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Abstract 13 

Land evapotranspiration (ET) plays a crucial role in Earth's water-carbon cycle, and 14 

accurately estimating global land ET is vital for advancing our understanding of land-15 

atmosphere interactions. Despite the development of numerous ET products in recent 16 

decades, widely used products still possess inherent uncertainties arising from using 17 

different forcing inputs and imperfect model parameterizations. Furthermore, the lack 18 

of sufficient global in-situ observations makes direct evaluation of ET products 19 

impractical, impeding their utilization and assimilation. Therefore, establishing a 20 

reliable global benchmark dataset and exploring evaluation methodologies for ET 21 

products is paramount. This study aims to address these challenges by (1) proposing a 22 

collocation-based method that considers non-zero error cross-correlation for merging 23 

multi-source data and (2) employing this merging method to generate a long-term 24 

daily global ET product at resolutions of 0.1° (2000-2020) and 0.25° (1980-2022), 25 

incorporating inputs from ERA5L, FluxCom, PMLv2, GLDAS, and GLEAM. The 26 

resulting product is the Collocation-Analyzed Multi-source Ensembled Land 27 

Evapotranspiration Data (CAMELE). CAMELE exhibits promising performance 28 

across various vegetation coverage types, as validated against in-situ observations. 29 

The evaluation process yielded Pearson correlation coefficients (R) of 0.63 and 0.65, 30 

root-mean-square-errors (RMSE) of 0.81 and 0.73 mm/d, unbiased root-mean-square-31 

errors (ubRMSE) of 1.20 and 1.04 mm/d, mean absolute errors (MAE) of 0.81 and 32 

0.73 mm/d, and Kling-Gupta efficiency (KGE) of 0.60 and 0.65 on average over 33 

resolutions of 0.1° and 0.25°, respectively. In addition, comparisons indicate that 34 

CAMELE can effectively characterize the multi-year linear trend, mean average, and 35 

extreme values of ET. However, it exhibits a tendency to overestimate seasonality. In 36 

summary, we propose a reliable set of ET data that can aid in understanding the 37 

variations in the water cycle and has the potential to serve as a benchmark for various 38 

applications.  39 



3 

 

1. Introduction 40 

Land evapotranspiration (ET) plays a critical role in the global water and energy 41 

cycles, encompassing various processes such as soil evaporation, vegetation 42 

transpiration, canopy interception, and surface water evaporation (Zhang et al., 2019; 43 

Zhao et al., 2022; Lian et al., 2018). Accurately estimating global land 44 

evapotranspiration is vital for understanding the hydrological cycle and land-45 

atmosphere interactions, as it serves as an intermediary variable connecting soil 46 

moisture, air temperature and humidity (Miralles et al., 2019; Gentine et al., 2019). 47 

Therefore, providing a reliable ET dataset as a benchmark for further research is 48 

crucial. 49 

In recent decades, numerous studies have focused on estimating global land 50 

evapotranspiration, resulting in many datasets (Yang et al., 2023). However, 51 

discrepancies often arise among these simulations due to algorithm and principle 52 

variations (Restrepo-Coupe et al., 2021; Han and Tian, 2020). Additionally, 53 

evaluating ET products is challenging due to the limited availability of global-scale 54 

observations, which hampers their direct use (Pan et al., 2020; Baker et al., 2021).  55 

The fusion of multi-source data is a suitable option to address these uncertainties. 56 

Recent studies have explored several approaches to integrate multiple ET products, 57 

including Simple Average (SA) (Ershadi et al., 2014), Bayesian Model Average 58 

(BMA) (Hao et al., 2019; Ma et al., 2020; Zhu et al., 2016), Reliability Ensemble 59 

Average (REA) (Lu et al., 2021), Empirical Orthogonal Functions (EOF) (Feng et al., 60 

2016) and machine-learning-based methods (Chen et al., 2020; Yin et al., 2021). 61 

However, the primary challenge lies in calculating reliable input weights based on a 62 

selected "truth" (Koster et al., 2021), which can involve averaging or incorporating 63 

other relevant geographical information as a benchmark. 64 

Recently, collocation methods have emerged as promising techniques for estimating 65 

random error variances and data-truth correlations in collocated inputs (Stoffelen, 66 

1998; Li et al., 2022, 2023c; Park et al., 2023). These methods consider the errors 67 
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associated with collocated datasets as an accurate representation of uncertainty 68 

without assuming the absence of errors in any datasets. It is important to note that 69 

while collocation methods, such as the triple collocation (TC) and the extended 70 

double instrumental variable technique (EIVD), can estimate the variance (or 71 

covariance) of random errors, they cannot evaluate the bias of the products. One 72 

primary advantage of collocation analysis is that it does not require a high-quality 73 

reference dataset (Su et al., 2014; Wu et al., 2021). However, a crucial prerequisite for 74 

applying collocation methods is the availability of many spatially and temporally 75 

corresponding datasets. For instance, the classic TC method requires a trio of 76 

independent datasets. Su et al. (2014) used the instrumental regression method and 77 

considered lag-1 time series as the third input, proposing the single instrumental 78 

variable algorithm (IVS). Dong et al. (2019) introduced the lag-1 time series from 79 

both inputs, proposing the double instrumental variable algorithm (IVD) for a more 80 

robust solution. Gruber et al. (2016a) extended the original algorithm to incorporate 81 

more datasets, partially addressing the independence assumption to calculate a portion 82 

of error cross-correlation (ECC) by using the extended collocation (EC) method. 83 

Dong et al.(2020a) further proposed the EIVD method, enabling ECC estimation 84 

using three datasets. Collocation methods have found widespread application in the 85 

evaluation of geophysical variable estimates, including soil moisture (Deng et al., 86 

2023; Ming et al., 2022), precipitation (Dong et al., 2022; Li et al., 2018), ocean wind 87 

speed (Vogelzang et al., 2022; Ribal and Young, 2020), leaf area index (Jiang et al., 88 

2017), total water storage (Yin and Park, 2021) sea ice thickness and surface salinity 89 

(Hoareau et al., 2018), and near-surface air temperature (Sun et al., 2021).  90 

Recently, many studies have utilized collocation approaches to evaluate 91 

evapotranspiration products, with the TC method to assess uncertainties. For example, 92 

Barraza Bernadas et al. (2018) considered the uncertainties of ET from the Breathing 93 

Earth System Simulator, BESS (Jiang et al., 2020; Jiang and Ryu, 2016), Moderate 94 

Resolution Imaging Spectroradiometer, MOD16 (Mu et al., 2011), and a hybrid 95 
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model; Khan et al. (2018) utilized extended triple collocation (ETC) (McColl et al., 96 

2014) to investigate the reliability of ET from MOD16, The Global Land Data 97 

Assimilation System (GLDAS) (Rodell et al., 2004) and the Global Land Evaporation 98 

Amsterdam Model (GLEAM) (Martens et al., 2017) over East Asia; Li et al. (2022) 99 

employed five collocation methods (e.g., IVS, IVD, TC, EIVD, and EC) to analyze 100 

the uncertainties of ET from ERA5-Land (ERA5L) (Muñoz-Sabater et al., 2021), 101 

GLEAM, GLDAS, FluxCom (Jung et al., 2019), and the Penman-Monteith-Leuning 102 

Evapotranspiration V2 (PMLv2) (Zhang et al., 2019).  103 

Moreover, error information derived from collocation analysis is valuable for merging 104 

multi-source data. This was initially applied by Yilmaz et al. (2012) in the fusion of 105 

multi-source soil moisture products and later improved by Gruber et al. (2017) and 106 

further applied in the production of the European Space Agency Climate Change 107 

Initiative (ESA CCI) global soil moisture product (Gruber et al., 2019). Dong et al. 108 

(2020b) also adopted this approach to fusing multi-source precipitation products. In 109 

the study of evapotranspiration, Li et al. (2023c) and Park et al.(2023) utilized a 110 

weight calculation method that does not consider non-zero ECC and fused multiple 111 

ET products in the Nordic and East Asia, respectively, achieving satisfactory fusion 112 

results.  113 

Although the above studies have demonstrated that collocation analysis can 114 

effectively assess the random error variance of ET products and integrate error 115 

information from multiple data sources, these studies have primarily overlooked a 116 

critical aspect: non-zero ECC between ET products. Li et al. (2022) global ET product 117 

evaluation research revealed clear non-zero ECC conditions between ERA5L, 118 

GLEAM, PMLv2, and FluxCom. In TC analysis, non-zero ECC can result in 119 

significant biases in TC-based results (Yilmaz and Crow, 2014). Furthermore, when 120 

using TC-based error information for fusion, it is crucial to consider the information 121 

related to ECC, as this can help improve the fusion accuracy (Dong et al., 2020b; Kim 122 

et al., 2021b). 123 
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It is worth noting that non-zero ECC conditions pose unique challenges. Unlike other 124 

violations of mathematical assumptions adopted by TC, they cannot be effectively 125 

mitigated through rescaling or compensated for by equal magnitude adjustments 126 

across inputs. Thus, the implications of non-zero ECC in the context of merging 127 

strategies are a critical consideration often overlooked in previous research. This 128 

oversight can lead to significant biases and inaccuracies. We aim to bridge this gap by 129 

systematically accounting for non-zero ECC in weight calculation, contributing to a 130 

more robust and accurate assessment. 131 

In this study, we proposed a collocation-based data ensemble method, considering 132 

non-zero ECC conditions, for merging multiple ET products to create the Collocation-133 

Analyzed Multi-source Ensembled Land Evapotranspiration data, abbreviated as 134 

CAMELE. The second section of this paper presents the selected data information for 135 

this study. In the third section, we explained the error calculation method for 136 

collocation analysis and the weighted calculation method that considered ECC. The 137 

fourth section analyzed the global errors of different ET products obtained through 138 

these calculations and the distribution patterns of the corresponding weights. We 139 

evaluated the accuracy of the fused products and compared them with existing 140 

products using reference values from site measurements. In the fifth section, we 141 

discussed the inherent errors in the methods, analyzed the ECC between the products, 142 

and compared the differences between different fusion schemes. Finally, in the sixth 143 

section, we summarized the results obtained from this research. 144 

2. Datasets 145 

We selected five widely used ET products that spanned the period from 1980 to 2022. 146 

When selecting these products, our aims are to ensure: (1) consistency in original 147 

spatiotemporal resolution among the products: minimize potential downscaling 148 

operations and avoid introducing additional errors; (2) having three or more products 149 

within the same resolution or period: incorporate more information for effective 150 
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fusion; (3) products with extensive global observational sequences: gain basic 151 

recognition from the community. While we acknowledge the existence of other 152 

higher-precision products, their integration would require either downscaling or 153 

upscaling other products, potentially introducing uncertainties. Therefore, we chose 154 

the combination outlined in the manuscript. Despite its relatively lower resolution 155 

compared to some products, it still contributes to our understanding of ET variations, 156 

facilitating advantageous exploration. Furthermore, we incorporated in-situ 157 

observations and Lu et al.'s (2021) 's global 0.25° daily-scale ET product derived 158 

using Reliability Ensemble Averaging (denoted as REA) to compare our merged 159 

product comprehensively. Table 1Table 1 shows the spatial and temporal resolutions 160 

of the input datasets. 161 

Table 1 Summary of evapotranspiration products involved. 162 

Name Schemes Resolution Period Reference 

ERA5-Land H-TESSEL 0.1° hourly 1950-present 

(Muñoz-

Sabater et 

al., 2021) 

GLDAS-2 
CLSM/Noah

/LSM 
0.25° 

3-hourly 

daily 

2.0: 1948-2014 

2.1: 2000-present 

2.2: 2003-present 

(Li et al., 

2019a; 

Rodell et 

al., 2004) 

GLEAM-3.7 
GLEAM 

model 
0.25° daily 

3.7a: 1980-2022 

3.7b: 2003-2022 

(Martens et 

al., 2017) 

PMLv2-v017 

Penman-

Monteith-

Leuning 

0.083° 
8-day 

average 
2000-2020 

(Zhang et 

al., 2019) 

FluxCom 
Machine 

learning 
0.083° 

8-day 

average 
2001-2015 

(Jung et al., 

2019) 

2.1. ERA5-Land 163 

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces the 164 

latest advanced ERA5L, a global hourly reanalysis dataset with a spatial resolution of 165 
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0.1°. It covers the period from January 1950 until approximately one week before the 166 

present (Muñoz-Sabater et al., 2021). ERA5-Land is derived from the land component 167 

of the ECMWF climate reanalysis, incorporating numerous improvements over 168 

previously released versions. It is based on the Tiled ECMWF Scheme for Surface 169 

