year daily average ET at 0.25° for CAMELE, 790 

GLDAS2.1, GLEAMv3.7a, and REA, depicted alongside corresponding variation 791 

curves of multi-year daily average ET with latitude. 792 

In parallel, it is worth noting that, despite the regional disparities that may arise when 793 

contrasting the trends by CAMELE with inputs, a noteworthy consistency emerges 794 

when examining these trends along latitudinal gradients. This notable alignment 795 
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signifies the robustness of CAMELE to some extent. It underscores the capacity of 796 

CAMELE to capture ET patterns, providing further insights for the scientific 797 

community. 798 

4.4. Assessment and comparison of linear trend and seasonality 799 

In this section, we first validate and compare the performance of CAMELE with other 800 

products in estimating multi-year trends and seasonality at the site scale. Due to the 801 

inconsistent time lengths of FluxNet sites, trends at many sites are not significant. 802 

Therefore, we deliberately selected 13 sites with continuous evapotranspiration (ET) 803 

observations for the same 11-year period (2004 to 2014) and with significant trends. 804 

The annual ET values for each year were calculated as the mean of the 13 sites for 805 

that year, allowing the computation of linear trends and seasonality. We employed 806 

singular spectrum analysis (SSA), which assumes an additive decomposition A = LT 807 

+ ST + R. In this decomposition, LT represents the long-term trend in the data, ST is 808 

the seasonal or oscillatory trend (or trends), and R is the remainder. 809 

 810 

Figure 13 Comparison of linear trend from 2004 to 2014 among 13 FluxNet sites 811 

using CAMELE and other products. The trends have been subjected to SSA 812 

decomposition, removing seasonality. The gray enveloping line represents the mean 813 

plus the standard deviation of the 13 sites. 814 



48 

 

 815 

Figure 14 Comparison of seasonal variations from 2004 to 2014 among 13 FluxNet 816 

sites using CAMELE and other products. The seasonality has been obtained through 817 

SSA decomposition, with the gray area representing the observed values. The 818 

parentheses in each product name indicate the KGE coefficient comparing with the 819 

observed values. 820 

In Figure 13 and Figure 14, based on observations from FluxNet sites, we analyzed 821 

the performance of CAMELE and other products in estimating the linear trend and 822 

seasonality of ET over multiple years. It is important to note that we only present the 823 

analysis results for 13 sites with continuous 11-year observations, and the 824 

performance of different ET products in trend estimation at individual sites still varies, 825 

not fully reflecting the overall performance on all grids in terms of trend and 826 

seasonality. Nevertheless, such a comparison can still provide valuable insights. 827 

Examining the results of the linear trend, both PMLv2 and FluxCom exhibit a 828 

significant upward trend, well above the observations. On the contrary, ERA5L, 829 

GLDAS, and REA show a noticeable downward trend, while CAMELE demonstrates 830 

a gradual upward trend closer to the observations. Additionally, GLEAM slightly 831 
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outperforming CAMELE at a resolution of 0.25°. Overall, CAMELE shows good 832 

agreement with site observations in capturing the multi-year linear trend of ET. 833 

Continuing with the analysis of seasonality, the KGE index comparing each product's 834 

results with observed values is provided in parentheses next to the product name. 835 

Generally, all products exhibit a good representation of ET's seasonal variations. 836 

CAMELE's 0.1° seasonal results closely match FluxCom (with the two lines almost 837 

overlapping). However, the fluctuations it reflects are higher than the observed values. 838 

This is likely due to keeping the 8-day average results of FluxCom consistent with 839 

PMLv2 every 8 days, and the variability in ET primarily originates from ERA5L 840 

results. This aspect may need improvement in subsequent research. At 0.25°, 841 

CAMELE's seasonal representation is closer to the observed results. The differences 842 

in CAMELE's performance at the two resolutions are mainly attributed to input 843 

variations, which we discuss in the following section as potential areas for 844 

improvement. 845 

Table 7 Comparison of CAMELE results at 13 continuous 10-year observational sites: 846 

(a) Comparison of Linear trend; (b) KGE values for monthly seasonality. 847 

 (a) Linear Trend (mm/yr) (2004-2014)  (b) KGE of seasonality 

Site Name Observation 
CAMELE 

(0.1) 

CAMELE 

(0.25) 

 CAMELE 

(0.1) 

CAMEL

E (0.25) 

