
Replies to reviewer comments by Romain Hugonnet 
We thank the reviewer very much for their appraisal of our manuscript and DEM product, which we truly 
appreciate.  

We also appreciate the very constructive suggestions for improvements, and with these in mind we have 
clarified and adjusted the procedure as described below. The reviewer comments are shown below in 
blue, and our replies shown in black. Line numbers refer to the original version of the manuscript that has 
been reviewed. 

Since the manuscript was initially submitted, several of the input datasets have been updated, and we 
have now included these: 

- We use CryoSat-2 Baseline E for all years, as it is now available for the entire period 
- ICESat-2 ATL06 has been updated to version 6; the new version has corrected the geolocation 

error found to exist in version 5 
- ArcticDEM mosaic has been updated to v4.1 (as also proposed by the reviewer) 

We have produced a new version of the PRODEMs using the updated data sets, and the text and figures 
in the manuscript have been adjusted accordingly. This includes e.g., an updated version of figure 10 now 
displaying another area that shows a similar checker-board pattern in elevation anomalies relative to 
ArcticDEM v4.1 (albeit less pronounced than previously found when comparing to ArcticDEM v3), and 
removal of figure 11 (including the related discussion) which is no longer relevant.  

We hope that with these and the below changes, you will accept to review an updated version of the 
paper.  

Statement of expertise 

I have expertise in the aspects of this paper associated with: 

• Remote sensing of surface elevation data for glaciology, 
• Laser altimetry with ICESat-2, 
• Geostatistical methods used for data fusion, in particular variography and kriging, 
• Uncertainty analysis in a spatiotemporal context for the predicted elevations.  

Would be nice to complement with another reviewer being specifically expert in: 

• Radar altimetry with CryoSat-2 (though I do have some). 

General comment 

In their very well-written manuscript, the authors present a rigorously derived dataset of annual (2019-
ongoing) gridded surface elevation at 500 m resolution for the Greenland Ice Sheet, predicted from 
spatiotemporally sparse ICESat-2 and CryoSat-2 elevations. 

The study is a truly a great piece of work, and I commend the authors on their attention to detail at all 
steps of their analysis to produce a robust product for the community. My core expertise is mathematics 
and DEMs, in particular spatial statistics and uncertainty analysis, and this study is a rare sight in our field 
in that aspect, and I think the way forward so that other scientists and users can know how reliable a data 
product really is. 

I still have several comments for the authors, which I think could improve some parts of their analysis 
substantially. Some might be a bit of work, but are important and should be OK given the author’s 
knowledge in geostatistics, and others are optional. 



Sorry if I cite my own work quite a bit in this review, there are not that many other studies looking at these 
specific problems in detail (geostats + uncertainty quantification + DEMs), and I hope it will be helpful to 
the authors! 

Main comment 1: Refine the modelling of heteroscedasticity of the predicted elevation 

Or “variability in error”. This is something the authors have addressed quite a bit in the text and their 
estimates, in particular in Section 4.1 by constraining the variability in elevation error (CS2 - CS2) with 
surface roughness (for CS2; Figure 2b), and using the variability of 20 m IS2 points in the 250 m area. 

However, Figure 8 shows that this modelling of the variability in error (including subsequent propagation 
with kriging) is not completely satisfactory: 

• Too large predicted errors for the center of distribution, 
• Yet does not capture the full range of variability (tails are quite significantly larger than a normal 

distribution). 

Here, I recommend the authors several pists that should improve their reported error. 

As the reviewer correctly points out, the uncertainty of the resulting elevation estimates showed large 
spatial variability (high heteroscedasticity) as expected due to varying data density and spatially-changing 
terrain. Despite our efforts to account for this, the results of our validation (Fig. 8) did indeed show that 
our kriging uncertainties did not fully capture the true variability of the deviations: In most areas, the 
uncertainties were slightly conservatively estimated, but a significantly higher number of outliers than 
expected existed.    

In line with the changes suggested by the reviewer to improve this (see below), we have therefore 
meticulously adjusted the uncertainty calculation of the CS2 and IS2 measurements. We have further 
changed the allowed variogram nugget (also suggested by the reviewer; more about this later), which also 
influences the spatial structure of derived uncertainties.  

We also now normalize the prediction errors relative to the total uncertainty of the prediction and the 
estimated observation uncertainty for the validation data. This causes the normalized error distribution 
to slightly improve – in particularly for the CS2 data, which are associated with larger observation 
uncertainties.  

Despite all these changes, our cross-validation shows that the resulting error distributions from the 
PRODEM validation are very similar to previously. A figure showing a comparison of the associated Q-Q 
plots for the LOOCV differences is provided below, along with an updated version of Figure 8 (now Fig 9). 
The figure comparing Q-Q plots for the previous and revised PRODEM versions is only for illustrating the 
differences to the reviewer, and it is not included in the revised paper.  



Figure 9: Distribution of PRODEM19 prediction errors of the elevation anomaly after removal of either one track of CS2 data, 
or one track (consisting of three beams) of IS2 data. a) Distribution of prediction errors prior to normalization. b, c) Distribution 
of prediction errors when normalized relative to the estimated 1σ uncertainty of the interpolated field and the observation 
uncertainty of the validation data. For both distributions are shown the associated normal distributions based on calculating 
the median and normalized MAD of the prediction errors (solid lines) as well as using the directly calculated mean and standard 
deviation (dashed lines). The standard normal distribution (solid black line) is shown for comparison. d) Normal probability 
plots comparing the quantiles of the prediction error distributions with those of the standard normal distribution. Deviations 
from a straight line (black) indicate departures from normality.      

In other words, despite the enhancements in uncertainty estimation, some limitations persist within the 
reported error estimates. In the manuscript, L526-531 has been rewritten, so that this is clearly stated to 
ensure that the reader is aware of this issue. The section now reads as follows: 

The analysis, however, also identifies some limitations with the reported uncertainties: All distributions 
display higher central peaks than that of a standard normal distribution and significantly heavier tails 
(higher kurtosis). The central clustering of prediction errors implies that most elevation uncertainties tend 
to be slightly over-estimated. The heavier tails, on the other hand, indicates that the reported uncertainties 
do not capture the full range of variability, and, consequently, that errors in elevation estimate 
substantially larger than the prediction uncertainty are much more likely than theoretically expected.  

First, some small but important changes to avoid over-estimating the center distribution: 

1. Consider using a Q-Q plot in Figure 8 (or add one), which will represent the tail differences in a 
clearer fashion, 
Q-Q plots have been added to Figure 8 (now Figure 9); see the updated figure above. 
 