Exchanges over Land incorporating land surface hydrology (H-TESSEL), utilizing 170 

version CY45R1 of the ECMWF's Integrated Forecasting System (IFS). The dataset 171 

benefits from atmospheric forcing data, which acts as an indirect constraint on the 172 

model-based estimates (Hersbach et al., 2020). The dataset is available through the 173 

Climate Change service of the Copernicus Center at http://cds.climate.copernicus.eu. 174 

Evapotranspiration in ERA5L, defined as "total evaporation," represents the 175 

accumulated amount of water that has evaporated from the Earth's surface, including a 176 

simplified representation of transpiration from vegetation into the vapor in the air. 177 

The soil water and energy balance are computed using standard soil discretization. 178 

Readers could consult section 8.6.5 of the IFS documentation (ECMWF, 2014). The 179 

original dataset is interpolated from (1801, 3600) to (1800, 3600) using kriging 180 

interpolation and then upscaled from an hourly to a daily resolution, changing spatial 181 

resolution from 0.1° to 0.25°. 182 

2.2. GLDAS 183 

The Global Land Data Assimilation System (GLDAS) product utilizes advanced data 184 

assimilation methodologies, integrating model and observation datasets for land-185 

surface simulations (Rodell et al., 2004). GLDAS employs multiple land-surface 186 

models (LSMs), namely Noah, Mosaic, Variable Infiltration Capacity (VIC), and the 187 

Community Land Model (CLM). Together, these models generate global 188 

evapotranspiration estimates at fine and coarse spatial resolutions (0.01° and 0.25°) 189 

and temporal resolutions (3-hourly and monthly). The most recent iteration of 190 

GLDAS, version 2, consists of three components: GLDAS-2.0, GLDAS-2.1, and 191 

GLDAS-2.2. GLDAS-2.0 relies entirely on the Princeton meteorological forcing input 192 

http://cds.climate.copernicus.eu/
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data, providing a consistent temporal series from 1948 to 2014 (Sheffield et al., 2006). 193 

The GLDAS-2.1 simulation commences on January 1, 2000, utilizing the conditions 194 

from the GLDAS-2.0 simulation. On the other hand, GLDAS-2.2 is simulated from 195 

February 1, 2003, employing the conditions from GLDAS-2.0 and forcing with 196 

meteorological analysis fields from the ECMWF Integrated Forecasting System (IFS). 197 

Additionally, the GRACE satellite's total terrestrial water anomaly observation is 198 

assimilated into the GLDAS-2.2 product (Li et al., 2019a). 199 

This study aimed to cover the research period from 1980 to 2022. Non-zero ECC 200 

between the transpiration estimates of GLDAS-2.2 and ERA5L has been reported in a 201 

recent study (Li et al., 2023a). Considering the similarities in the calculation of ET 202 

and transpiration of GLDAS and ERA5L, this report partially indicates a correlation. 203 

Therefore, GLDAS-2.0 and GLDAS-2.1 were selected as inputs instead. The 204 

"Evap_tavg" parameter representing evapotranspiration is derived from the original 205 

products and aggregated to a daily scale. For more detailed information on the 206 

GLDAS-2 models, please refer to NASA's Hydrology Data and Information Services 207 

Center at http://disc.sci.gsfc.nasa.gov/hydrology. 208 

Despite the same forcing between GLDAS-2.1 and GLDAS-2.2, significant 209 

differences exist between the model results of different GLDAS versions (Qi et al., 210 

2020, 2018; Jiménez et al., 2011). The non-zero ECC will generally still be met 211 

between different versions. Thus, we still need to analyze the non-zero ECC situations 212 

between ERA5L and GLDAS-2.0 and 2.1, which will be assessed in the discussion 213 

sections. 214 

2.3. GLEAM 215 

The version of the Global Land Evaporation Amsterdam Model 3.7 (GLEAM-3.7) 216 

dataset (Martens et al., 2017; Miralles et al., 2011) at 0.25° is used. This version of 217 

GLEAM provides daily estimations of actual evaporation, bare soil evaporation, 218 

canopy interception, transpiration from vegetation, potential evaporation, and snow 219 

http://disc.sci.gsfc.nasa.gov/hydrology
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sublimation. The third version of GLEAM contains a new DA scheme, an updated 220 

water balance module, and evaporative stress functions. Two datasets that differ only 221 

in forcing and temporal coverage are provided: GLEAMv3.7a-43-year period (1980 222 

to 2022) based on satellite and reanalysis (ECMWF) data; GLEAMv3.7b-20-year 223 

period (2003 to 2022) based on only satellite data. GLEAMv3.7a is used in this study. 224 

The data are freely available on the GLEAM website (https://www.gleam.eu ).  225 

The cover-dependent potential evaporation rate (𝐸𝑃) is calculated using the Priestley-226 

Taylor equation (Priestley and TAYLOR, 1972). Then a multiplicative stress factor is 227 

used to convert 𝐸𝑃 into actual transpiration and bare soil evaporation, which is the 228 

function of microwave vegetation optimal depth (VOD) and root-zone soil moisture. 229 

For detailed description, please refer to the paper by Martens et al., (2017). The 230 

GLEAM data were validated at 43 FluxNet flux sites and have been proven to provide 231 

reliable ET estimations (Majozi et al., 2017). 232 

2.4. PMLv2 233 

The Penman-Monteith-Leuning version 2 global evaporation model (PMLv2) has 234 

been developed based on the Penman-Monteith-Leuning model (Zhang et al., 2019; 235 

Leuning et al., 2009). Initially proposed by Leuning et al. (2008), the PML model 236 

underwent further enhancements by Zhang et al. (2010). The PML version 1 (PMLv1) 237 

incorporates a biophysical model that considers canopy physiological processes and 238 

soil evaporation to estimate surface conductance accurately (𝐺𝑠), which is the focus of 239 

the PM-based method. This version was subsequently enhanced by incorporating a 240 

canopy conductance (𝐺𝑐 ) model that couples vegetation transpiration with gross 241 

primary productivity, resulting in the development of PML version 2 (PMLv2) as 242 

described by Gan et al. (2018). Zhang et al. (2019) applied the PMLv2 model globally. 243 

The daily inputs for this model include leaf area index (LAI), broadband albedo, and 244 

emissivity obtained from the Moderate Resolution Imaging Spectroradiometer 245 

(MODIS), as well as temperature variables (daily maximum temperature-𝑇𝑚𝑎𝑥 , daily 246 

https://www.gleam.eu/
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minimum temperature-𝑇𝑚𝑖𝑛 , daily mean temperature-𝑇𝑎𝑣𝑔), instantaneous variables 247 

(surface pressure-𝑃𝑠𝑢𝑟𝑓, atmosphere pressure-𝑃𝑎 , wind speed at 10-meter height-𝑈, 248 

specific humidity-𝑞), and accumulated variables (precipitation-𝑃𝑟𝑐𝑝, inward longwave 249 

solar radiation- 𝑅𝑙𝑛 , inward shortwave solar radiation- 𝑅𝑠 ) from GLDAS-2.0. 250 

Evaporation is divided into direct evaporation from bare soil (𝐸𝑠), evaporation from 251 

solid water sources (water bodies, snow, and ice) ( 𝐸𝑇𝑤𝑎𝑡𝑒𝑟 ), and vegetation 252 

transpiration (𝐸𝑐 ). To ensure its accuracy, the PMLv2-ET model was calibrated 253 

against 8-daily eddy covariance data from 95 global flux towers representing ten 254 

different land cover types.  255 

In this study, we employ the latest version, v017. The data is freely available through 256 

the google earth engine https://developers.google.com/earth-257 

engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017. 258 

2.5. FluxCom 259 

FluxCom is a machine-learning-based approach combining global land-atmosphere 260 

energy flux data by combining remote sensing and meteorological data (Jung et al., 261 

2019). To achieve this, FluxCom utilizes various machine-learning regression tools, 262 

including tree-based methods, regression splines, neural networks, and kernel 263 

methods. The outputs of FluxCom are designed based on two complementary 264 

strategies: (1) FluxCom-RS, which exclusively merges remote sensing data to 265 

generate high spatial resolution flux data; and (2) FluxCom-RS+METEO, which 266 

combines meteorological observations with remote sensing data at a daily temporal 267 

resolution. The exclusive use of remote sensing data in the ensemble allows 268 

producing gridded flux products at a spatial resolution of 500m, albeit with a 269 

relatively low frequency of 8 days. It is important to note that the FluxCom-RS data 270 

only covers the period after 2000 due to data availability. 271 

In contrast, the merging of meteorological and remote sensing data extends the 272 

coverage back to 1980 at the cost of a coarser spatial resolution of 0.5°. For more 273 

https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
https://developers.google.com/earth-engine/datasets/catalog/CAS_IGSNRR_PML_V2_v017
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detailed information about the FluxCom dataset, please refer to the FluxCom website 274 

(http://FluxCom.org/ ). The data is freely available upon contacting the authors. 275 

In this study, we utilized the FluxCom-RS 8-daily 0.0833° energy flux data and 276 

converted the latent heat values to evaporation evapotranspiration using ERA5L 277 

aggregated daily air temperature. Furthermore, the original ET data were interpolated 278 

to a spatial resolution of 0.1° using the MATLAB Gaussian process regression 279 

package. 280 

2.6. Global in-situ observation: FluxNet 281 

The latest FluxNet2015 4.0 eddy-covariance data were used in our study (Pastorello et 282 

al., 2020). Following the filtering process by Lin et al. (2018) and Li et al. (2019b), 283 

firstly, only the measured and good-quality gap-filled data were used for quality 284 

control. Secondly, we excluded days with rainfall and the subsequent day after rainy 285 

events to mitigate the impact of canopy interception (Medlyn et al., 2017; Knauer et 286 

al., 2018). Additionally, previous studies have indicated an energy imbalance problem 287 

in FluxNet2015 data. Therefore, following the method proposed by Twine et al. 288 

(2000), the measured ET data were corrected using the residual method based on 289 

energy balance. 290 

After data filtering and processing, 212 sites are selected as shown in Figure 1. The 291 

selected sites are distributed globally, primarily in North America and Europe. The 292 

International-Geosphere–Biosphere Program (IGBP) land cover classification system 293 

(Loveland et al., 1999) was employed to distinguish the 13 Plant Functional Types 294 

(PFTs) across sites. The IGBP classification was determined based on metadata from 295 

the FluxNet official website, including evergreen needle leaf forests (ENF, 49 sites), 296 

evergreen broadleaf forests (EBF, 15 sites), deciduous broadleaf forests (DBF, 26 297 

sites), croplands (CRO, 20 sites), grasslands (GRA, 39 sites), savannas (SAV, 9 sites), 298 

mixed forests (MF, 9 sites), closed shrublands (CSH, 3 sites), deciduous needle leaf 299 

forests (DNF, 1 site), open shrublands (OSH, 13 sites), snow and ice (SNO, 1 site), 300 

http://fluxcom.org/
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woody savannas (WSA, 6 sites) and permanent wetland (WET, 21 sites). Changes in 301 

the IGBP classification during the study period are possible, but such information is 302 

not publicly available. Interested parties can obtain relevant information by directly 303 

contacting the site coordinators. 304 

 305 

Figure 1 Global distribution of selected FluxNet Sites. 306 

3. Method 307 

In this study, the fusion of products consisted of three steps: (1) the collocation 308 

method (IVD and EIVD) was used to calculate the random error variance of the 309 

selected input products, determine the regionally optimal products, and set an error 310 

threshold; (2) aiming for minimum mean-square-error (MSE), the weights of different 311 

products on each grid were calculated; (3) the products were fused according to the 312 

weights to obtain a long sequence of evapotranspiration products. Since IVD and 313 

EIVD were developed by combining instrumental variable regression and the 314 

extended collocation system, a description of TC and EC algorithms was also 315 

included. 316 
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3.1. Triple collocation analysis 317 

Since its development in 1998, the implications and formulations of the triple 318 

collocation problem have been investigated in many studies. Here, we used difference 319 

notation for demonstration. 320 

The commonly used error structure for triple collocation analysis (TCA) is: 321 

 𝑖 = 𝛼𝑖 + 𝛽𝑖Θ + 𝜀𝑖 (1) 

where 𝑖 ∈ [𝑋, 𝑌, 𝑍] are three spatially and temporally collocated data sets; Θ is the 322 

unknown true signal for relative geographical variable; 𝛼𝑖  and 𝛽𝑖  are additive and 323 

multiplicative bias factors against the true signal, respectively; 𝜀𝑖 is the additive zero-324 

mean random error.  325 

The above structure is also a typical instrumental variable (IV) regression. Thus, this 326 

provides another perspective to introduce more variables (>3) (Dong and Crow, 2017; 327 