BE_Lon 0.15 0.06 0.05  0.65 0.71 

CH_Lae -0.33 -0.36 -0.35  0.80 0.80 

CH_Oe2 0.25 0.37 0.67  0.85 0.49 

CZ_BK1 -0.44 -0.53 -0.66  0.54 0.71 

DE_Gri 0.11 0.03 0.24  0.61 0.54 

DE_Kli 0.68 0.77 0.85  0.78 0.52 

FR_Gri 0.41 0.36 0.55  0.71 0.55 

GF_Guy -0.47 -0.50 -0.45  0.77 0.73 

IT_BCi 0.21 0.25 0.28  0.61 0.56 

IT_Noe 0.11 0.02 0.04  0.61 0.51 

US_GLE -0.14 -0.17 -0.01  0.64 0.49 

US_SRM -0.42 -0.45 -0.63  0.52 0.61 
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ZM_Mon 0.16 0.22 0.09  0.56 0.51 

Furthermore, we present the linear trend estimated by CAMELE from 2004 to 2014 at 848 

13 sites, along with the KGE values for monthly seasonality. The results indicate that 849 

regardless of the resolution, whether 0.1° or 0.25°, the trends estimated by CAMELE 850 

are consistent with the observed trends, with minor difference. In comparison to the 851 

observed monthly seasonality, the KGE values exceed 0.5 at all sites, with some sites 852 

exceeding 0.7, indicating that CAMELE can effectively capture the seasonal 853 

variations. 854 

The results indicate that CAMELE effectively captures the multi-year changes in ET, 855 

but at 0.1°, it tends to overestimate seasonal fluctuations. We further generated global 856 

maps of multi-year linear trends in ET, estimating trends using Theil–Sen's slope 857 

method and testing significance with the Mann–Kendall method. The dotted areas 858 

indicate trends passing a significance test at a 5% level. 859 
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 860 

Figure 15 Global distribution of multi-year linear trend at 0.1° for CAMELE, ERA5L, 861 

FluxCom, and PMLv2, depicted alongside corresponding average trend with latitude. 862 

The trend is estimated with Theil–Sen’s slope method, and the significance level is 863 

tested with the Mann–Kendall method. The dotted area indicates that the trend has 864 

passed the significance test at 5 % level. 865 

 866 
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 867 

Figure 16 Global distribution of multi-year linear trend at 0.25° for CAMELE, 868 

GLDAS2.1, GLEAMv3.7a, and REA, depicted alongside corresponding average 869 

trend with latitude. The trend is estimated with Theil–Sen’s slope method, and the 870 

significance level is tested with the Mann–Kendall method. The dotted area indicates 871 

that the trend has passed the significance test at 5 % level. 872 
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Figure 15错误!未找到引用源。 and Figure 16错误!未找到引用源。 present the 873 

linear trends of multi-year daily scale evapotranspiration (ET) calculated for different 874 

products at resolutions of 0.1° and 0.25°, respectively. The corresponding latitude-875 

dependent variations of the rate of change are shown on the right side. It can be 876 

observed that the differences in linear trends among the different products are more 877 

significant than the multi-year averages, and in some regions, they even exhibit 878 

opposite trends. For example, at 0.1° resolution, PMLv2 shows a global increase of 879 

1.0% in ET in most regions, while the results from CAMELE, ERA5L, and PMLv2 880 

indicate a milder increase in ET in the Amazon rainforest, southern Africa, and 881 

northwestern Australia. At 0.25° resolution, except for GLDAS2.1, which shows an 882 

apparent global increase in ET, the results from CAMELE, GLEAMv3.7a, and REA 883 

indicate milder variations in global ET. 884 

5. Discussion 885 

5.1. Impact of underlying assumptions in collocation analysis 886 

The collocation analysis system relies on key assumptions, including linearity (linear 887 

regression model), stationarity (unchanged probability distribution over time), error 888 

orthogonality (independence between random error and true signal), and zero error 889 

cross-correlation (independence between random errors). Potential error 890 

autocorrelation is considered with lag-1 [day] series. Various studies have examined 891 

the validity and impact of these assumptions. Numerous studies have examined the 892 

validity of these assumptions and their impact on the outcomes if violated (Tsamalis, 893 

2022; Duan et al., 2021; Gruber et al., 2020). 894 

The linearity assumption shapes the error model by including additive and 895 

multiplicative biases and zero-mean random error. Although some studies have 896 

explored the application of a nonlinear rescaling technique (Yilmaz and Crow, 2013; 897 