2. Avoid over-estimating the CS2 measurement error by dividing by square-root of 2 as the error 
source is combined twice in the cross-validation exercise (e.g., Equation 8, Hugonnet et al. (2022)). 
This has been corrected, and the following sentence has been added to the manuscript (L192):  
As the distribution of elevation differences integrates the error sources from both elevation 
measurements, we derive an approximate measure of the 1σ uncertainty of the CS2 observations 
as:  
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶2 = 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀

√2
= 1.4826

√2
∗ 𝑀𝑀𝑀𝑀𝑀𝑀  

 
3. Avoid over-estimating the IS2 measurement by taking a simple spread: separate segments will 

have largely uncorrelated errors, so you need to compute a standard error, i.e. divide by sqrt(N) 
with N the non-overlapping ICESat-2 segments. 
We have revised the approach used for computing the uncertainties associated with the IS2 
measurements, so that it is now aligned with the method utilized for the CS2 data (more details 
below). Notably, we no longer rely on the spread of IS2 measurement along the 250m segments 
as an estimate for the terrain roughness, but instead use the terrain roughness calculated based 



on ArcticDEM. In this respect, it is worth mentioning that the two roughness measures are highly 
correlated (correlation coefficient=0.8).  

Then, to improve their modelled variability in error: 

4. Have a consistent spatial variability dependency with terrain roughness for both IS2 and CS2 as it 
should be universal (e.g., Hugonnet et al. (2022) for slope + curv), you could apply the same 
scheme to both CS2 and IS2 (it sounds you did something similar for IS2 on L260-261? These 
statements are a bit unclear, consider explaining in more details, or adding a Figure if it tells 
something about the error!). 

Inspired by the comments by the reviewer (above and below), we have made the following changes to 
the uncertainty calculations:  

1) We now separate the uncertainty component into its spatial and temporal components 
2) Elevation differences are now computed as the difference of elevation anomalies (instead of 

elevations); this approach accounts for a potential slope in the area.  
3) We reduce the allowed spatial distance between measurements to 50m (instead of 100m) 
4) The spatial component is computed only based on elevation differences at satellite tracks cross-

overs acquired less than 15 days apart, in order to limit the impact of potential temporal changes. 
5) The spatial uncertainty component for IS2 is calculated in a similar manner to that for CS2: We 

investigate the relationship between the terrain roughness and spread of elevation anomaly 
distributions. Based on this relationship, we construct a linear model between roughness and 
spatial uncertainty.  

6) The temporal component is estimated based on a data set of average summer trends of surface 
elevation (Slater et al, 2021), multiplied with the difference between time of data acquisition and 
mid-summer. We take this to be an approximate value for 𝜎𝜎𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠. 

7) We use cross-overs from all years (previously only data from 2019 was used) 

Regarding 4), it is worth mentioning that the relationship between terrain roughness and spatial variability 
is found to differ significantly between the CS2 and IS2 data sets, and we can therefore refute the 
proposition that a universal relationship should exist between the two.  

For IS2, we find a linear relationship between spatial variability and terrain roughness, whereas for CS2 
the uncertainty is linearly correlated with the logarithm to terrain roughness (see the updated Figure 2 
below, which now includes the IS2 uncertainty model). So, while we now apply a similar scheme to derive 
the CS2 and IS2 spatial uncertainties, the resulting two uncertainty models differ significantly, with the 
associated uncertainties consistently being largest for CS2.  

We interpret the leveling off of the CS2 uncertainties at high roughness values as being due to the 
preferential sampling of CS2 at high points in the landscape (POCA), which will lead to a general under-
estimation of the observation uncertainty due to spatial variability, particularly in highly irregular terrain. 
The IS2 instrument, on the other hand, does not display preferential sampling. We observe that the CS2 
measurement variability is consistently larger for CS2 than for IS2 at all roughness values.  

In general, for both instruments, the temporal uncertainty is notably less important than the spatial 
uncertainty component, particularly evident in the case of CS2. However, for individual observations the 
temporal uncertainty component may be non-negligible.  We note that with the new uncertainty 
estimates, the total uncertainties are generally slightly lower than before.  



Sections 4.1.1-4.1.2 have been thoroughly revised accordingly. Figure 2 is expanded to also include the 
IS2 spatial uncertainty model, and a new Figure 3 is included showing the distribution of the individual 
uncertainty components for the input data. See the updated figures below.    

 

Figure 2: a, c) Distribution of measured elevation differences (dh) at all CS2 (a) and IS2 (c) satellite track near-cross-over locations within the 
study area (grey), and cross overs in areas with roughness higher (red) or lower (blue) than the median roughness value of 2.8, respectively. b, 
d) For CS2 (b), a linear relationship (dashed grey line) exists between the logarithm to the local 100m-scale roughness value and the estimated 
spatial uncertainty based on the dispersion of associated elevation differences (Eq. 1). For IS2 (d), on the other hand, we observe a linear 
correlation directly between the roughness and estimated spatial uncertainty. Data from summers 2019 through 2022.   

 

Figure 3: Distribution of derived total uncertainties (grey), along with the individual spatial (blue) and temporal (green) uncertainty components 
for the CS2 (a) and IS2 (b) altimetry data, respectively. Data from summers 2019 through 2022.   

8) Better constrain the variability of CS2/IS2 error (which might explain Fig. 8 entirely). 



We have now improved the uncertainty model of the CS2 and IS2 data points, as described above.  
However, despite the enhancements in uncertainty estimation, limitations persist within the reported 
error estimates, as visible from Figure 8 (now Figure 9; see the updated figure in the previous comment). 

We suspect that the main reason for this discrepancy lies within our estimation of the spatial uncertainty 
component: When constructing the spatial uncertainty component from temporally close cross-overs, the 
resulting elevation difference distributions (which we assume describe the observation uncertainty) are 
not gaussian distributed, but have much heavier tails. In other words, outliers are much more likely to 
exist that we expect from a gaussian distribution. Nevertheless, as kriging requires gaussian data 
uncertainties, we approximate these distributions as gaussian. Consequently, we are not properly 
assigning these extreme data observation uncertainties.      

I was happy seeing Equation 1, and then disappointed that the sources were not actually individually 
refined. I do understand that separating the sources is not feasible with the available data, but it is still 
possible to separate the variability in error mixed within your single error proxy (here, your cross-over 
differences). 

The authors have 40,000 CS2 cross-over and 60,000 IS2 ones at disposal, a good sample to understand 
different variabilities. For the temporal variability: the authors could bin these differences with the 
temporal lag to your reconciled summer date represented by your predicted elevation (middle of your 
June 1st to September 30th period? This “middle reported date” absolutely needs to be reported in the 
paper). This should allow to constrain an average variability with the time lag (e.g., Hugonnet et al. (2021), 
Extended Data Fig. 5ab, which also includies spatial correlations). However, I suspect this variability will 
likely depends on thinning at the surface at each location, not only on the time lag. You would have to use 
an estimate of long-term dhdt at the surface (doesn’t need to be super resolved, e.g., Smith et al., 2020, 
or your own product for multiple years) to combine this into a 2-D (time lag + dhdt) binning. This might 
explain most of your temporal (and general) error variability. 