Su et al., 2014) and polynomial models (Yilmaz and Crow, 2013; De Lannoy et al., 328 

2007) to the standard TC. We recommend that the readers refer to Su et al. (2014) for 329 

a more detailed discussion on using the IV framework. 330 

The basic assumptions adopted in TC are as follows: (i) Linearity between true signal 331 

and data sets, (ii) signal and error stationarity, (iii) independency between random 332 

error and true signal (error orthogonality), (iv) independence between random errors 333 

(zero ECC). Although many studies have indicated that some of these assumptions are 334 

often violated in practice (Li et al., 2018, 2022; Jia et al., 2022), the formulation based 335 

on these assumptions is still the most robust implementation (Gruber et al., 2016b). A 336 

discussion on these assumptions will be provided in the discussion section. 337 

The data sets first need to be rescaled against an arbitrary reference (e.g., 𝑋). The 338 

others are scaled through a TC-based rescaling scheme: 339 

 𝑌𝑋 = 𝛽𝑌
𝑋(𝑌 − 𝑌) + 𝑋       𝑍𝑋 = 𝛽𝑍

𝑋(𝑍 − 𝑍) + 𝑋  (2) 

The overbar denotes the mean value, and 𝛽𝑌
𝑋 and 𝛽𝑍

𝑋 are the scaling factors as: 340 
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{
 
 

 
 𝛽𝑌

𝑋 =
𝛽𝑋
𝛽𝑌
=
< (𝑋 − 𝑋)(𝑍 − 𝑍) >

< (𝑌 − 𝑌)(𝑍 − 𝑍) >
=
𝜎𝑋𝑍
𝜎𝑌𝑍

𝛽𝑍
𝑋 =

𝛽𝑋
𝛽𝑍
=
< (𝑋 − 𝑋)(𝑌 − 𝑌) >

< (𝑍 − 𝑍)(𝑌 − 𝑌) >
=
𝜎𝑋𝑌
𝜎𝑍𝑌

 (3) 

where <∙> is the average operator, 𝜎𝑖𝑗 is the covariance of data sets 𝑖 and 𝑗. 341 

Subsequently, the error variances could be estimated by averaging the cross-342 

multiplied data set differences as follows: 343 

 

{
 
 

 
 

𝜎𝜀𝑋
2 =< (𝑋 − 𝑌𝑋)(𝑋 − 𝑍𝑋) >

𝜎
𝜀𝑌
𝑋
2 = 𝛽𝑌

𝑋2𝜎𝜀𝑌
2 =< (𝑌𝑋 − 𝑋)(𝑌𝑋 − 𝑍𝑋) >

𝜎
𝜀𝑍
𝑋
2 = 𝛽𝑍

𝑋2𝜎𝜀𝑍
2 =< (𝑍𝑋 − 𝑋)(𝑍𝑌 − 𝑌𝑋) > 

 (4) 

Expanding the bracket and expressing the rescaling factors yields: 344 

 

{
 
 

 
 𝜎𝜀𝑋

2 = 𝜎𝑋
2 −

𝜎𝑋𝑌𝜎𝑋𝑍
𝜎𝑌𝑍

𝜎𝜀𝑌
2 = 𝜎𝑌

2 −
𝜎𝑌𝑋𝜎𝑌𝑍
𝜎𝑋𝑍

𝜎𝜀𝑍
2 = 𝜎𝑍

2 −
𝜎𝑍𝑋𝜎𝑍𝑌
𝜎𝑋𝑌

 

 (5) 

When selecting various scaling references, it is essential to note that the absolute error 345 

variances remain consistent. However, this choice can have an impact on the 346 

estimation of data sensitivity to the actual signal (𝛽𝑖
2𝜎Θ

2), which serves as a crucial 347 

indicator for comparing spatial error patterns. In order to address the reliance on a 348 

specific scaling reference, Draper et al. (2013) introduced the fractional root-mean-349 

squared-error (𝑓𝑀𝑆𝐸𝑖). This measure is obtained by normalizing the unscaled error 350 

variance with respect to the true signal variance: 351 

  𝑓𝑀𝑆𝐸𝑖 =
𝜎𝜀𝑖
2

𝜎𝑖
2 =

𝜎𝜀𝑖
2

𝛽𝑖
2𝜎Θ

2 + 𝜎𝜀𝑖
2
=

1

1 + 𝑆𝑁𝑅𝑖
 (6) 

where 𝑆𝑁𝑅𝑖 =
𝛽𝑖
2𝜎Θ

2

𝜎𝜀𝑖
2 ∈ [0,1]  is the normalized signal-to-noise ratio. 𝑆𝑁𝑅 = 0 352 

indicates a noise-free observation, while 𝑆𝑁𝑅 = 1 corresponds that the variances of 353 

estimates equal that of the true signal.  354 

Following similar ideas, Mccoll et al. (2014) extended the framework to estimate the 355 
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data-truth correlation, known as the ETC: 356 

 
𝑅𝑖
2 =

𝛽𝑖
2𝜎Θ

2

𝛽𝑖
2𝜎Θ

2 + 𝜎𝜀𝑖
2
=

𝑆𝑁𝑅𝑖
1 + 𝑆𝑁𝑅𝑖

 

𝑅𝑖
2 = 1 − 𝑓𝑀𝑆𝐸𝑖 

(7) 

In comparison to the conventional coefficient of determination 𝑅𝑖𝑗 , which is 357 

influenced by data noise and sensitivity. It is important to note that 𝑅𝑖
2 is merely based 358 

on the data set 𝑖 , whereas 𝑅𝑖𝑗 is influenced by both data set 𝑖 and reference 𝑗. In other 359 

words, 𝑅𝑖
2 incorporates the dependency on the chosen reference. Thus, TC-derived 360 

𝑓𝑀𝑆𝐸𝑖 and 𝑅𝑖
2 serve as superior indicators for assessing the actual quality of data, as 361 

discussed by Kim et al. (2021b) and Gruber et al. (2020).  362 

3.2. Double instrumental variable technique 363 

The assumed error structure in TC is also a typical instrumental variable (IV) 364 

regression. In practical usage, finding three completely independent sets of products is 365 

usually tricky. Su et al. (2014) effectively improve the applicability of the TC method 366 

by using the lag-1 time series (e.g., 𝑋𝑡−1 = 𝛼𝑋 + 𝛽𝑋Θ𝑡−1 + 𝜀𝑋,𝑡−1 ) from one of the 367 

two sets of data as the third input for TC. In this way, we only need two independent 368 

products for input.  369 

Such process includes another assumption that all data sets contain serially white 370 

errors (i.e., < 𝜀𝑖,𝑡𝜀𝑖,𝑡−1 >= 0, zero auto-correlation). Building upon this, Dong et al. 371 

(2019) utilizes the lag-1 time series from both data sets as inputs and propose the 372 

more stable IVD method. 373 

For a double input [𝑋, 𝑌 with 𝜎𝜀𝑋𝜀𝑌 = 0], the linear error model and related lag-1 374 

time series can be expressed as: 375 

 {
𝑋 = 𝛼𝑋 + 𝛽𝑋Θ + ε𝑋                   𝐼 = 𝛼𝑋 + 𝛽𝑋Θ𝑡−1 + 𝜀𝑋𝑡−1
𝑌 = 𝛼𝑌 + 𝛽𝑌Θ + ε𝑌                    𝐽 = 𝛼𝑌 + 𝛽𝑌Θ𝑡−1 + 𝜀𝑌𝑡−1

 (8) 

where 𝐼 and 𝐽 are the lag-1 time series of 𝑋 and 𝑌, respectively. 376 

Assuming product errors are mutually independent and orthogonal to the truth, the 377 
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covariance between the products is expressed as: 378 

 {

𝜎𝑋
2 = 𝛽𝑋

2𝜎Θ
2 + 𝜎𝜀𝑋

2      𝜎𝑌
2 = 𝛽𝑌

2𝜎Θ
2 + 𝜎𝜀𝑌

2

𝜎𝑋𝑌 = 𝛽𝑋𝛽𝑌𝜎Θ
2

𝜎𝐼𝑋 = 𝛽𝑋
2𝐿ΘΘ      𝜎𝐽𝑌 = 𝛽𝑌

2𝐿ΘΘ

 (9) 

where 𝐿𝑖𝑖 =< 𝑖𝑡𝑖𝑡−1 > is the auto-covariance. Therefore, the IVD-estimated dynamic 379 

range ratio scaling factors yields: 380 

 𝑠𝑖𝑣𝑑 ≡
𝛽𝑋
𝛽𝑌
= √

𝜎𝐼𝑋
𝜎𝐽𝑌

 (10) 

Hence, the random error variances of 𝑋 and 𝑌 can be solved as: 381 

 {

𝜎𝜀𝑋
2 = 𝜎𝑋

2 − 𝜎𝑋𝑌 ∗ 𝑠𝑖𝑣𝑑

𝜎𝜀𝑌
2 = 𝜎𝑌

2 −
𝜎𝑋𝑌
𝑠𝑖𝑣𝑑

 (11) 

3.3. Extended double instrumental variable technique 382 

Furthermore, by adopting the designed matrix in the EC method (Gruber et al., 2016a), 383 

Dong et al. (2020a) present the EIVD method to estimate the error variance matrix 384 

with only two independent data sets.  385 

For a triplet input [𝑖, 𝑗, 𝑘 with 𝜎𝜀𝑖𝜀𝑗 ≠ 0]. The dynamic range ratio scaling factors can 386 

be estimated as follows: 387 

 𝑠𝑖𝑗 ≡
𝛽𝑖
𝛽𝑗
= √

𝐿𝑖𝑖
𝐿𝑗𝑗

 (12) 

where 𝐿𝑖𝑖 =< 𝑖𝑡𝑖𝑡−1 > is the auto-covariance of inputs. Subsequently, the sensitivity 388 

and absolute error variance of the data set follow: 389 

 𝛽𝑗
2𝜎Θ

2 = 𝜎𝑖𝑗√
𝐿𝑖𝑖
𝐿𝑗𝑗
             𝜎𝜀𝑗

2 = 𝜎𝑖𝑗√
𝐿𝑖𝑖
𝐿𝑗𝑗

− 𝜎𝑖
2 (13) 

The cross-multiplied factors can be estimated by: 390 

 𝛽𝑖𝛽𝑗𝜎Θ
2 = 𝜎𝑖𝑘√

𝐿𝑗𝑗

𝐿𝑘𝑘
=  𝜎𝑗𝑘√

𝐿𝑖𝑖
𝐿𝑘𝑘

     𝜎𝜀𝑖𝜀𝑗 = 𝜎𝑖𝑗 − 𝛽𝑖𝛽𝑗𝜎Θ
2 (14) 
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Hence, for a triplet with the input of [𝑋, 𝑌, 𝑍 with 𝜎𝜀𝑋𝜀𝑌 ≠ 0]: the matrix notation of 391 

the above system with 𝐲 = 𝐀𝐱 is given as: 392 

𝐲 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜎𝑋
2

𝜎𝑌
2

𝜎𝑍
2

𝜎𝑋𝑌

𝜎𝑋𝑍√
𝐿𝑋𝑋
𝐿𝑍𝑍

𝜎𝑌𝑍√
𝐿𝑌𝑌
𝐿𝑍𝑍

𝜎𝑍𝑋√
𝐿𝑍𝑍
𝐿𝑋𝑋

𝜎𝑍𝑌√
𝐿𝑍𝑍
𝐿𝑌𝑌

𝜎𝑋𝑍√
𝐿𝑌𝑌
𝐿𝑍𝑍

𝜎𝑌𝑍√
𝐿𝑋𝑋
𝐿𝑍𝑍

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟏𝟎𝐱𝟏

𝐀 =

(

 
 
 
 

𝐈𝟒𝐱𝟒 𝐈𝟒𝐱𝟒

(

  
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1)

  
 

𝟔𝐱𝟒

𝟎𝟔𝐱𝟒

)

 
 
 
 

𝟏𝟎𝐱𝟖

𝐱 =

(

 
 
 
 
 
 
 

𝛽𝑋
2𝜎Θ

2

𝛽𝑌
2𝜎Θ

2

𝛽𝑍
2𝜎Θ

2

𝛽𝑋𝛽𝑌𝜎Θ
2

𝜎𝜀𝑋
2

𝜎𝜀𝑌
2

𝜎𝜀𝑍
2

𝜎𝜀𝑋𝜀𝑌 )