Zwieback et al., 2016), those efforts are primarily limited to soil moisture signals and 898 
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often fail to accurately represent the true signal unless all datasets share a similar 899 

signal-to-noise ratio (SNR). However, it is worth noting that after rescaling processes, 900 

such as cumulative distribution function (CDF) matching or climatology removal, the 901 

resulting time series (anomalies) are often considered linearly related to the truth since 902 

higher-order error terms are removed. In addition, multiplicative relationships have 903 

been more commonly identified in rainfall products (Li et al., 2018). In contrast, 904 

collocation analysis within the context of ET products frequently suggests that linear 905 

relationships are reasonable (Li et al., 2022; Park et al., 2023). Therefore, the linear 906 

error model remains a robust implementation, though it has the potential for 907 

improvement through rescaling techniques. 908 

Regarding violating the stationarity assumption, the evapotranspiration signal does 909 

not strictly adhere to this characteristic. However, by collocating triplets with similar 910 

magnitude variations, the influence of this violation is minimized. Nonetheless, 911 

disparities in climatology between datasets can still arise for various reasons (Su and 912 

Ryu, 2015). Several proposed alternatives aim to address this issue, such as removing 913 

the climatology of inputs (Stoffelen, 1998; Yilmaz and Crow, 2014; Draper et al., 914 

2013) and subsequently analyzing the random error variance of the anomalies (Dong 915 

et al., 2020b). Nevertheless, obtaining a reliable estimation of climatology proves 916 

challenging in practice.  917 

The assumption of error orthogonality assumes independence between random error 918 

and true signal, i.e., 𝜎𝜀𝑖Θ = 0. A few studies have examined this assumption. Yilmaz 919 

and Crow (2014) investigated such violations using four in situ sites and concluded 920 

that the impact is negligible since rescaling mitigates or compensates for bias. 921 

Additionally, non-orthogonality results in non-zero error cross-correlation (ECC), 922 

although the latter is considered more important. Vogelzang et al. (2022) also 923 

investigated this violation recently and demonstrated minimal second-order impact. 924 

Non-zero ECC conditions introduce more substantial bias in the results compared to 925 

other violations mainly due to two reasons: (1) they cannot be mitigated by rescaling; 926 
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(2) they cannot be compensated even with equal magnitude for all inputs; and (3) they 927 

have been frequently reported in recent studies for various variables (Li et al., 2018, 928 

2022; Gruber et al., 2016b). Gruber et al. (2016a) proposed the extended collocation 929 

method, which effectively addresses the ECC of selected pairs. Moreover, the EIVD 930 

method adopts the error cross-correlation framework. In the following section, we 931 

will analyze the ECC between pairs. 932 

5.2. Analysis of error cross-correlation 933 

This study assumes non-zero ECC (Error-Correction Coefficient) conditions exist 934 

between FluxCom and PMLv2 at 0.1° and between ERA5L and GLEAM at 0.25°. 935 

However, non-zero ECC conditions were also possible between other pairs. Therefore, 936 

we presented the EIVD-based ECC results of various pairs. 937 
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 938 

Figure 17 Global Distribution of estimated error cross-correlation (ECC) between 939 

ERA5L, FluxCom, and PMLv2 pairwise using EIVD alongside relevant variation 940 

curves of average with latitude. 941 

 942 
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 943 

Figure 18 Global Distribution of estimated error cross-correlation (ECC) between 944 

ERA5L, GLEAMv3.7a, and GLDAS21 pairwise using EIVD alongside relevant 945 

variation curves of average with latitude. 946 

As depicted in Figure 17 and Figure 18, at a resolution of 0.1°, the ECC values of 947 

FluxCom and PMLv2 were notably higher than those of ERA5L-FluxCom and 948 

ERA5L-PMLv2. The global average ECC value for FluxCom-PMLv2 was 0.16, and 949 

regions with high ECC values were identified in the eastern United States, most of 950 

Europe, and the western Amazon, areas densely covered by measurement sites. Since 951 

both FluxCom and PMLv2 incorporated corrections based on FluxNet measurement 952 

sites, there is likely some overlap between the sites used by both products in the high 953 
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ECC regions. This partially explains the shared source of random errors between the 954 

two datasets. 955 

The global error correlations of GLEAM-GLDAS and ERA5L-GLDAS are relatively 956 

low. The random error of ERA5L correlates with that of GLEAM, primarily in arid 957 

regions such as the Sahara Desert, Northwest China, and central Australia, where the 958 

average ECC exceeds 0.20. The global average ECC of ERA5L-GLEAM is 959 

approximately 0.14. A higher error correlation is observed for ERA5L-GLEAM, with 960 

a mean ECC value of 0.26, which is expected since meteorological information from 961 