As suggested by the reviewer, we now separate the uncertainty component into its spatial and temporal 
components.  

We investigated several approaches for estimating the uncertainty caused by the temporal variability, but 
it is hard to disentangle from the spatial variability. The issue is complicated by the following factors: 

• The temporal variability tends to be largest at the margin, where also the spatial variability is 
largest. The two are therefore not independent, and the spatial component is generally the most 
important factor. Only considering areas with low spatial variability, i.e. primarily central areas, 
will not accurately capture the temporal variability outside this area.  

• The surface elevation displays a trend during summer, the general trend of which has been 
mapped by Slater et al. (2021). This seasonal trend is very different from the long-term dh/dt 
trends as in e.g. Smith et al, 2020.   

• At any location the surface is not likely to display a constant linear trend throughout the summer, 
with periods of melting being interrupted by periods of increasing surface elevations due to e.g., 
new snowfall events.  

We attempted the suggested approach of binning with regard to time lag in a similar manner as in 
Hugonnet et al. (2021), but even when performing a 2D binning by also dividing into regions of similar 
dh/dt (we tested both using summer trends or long-term trends) the results were inconclusive: The 
variability was generally constant with time lag, instead of increasing with time lag as expected. We 
suspect that this is caused by our binning of time lags from different time periods during the summer, and 
that the surface does not display a steady evolution during this period.       



We therefore refrain from estimating an average variability with time lag directly from the data. Instead, 
we take advantage of the Slater, 2021 map of average dh/dt summer trends, and use these to estimate a 
temporal uncertainty for each observation as follows:  

𝜎𝜎𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑆𝑆

(𝑥𝑥,𝑦𝑦) ∗ (𝑡𝑡 − 𝑡𝑡0) 

With 𝑡𝑡0 being the reconciled mid-summer date. This date (August 1st) is now reported in the paper.  

We further tested the resulting uncertainties at cross-overs to check their consistency: Z-scores were 
computed from the observed elevation differences divided by the total uncertainty of the elevation 
differences. Despite heavy tails in the resulting distribution of z-scores, indicating the existence of outliers 
not fully captured by the estimated uncertainty, the distributions were found to adequately approximate 
a standard normal distribution. The distributions best approximate a normal distribution for cross-overs 
located in areas where the Slater et al (2021) map of summer dh/dt were defined, and worse for areas 
where the temporal component was estimated based on the mean summer trend for the entire ablation 
zone. The difference was particularly important for the IS2 observations, which to higher degree are 
located along the ice sheet margin, and therefore outside the Slater data region.   

Main comment 2: Report spatial correlation of errors for your data product 

As pointed out by the authors in the short discussion (L617-620), even though your estimates have a 
reasonable error, it might not be random at all because of the temporal differences in acquisition. 

While it would be quite a task to correct these temporal errors in detail (feasible by extending your kriging 
framework with a dimension of time or seasonality, for instance, or with a more simple models of your 
multi-annual changes during the summer season), the authors can still model the spatial structure of these 
errors. And this information would be quite important for downstream applications. 

As noted by the reviewer, the uncertainties of the PRODEM product are not random, but display 
systematic deviations due to the spatial correlations of acquisition time of measurements, with one 
satellite track being measured at the same time. We agree that it could be interesting to extend the kriging 
framework with a time dimension to fully account for these seasonal changes. However, as also pointed 
out by the reviewer, this would be quite a task, which we consider to be out of scope for the current 
paper.  

Instead, we follow the reviewer’s suggestion to model the spatial structure of errors for the PRODEMs, as 
described below.  

At the local scale, those are systematic errors due to common temporal sampling. But, as long as there is 
no bias in the time of data acquisition, those will be centered on 0 on average (which the authors validate 
with their comparison to IS2 in a LOOCV, Table 1). Which means that, at the larger scale of Greenland, 
they can be interpreted as structured errors with spatial correlations due to the temporal sampling 
discrepancies (Hugonnet et al. (2021)). 

Here, the authors should at least report an “average” variogram that represents the spatial correlation in 
errors their products due to temporal sampling (this has be done on the LOOCV differences you compute 
in Section 7.1). 

As part of the validation of the PRODEMs, we have now added a section describing the spatial structure 
of correlated errors based on the normalized prediction errors from the LOOCV. Since the error structure 
is likely to be aligned with the satellite tracks, in particular the IS2 observations forming straight lines, we 
construct directional variograms along and across track directions. In the along-track direction, the error 



structure has an effective correlation length of a few kilometers, whereas errors in the across-track 
direction are essentially uncorrelated.  

We further provide an analysis of the prediction errors (raw and normalized) stratified relative to surface 
roughness, elevation, latitude, ArcticDEM uncertainty etc., allowing us to identify troublesome areas for 
the predicted elevation and reported uncertainties.    

Even better would be to have a varying variogram depending on a map of “time lag to closest elevation 
used” or similar, that would reliably represent the errors in both space and time! 

You could then validate your variogram representing your errors using Block LOOCV, and studying that 
the spread matches that predicted by your variogram in space (following classical error propagation with 
a spatial correlation term, e.g. Hugonnet et al. (2022), Equation 18). 

However, the “swath” nature of your input data, and hence the temporal sampling, is less than ideal to 
capture errors in temporal sampling with omnidirectional variograms. It's still an important added value, 
and I don’t see an easy solution to this directional problem, except trying to come up with a better scheme 
to correct these temporal errors seasonally to your middle summer date, using your own multi-annual 
data (as stated at first). 

As previously mentioned, we now provide a better estimate of the input data uncertainty of representing 
the mid-summer elevation surface due to their different acquisition time.  

While we agree with the reviewer that it would be ideal to construct the PRODEMS using a 3D kriging 
framework to fully account for the seasonal changes, we consider this to be out of scope for the current 
paper – but we appreciate the comments, and would like to work on improving this aspect for future 
editions of the PRODEMs.  

Main comment 3: (Optional) Regionally-varying kriging: could also decompose and standardize your 
elevation field variance sources to explain the variability at the source 

I must have been quite the effort to setup this regionally-variable scheme with GSTools! 

First, while the Cressie estimator is reasonably robust to outliers, it is still fairly sensitive for what we get 
in elevation data (ArcticDEM outliers). You could consider using Dowd’s estimator (Dowd, 1984) that 
actually matches your NMAD in terms of how it is derived. This estimator is implemented in SciKit-GStat 
(Mälicke et al., 2022) which has functions to export models to GSTools. 

We now produce the experimental variograms using Dowd’s estimator. Consequently, we are now using 
SciKit GStat for experimental variogram estimations, instead of GSTools where this estimator is not 
implemented. We only use the tool to produce the experimental variograms.   