 
 
 
 
 
 
 

𝟖𝐱𝟏

 (15) 

Likewise, the least-squared solution for unknown 𝐱 is then solved by: 393 

 𝐱 = (𝐀𝐓𝐀)−𝟏𝐀𝐓𝐲 (16) 

3.4. Weight Estimation 394 

Our objective is to predict an uncertain variable, such as evapotranspiration (ET) over 395 

time at a specific location, by utilizing parent products that may contain random errors. 396 

The underlying concept of weighted averaging is to extract independent information 397 

from multiple data sources to enhance prediction accuracy by mitigating the effects of 398 

random errors. The effectiveness of this approach relies on the independence of the 399 

individual data sources under consideration. Weighted averaging has found 400 

applications in various fields following the influential work of Bates and Granger 401 

(1969), who proposed the optimal combination of forecasts based on a minimum 402 

MSE criterion. In this context, the term "optimal" refers to minimizing the variance of 403 

residual random errors in the least squares sense. Mathematically, this weighted 404 
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average can be expressed as follows: 405 

 𝑥 = �⃗⃗⃗� T�⃗⃗� = ∑𝜔𝑖𝑥𝑖

𝑁

𝑖=1

 (17) 

where 𝑥 is the merged estimate; �⃗⃗� = [𝑥1, … , 𝑥𝑛]
T contains the temporally collocated 406 

estimates from 𝑁 different parent products, which are merged with relative zero-mean 407 

random error �⃗� = [𝜀1, … , 𝜀𝑛]
T; and �⃗⃗⃗� = [𝜔1, … , 𝜔𝑛]

T contains the weights assigned 408 

to these estimates, where 𝜔𝑖 ∈ [0,1] and ∑𝜔𝑖 = 1 ensuring an unbiased prediction. 409 

The averaging weights can be expressed as the solution to the problem: 410 

 min𝑓(�⃗⃗⃗� ) = 𝔼(�⃗� T�⃗⃗⃗� )2 (18) 

where 𝔼() is the operator for mathematical expectation, the solution of this problem is 411 

determined by the individual random error characteristics of the input data sets and 412 

can be derived from their covariance matrix (Bates and Granger, 1969; Gruber et al., 413 

2017; Kim et al., 2021b): 414 

 
�⃗⃗⃗� = (𝐈 T𝔼(�⃗� �⃗� T)−1𝐈 )

−1
𝔼(�⃗� �⃗� T)−1𝐈  

𝜎𝜀𝑥
2 = (𝐈 T𝔼(�⃗� �⃗� T)−1𝐈 )

−1
 

(19) 

where 𝔼(�⃗� �⃗� T) is the 𝑁 × 𝑁  error covariance matrix that holds the random error 415 

variance 𝜎𝜀𝑖
2  of the parent products in the diagonals and relative error covariances 𝜎𝜀𝑖𝜀𝑗 416 

in the off-diagonals; 𝐈 = [1,… ,1]T  is an ones-vector of length 𝑁 ; and 𝜎𝜀𝑥
2  is the 417 

resulting random error variances of the merged estimate. 418 

When only two groups of products are used as input (𝑁 = 2), it is generally assumed 419 

that the errors between them are independent. In this case, the weights are as follows: 420 

 

𝔼(�⃗� �⃗� T) = [
𝜎𝜀1
2 0

0 𝜎𝜀2
2 ] 

𝜔1 =
𝜎𝜀2
2

𝜎𝜀1
2 + 𝜎𝜀2

2
          𝜔1 =

𝜎𝜀1
2

𝜎𝜀1
2 + 𝜎𝜀2

2
 

(20) 

In most cases, we can identify three sets of products as inputs (𝑁 = 3). In this 421 

scenario, we consider the possibility of error homogeneity, assuming a non-zero ECC 422 
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exists between inputs 1 and 2. In this case, the error matrix can be represented as: 423 

 𝔼(�⃗� �⃗� T) = [

𝜎𝜀1
2 𝜎𝜀1𝜀2 0

𝜎𝜀1𝜀2 𝜎𝜀2
2 0

0 0 𝜎𝜀3
2

] (21) 

The weights can then be written as: 424 

 

�⃗⃗⃗� =

{
 
 
 

 
 
 

𝜎𝜀2
2 − 𝜎𝜀1𝜀2

(𝜎𝜀1
2 𝜎𝜀2

2 − 𝜎𝜀1𝜀2
2 ) ∗ 𝕫

𝜎𝜀1
2 − 𝜎𝜀1𝜀2

(𝜎𝜀1
2 𝜎𝜀2

2 − 𝜎𝜀1𝜀2
2 ) ∗ 𝕫

1

𝜎𝜀3
2 ∗ 𝕫

 

𝕫 =
𝜎𝜀1
2 + 𝜎𝜀2

2 − 2𝜎𝜀1𝜀2
𝜎𝜀1
2 𝜎𝜀2

2 − 𝜎𝜀1𝜀2
2

+
1

𝜎𝜀3
2

 

(22) 

It is essential to acknowledge that before applying these weights for merging the data 425 

sets, it is necessary to address any existing systematic differences. Typically, this is 426 

achieved by rescaling the data sets to a standardized data space. Consequently, the 427 

weights can be derived from the rescaled data sets using Eq (2)-(3) and converge 428 

accordingly. This procedure ensures the accuracy and reliability of the merged data 429 

sets for further analysis. 430 

If ECC is not considered (i.e., setting 𝜎𝜀1𝜀2 = 0), Eq (22) represents the weight 431 

calculation method commonly used in most TC fusion studies. In contrast to the 432 

fusion studies mentioned above for evapotranspiration products, for the first time, the 433 

consideration of non-zero ECC is incorporated into the fusion process and integrated 434 

into the weight calculation. Yilmaz and Crow (2014) have demonstrated that TC 435 

underestimates error variances when the zero ECC assumption is violated. Li et al. 436 

(2022), in their evaluation study of global ET products using the collocation method, 437 

also indicated the existence of error homogeneity issues between commonly used ET 438 

products (such as ERA5L and GLEAM), necessitating the consideration of the 439 

influence of non-zero ECC. The merging technique employed in this study provides a 440 

more explicit characterization of product errors and facilitates the derivation of more 441 
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reliable weight coefficients, thereby achieving promising fusion outcomes. 442 

The differences in results are evaluated at the site scale by contrasting the scenarios 443 

without considering non-zero ECC and directly using simple averages to compare and 444 

validate the advantages of the weight calculation method used in our study. 445 

3.5. Merging combination 446 

In this study, we employ five commonly used global land surface ET products as 447 

described in the datasets section. PMLv2 and FluxCom-RS have an original resolution 448 

of 0.083° and an 8-day average. In this research, they are interpolated to 0.1° 449 

resolution, and the values for each data period of 8 days are kept consistent. For 450 

example, the values for March 5 to March 12, 2000, are the same. ET values often 451 

exhibit variability over an 8-day period, making the use of an 8-day average to 452 

represent temporal dynamics potentially introducing further uncertainties. This 453 

operation is performed to ensure adequate data for the collocation analysis (Kim et al., 454 

2021a). We openly acknowledge the possible sources of error and express our 455 

commitment to addressing and improving them in future work. 456 

As mentioned in the methodology section, it is vital to consider the issue of random 457 

error homogeneity among different products before applying the collocation method. 458 

Although EC or EIVD methods can be used to calculate the ECC between specific 459 

pairs of products, it is necessary to determine which pairs of products have non-zero 460 

ECC conditions. In previous research, Li et al.(2022) employed five collocation 461 

methods (IVS/IVD/TC/EIVD/EC) to analyze the performance of five sets of ET 462 

products (ERA5L/ PMLv2/FluxCom/GLDAS2/GLEAMv3) at the global scale, and 463 

applied EC and EIVD methods to calculate the ECC between different products. The 464 

results indicated a relatively significant error homogeneity between PMLv2 and 465 

FluxCom at a resolution of 0.1° (with a global average ECC of approximately 0.3). 466 

The error homogeneity could be attributed to both products utilizing GLDAS 467 

meteorological data as input, despite their different methods for ET estimation. At a 468 
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resolution of 0.25°, ERA5L and GLEAM exhibited a more apparent error correlation 469 

(with a global average ECC of approximately 0.4). Considering the long temporal 470 

data of GLEAMv3 version a, ECMWF meteorological data was chosen as the driving 471 

force, making the error correlation between the two products predictable. 472 

Therefore, this study assumes that non-zero ECC situations occur between PMLv2-473 

FluxCom and ERA5L-GLEAM. We also calculated the possible ECC situations 474 

among other products, presented in the discussion section and the appendix. Based on 475 

the analysis, our assumed non-zero ECC situations align reasonably well with the 476 

actual circumstances.  477 

In addition, previous research suggests that the IVD method outperforms the IVS 478 

method in scenarios involving two sets of inputs, while the EIVD method is 479 

considered more reliable than the TC method in situations with three sets of inputs (Li 480 

et al., 2022; Kim et al., 2021a). Therefore, in this study, the IVD and EIVD methods 481 

are selected for computation based on different combinations of inputs. Table 2Table 482 

2 presents the data and methods used during corresponding periods. When only two 483 

sets of products are available, we employ the IVD method for fusion and calculate 484 

weights using Eq. (20). When three sets of products are available, we utilize the EIVD 485 

method for fusion and calculate weights using Eq. (22).  486 

Table 2 Combination of inputs and accessible methods 487 

Scenario 1 (0.1°) 

Period Selected Inputs Method 

（2000.02.26-2000.12.31) ERA5L/ PMLv2 IVD 

（2001.01.01-2015.12.27) ERA5L/ FluxCom/ PMLv2 EIVD 

（2015.12.28-2020.12.26) ERA5L/ PMLv2 IVD 

Scenario 2 (0.25°) 

Period Selected Inputs Method 

（1980.01.01-1999.12.31) ERA5L/ GLDAS20/ GLEAMv3.7a 
EIVD 

（2000.01.01-2022.12.31) ERA5L/ GLDAS21/ GLEAMv3.7a 

It should be noted that the same product can have different versions. In this study, 488 
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appropriate versions are selected based on the following principles: (1) Selection 489 

based on the corresponding data coverage duration and ensuring more products to 490 

gain more information; (2) Choosing the latest version while considering the 491 

assumption of non-zero ECC conditions; (3) Making efforts to select the exact 492 

product versions for different periods, to avoid uncertainties caused by version 493 

changes. We selected a subset of sites to compare the fusion results using different 494 

versions, and the corresponding details will be presented in the discussion section. 495 

3.6. Evaluation indices 496 

Five statistical indicators, namely Root-mean-squared-error (𝑅𝑀𝑆𝐸) , Pearson's 497 

correlation coefficient (𝑅), Mean-absolute-error (𝑀𝐴𝐸), unbiased 𝑅𝑀𝑆𝐸 (𝑢𝑏𝑅𝑀𝑆𝐸) 498 

and Kling-Gupta Efficiency ( 𝐾𝐺𝐸 ), are selected for comparison with existing 499 

products. The relative equations are shown as follows: 500 

 𝑅𝑀𝑆𝐸 = √
∑ (𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)

2𝑛
𝑖=1

𝑛
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𝑅 =
∑ (𝑠𝑖𝑚𝑖 − 𝑠𝑖𝑚)
𝑛
𝑖=1 (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠)

√∑ (𝑠𝑖𝑚𝑖 − 𝑠𝑖𝑚)
2

𝑛
𝑖=1 ∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠)

2
𝑛
𝑖=1

 

−1 ≤ 𝑅 ≤ 1 

 

(24) 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖|

𝑛

𝑖=1

 
 
(25) 

 𝑢𝑏𝑅𝑀𝑆𝐸 = √
∑ [(𝑠𝑖𝑚𝑖 − 𝑠𝑖𝑚) − (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠)]

2
𝑛
𝑖=1

𝑛
 

 
(26) 

Where 𝑠𝑖𝑚 is the simulations, 𝑜𝑏𝑠 is the observation as reference. 501 

The modified 𝐾𝐺𝐸  (Kling et al., 2012) offers insights into reproducing temporal 502 

dynamics and preserving the distribution of time series, which are increasingly used 503 

to calibrate and evaluate hydrological models (Knoben et al., 2019). For a better 504 

understanding of the KGE statistic and its advantages over the Nash-Sutcliffe 505 

Efficiency (𝑁𝑆𝐸), please refer to Gupta et al. (2009). The equation is given by: 506 
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 𝐾𝐺𝐸 = 1 −√(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚
𝜎𝑜𝑏𝑠