ECMWF is reanalyzed for both datasets. However, ECC values for GLEAM-GLDAS 962 

and ERA5L-GLDAS are generally low globally, supporting the assumption of zero 963 

ECC for these two pairs. 964 

Our findings highlight the significant impact of Error Cross Correlation (ECC) 965 

between FluxCom-PMLv2 and ERA5L-GLEAM at 0.1° and 0.25° resolutions, 966 

respectively. Mathematically, when a triplet exhibits a high ECC value (>0.3) 967 

between two sets, it indicates a preference for the remaining independent product as 968 

the "better" one, potentially leading to an underestimation of its error variance. 969 

However, it is essential to note that the overall ECC values for other pairs are 970 

relatively small, suggesting that the zero ECC assumptions can be considered valid 971 

for these pairs across most areas. Therefore, these assumptions are unlikely to affect 972 

the relevant results of uncertainties significantly. Nevertheless, we have considered 973 

the non-zero ECC condition between FluxCom-PMLv2 and ERA5L-GLEAM in this 974 

study, as it requires careful consideration. 975 

5.3. Comparison of different fusion schemes 976 

In this section, we conducted comparisons in three aspects: (1) comparing the 977 

performance of CAMELE at different resolutions; (2) comparing the performance of 978 

different change fusion schemes, explicitly changing the input products' versions 979 

(GLDAS21 to GLDAS20 or GLDAS22, GLEAMv3.7a to v3.7b); and (3) comparing 980 
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the performance of the results obtained without considering the ECC impact. 981 

We conducted a comprehensive comparison of our fusion approach with several 982 

alternative schemes. Specifically, these schemes encompassed utilizing only ERA5L 983 

and PMLV2 at 0.1° based on the IVD method (Comb1), changing the versions of 984 

GLDAS2 and GLEAM at 0.25° based on the EIVD method (Comb2-5), and two TC 985 

fusion approaches at 0.1° and 0.25°, which did not incorporate ECC.  986 

It should be noted that the Comb2 scheme, which includes GLDAS20, covers the 987 

period from 1980 to 2014, while the other 0.25° comparison schemes (Comb3-5) span 988 

from 2003 to 2022. The combinations based on TC (assuming zero ECC) had the 989 

same inputs as CAMELE at both resolutions. 990 

Table 8 Average metrics for CAMELE and other fusion schemes at all sites. The 991 

bolded sections indicate the schemes with the best performance in their respective 992 

metrics. 993 

Product 
RMSE 

(mm/d) 

ubRMSE 

(mm/d) 

MAE 

(mm/d) 
KGE R 

CAMELE (0.1) 0.83 0.71 0.64 0.57 0.71 

CAMELE (0.25) 1.03 0.87 0.75 0.51 0.67 

ERA5L+PMLV2 
(Comb1-0.1 | IVD) 1.13 1.00 0.89 0.46 0.61 

ERA5L+GLDAS20+GLEAMv3.7a 
(Comb2-0.25 | EIVD) 1.09 0.89 0.87 0.44 0.66 

ERA5L+GLDAS22+GLEAMv3.7a 
(Comb3-0.25 | EIVD) 1.20 0.95 0.94 0.44 0.68 

ERA5L+GLDAS22+GLEAMv3.7b 
(Comb4-0.25 | EIVD) 1.19 0.94 0.93 0.44 0.69 

ERA5L+GLDAS21+GLEAMv3.7b 
(Comb5-0.25 | EIVD) 1.05 0.90 0.80 0.49 0.69 

ERA5L+FluxCom+PMLv2 
(Zero-ECC-0.1 | TC) 1.06 0.91 0.80 0.46 0.60 

ERA5L+GLDAS21+GLEAMv3.7a 
(Zero-ECC-0.25 | TC) 1.26 1.03 0.99 0.39 0.61 

According to the information in the table, CAMELE (0.1°) results were superior in all 994 

indicators. Firstly, when comparing the performance of CAMELE at resolutions of 995 

0.1° and 0.25°, it was observed that the fused product performed slightly worse at the 996 