Second, while the regionally-varying kriging is well-implement and definitely valid, it might be over-fitting 
your data locally by using that regionalized variogram subsample. This would result in an over/under-
smoothing of the final interpolated field compared to reality, because of the way the scheme is 
implemented. Another way to avoid the non-stationarity would be to describe the nature of your spatial 
covariance and its variability (summed variance components with a certain correlation range, and their 
individual variability). The variability in error with long correlation range would for instance likely linked 
to time lag and dhdt (Main comments 1 and 2). Then, using standardization + decomposition (as in done 
a bit in Hugonnet et al. (2022) with instrument resolution and noise, but was less important there), you 
could transform your data to reach second-order stationarity, and apply kriging. 

I am mostly presenting this option for the authors to realize that there are ways to avoid a regionally-
varying variogram implementation. But I think that, given the complexity of this scenario (varying time 



sampling that is uncorrected), the current approach is completely valid and it would be hard to implement 
a decomposed + standardized approach. 

We appreciate the suggestion. We did at first try to implement a standardization scheme, but were not 
successful in making it work properly, and hence decided to go to regionally varying kriging approach. One 
likely issue for implementing the standardization scheme was that ArcticDEM used as reference DEM had 
different properties in different regions; with the new version of ArcticDEM this may (or may not) be less 
important.  

Main comment 4: Justify the choice of 500 m for the final product 

I don’t think it is explained anywhere in the manuscript why the authors chose 500 m for their study, it 
would be good to add a paragraph on this! 

We have added the following paragraph on why we use 500m resolution for the final product:  

The PRODEMs are constructed using Point Kriging, in which approach the interpolated elevation anomaly 
field is evaluated at the grid cell centres. For this approach to accurately represent the mean field value 
within a grid cell, the grid resolution must align with the scale of variability of the observation data. After 
down-sampling of the IS2 data, both CS2 and IS2 data sets are representative for an area of a few hundred 
meters, and an appropriate resolution for the anomaly field of the interpolated PRODEMs is therefore on 
the order of 500 m.   

Additionally: ArcticDEM mosaic v4 is released since last month, with significant improvements. If it is not 
too much work, the authors could update their pipeline with this latest version. 

This has been updated, and the text and figures throughout the paper have been changed accordingly.  

We note that we observe a checkerboard pattern in dh also when using the new version of the ArcticDEM 
as reference – although less pronounced than previously, and appearing more significant in other areas. 
The updated Figure 10, from a different location, is provided below. 

 

Figure 10: Elevation anomalies (here for PRODEM19) relative to ArcticDEM display a checkerboard pattern due to the 
way ArcticDEM was constructed. Two ArcticDEM tiles of 100x100 km are indicated.  

Main comment 5: Drop the nugget for the kriging 

Using a nugget in a variogram represents a very specific type of discontinuous spatial pattern at the 
boundary of the measured location. This is really only relevant to point observations that actually belong 
to a small spatial ensemble (such as gold nuggets), and is not relevant to inherently continuous elevation 
data on a grid. 



You can actually see on Fig 4. the misfit of the black and red variograms at short spatial lags: they should 
not have a nugget at all, and it would show if more short lags were sampled. 

We do not agree with the reviewer that the nugget should be dropped completely - in our case, the nugget 
should reflect the observation uncertainties. However, as the reviewer points out, during modelling of the 
variogram, the nugget value is often overestimated. We therefore now prescribe the nugget value as the 
median of the uncertainties of the surrounding observations when constructing the variograms.  

However, this change gave rise to several other changes in the variogram estimation procedure. With a 
prescribed nugget value, it was often not possible to construct well-fitting variograms out to a distance 
lag of 15km. Since we only use the closest 200 points for interpolation, we only need to know the 
variogram structure at relatively close distances. We therefore changed the variogram binning, decreasing 
both the bin size and the maximum bin size. With this adjustment, the misfit of the variograms often 
improved at small spatial lags.  

Constraining the nugget value also meant that the R2-score no longer was an appropriate measure to 
describe how well the variogram model fitted the experimental variogram: In some locations, the 
calculated semi-variance at the first lag (and first lag only) was substantially larger than the prescribed 
nugget value (as well as the semi-variance at the subsequent lags). For some of these, the R2-value 
became negative despite a visually good fit. We therefore now refrain from using the R2-score to filter 
out outliers in the variogram parameter maps.  

To improve your spatial lag sampling in the variograms, consider using a non-uniform binning. Those can 
be long to compute and, for pairwise sampling efficiency, in SciKit-GStat, there are different types of 
metric spaces just for this, one based on the sampling scheme presented in Hugonnet et al. (2022), Fig. 
S13. Those are also wrapped more conveniently in xDEM for raster data (xDEM contributors, 2022). 

We agree that this is something to consider for future PRODEM versions. For now, however, we have 
decided to go a slightly different way. When modelling the experimental variogram, we now weight the 
value at a given lag with the number of pairs of observations within the lag. In this way, a well-defined 
semi-variance value is weighted higher when fitting the model. While incorporating this, we adjusted the 
weighting to decrease over 1km instead of 5km (L374), as this (due to the overall spatial distribution of 
observations) resulted in an approximately similar weighting scheme as previously.   

Line-by-line comments: 

Title: Having “present” in the title for the period is probably not a good idea long-term. 

We have changed the title to “(2019 through 2022)” for improved clarity.  

L40-42: This statement unlikely holds true. Typical random errors in modeled ice thickness are +/- 100 
meters near flux gates with important spatial correlations as well as systematic errors (Kochtitzky et al., 
2022; 2023). While predicted surface elevation errors are typically less than 10 meters (Hugonnet et al., 
2021). Even measured (not just modelled) ice thicknesses are usually less precise and with larger 
correlations in errors than measured surface elevation. The authors could simply make the case that we 
need more annual data to represent the surface elevation of the ice sheet. 

This has been removed, and we have changed the introduction so that it now focuses more on the 
importance of ice sheet elevation monitoring, and how the PRODEMs will offer new insight into ice sheet 
monitoring efforts.  

L48-52: Same remark. 

See answer above. 



L81 and onwards: Need to add spaces between numerical values and unit. 

Done. 

L190: Could directly introduce the Normalized MAD or “NMAD” directly, which has been around for while 
in elevation data analysis (e.g., Höhle and Höhle, 2009). 

Agreed. We now write as follows:  

While not strictly adhering to a Gaussian distribution, an approximate Gaussian standard deviation 
describing the spread of the distribution can be obtained using normalized MAD: 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 = 1.4826 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀. 
This approach has the advantage of being more robust to outliers than a direct calculation of the standard 
deviation. 

L319: Need to specify: "second-order" stationary! 

Done 
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Replies to reviewer #2 
We thank the reviewer for their constructive comments and have addressed the points raised as described 
in the following, with particular focus on clarifying the kriging procedure and underlying assumptions. The 
reviewer comments are shown below in blue, and our replies shown in black. Line numbers refer to the 
original version of the manuscript that has been reviewed. 