− 1)
2

+ (
𝜎𝑠𝑖𝑚/𝜇𝑠𝑖𝑚
𝜎𝑜𝑏𝑠/𝜇𝑜𝑏𝑠

− 1)

2

 
 
(27) 

Where 𝜎𝑜𝑏𝑠  and 𝜎𝑠𝑖𝑚  are the standard deviations of observations and simulations; 507 

𝜇𝑜𝑏𝑠 and 𝜇𝑠𝑖𝑚 are the mean of observations and simulations. Similar to 𝑁𝑆𝐸, 𝐾𝐺𝐸 = 1 508 

indicates perfect agreement of simulations, while 𝐾𝐺𝐸 < 0 reveals that the average of 509 

observations is better than simulations (Towner et al., 2019). 510 

4. Results 511 

In this study, we aimed to compare and evaluate the performance of fused products at 512 

both site and global scales. At the site scale, the performance of the fused products 513 

was evaluated against 212 FluxNet observations and compared with other products, 514 

including the simple average. At the global scale, the mean and temporal variations of 515 

the land surface ET calculated by the fused products were compared with those of 516 

other products.  517 

4.1. Analysis of error variances and weights 518 

This section examines the random error variances and identifies the predominant 519 

product based on assigned weights for the 0.1° and 0.25° inputs obtained through the 520 

EIVD method. 521 
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 522 

Figure 2 Global distribution of absolute error variances (𝜎𝜀𝑖
2 ) of ERA5L, FluxCom, 523 

and PMLv2 using EIVD at 0.1° from 2001 to 2015, depicted alongside corresponding 524 

variation curves of average 𝜎𝜀𝑖
2  with latitude. 525 

Figure 2Figure 2 represents the random errors of the correlation products calculated 526 

using the EIVD method from 2001 to 2015 at 0.1°, where a non-zero ECC is assumed 527 

between FluxCom and PMLv2. The areas with missing values are due to the absence 528 

of data from either FluxCom or PMLv2 in those regions. The global random error 529 

variances (mean±standard deviation) obtained using the EIVD method are as follows: 530 

ERA5L: 0.58±0.53 mm/day, FluxCom: 0.12±0.13 mm/day, PMLv2: 0.17±0.14 531 

mm/day. These results indicate that FluxCom performs best overall, while ERA5L 532 

performs the poorest. Regarding spatial distribution, regions with more significant 533 
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random errors in ERA5L are mainly located in East Asia, Australia, and southern 534 

Africa. On the other hand, FluxCom and PMLv2 show relatively more considerable 535 

uncertainties in the southeastern United States. The latitude distribution reveals that 536 

ERA5L has the highest uncertainty, primarily in the vicinity of 20° to 30° north and 537 

south, consistent with its spatial distribution. 538 

It is important to note that due to missing data in specific regions at 0.1°, such as 539 

Northern Africa, the Sahara Desert region, Northwestern China, and Australia, the 540 

error results obtained may not accurately reflect the performance of FluxCom and 541 

PMLv2 in these areas. Considering the current results, we can cautiously conclude 542 

that FluxCom and PMLv2 demonstrate better performance. Future data 543 

supplementation in these regions would further enhance our ability to analyze the 544 

products' accuracy. 545 
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 546 

Figure 3 Global distribution of absolute error variances (𝜎𝜀𝑖
2 ) of ERA5L, GLDAS2.0, 547 

and GLEAMv3.7a using EIVD at 0.25° from 1980 to 1999, depicted alongside 548 

corresponding variation curves of average with latitude. 549 

The distribution of random error variance for ERA5L (0.59±0.58 mm/d), GLDAS2.0 550 

(0.37±0.44 mm/d), and GLEAMv3.7a (0.38±0.36 mm/d) from 1980 to 1999 at 0.25° 551 

is shown in Figure 3Figure 3. Here, we assumed a non-zero ECC between ERA5L 552 

and GLEAM. The ERA5L data was resampled from a 0.1° resolution to 0.25°, and its 553 

error distribution pattern is like that of the 0.1° resolution. It exhibits higher 554 

uncertainties in East Asia, Australia, and southern Africa. GLDAS and GLEAM 555 

exhibit relatively higher uncertainty over the southeastern United States and the 556 

Amazon Plain. GLDAS and GLEAM show similar performance among the three 557 



28 

 

products, while ERA5L performs relatively worse. Regarding the average distribution 558 

with latitude, ERA5L demonstrates a more even distribution, whereas GLDAS and 559 

GLEAM exhibit relatively higher uncertainties in tropical regions. 560 

The ET calculations in both GLDAS and GLEAM involve complex surface 561 

parameterization processes. In tropical regions, the high non-heterogeneity in land 562 

covers poses a challenge, and the 0.25° resolution grid may not capture the intricacies 563 

of the underlying surface conditions. This mismatch could impact the 564 

parameterization process, leading to errors. Future work could involve in-depth model 565 

analyses or sensitivity experiments to identify sources of error in complex ET models, 566 

facilitating improvements. 567 

 568 

Figure 4 Global distribution of absolute error variances (𝜎𝜀𝑖
2 ) of ERA5L, GLDAS2.1, 569 
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and GLEAMv3.7a using EIVD at 0.25° from 2000 to 2022, depicted alongside 570 

corresponding variation curves of average with latitude. 571 

In addition, Figure 4Figure 4 presents the distribution of random error variance for 572 

ERA5L (0.32±0.33 mm/d), GLDAS2.1 (0.35±0.29 mm/d), and GLEAMv3.7a (0.38573 

±0.36 mm/d) from 2000 to 2022 at a resolution of 0.25°. The non-zero ECC 574 

assumption was made between ERA5L and GLEAM. In this combination, ERA5L 575 

shows significantly lower errors than in previous periods, indicating improved 576 

ERA5L performance during this time frame. However, ERA5L still exhibits more 577 

significant errors in the East Asia and Australia regions compared to the other two 578 

datasets. The overall errors for GLDAS and GLEAM have also decreased, but there 579 

are still random error variances exceeding 1.0 mm/d in the Amazon plain and 580 

Indonesia region. Regarding the latitudinal distribution, ERA5L shows relatively 581 

smooth changes, while GLDAS and GLEAM exhibit similar trends. However, 582 

GLEAM demonstrates a noticeable increase in errors near the Arctic. 583 

Next, in Figure 5Figure 5, we present the dominant product for each grid cell in the 584 

three scenarios, where dominance refers to the product with the highest assigned 585 

weight. The results in Figure 5Figure 5 indicate that at 0.1° resolution, the weights 586 

for FluxCom and PMLv2 are significantly higher than ERA5L, aligning with the error 587 

calculations presented in Figure 2Figure 2. This underscores the effectiveness of 588 

error and weight analysis based on collocation in reflecting product performance, 589 

thereby allowing for a rational adaptation of weights. At 0.25° resolution, the 590 

dominant regions for ERA5L, GLDAS-2, and GLEAM products are relatively 591 

balanced. In the fusion scenario from 1980 to 1999, GLDAS20 predominantly covers 592 

the Northern Hemisphere, while GLEAM dominates the Southern Hemisphere, with 593 

ERA5L prevalent in the Amazon region. However, in the fusion scenario from 2000 594 

to 2022, GLEAM's dominant region significantly expanded, primarily covering the 595 

central United States and southeastern China. The Amazon region continues to be 596 

dominated by ERA5L. The variation in dominant products highlights that the 597 
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calculation of product weights evolves with changes in the fusion scenario. The error 598 

and weight computation methods based on collocation can only provide the minimum 599 

MSE solution for a given combination of inputs. It is important to note that changes in 600 

inputs will impact the results. 601 
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 602 

Figure 5 Map of the prevailing product at individual pixels based on scenario-specific 603 

weights. 604 

For the analysis at a resolution of 0.1°, we also applied the IVD method to calculate 605 
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the errors between ERA5L and PMLv2 for two time periods: 2000 and 2015 to 2020. 606 

Since the analysis of product errors is not the focus of this paper, we provide the 607 

results of the IVD in the appendix. Grids with higher random error variances 608 

correspond to smaller weights when calculating the weights. The weight distribution 609 

calculated at different time intervals is available in the appendix. 610 

4.2. Site-scale evaluation and comparison 611 

At the site scale, the performance of CAMELE was compared with FluxNet as the 612 

reference. In this subsection, Figure 6Figure 6 and Table 3Table 3 correspond to 613 

each other, as they integrate data from 212 sites for all available periods, allowing for 614 

a comparative analysis of the performance of different products at different times. 615 

Similarly, Figure 7Figure 7 and Table 4Table 4 correspond to each other, where 616 

different product metrics were calculated for each site, and the calculated metric 617 

results were subjected to statistical analysis. 618 
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Figure 6 Scatter plots of product corresponding to the available period data from 212 620 

FluxNet sites. The colorbar represents the density, with darker colors indicating 621 

higher concentration. The left and right columns present results for 0.1° and 0.25° 622 

resolutions, respectively, with "SA" indicating the results for simple average. 623 

Relevant statistical metrics are annotated in their respective figures. 624 

The scatter plots in Figure 6Figure 6 demonstrate that CAMELE consistently 625 

performs at 0.1° and 0.25° resolutions. At 0.1° resolution, FluxCom and PMLv2 626 

showed superior performance with fewer data points due to their original 8-day 627 

average resolution. CAMELE exhibited a performance like ERA5L. At 0.25° 628 

resolution, CAMELE performed comparably to the other datasets, demonstrating 629 

reasonable accuracy. Notably, there was an improvement in the KGE and R indices. 630 

The fitted line closely approximated the 1:1 line, indicating a solid agreement with the 631 

observed values. Moreover, the results obtained from the simple average were also 632 

acceptable, but SA (0.25°) had a concentration of data points between (2-4 mm/d), 633 

possibly due to the inputs having a high concentration within that range. The 634 

assumption that a simple average implies equal performance of each product on every 635 

grid cell is inaccurate; variations in performance exist among different products 636 

across distinct grid cells (regions). 637 

Table 3 Average values of different metrics for CAMELE and other fusion schemes 638 

corresponding to the available period data from 212 FluxNet sites. The bolded 639 

sections indicate the schemes with the best performance in their respective metrics. 640 

Product 
RMSE 

(mm/d) 

ubRMSE 

(mm/d) 

MAE 

(mm/d) 
KGE R 

0.1°-daily 

CAMELE 1.21 1.20 0.81 0.61 0.63 

SA 1.23 1.21 0.83 0.61 0.62 

ERA5L 1.22 1.20 0.82 0.60 0.62 

FluxCom 1.03 1.02 0.69 0.59 0.69 

PMLv2 1.06 1.06 0.70 0.57 0.64 

0.25°-daily 
CAMELE 1.06 1.04 0.73 0.65 0.68 

SA 1.16 1.14 0.80 0.63 0.64 
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REA 1.09 1.03 0.79 0.63 0.69 

GLDAS21 1.23 1.21 0.85 0.59 0.62 

GLEAMv3.7a 1.16 1.14 0.79 0.60 0.61 

The information in Table 3Table 3 corresponds to Figure 6Figure 6 and presents the 641 

results of various product indicators. The bolded parts indicate the products with the 642 

best corresponding indicators. The results indicate that CAMELE performed well at 643 

both 0.1° and 0.25° resolutions, mainly showing improvements in the KGE and R 644 

indicators. FluxCom exhibited the best performance; however, considering that this 645 

product utilized FluxNet sites for result calibration, this phenomenon is reasonable. In 646 

this study, we pooled the data from all 212 available periods at the stations as a 647 

reference without considering the differences between individual sites. This approach 648 

provided an initial validation of the reliability of CAMELE at all sites. 649 

The information in Figure 7Figure 7 corresponds to the data presented in Table 650 

4Table 4, which involves the calculation of five indicators at each site, followed by 651 

statistical analysis of these indicators. From the distribution of the violin plots, it can 652 

be observed that a violin plot with a closer belly to 1 indicates better results in terms 653 

of the R and KGE indicators. CAMELE performs well overall, closely resembling 654 

PMLv2 and FluxCom. On the other hand, the results obtained from the Simple 655 

Average are relatively poorer. Regarding the RMSE, ubRMSE, and MAE indicators, 656 

a violin plot with a closer belly to 0 suggests less errors. CAMELE demonstrates a 657 

notable enhancement in performance at the 0.1° level. This suggests that the fusion 658 

method effectively reduces errors, aligning with the original intention of weight 659 

calculation, and it compares favorably with the products used in the merging scheme. 660 