0.25° resolution. Additionally, the representative of FluxNet sites at the 0.25° 997 

resolution decreased, leading to degraded statistical indicators. 998 
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At the 0.1° resolution, we conducted a comparison of results obtained by exclusively 999 

fusing ERA5-Land and PMLv2. Multiple indicators indicated that this approach did 1000 

not enhance the accuracy of ET estimates and fell significantly short of the scheme 1001 

employed in CAMELE. This implies that using only two product sets as input did not 1002 

allow for effective error analysis through collocation analysis, resulting in suboptimal 1003 

fusion results. More importantly, the limitation of employing only two datasets 1004 

prevented us from effectively acquiring error information through collocation analysis 1005 

(Dong et al., 2020a, 2019). Consequently, we made the strategic decision to ensure 1006 

the inclusion of three datasets as inputs, facilitating the utilization of the EIVD 1007 

method and maintaining methodological consistency between the 0.1° and 0.25° 1008 

resolutions. 1009 

Furthermore, when comparing the results of different fusion schemes between 1010 

CAMELE and Comb2-5 at the 0.25° resolution, CAMELE performed better regarding 1011 

error metrics (RMSE, ubRMSE, MAE). The differences in fitting metrics (KGE, R) 1012 

were insignificant, indicating that the choice of fusion scheme primarily affected the 1013 

errors of the fusion results. The relatively poorer performance of other fusion schemes 1014 

could be due to the lack of consideration for non-zero ECC. For example, non-zero 1015 

ECC between GLDAS-2.2 and ERA5L has been reported in a recent study (Li et al., 1016 

2023a). 1017 

For the comparative analysis of the GLDAS2.0 and GLDAS2.1 schemes, the usage of 1018 

GLDAS2.1 yielded better performance. The GLDAS-2.1 simulation leverages 1019 

conditions from the GLDAS-2.0 simulation, with improved models driven by a 1020 

combination of datasets. Previous research has demonstrated that GLDAS-2.1 offers 1021 

improvements in the regional-scale simulation of hydrological variables compared to 1022 

GLDAS-2.0 (Qi et al., 2018, 2020). Consequently, we chose to incorporate GLDAS-1023 

2.1 data for as much of the time series as possible.  1024 

Moreover, when comparing the fusion effects with and without considering non-zero 1025 

ECC conditions, it was evident that considering ECC information could effectively 1026 
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improve the performance of the fused product, which further demonstrated the 1027 

reliability and advantages of the fusion method employed in this study.1028 

 1029 

Figure 19 Violin plot comparing KGE, R, RMSE, ubRMSE and MAE of CAMELE 1030 

with other fusion schemes. The right half of each violin plot represents the 1031 

distribution, with shaded areas indicating the box plot, where the horizontal line 1032 

corresponds to the median and the dot represents the mean. The left half represents 1033 

the results of CAMELE (0.1°) for comparison. 1034 
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We further provided violin plots for different metrics, comparing the results of each 1035 

fusion scheme to CAMELE (0.1°) as shown in Figure 19. The results indicated that 1036 

the fusion schemes adopted were significantly superior to other schemes based on the 1037 

distribution of results for all metrics across all sites. Regarding KGE and R, 1038 

CAMELE's results were concentrated near 1 for most sites. Regarding RMSE, 1039 

ubRMSE, and MAE, their results were concentrated below one mm/d. The results in 1040 

the plots also suggested that CAMELE performed slightly worse at 0.25° compared to 1041 

0.1° but still outperformed other combination results. Additionally, comparing 1042 

CAMELE and the zero-ECC scheme in the plots further highlighted the importance of 1043 

considering non-zero ECC conditions. 1044 

5.4. Potential Applications and Future Enhancements 1045 

In this section, we delve into the potential applications of our product and outline our 1046 

commitment to future enhancements to maintain its accuracy and relevance. 1047 

Here, we identify three potential applications for our transpiration product: (1) Global 1048 

ET Trends: Our product facilitates global-scale analysis of current ET patterns and 1049 

long-term trends, essential for comprehending ecosystem responses to evolving 1050 

environmental conditions in a warming climate; (2) Transpiration-to-1051 

Evapotranspiration Ratio: Our merging approach can fuse multi-source global gridded 1052 

transpiration data, allowing for the examination of the transpiration-to-1053 

evapotranspiration ratio. This analysis can enhance water resource management and 1054 

water availability predictions in diverse regions; (3) Attribution analysis: Our product 1055 

is a valuable tool for attribution analysis, helping researchers identify the drivers of 1056 

patterns. This knowledge is crucial for understanding the roles of climate variability, 1057 

land-use changes, and other factors in shaping terrestrial water fluxes. 1058 

Furthermore, we are committed to enhancing our product proactively. Key strategies 1059 

include: (1) Data Update and Validation: To ensure our product's continued accuracy 1060 

and reliability, we will prioritize regularly updating the data used in this study to the 1061 
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latest versions. By adopting this approach, we aim to provide users with results that 1062 

reflect the latest advancements in scientific knowledge; (2) Enhanced Integration and 1063 