Since the manuscript was submitted, several of the input datasets have been updated: 

- We use CryoSat-2 Baseline E for all years, as it is now available for the entire period 
- ICESat-2 ATL06 has been updated to version 6; the new version has corrected the geolocation 

error found to exist in version 5 
- ArcticDEM mosaic has been updated to v4.1 (as also proposed by the reviewer) 

We have produced a new version of the PRODEMs using the updated data sets, and the text and figures 
in the manuscript have been adjusted accordingly. This includes e.g., an updated version of figure 10 now 
displaying another area that shows a similar checker-board pattern in elevation anomalies relative to 
ArcticDEM v4.1 (albeit less pronounced than previously found when comparing to ArcticDEM v3), and 
removal of figure 11 (including the related discussion) which is no-longer relevant.  

We hope that with these and the below changes, you will accept to review an updated version of our 
paper.  

This paper introduces a set of four 500-meter resolution annual Digital Elevation Models (DEMs) 
representing the Greenland ice sheet marginal zone during the summers of 2019 to 2022, referred to as 
PRODEMs. Covering a 50km wide band from the ice edge, these DEMs meticulously encompass all outlet 
glaciers of the Greenland ice sheet. The integration of DEMs derived from ICESat-2 and CryoSat-2 
constitutes a commendable initiative, providing an additional valuable source of topographic information 
for Greenland. While the paper is well-crafted overall, there are certain statements that require precision 
to ensure accuracy and clarity. It is crucial to address these points before considering the paper for 
publication. 

General comments: 

• The authors' decision to generate the DEM specifically for the summer and focus on the marginal 
zone of the ice sheet raises pertinent questions. What rationale underlies the choice of season, 
and what significance does the selected ice sheet margin hold in this context? Furthermore, a 
clarification regarding the specific function of the DEM under these conditions would enhance the 
paper's comprehensibility. 

This is described in L114-120. In short, we wish to develop the DEM for areas (and periods) where the 
surface is minimally covered by snow since the two sensors (CS2, IS2) interact differently with the snow. 
This leaves the marginal zone during summer, with summer being the period with least snow cover, which 
we here take to be June through September. The selected area encompasses most of the summer bare 
ice zone, but to avoid a product with sparse and/or intermittent coverage, and to maintain the same 
coverage across years, it was decided to cover the entire 50km margin of the ice sheet.  

To clarify this to the reader, we now also mention this earlier in the manuscript (L44): 

Area and time period are selected to obtain areas minimally covered by snow, for which the two satellite 
sensors are expected to measure the same surface.   



The resulting DEM is therefore the ice surface, without snow cover, which is e.g. the DEM appropriate for 
mass balance considerations in the ice sheet marginal areas. This has been clarified in the paper (L46):  

The PRODEMs therefore represent the ice surface topography, which is e.g., the DEM appropriate for 
marginal mass balance considerations. 

• The authors employ two types of altimeter data for DEM generation, a method requiring careful 
consideration of their consistency. While the authors assert that the disparity between the two 
datasets is negligible, it is crucial to acknowledge that applying these datasets without consistency 
correction may influence elevation estimations. Particularly noteworthy is the comparison 
between IS2 and CS2; the latter exhibits uneven spatial distribution and coarse resolution, 
introducing potential biases in the generated DEM. My concern centers on the relatively lower 
measurement accuracy and disparate spatial distribution of CS2, aspects that warrant careful 
attention. 

We agree with the reviewer that it is most important to account for potential biases when combining 
information from the two types of altimeter data. In this respect, we emphasize that because of our choice 
of region and period (summer-time margin only), it is believed that there should be no elevation bias 
between the two altimeters, as supported by existing studies and well documented in the literature. We 
now refer to these studies in the text (L275):  

The PRODEMs, however, are constructed based on elevation data from the ice-sheet marginal areas during 
summer, where the snow cover is limited. In the bare ice zone, it is well documented in the literature that 
the elevation bias of radar altimeters is negligible (e.g., (Dall et al., 2001; Otosaka et al., 2020; Davis and 
Moore, 1993)), and we therefore expect small biases only between the employed CS2 and IS2 elevations 
within the PRODEM area.   

Nevertheless, we cautiously conducted a thorough analysis of potential biases by comparing elevations 
measured at crossing satellite tracks of the two satellites, and we found that (as expected) the disparity 
is negligible. Indeed, not even the sign of the median of the elevation differences is consistent among 
basins (L280-281).  

As the reviewer correctly points out, the CS2 data is associated with lower measurement accuracy than 
IS2. During construction of the PRODEMs, we account for this by assigning uncertainties to the individual 
observations based on the sensor type (as well as location and acquisition time). We have in the updated 
version of the PRODEMs and manuscript thoroughly revised the uncertainty assessments to now fully 
consider the uncertainty contribution from spatial and temporal uncertainty for each observation. The 
updated distributions of uncertainties for the CS2 and IS2 observations are shown in the updated Figure 
3, see below. As for the previous PRODEM uncertainty calculations, the uncertainties remain significantly 
larger for CS2 (median: 0.98 m) than for IS2 (median: 0.21 m).  



 

Figure 3: Distribution of derived total uncertainties (grey), along with the individual spatial (blue) and temporal (green) 
uncertainty components for the CS2 (a) and IS2 (b) altimetry data, respectively. Data from summers 2019 through 2022.   

Another aspect brought up by the reviewer is the different resolution of the two datasets, with the IS2 
data having much higher resolution than the CS2 data. In order to work with consistent datasets, we 
down-sampled the IS2 data along track to 250m resolution, which is of similar order as the resolution of 
the CS2 data (L90). We have added the following (in red) to this sentence:  

For consistency with the resolution of CS2 observations, and given that the topographic variations to be 
resolved in the 500m resolution PRODEM are much smoother than 20m, we further down-sample the 
ATL06 data by computing median values over 250m along-track segments of each beam. 

The last aspect of the differences between the two measurement types mentioned by the reviewer is the 
difference in their spatial coverage: While valid CS2 observations do not exist for the rough terrain often 
located along the outer margin of the ice sheet, the IS2 radar is able to obtain valid observations also for 
these areas. Additionally, the IS2 data are acquired along straight lines, whereas the CS2 observations are 
spatially more scattered. However, these differences in spatial coverage will not affect the interpolation 
of the resulting DEM, apart from resulting in generally higher uncertainty of the resulting product in areas 
with less data.  

• Regarding data coverage, the authors applied distinct interpolation radii in different regions. To 
enhance reader understanding, it would be beneficial to include information on data coverage, 
such as footprint numbers for CS2 and IS2 in each grid. This insight can shed light on the grids 
effectively covered by the altimeters, offering rationale for the choice of a 500 m resolution. It's 
noteworthy that the ICESat-2 DEM by Fan et al. (2022), constrained to 10 footprints at 500m 
resolution, covers only approximately 30% of the entire ice sheet, and a discussion on this 
limitation could be insightful for the readers. 