Additionally, FluxCom and PMLv2 also exhibit minimal errors, which is expected 661 

considering their utilization of FluxNet sites for error correction. Furthermore, SA 662 

shows significantly larger errors. Although the simple average method can 663 

compensate for positive and negative errors between inputs in some instances, it can 664 

also lead to error accumulation, as evidenced by the results in the violin plots. 665 

 666 
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 667 

Figure 7 Violin plots obtained by aggregating five different statistical indicators, 668 

calculated separately for each site. In each violin plot, the left side represents the 669 
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distribution, with the shaded area indicating the box plot, the dot representing the 670 

mean, and the right side showing the histogram. 671 

Table 4 Average values of indicators corresponding to different products, calculated 672 

based on the comprehensive results obtained for each site. The bolded sections 673 

indicate the schemes with the best performance in their respective metrics. 674 

Product 
RMSE 

(mm/d) 

ubRMSE 

(mm/d) 

MAE 

(mm/d) 
KGE R 

0.1°-daily 

CAMELE 0.83 0.71 0.64 0.57 0.71 

SA 1.05 0.93 0.82 0.47 0.61 

ERA5L 1.05 0.94 0.82 0.47 0.63 

FluxCom 1.07 0.93 0.64 0.55 0.74 

PMLv2 0.84 0.74 0.84 0.47 0.61 

0.25°-daily 

CAMELE 1.03 0.87 0.75 0.51 0.67 

SA 0.97 0.84 0.80 0.48 0.66 

REA 1.02 0.86 0.80 0.48 0.67 

GLDAS21 1.10 0.97 0.83 0.46 0.63 

GLEAMv3.7a 1.03 0.93 0.79 0.49 0.64 

Table 4Table 4 presents the average values of different metrics in Figure 7Figure 7, 675 

boldly highlighting the optimal products corresponding to each metric. It can be 676 

observed that CAMELE exhibits significant improvements in performance at a 677 

resolution of 0.1°, particularly in terms of the error metrics RMSE and ubRMSE, 678 

surpassing other products. This further confirms the effectiveness of our fusion 679 

scheme in reducing product errors. Additionally, although the performance of 680 

CAMELE at a resolution of 0.25° is comparable to other products, there is still a 681 

slight decline compared to its performance at 0.1°. This can be attributed partly to the 682 

inherent errors in the input products and partly to the decreasing representativeness of 683 

FluxNet, which serves as the reference at the 0.25° grid. Nevertheless, we can still 684 

consider CAMELE to have good accuracy. 685 
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 686 

Figure 8 Heatmaps of five statistical indicators, where each row corresponds to the 687 

mean value for all sites of the specific PFT, and each column corresponds to a product. 688 

The product with the best performance for that PFT is highlighted in bold within each 689 

row. (a)-(c) represent three error indicators: RMSE, ubRMSE, and MAE; (d)-(e) 690 

represent two goodness-of-fit indicators: KGE and R.  691 

Table 5 Optimal product corresponding to different PFTs under various statistical 692 

indicators against observations from FluxNet sites 693 

IGBP 

(n-sites) 
RMSE 
(mm/d) 

ubRMSE 
(mm/d) 

MAE 
(mm/d) 

KGE R 

CRO (20) CAMELE CAMELE CAMELE PMLv2 CAMELE 
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CSH (3) PMLv2 FluxCom 

FluxCom 

DBF (26) 

CAMELE 

REA 

DNF (1) FluxCom CAMELE 

EBF (15) CAMELE GLEAM 

ENF (49) 
FluxCom CAMELE 

GRA (39) PMLv2 CAMELE 

MF (9) 

CAMELE 

CAMELE REA 

FluxCom 

OSH (13) 
FluxCom CAMELE 

SAV (9) 

SNO (1) CAMELE REA 

WET (21) PMLv2 
FluxCom CAMELE 

WSA (6) CAMELE 

Furthermore, we classified 212 sites according to PFTs and analyzed the statistical 694 

indicators of different PFTs corresponding to each site. The results are represented in 695 

Figure 8Figure 8 as a heatmap, and the corresponding optimal products for other 696 

PFTs sites are marked in Table 5Table 5. The results show that CAMELE performs 697 

the best in almost all PFTs categories, as indicated by various indicators. While on 698 

sites where other products perform better, CAMELE's indicators are comparable to 699 

the optimal products, albeit slightly inferior. This indicates that our fusion approach 700 

effectively combines the advantages of different products, resulting in superior fusion 701 

results across different vegetation types. 702 

From the results, it is evident that CAMELE performs well across various vegetation 703 

types. To delve deeper into the reasons behind this performance, we conduct site-scale 704 

analyses at two resolutions, evaluating errors and computed weights for different 705 

PFTs sites. These are visualized in radar chart format in Figure 9Figure 9. 706 
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 707 

Figure 9 Mean collocation-based errors and weights of different products at various 708 

PFTs sites at (A) 0.1° and (B) 0.25° resolutions. The parentheses next to each PFTs 709 

name denote the corresponding number of sites. 710 

The results from Figure 9Figure 9 demonstrate that the error-weighting calculation 711 

method based on collocation effectively considers the error situation of inputs, 712 

thereby providing reasonable weight assignments. At 0.1° resolution, ERA5L's error 713 

is significantly higher across all PFTs than FluxCom and PMLv2, resulting in 714 

relatively lower corresponding weights. FluxCom and PMLv2 exhibit closer 715 

performance, with higher weights at most PFT sites. At 0.25° resolution, ERA5L, 716 

GLDAS21, and GLEAM perform more evenly, with minimal differences, resulting in 717 

closer weights. The weights for different inputs vary noticeably with changes in PFTs, 718 

depending on the performance of other products within the same combination. 719 
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Products with more significant errors correspondingly have lower weights, affirming 720 

the rationale behind the fusion method. However, it is essential to note that the 721 

presented results depict the mean values of errors and weights across all sites; there 722 

might be variations among sites with the same PFTs. 723 

In summary, using the filtered daily-scale data from 212 FluxNet sites as a reference, 724 

we conducted a benchmark analysis with CAMELE and demonstrated its good fit 725 

with the observed data. Additionally, by comparing the performance of different 726 

products at each site, we further illustrated that CAMELE exhibits similar or slightly 727 

improved accuracy and minor errors compared to existing products. 728 

4.3. Assessment and comparison of multi-year average 729 

In this section, we will first analyze and compare the performance of CAMELE with 730 

other products in estimating the multi-year mean and extreme values of ET at the site 731 

scale. Subsequently, a global-scale analysis will be conducted for the same periods 732 

(0.1°: 2001 to 2015; 0.25°: 2000 to 2017) to examine the distribution of multi-year 733 

daily average ET calculated by different products. For site comparisons, we have 734 

selected monthly mean ET values and three quantiles (5th, 50th, and 95th) to 735 

represent the products' performance in estimating ET's average and extreme values. 736 

 737 
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 738 

Figure 10 Violin plots depicting the KGE and RMSE metrics calculated for 739 

CAMELE and other products based on the monthly mean, 5th, 50th, and 95th 740 

percentiles at each FluxNet site. The left four columns represent KGE plots, while the 741 

right four columns represent RMSE plots. The dots in the violin plots represent the 742 

median, and the horizontal lines represent the mean. 743 

Table 6 Average values of KGE and RMSE corresponding to different products, 744 

calculated based on the results obtained for each site. The bolded sections indicate the 745 

schemes with the best performance in their respective metrics.  746 

Product 
KGE 

Mean 5th 50th 95th  

0.1°-daily 

CAMELE 0.54  0.28  0.57  0.54  

ERA5L 0.41  0.21  0.40  0.42  

FluxCom 0.45  0.09  0.42  0.42  

PMLv2 0.52  0.19  0.46  0.50  

0.25°-daily 

CAMELE 0.47  0.26  0.50  0.45  

REA 0.40  0.21  0.46  0.50  

GLDAS21 0.37  0.23  0.37  0.40  

GLEAMv3.7a 0.43  0.22  0.42  0.40  

Product 
RMSE (mm/mon) 

Mean 5th 50th 95th  

0.1°-daily CAMELE 0.63  0.73 0.66  0.83  
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ERA5L 0.89  0.83 0.91  1.09  

FluxCom 0.87  0.83 0.89  1.07  

PMLv2 0.63  0.80 0.68  0.91  

0.25°-daily 

CAMELE 0.81  0.74  0.84  1.01  

REA 0.86  0.85  0.88  1.01  

GLDAS21 0.90  0.95  0.93  1.08  

GLEAMv3.7a 0.85  0.75  0.88  1.10  

The information in Figure 10Figure 10 corresponds to the data presented in Table 747 

6Table 6, which involves the calculation of KGE and RMSE at each site, followed by 748 

statistical analysis. From the distribution of the violin plots, it can be observed that a 749 

violin plot with a closer belly to 1 indicates better results in terms of the KGE. 750 

The results show that CAMELE outperforms other products in the estimation of 751 

monthly averages and the 5th, 50th, and 95th percentiles at both 0.1° and 0.25° 752 

resolutions. Its performance in capturing monthly averages is noteworthy, with a 753 

noticeable improvement in the KGE and RMSE metrics relative to the inputs. 754 

Examining the results for percentiles, CAMELE shows a relatively poorer estimation 755 

for shallow values (5th percentile) but still demonstrates some improvement 756 

compared to the input data, albeit influenced by input errors. 757 

At 0.1°, PMLv2 and FluxCom perform just below the fusion result, aligning with the 758 

previous error and weight analysis. At 0.25°, GLEAM and REA closely follow 759 

CAMELE, with REA exhibiting slightly better estimation results for extremely high 760 

values (95th percentile) than CAMELE. Despite this, the analysis results still indicate 761 

that the products obtained reflect well the multi-year averages and extremes of ET, 762 

holding promise as reliable products for analyzing ET variations. 763 
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 764 

Figure 11 Global distribution of multi-year daily average ET at 0.1° for CAMELE, 765 

ERA5L, FluxCom, and PMLv2, depicted alongside corresponding variation curves of 766 

multi-year daily average ET with latitude. 767 

The results in Figure 11Figure 11 indicate significant differences in the multi-year 768 

daily average distribution of global evapotranspiration (ET) among different products. 769 

Specifically, ERA5L shows noticeably higher values in East Asia than other products, 770 
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while FluxCom and PMLv2 exhibit higher values in the Amazon rainforest and 771 

southern Africa regions. This distribution pattern is consistent with the error results 772 

obtained from the EIVD calculation, indicating that these products possess certain 773 

uncertainties in the regions. In terms of the latitudinal distribution pattern, except for 774 

FluxCom, which displays distinct fluctuations, the variability among the other 775 

products is relatively similar. This suggests that despite spatial differences among the 776 

different products, they maintain consistency in the overall quantity. 777 

Figure 12Figure 12 presents the results with a resolution of 0.25°. It can be observed 778 

that compared to the 0.1° distribution, the spatial distribution of annual average 779 

evapotranspiration (ET) is more consistent among different products at 0.25°, 780 

showing larger ET values in tropical regions. The main differences are concentrated 781 

in the Amazon rainforest and the Congo Basin, where GLEAM and GLDAS results 782 

are higher than REA's. The assigned weights for REA's inputs (MERRA2, GLDAS, 783 

and GLEAM.) are approximately equal in these two regions, each contributing about 784 

one-third to the overall calculation (Lu et al., 2021). This balanced allocation results 785 

in the REA being distributed among them roughly equally over multiple years in these 786 

two regions. The latitude variation plots show that the results from each product are 787 

very close, providing additional evidence for the reliability of CAMELE. 788 

 789 
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 790 

Figure 12 Global distribution of multi-year daily average ET at 0.25° for CAMELE, 791 

GLDAS2.1, GLEAMv3.7a, and REA, depicted alongside corresponding variation 792 

curves of multi-year daily average ET with latitude. 793 

In parallel, it is worth noting that, despite the regional disparities that may arise when 794 

contrasting the trends by CAMELE with inputs, a noteworthy consistency emerges 795 

when examining these trends along latitudinal gradients. This notable alignment 796 
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signifies the robustness of CAMELE to some extent. It underscores the capacity of 797 

CAMELE to capture ET patterns, providing further insights for the scientific 798 

community. 799 

4.4. Assessment and comparison of linear trend and seasonality 800 

In this section, we first validate and compare the performance of CAMELE with other 801 

products in estimating multi-year trends and seasonality at the site scale. Due to the 802 

inconsistent time lengths of FluxNet sites, trends at many sites are not significant. 803 

Therefore, we deliberately selected 13 sites with continuous evapotranspiration (ET) 804 

observations for the same 11-year period (2004 to 2014) and with significant trends. 805 