Error Reduction: We continually refine estimates by incorporating additional data 1064 

sources and implementing extended collocation method to minimize errors; (3) 1065 

Integration of High-Resolution Regional ET Data: Recognizing the significance of 1066 

regional-scale insights, we will focus on improving the accuracy of CAMELE by 1067 

integrating higher-resolution regional ET data. This integration will enable more 1068 

precise regional estimation. 1069 

In summary, these endeavors collectively represent our commitment to maintaining 1070 

our product's quality and relevance, ensuring its value for the scientific community. 1071 

6. Conclusion 1072 

This study used a collocation-based approach for merging data considering non-zero 1073 

conditions. We successfully generated a long-term daily CAMELE evapotranspiration 1074 

(ET) product at resolutions of 0.1° (2000 to 2020) and 0.25° (1980 to 2022) by 1075 

integrating five widely used datasets: ERA5L, FluxCom, PMLv2, GLDAS, and 1076 

GLEAM. The key findings of our study are as follows: 1077 

1. Collocation analysis methods proved to be a reliable tool for evaluating ET 1078 

products without a reference dataset. This approach shows promising potential for 1079 

error characterization, especially in regions with limited data availability or on a 1080 

global scale. The evaluation results provided valuable insights into the data 1081 

merging process. 1082 

2. Compared to five input products, REA, and simple average, the CAMELE product 1083 

performed well when evaluated against FluxNet flux tower data. While CAMELE 1084 

may not excel in all individual metrics, it effectively reduces errors associated 1085 

with the input products. The result showed Pearson correlation coefficients (R) of 1086 

0.63 and 0.65, root-mean-square errors (RMSE) of 0.81 and 0.73 mm/d, unbiased 1087 

root-mean-square errors (ubRMSE) of 1.20 and 1.04 mm/d, mean absolute errors 1088 
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(MAE) of 0.81 and 0.73 mm/d, and Kling-Gupta efficiency (KGE) of 0.60 and 1089 

0.65 on average over resolutions of 0.1° and 0.25°, respectively. This robust 1090 

performance is especially evident when assessing its comprehensive station-scale 1091 

evaluation. 1092 

3. For different plant functional types (PFTs), the CAMELE product outperformed 1093 

the five input products, REA, and simple average in most PFTs. Although 1094 

FluxCom and PMLv2 performed slightly better than CAMELE at some PFT sites, 1095 

considering that both utilized FluxNet sites for product calibration, it indirectly 1096 

demonstrates the promising and robust performance of CAMELE. 1097 

4. Based on site-scale observations, CAMELE effectively captures the multi-year 1098 

linear trend of ET. The accuracy of the multi-year mean value depicted by 1099 

CAMELE is improved compared to the input data. Moreover, it accurately 1100 

characterizes extreme ET values. However, there is a slight overestimation in 1101 

representing the seasonality, which needs further improvement in future research. 1102 

5. When utilizing the error information derived from collocation analysis for 1103 

merging, it is crucial to consider the potential presence of non-zero error 1104 

compensation conditions (ECC). Comparing the merging schemes with and 1105 

without considering non-zero ECC, it was found that considering ECC improves 1106 

the accuracy of the merging process. Additionally, when using collocation 1107 

analysis, it is necessary to identify which products may have ECC in advance, 1108 

providing more effective support for data merging and obtaining more accurate 1109 

product error information.  1110 

In conclusion, our proposed collocation-based data merging approach demonstrates 1111 

the promising potential for merging ET products. The resulting CAMELE product 1112 

exhibited good overall performance at site-based and regional scales, meeting the 1113 

requirements for more detailed research. Furthermore, further evaluation of the 1114 

merged product in specific regions is necessary to improve its accuracy. In future 1115 

studies, dynamic weights could be computed by considering suitable merging periods 1116 
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for different products to enhance the quality of the merged product, and more 1117 

sophisticated combination schemes could be explored to improve accuracy. 1118 
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