It is actually not very relevant how many observations are located within each grid cell. Consider, for 
instance, an area of very flat terrain: It is still possible to interpolate a reasonable elevation value here, 
even for a grid cell in which no observations exist. The important factor is the number of observations 
within the correlation length of the varying terrain (i.e. effective length scale of the variogram). If no 
observations exist within this interpolation radius, the interpolated value will be set equal to the local 
median field.  

We have added a figure to the paper showing the number of observations within the spatially varying 
effective length scale from each grid cell (see below), along with a discussion. We find that 13% of the grid 
cells suffer from sparsity in neighboring data, which we take to be less than 5 observations within a radius 
corresponding to the local effective length scale. And for 7% of the grid cells, no observations exist within 
the interpolation radius. The issue is most pronounced in the southern regions; for the southernmost 



drainage basin (basin 5.0) the percentage with sparse data coverage has increased to 37% (21% without 
any nearby observations). In general, however, the interpolated field is based on 22 nearby observations 
(median of the distribution). In regions without any nearby observations, the ArcticDEM elevations are 
adjusted with a constant depending on the local median anomaly field, as calculated from the 200 closest 
altimetry observations, and the resulting elevation field is thus highly reliant on ArcticDEM. 

 

An additional parameter that one may use to evaluate the coverage of data points is the distance from 
grid centers to the closest data point. Histograms with these distributions are found in Figure 1a. When 
discussing this figure, we now have added a mention of the total percentage of grid cells having the closest 
data point more than 1 and 2 km away (L129):  

For 19% of the grid cells, the closest observation is more than 1 km away, but for only 4% it is more than 
2 km away.  

None of these measures can, however, directly be translated into an appropriate grid resolution, as this 
depends on the spatial representability of the data. Our rationale for selecting a grid resolution of 500 m 
is described later in this document.  

• The authors should elucidate the rationale behind selecting the Kriging interpolation method. 
Given the steeper terrain at the ice sheet's edge, it is essential to address whether Kriging 
interpolation can effectively fulfill the task of estimating elevation in such rugged terrains. 
Clarification on the suitability of the chosen interpolation method, especially in challenging 
topographical conditions, would contribute to a more comprehensive understanding for the 
readers. 

Our decision to employ Kriging interpolation was based on several factors, including its ability to account 
for variable uncertainty of observations, its robustness in capturing spatial variability and its ability to 
provide smooth and continuous surfaces. We have added the following to L316 (in red): 

Kriging can account for variable uncertainty of individual data points during the interpolation, and due to 
its robustness in capturing spatial variability it is a widely used method to interpolate geophysical fields 
(e.g. (Bamber et al., 2001; MacGregor et al., 2015; Bales et al., 2001)). 

In this respect is it very important to note that we do not apply kriging to the original elevation 
measurements, but to elevation anomalies relative to ArcticDEM. These elevation anomalies display a 
much smoother field, also around the marginal areas (see figure below), and to large extent this resolves 
the issue raised by the reviewer of whether kriging can also be used in these areas. Even for areas with 
very rough surface, such as those often existing at the very outer part of the ice sheet edges, there is 
consistency in the observed elevation anomalies across length scales of several kms. We have added this 
argumentation to the paper, along with the figure.   



 

As long as the spatial correlation of the anomaly field can be correctly captured by the variogram, and the 
field (largely) fulfills the statistical requirement for kriging to be valid, there is no reason that kriging, which 
offers an optimal unbiased linear interpolation method, should not be a good interpolation method.  

• There are reservations regarding the chosen 500m resolution. Satellite altimeters typically yield 
fewer effective observations at the ice sheet's edge (especially for CS2), and opting for higher 
resolution may result in a reduced number of usable observation grids. This reduction can 
potentially impact the interpolation performance. The question arises: Can a DEM heavily reliant 
on interpolation accurately portray the actual elevations, particularly in the steeper terrains at 
the ice sheet margins? Additionally, in regions with lower latitudes, where the gaps between 
satellite orbits are more substantial, concerns linger about ensuring effective spatial 
interpolation. Addressing these considerations would fortify the paper's discussion on resolution 
choice and its implications. 

As the reviewer correctly points out, there are fewer observations around the very edges of the ice sheet 
with rough terrain, not least since these are not covered by CS2 data. Again, we are partially saved by 
using ArcticDEM as a reference DEM, which has high spatial resolution also in these regions. With the 
anomaly field here often displaying small correlation lengths, the resulting PRODEM tends to heavily rely 
on the ArcticDEM topography, the latter being slightly adjusted by the median value of the local anomaly 
field. But, agreed, the PRODEMs do have much larger uncertainty in these areas of very difficult terrain.  

As previously mentioned, the spatial density of observations cannot directly be translated into an 
appropriate grid resolution, which is heavily dependent on the spatial representability of the data.   

In terms of the chosen 500 m resolution: We have chosen to use Point Kriging, instead of Block Kriging, to 
obtain the elevation field, which means that the interpolated field is evaluated at the center of each grid 
cell. To improve the estimation of the mean value of the grid cell, we subsequently smooth the derived 
elevation field using a 3x3 mean filter. When taking the Point Kriging approach, it is important that the 
input data used for the interpolation is representative for the elevation field at the scale of the grid cell. 
Consider, for instance, the example of using highly resolved data (e.g. using only IS2 data without down 
sampling) with one observation located close to the center of the grid cell: The center value will then 
largely reflect the elevation of the nearest data point, regardless of whether this value is representative 
for the entire grid cell. In smooth areas, this may not be an issue, but in areas of rough terrain, this may 
not be very accurate. However, if the observation close to the grid cell center is representative of an area 
of approximately the same size as the grid cell, the interpolated value will correctly represent the mean 
grid cell value.   



As the resolution of the CS2 is on the order of ~500 meters, we choose to down sample the resolution of 
the IS2 data to similar resolution (we decided to down sample to only 250 m along track to increase the 
data density), and, consequently, the appropriate resolution of the associated anomaly field must be 
chosen to be on the same order, namely 500 m.     

We have added the following paragraph to the paper to clarify the chosen resolution of the product:  

The PRODEMs are constructed using Point Kriging, in which approach the interpolated elevation anomaly 
field is evaluated at the grid cell centres. For this approach to accurately represent the mean field value 
within a grid cell, the grid resolution must align with the scale of variability of the observation data. After 
down-sampling of the IS2 data, both CS2 and IS2 data sets are representative for an area of a few hundred 
meters, and an appropriate resolution for the anomaly field of the interpolated PRODEMs is therefore on 
the order of 500 m.   