The annual ET values for each year were calculated as the mean of the 13 sites for 806 

that year, allowing the computation of linear trends and seasonality. We employed 807 

singular spectrum analysis (SSA), which assumes an additive decomposition A = LT 808 

+ ST + R. In this decomposition, LT represents the long-term trend in the data, ST is 809 

the seasonal or oscillatory trend (or trends), and R is the remainder. 810 

 811 

Figure 13 Comparison of linear trend from 2004 to 2014 among 13 FluxNet sites 812 

using CAMELE and other products. The trends have been subjected to SSA 813 

decomposition, removing seasonality. The gray enveloping line represents the mean 814 

plus the standard deviation of the 13 sites. 815 
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 816 

Figure 14 Comparison of seasonal variations from 2004 to 2014 among 13 FluxNet 817 

sites using CAMELE and other products. The seasonality has been obtained through 818 

SSA decomposition, with the gray area representing the observed values. The 819 

parentheses in each product name indicate the KGE coefficient comparing with the 820 

observed values. 821 

In Figure 13Figure 13 and Figure 14Figure 14, based on observations from FluxNet 822 

sites, we analyzed the performance of CAMELE and other products in estimating the 823 

linear trend and seasonality of ET over multiple years. It is important to note that we 824 

only present the analysis results for 13 sites with continuous 11-year observations, 825 

and the performance of different ET products in trend estimation at individual sites 826 

still varies, not fully reflecting the overall performance on all grids in terms of trend 827 

and seasonality. Nevertheless, such a comparison can still provide valuable insights. 828 

Examining the results of the linear trend, both PMLv2 and FluxCom exhibit a 829 

significant upward trend, well above the observations. On the contrary, ERA5L, 830 

GLDAS, and REA show a noticeable downward trend, while CAMELE demonstrates 831 

a gradual upward trend closer to the observations. Additionally, GLEAM slightly 832 
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outperforming CAMELE at a resolution of 0.25°. Overall, CAMELE shows good 833 

agreement with site observations in capturing the multi-year linear trend of ET. 834 

Table 7 835 

Continuing with the analysis of seasonality, the KGE index comparing each product's 836 

results with observed values is provided in parentheses next to the product name. 837 

Generally, all products exhibit a good representation of ET's seasonal variations. 838 

CAMELE's 0.1° seasonal results closely match FluxCom (with the two lines almost 839 

overlapping). However, the fluctuations it reflects are higher than the observed values. 840 

This is likely due to keeping the 8-day average results of FluxCom consistent with 841 

PMLv2 every 8 days, and the variability in ET primarily originates from ERA5L 842 

results. This aspect may need improvement in subsequent research. At 0.25°, 843 

CAMELE's seasonal representation is closer to the observed results. The differences 844 

in CAMELE's performance at the two resolutions are mainly attributed to input 845 

variations, which we discuss in the following section as potential areas for 846 

improvement. 847 

Table 7 Comparison of CAMELE results at 13 continuous 10-year observational sites: 848 

(a) Comparison of Linear trend; (b) KGE values for monthly seasonality. 849 

 (a) Linear Trend (mm/yr) (2004-2014)  (b) KGE of seasonality 

Site Name Observation 
CAMELE 

(0.1) 

CAMELE 

(0.25) 

 CAMELE 

(0.1) 

CAMEL

E (0.25) 

BE_Lon 0.15 0.06 0.05  0.65 0.71 

CH_Lae -0.33 -0.36 -0.35  0.80 0.80 

CH_Oe2 0.25 0.37 0.67  0.85 0.49 

CZ_BK1 -0.44 -0.53 -0.66  0.54 0.71 

DE_Gri 0.11 0.03 0.24  0.61 0.54 

DE_Kli 0.68 0.77 0.85  0.78 0.52 

FR_Gri 0.41 0.36 0.55  0.71 0.55 

GF_Guy -0.47 -0.50 -0.45  0.77 0.73 

IT_BCi 0.21 0.25 0.28  0.61 0.56 

IT_Noe 0.11 0.02 0.04  0.61 0.51 

US_GLE -0.14 -0.17 -0.01  0.64 0.49 
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US_SRM -0.42 -0.45 -0.63  0.52 0.61 

ZM_Mon 0.16 0.22 0.09  0.56 0.51 

Furthermore, we present the linear trend estimated by CAMELE from 2004 to 2014 at 850 

13 sites, along with the KGE values for monthly seasonality. The results indicate that 851 

regardless of the resolution, whether 0.1° or 0.25°, the trends estimated by CAMELE 852 

are consistent with the observed trends, with minor difference. In comparison to the 853 

observed monthly seasonality, the KGE values exceed 0.5 at all sites, with some sites 854 

exceeding 0.7, indicating that CAMELE can effectively capture the seasonal 855 

variations. 856 

The results indicate that CAMELE effectively captures the multi-year changes in ET, 857 

but at 0.1°, it tends to overestimate seasonal fluctuations. We further generated global 858 

maps of multi-year linear trends in ET, estimating trends using Theil–Sen's slope 859 

method and testing significance with the Mann–Kendall method. The dotted areas 860 

indicate trends passing a significance test at a 5% level. 861 
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 862 

Figure 15 Global distribution of multi-year linear trend at 0.1° for CAMELE, ERA5L, 863 

FluxCom, and PMLv2, depicted alongside corresponding average trend with latitude. 864 

The trend is estimated with Theil–Sen’s slope method, and the significance level is 865 

tested with the Mann–Kendall method. The dotted area indicates that the trend has 866 

passed the significance test at 5 % level. 867 

 868 
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 869 

Figure 16 Global distribution of multi-year linear trend at 0.25° for CAMELE, 870 

GLDAS2.1, GLEAMv3.7a, and REA, depicted alongside corresponding average 871 

trend with latitude. The trend is estimated with Theil–Sen’s slope method, and the 872 

significance level is tested with the Mann–Kendall method. The dotted area indicates 873 

that the trend has passed the significance test at 5 % level. 874 
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Figure 15Figure 15 错误!未找到引用源。 and Figure 16Figure 16 错误!未找到引875 

用源。 present the linear trends of multi-year daily scale evapotranspiration (ET) 876 

calculated for different products at resolutions of 0.1° and 0.25°, respectively. The 877 

corresponding latitude-dependent variations of the rate of change are shown on the 878 

right side. It can be observed that the differences in linear trends among the different 879 

products are more significant than the multi-year averages, and in some regions, they 880 

even exhibit opposite trends. For example, at 0.1° resolution, PMLv2 shows a global 881 

increase of 1.0% in ET in most regions, while the results from CAMELE, ERA5L, 882 

and PMLv2 indicate a milder increase in ET in the Amazon rainforest, southern 883 

Africa, and northwestern Australia. At 0.25° resolution, except for GLDAS2.1, which 884 

shows an apparent global increase in ET, the results from CAMELE, GLEAMv3.7a, 885 

and REA indicate milder variations in global ET. 886 

5. Discussion 887 

5.1. Impact of underlying assumptions in collocation analysis 888 

The collocation analysis system relies on key assumptions, including linearity (linear 889 

regression model), stationarity (unchanged probability distribution over time), error 890 

orthogonality (independence between random error and true signal), and zero error 891 

cross-correlation (independence between random errors). Potential error 892 

autocorrelation is considered with lag-1 [day] series. Various studies have examined 893 

the validity and impact of these assumptions. Numerous studies have examined the 894 

validity of these assumptions and their impact on the outcomes if violated (Tsamalis, 895 

2022; Duan et al., 2021; Gruber et al., 2020). 896 

The linearity assumption shapes the error model by including additive and 897 

multiplicative biases and zero-mean random error. Although some studies have 898 

explored the application of a nonlinear rescaling technique (Yilmaz and Crow, 2013; 899 

Zwieback et al., 2016), those efforts are primarily limited to soil moisture signals and 900 
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often fail to accurately represent the true signal unless all datasets share a similar 901 

signal-to-noise ratio (SNR). However, it is worth noting that after rescaling processes, 902 

such as cumulative distribution function (CDF) matching or climatology removal, the 903 

resulting time series (anomalies) are often considered linearly related to the truth since 904 

higher-order error terms are removed. In addition, multiplicative relationships have 905 

been more commonly identified in rainfall products (Li et al., 2018). In contrast, 906 

collocation analysis within the context of ET products frequently suggests that linear 907 

relationships are reasonable (Li et al., 2022; Park et al., 2023). Therefore, the linear 908 

error model remains a robust implementation, though it has the potential for 909 

improvement through rescaling techniques. 910 

Regarding violating the stationarity assumption, the evapotranspiration signal does 911 

not strictly adhere to this characteristic. However, by collocating triplets with similar 912 

magnitude variations, the influence of this violation is minimized. Nonetheless, 913 

disparities in climatology between datasets can still arise for various reasons (Su and 914 

Ryu, 2015). Several proposed alternatives aim to address this issue, such as removing 915 

the climatology of inputs (Stoffelen, 1998; Yilmaz and Crow, 2014; Draper et al., 916 

2013) and subsequently analyzing the random error variance of the anomalies (Dong 917 

et al., 2020b). Nevertheless, obtaining a reliable estimation of climatology proves 918 

challenging in practice.  919 

The assumption of error orthogonality assumes independence between random error 920 

and true signal, i.e., 𝜎𝜀𝑖Θ = 0. A few studies have examined this assumption. Yilmaz 921 

and Crow (2014) investigated such violations using four in situ sites and concluded 922 

that the impact is negligible since rescaling mitigates or compensates for bias. 923 

Additionally, non-orthogonality results in non-zero error cross-correlation (ECC), 924 

although the latter is considered more important. Vogelzang et al. (2022) also 925 

investigated this violation recently and demonstrated minimal second-order impact. 926 

Non-zero ECC conditions introduce more substantial bias in the results compared to 927 

other violations mainly due to two reasons: (1) they cannot be mitigated by rescaling; 928 



55 

 

(2) they cannot be compensated even with equal magnitude for all inputs; and (3) they 929 

have been frequently reported in recent studies for various variables (Li et al., 2018, 930 

2022; Gruber et al., 2016b). Gruber et al. (2016a) proposed the extended collocation 931 

method, which effectively addresses the ECC of selected pairs. Moreover, the EIVD 932 

method adopts the error cross-correlation framework. In the following section, we 933 

will analyze the ECC between pairs. 934 

5.2. Analysis of error cross-correlation 935 

This study assumes non-zero ECC (Error-Correction Coefficient) conditions exist 936 

between FluxCom and PMLv2 at 0.1° and between ERA5L and GLEAM at 0.25°. 937 

However, non-zero ECC conditions were also possible between other pairs. Therefore, 938 

we presented the EIVD-based ECC results of various pairs. 939 
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 940 

Figure 17 Global Distribution of estimated error cross-correlation (ECC) between 941 

ERA5L, FluxCom, and PMLv2 pairwise using EIVD alongside relevant variation 942 

curves of average with latitude. 943 

 944 
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 945 

Figure 18 Global Distribution of estimated error cross-correlation (ECC) between 946 

ERA5L, GLEAMv3.7a, and GLDAS21 pairwise using EIVD alongside relevant 947 

variation curves of average with latitude. 948 

As depicted in Figure 17Figure 17 and Figure 18Figure 18, at a resolution of 0.1°, 949 

the ECC values of FluxCom and PMLv2 were notably higher than those of ERA5L-950 

FluxCom and ERA5L-PMLv2. The global average ECC value for FluxCom-PMLv2 951 

was 0.16, and regions with high ECC values were identified in the eastern United 952 

States, most of Europe, and the western Amazon, areas densely covered by 953 

measurement sites. Since both FluxCom and PMLv2 incorporated corrections based 954 

on FluxNet measurement sites, there is likely some overlap between the sites used by 955 
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both products in the high ECC regions. This partially explains the shared source of 956 

random errors between the two datasets. 957 

The global error correlations of GLEAM-GLDAS and ERA5L-GLDAS are relatively 958 

low. The random error of ERA5L correlates with that of GLEAM, primarily in arid 959 

regions such as the Sahara Desert, Northwest China, and central Australia, where the 960 

average ECC exceeds 0.20. The global average ECC of ERA5L-GLEAM is 961 

approximately 0.14. A higher error correlation is observed for ERA5L-GLEAM, with 962 

a mean ECC value of 0.26, which is expected since meteorological information from 963 

ECMWF is reanalyzed for both datasets. However, ECC values for GLEAM-GLDAS 964 

and ERA5L-GLDAS are generally low globally, supporting the assumption of zero 965 