• Notably, the entire DEM is subjected to Kriging interpolation, implying a potentially limited actual 
coverage area by the altimeter. Therefore, it is imperative for the authors to furnish the 
proportion of space covered by observational data. Elevation derived from Kriging interpolation 
might deviate from the altimeter-observed elevation, necessitating consideration of this 
difference, as the potential errors induced by interpolation are a critical aspect. Particularly, given 
the uneven spatial distribution of CS2, which may introduce additional uncertainty to Kriging 
interpolation, it becomes crucial to address how the authors accounted for the impact of 
observation gaps on the results. Discussing these considerations would enhance the paper's 
transparency regarding the intricacies of the interpolation process and associated uncertainties. 

As previously mentioned, the important factor is the number of observations within the correlation length 
of the varying elevation anomalies, and we now provide a figure showing this distribution. In areas poorly 
covered by the observations, the resulting surface is highly reliant on the ArcticDEM surface topography 
used as reference, and the uncertainty of the interpolated surface is increased.   

With proper observation uncertainty estimation and spatial variability model (aspects that we thoroughly 
investigated) kriging is a way to reconcile the surrounding observations according to their uncertainties 
and spatial covariance. For it to provide good measurements of the mean field value at grid cells, it is, as 
mentioned previously, furthermore imperative that the grid cell size is aligned with the spatial 
representability of the observations. As long as these (and other) conditions for kriging to perform well 
are fulfilled, the interpolated surface should only deviate from observations within their associated 
uncertainties.   

In terms of the mentioned un-even spatial distribution of CS2, we remark that actually the more “random” 
distribution of CS2 is more appropriate for interpolation by kriging than the straight lines of IS2 
observations (which are far from randomly distributed).  

We have added the following paragraph (L333) to clarify the prerequisites and assumptions behind using 
kriging interpolation:  

The accuracy of the interpolated field will be limited if the number of sampled observations (within the 
effective interpolation radius) is small or not adequately distributed relative to the properties of the field. 
The accuracy of the PRODEM elevation anomaly field will therefore be reduced in areas of high variability 
and few observations, such as conditions prevalent at the outer edges of the ice sheet.  

• Addressing DEM uncertainty requires a more detailed exposition. While the spatial and temporal 
uncertainty is elaborated upon, clarification is needed on how the authors define the instrument 
and geolocation uncertainties mentioned in equation (1). It would be beneficial to delineate the 



specific contributions of each factor to the overall uncertainty and provide a proportionate 
breakdown.  

We have thoroughly revised the procedure of addressing the CS2 and IS2 uncertainty in the following 
ways:  

1) We now separate the uncertainty component into its spatial and temporal components 
2) Elevation differences are now computed as the difference of elevation anomalies (instead of 

elevations); this approach accounts for a potential slope in the area.  
3) We reduce the allowed spatial distance between measurements to 50m (instead of 100m) 
4) The spatial component is computed only based on elevation differences at cross-overs acquired 

less than 15 days apart, in order to limit the impact of potential temporal changes. 
5) The spatial uncertainty component for IS2 is calculated in a similar manner to that for CS2: We 

investigate the relationship between the terrain roughness and spread of elevation anomaly 
distributions. Based on this relationship, we construct a linear model between roughness and 
spatial uncertainty.  

6) The temporal component is estimated based on a data set of average summer trends of surface 
elevation (Slater et al, 2021), multiplied with the difference between time of data acquisition and 
mid-summer.  

7) We use cross-overs from all years (previously only data from 2019 was used) 

Definitions of the various uncertainty components are provided in L156-163. Due to the way that we 
derive the spatial uncertainty component, this component includes the geolocation uncertainty, as well 
as the measurement uncertainty, and this is now clarified in the manuscript: 

In the following, we develop separate uncertainty models for the two data sets to estimate representative 
values for their spatial uncertainty (including effects from geolocation and instrument measurement 
uncertainty), as well as a common model for the temporal uncertainty.  

At small roughness values, we can evaluate the instrument measurement uncertainty from the combined 
spatial uncertainty as 40cm (CS2) and 8cm (IS2), respectively. These values are now mentioned in the text. 
We cannot reliably disentangle the geolocation uncertainty from the uncertainty due to spatial 
representability, as these are intricately intertwined.   

We further elaborate on the relative importance of the two terms (spatial vs. temporal):  

In general, for both instruments, the temporal uncertainty is notably less important than the spatial 
uncertainty component, particularly evident in the case of CS2. However, for individual observations the 
temporal uncertainty component may be non-negligible, with 21% of the IS2 observations having larger 
temporal than spatial uncertainty. For CS2, this is only the case for 0.4% of the observations.   

Moreover, in discussing the uncertainty of CS2/IS2 elevations, the term 'crossovers' might be prone to 
misunderstanding.  

We have gone through the manuscript and changed the word “cross-overs”. We now refer to it as 
“observations near intersecting satellite tracks”.   

Consider utilizing track-based crossover analysis for data validation, ensuring a clearer understanding of 
whether the differences approach zero. This adjustment would enhance precision in evaluating the 
uncertainty associated with CS2/IS2 elevation comparisons. 

We have followed the reviewer’s suggestion, and tested the resulting uncertainties at intersecting satellite 
tracks to check their consistency: Z-scores were computed from the observed elevation differences 



divided by the total uncertainty of the elevation differences. Despite heavy tails in the resulting 
distribution of z-scores (indicating the existence of outliers not fully captured by the estimated 
uncertainty) the distributions were found to adequately approximate a standard normal distribution.  

For some marginal areas, the temporal component was not well defined due to lack of data, and for these 
areas, we used the average value of trend of summer elevation across summer to estimate the temporal 
representability. The z-score distributions best approximate a normal distribution for cross-overs located 
in areas where the temporal component was best defined. This issue is particularly important for the IS2 
observations, which to higher degree are located near to the ice sheet margin, where the temporal 
component is poorly constrained.   

We have added the following paragraph to the paper:  

The derived observation uncertainties were subsequently tested for consistency with the observed 
elevation differences near intersecting satellite tracks. Z-scores were computed from the observed 
elevation differences divided by their total uncertainty. Despite heavy tails in the resulting distribution of 
z-scores, indicating the existence of outliers not fully captured by the estimated uncertainty, the 
distributions were found to adequately approximate a standard normal distribution.  

• The evaluation of the proposed DEM solely through cross-validation may be deemed insufficient. 
It is recommended that the authors endeavor to gather actual measurements, such as airborne 
datasets, for Greenland elevation. This would facilitate an independent evaluation of the 
generated DEM, offering accuracy metrics under various terrain conditions. Such an approach 
would provide more robust and precise evaluation information, enhancing the credibility of the 
study's findings. 

We agree that it would be great to also validate the PRODEMs against independent data. However, 
airborne data sets that fulfill the requirements of being acquired during the summer months of 2019-2022 
are exceedingly sparse. To our knowledge, only one such campaign exists, namely the CryoVEx Summer 
2019 campaign, and it was directed towards obtaining data over sea ice rather than land ice. One track 
does, however, cover a small section of the very margin of the north-eastern part of the ice sheet. We will 
investigate whether this track contains sufficient land ice data for independent validation (which in any 
case will be very limited), and if so, we will report the results in the manuscript.    