ECC for these two pairs. 966 

Our findings highlight the significant impact of Error Cross Correlation (ECC) 967 

between FluxCom-PMLv2 and ERA5L-GLEAM at 0.1° and 0.25° resolutions, 968 

respectively. Mathematically, when a triplet exhibits a high ECC value (>0.3) 969 

between two sets, it indicates a preference for the remaining independent product as 970 

the "better" one, potentially leading to an underestimation of its error variance. 971 

However, it is essential to note that the overall ECC values for other pairs are 972 

relatively small, suggesting that the zero ECC assumptions can be considered valid 973 

for these pairs across most areas. Therefore, these assumptions are unlikely to affect 974 

the relevant results of uncertainties significantly. Nevertheless, we have considered 975 

the non-zero ECC condition between FluxCom-PMLv2 and ERA5L-GLEAM in this 976 

study, as it requires careful consideration. 977 

5.3. Comparison of different fusion schemes 978 

In this section, we conducted comparisons in three aspects: (1) comparing the 979 

performance of CAMELE at different resolutions; (2) comparing the performance of 980 

different change fusion schemes, explicitly changing the input products' versions 981 

(GLDAS21 to GLDAS20 or GLDAS22, GLEAMv3.7a to v3.7b); and (3) comparing 982 
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the performance of the results obtained without considering the ECC impact. 983 

We conducted a comprehensive comparison of our fusion approach with several 984 

alternative schemes. Specifically, these schemes encompassed utilizing only ERA5L 985 

and PMLV2 at 0.1° based on the IVD method (Comb1), changing the versions of 986 

GLDAS2 and GLEAM at 0.25° based on the EIVD method (Comb2-5), and two TC 987 

fusion approaches at 0.1° and 0.25°, which did not incorporate ECC.  988 

It should be noted that the Comb2 scheme, which includes GLDAS20, covers the 989 

period from 1980 to 2014, while the other 0.25° comparison schemes (Comb3-5) span 990 

from 2003 to 2022. The combinations based on TC (assuming zero ECC) had the 991 

same inputs as CAMELE at both resolutions. 992 

Table 87 Average metrics for CAMELE and other fusion schemes at all sites. The 993 

bolded sections indicate the schemes with the best performance in their respective 994 

metrics. 995 

Product 
RMSE 

(mm/d) 

ubRMSE 

(mm/d) 

MAE 

(mm/d) 
KGE R 

CAMELE (0.1) 0.83 0.71 0.64 0.57 0.71 

CAMELE (0.25) 1.03 0.87 0.75 0.51 0.67 

ERA5L+PMLV2 
(Comb1-0.1 | IVD) 1.13 1.00 0.89 0.46 0.61 

ERA5L+GLDAS20+GLEAMv3.7a 
(Comb2-0.25 | EIVD) 1.09 0.89 0.87 0.44 0.66 

ERA5L+GLDAS22+GLEAMv3.7a 
(Comb3-0.25 | EIVD) 1.20 0.95 0.94 0.44 0.68 

ERA5L+GLDAS22+GLEAMv3.7b 
(Comb4-0.25 | EIVD) 1.19 0.94 0.93 0.44 0.69 

ERA5L+GLDAS21+GLEAMv3.7b 
(Comb5-0.25 | EIVD) 1.05 0.90 0.80 0.49 0.69 

ERA5L+FluxCom+PMLv2 
(Zero-ECC-0.1 | TC) 1.06 0.91 0.80 0.46 0.60 

ERA5L+GLDAS21+GLEAMv3.7a 
(Zero-ECC-0.25 | TC) 1.26 1.03 0.99 0.39 0.61 

According to the information in the table, CAMELE (0.1°) results were superior in all 996 

indicators. Firstly, when comparing the performance of CAMELE at resolutions of 997 

0.1° and 0.25°, it was observed that the fused product performed slightly worse at the 998 

0.25° resolution. Additionally, the representative of FluxNet sites at the 0.25° 999 

resolution decreased, leading to degraded statistical indicators. 1000 
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At the 0.1° resolution, we conducted a comparison of results obtained by exclusively 1001 

fusing ERA5-Land and PMLv2. Multiple indicators indicated that this approach did 1002 

not enhance the accuracy of ET estimates and fell significantly short of the scheme 1003 

employed in CAMELE. This implies that using only two product sets as input did not 1004 

allow for effective error analysis through collocation analysis, resulting in suboptimal 1005 

fusion results. More importantly, the limitation of employing only two datasets 1006 

prevented us from effectively acquiring error information through collocation analysis 1007 

(Dong et al., 2020a, 2019). Consequently, we made the strategic decision to ensure 1008 

the inclusion of three datasets as inputs, facilitating the utilization of the EIVD 1009 

method and maintaining methodological consistency between the 0.1° and 0.25° 1010 

resolutions. 1011 

Furthermore, when comparing the results of different fusion schemes between 1012 

CAMELE and Comb2-5 at the 0.25° resolution, CAMELE performed better regarding 1013 

error metrics (RMSE, ubRMSE, MAE). The differences in fitting metrics (KGE, R) 1014 

were insignificant, indicating that the choice of fusion scheme primarily affected the 1015 

errors of the fusion results. The relatively poorer performance of other fusion schemes 1016 

could be due to the lack of consideration for non-zero ECC. For example, non-zero 1017 

ECC between GLDAS-2.2 and ERA5L has been reported in a recent study (Li et al., 1018 

2023a). 1019 

For the comparative analysis of the GLDAS2.0 and GLDAS2.1 schemes, the usage of 1020 

GLDAS2.1 yielded better performance. The GLDAS-2.1 simulation leverages 1021 

conditions from the GLDAS-2.0 simulation, with improved models driven by a 1022 

combination of datasets. Previous research has demonstrated that GLDAS-2.1 offers 1023 

improvements in the regional-scale simulation of hydrological variables compared to 1024 

GLDAS-2.0 (Qi et al., 2018, 2020). Consequently, we chose to incorporate GLDAS-1025 

2.1 data for as much of the time series as possible.  1026 

Moreover, when comparing the fusion effects with and without considering non-zero 1027 

ECC conditions, it was evident that considering ECC information could effectively 1028 
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improve the performance of the fused product, which further demonstrated the 1029 

reliability and advantages of the fusion method employed in this study.1030 

 1031 

Figure 19 Violin plot comparing KGE, R, RMSE, ubRMSE and MAE of CAMELE 1032 

with other fusion schemes. The right half of each violin plot represents the 1033 

distribution, with shaded areas indicating the box plot, where the horizontal line 1034 

corresponds to the median and the dot represents the mean. The left half represents 1035 

the results of CAMELE (0.1°) for comparison. 1036 
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We further provided violin plots for different metrics, comparing the results of each 1037 

fusion scheme to CAMELE (0.1°) as shown in Figure 19Figure 19. The results 1038 

indicated that the fusion schemes adopted were significantly superior to other 1039 

schemes based on the distribution of results for all metrics across all sites. Regarding 1040 

KGE and R, CAMELE's results were concentrated near 1 for most sites. Regarding 1041 

RMSE, ubRMSE, and MAE, their results were concentrated below one mm/d. The 1042 

results in the plots also suggested that CAMELE performed slightly worse at 0.25° 1043 

compared to 0.1° but still outperformed other combination results. Additionally, 1044 

comparing CAMELE and the zero-ECC scheme in the plots further highlighted the 1045 

importance of considering non-zero ECC conditions. 1046 

5.4. Potential Applications and Future Enhancements 1047 

In this section, we delve into the potential applications of our product and outline our 1048 

commitment to future enhancements to maintain its accuracy and relevance. 1049 

Here, we identify three potential applications for our transpiration product: (1) Global 1050 

ET Trends: Our product facilitates global-scale analysis of current ET patterns and 1051 

long-term trends, essential for comprehending ecosystem responses to evolving 1052 

environmental conditions in a warming climate; (2) Transpiration-to-1053 

Evapotranspiration Ratio: Our merging approach can fuse multi-source global gridded 1054 

transpiration data, allowing for the examination of the transpiration-to-1055 

evapotranspiration ratio. This analysis can enhance water resource management and 1056 

water availability predictions in diverse regions; (3) Attribution analysis: Our product 1057 

is a valuable tool for attribution analysis, helping researchers identify the drivers of 1058 

patterns. This knowledge is crucial for understanding the roles of climate variability, 1059 

land-use changes, and other factors in shaping terrestrial water fluxes. 1060 

Furthermore, we are committed to enhancing our product proactively. Key strategies 1061 

include: (1) Data Update and Validation: To ensure our product's continued accuracy 1062 

and reliability, we will prioritize regularly updating the data used in this study to the 1063 
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latest versions. By adopting this approach, we aim to provide users with results that 1064 

reflect the latest advancements in scientific knowledge; (2) Enhanced Integration and 1065 

Error Reduction: We continually refine estimates by incorporating additional data 1066 

sources and implementing extended collocation method to minimize errors; (3) 1067 

Integration of High-Resolution Regional ET Data: Recognizing the significance of 1068 

regional-scale insights, we will focus on improving the accuracy of CAMELE by 1069 

integrating higher-resolution regional ET data. This integration will enable more 1070 

precise regional estimation. 1071 

In summary, these endeavors collectively represent our commitment to maintaining 1072 

our product's quality and relevance, ensuring its value for the scientific community. 1073 

6. Conclusion 1074 

This study used a collocation-based approach for merging data considering non-zero 1075 

conditions. We successfully generated a long-term daily CAMELE evapotranspiration 1076 

(ET) product at resolutions of 0.1° (2000 to 2020) and 0.25° (1980 to 2022) by 1077 

integrating five widely used datasets: ERA5L, FluxCom, PMLv2, GLDAS, and 1078 

GLEAM. The key findings of our study are as follows: 1079 

1. Collocation analysis methods proved to be a reliable tool for evaluating ET 1080 

products without a reference dataset. This approach shows promising potential for 1081 

error characterization, especially in regions with limited data availability or on a 1082 

global scale. The evaluation results provided valuable insights into the data 1083 

merging process. 1084 

2. Compared to five input products, REA, and simple average, the CAMELE product 1085 

performed well when evaluated against FluxNet flux tower data. While CAMELE 1086 

may not excel in all individual metrics, it effectively reduces errors associated 1087 

with the input products. The result showed Pearson correlation coefficients (R) of 1088 

0.63 and 0.65, root-mean-square errors (RMSE) of 0.81 and 0.73 mm/d, unbiased 1089 

root-mean-square errors (ubRMSE) of 1.20 and 1.04 mm/d, mean absolute errors 1090 
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(MAE) of 0.81 and 0.73 mm/d, and Kling-Gupta efficiency (KGE) of 0.60 and 1091 

0.65 on average over resolutions of 0.1° and 0.25°, respectively. This robust 1092 

performance is especially evident when assessing its comprehensive station-scale 1093 

evaluation. 1094 

3. For different plant functional types (PFTs), the CAMELE product outperformed 1095 

the five input products, REA, and simple average in most PFTs. Although 1096 

FluxCom and PMLv2 performed slightly better than CAMELE at some PFT sites, 1097 

considering that both utilized FluxNet sites for product calibration, it indirectly 1098 

demonstrates the promising and robust performance of CAMELE. 1099 

4. Based on site-scale observations, CAMELE effectively captures the multi-year 1100 

linear trend of ET. The accuracy of the multi-year mean value depicted by 1101 

CAMELE is improved compared to the input data. Moreover, it accurately 1102 

characterizes extreme ET values. However, there is a slight overestimation in 1103 

representing the seasonality, which needs further improvement in future research. 1104 

5. When utilizing the error information derived from collocation analysis for 1105 

merging, it is crucial to consider the potential presence of non-zero error 1106 

compensation conditions (ECC). Comparing the merging schemes with and 1107 

without considering non-zero ECC, it was found that considering ECC improves 1108 

the accuracy of the merging process. Additionally, when using collocation 1109 

analysis, it is necessary to identify which products may have ECC in advance, 1110 

providing more effective support for data merging and obtaining more accurate 1111 

product error information.  1112 

In conclusion, our proposed collocation-based data merging approach demonstrates 1113 

the promising potential for merging ET products. The resulting CAMELE product 1114 

exhibited good overall performance at site-based and regional scales, meeting the 1115 

requirements for more detailed research. Furthermore, further evaluation of the 1116 

merged product in specific regions is necessary to improve its accuracy. In future 1117 

studies, dynamic weights could be computed by considering suitable merging periods 1118 
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for different products to enhance the quality of the merged product, and more 1119 

sophisticated combination schemes could be explored to improve accuracy. 1120 
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