As this data set in any case is too limited to offer accurate evaluation metrics under diverse terrain 
conditions, we instead stratify the prediction errors from the cross-validation exercise, and consider the 
error distributions as function of increasing latitude, elevation, roughness, aspect, ArcticDEM uncertainty 
and summer elevation trends. We have added a section on this to the manuscript, along with the figure 
provided below.  

In short, the analysis allows us to identify troublesome areas, where one should be careful regarding the 
reported uncertainties in the PRODEMs, these being characterized as having 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 values of the 
normalized prediction uncertainties significantly above one, which we here take to be larger than 1.2. In 
order of importance, these areas are characterized by having: Roughness above 13 m, ArcticDEM MAD 
values above 0.4 m, and/or elevations below 300 m. These conditions span respectively 25, 22, and 4% of 
the area, and largely cover the same areas along the very margin of the ice sheet.  



 

Figure 11: Descriptive measures (median and 𝒔𝒔𝑴𝑴𝑴𝑴𝑴𝑴) of the distribution of prediction errors, both raw (dashed lines) and 
normalized errors (solid lines), when stratified relative to various location and terrain properties that may impact the 
PRODEM product performance. Bins are created to cover the 5 to 95 percentiles of each data set. The ArcticDEM MAD 
value is computed as the median absolute deviation of the DEMs contributing to ArcticDEM at a given location, and 
therefore provides an uncertainty estimate of ArcticDEM. Data based on prediction errors from PRODEM19.   

• In comparing with other DEMs, presenting a distribution map alone may lack depth. Additional 
comprehensive comparisons, such as showcasing the spatial distribution or numerical values of 
elevation differences, and establishing relationships between these differences and slope and 
roughness, are warranted. To enhance the display of the DEM, the authors might consider 
incorporating a slope map or shaded relief map. These additions would provide a more nuanced 
evaluation of the DEM data and contribute to a thorough understanding of its effectiveness. 

We have added a slope map to Figure 9 (now Figure 10), along with elevation difference maps relative to 
IS2DEM19 and ArcticDEM, and histograms of the associated distributions, see the updated figure below. 
Since the PRODEMs have much more structure (as evident, for instance, from the slope map), we also 
compare it to a smoothed version of IS2DEM19.  

As the three DEMs are not representing the same period of time, and the IS2DEM19 is of lower actual 
resolution than the others, we cannot use the DEM comparisons for validation of PRODEM19. We 



therefore do not consider it relevant to dive further into the investigation of relationships between 
elevation differences and e.g. slope and roughness.  

  

Figure 10: A comparison of the three elevation fields: IS2DEM19, PRODEM19, and ArcticDEM across Petermann Gletsjer. 
Coverage of the three DEMs varies slightly across the region. The top panel shows elevation differences between the three 
DEMs, including a filtered version of PRODEM19, produced using a Gaussian filter with 5 pixels radius and relative 
standard deviation of 50%. The middle panel shows the elevation fields across Petermann Gletsjer. The lower panel 
compares the slope distribution for the three elevation models. a) A histogram of the distribution of elevation differences 
across the PRODEM area, and b-d) maps showing the spatial distribution across Petermann Gletsjer. e-g) The elevation 
fields across Petermann Gletsjer. h) Distribution of slopes across the PRODEM area, i) mean and median values of the 
slope distribution, and j-l) the spatial slope distribution across Petermann Gletsjer.        



• Consideration should be given to the potential benefits of updating the DEM with the new 
ArcticDEM mosaic v4, as it has the potential to significantly enhance DEM accuracy and reduce 
differences in dh (as observed in Figure 10). Such an update could serve as a viable solution to the 
issues identified and contribute to an overall improvement in the quality of the DEM. 

The PRODEMs have been updated used the new ArcticDEM v4.1 mosaic. We note that we observe a 
checkerboard pattern in dh also when using the new version of the ArcticDEM as reference (although less 
pronounced than previously, and appearing more significant in other areas). The updated Figure 10 (now 
Figure 11), from a different location, is provided below. 

 

Figure 11: Elevation anomalies (here for PRODEM19) relative to ArcticDEM display a checkerboard pattern due to the 
way ArcticDEM was constructed. Two ArcticDEM tiles of 100x100 km are indicated.  

Specific comments: 

(p: page, l: line) 

Section Introduction: The current paragraph lacks substantial content. To enhance its depth, it is 
recommended to incorporate the significance of ice sheet elevation monitoring. Elaborating on the 
importance and implications of monitoring ice sheet elevation would provide readers with a clearer 
understanding of the broader context and relevance of the study. 

We have revised this section so that it to higher degree focuses on the importance of ice sheet elevation 
monitoring. 

p2l44, Supplementing the existing DEM datasets and providing commentary on them is advised. This 
additional information will not only enhance the comprehensiveness of the study but also offer valuable 
insights and context for readers evaluating the significance and limitations of the proposed DEM datasets. 

In the introduction to the revised manuscript, we now also describe existing DEM datasets, and describe 
how the PRODEMs will offer new insights into ice sheet monitoring efforts.  

p2l53, CS2 is equipped with a Ku-band radar altimeter, which is highly sensitive to moisture changes. 
Notably, surface melting can introduce significant interference to the echo signal, posing challenges in 
obtaining accurate elevations during such periods. While the author's emphasis is on capturing surface 
elevations during summer, it is worth considering the possibility of melting snow, even in areas designated 
as snow-free. Clarification on the impact of any residual melting snow on elevation data would enhance 
the understanding of potential influencing factors. 



The effect of surface melting on the radar signal properties is primarily relevant in the firn zone (i.e. 
outside the PRODEM area), where surface melting will affect the structure of the near-surface firn, this 
causing significant biases in the elevation estimates.  

Indeed, the ice sheet summer surface in the marginal areas is inhomogeneous (experiencing surface 
melting surface, the existence of supraglacial lakes, may at times be partly snow-covered etc.), which may 
impact the altimetric measurements of the ice sheet surface, as it may make the surface less well-defined 
and thereby more difficult to track in the radar waveform. However, we consider the potential impact of 
this on the elevation estimates to be well within the uncertainties of the CS2 observations.  

To eliminate bad CS2 measurements (due to this factor as well as e.g., incorrect geolocation), we filter the 
altimetry observations prior to interpolation.  

P2l69, what distinguishes the Baseline-D and E datasets, and is there potential for this difference to impact 
the consistency of the CS2 data? Clarifying the distinctions between these datasets and addressing their 
potential influence on CS2 data consistency would contribute to a more comprehensive understanding of 
the data sources employed in the study. 

Since submission of the paper, the baseline-E data set has become available for the entire period, and we 
have therefore produced a new version of the PRODEMs using the baseline-E for the entire period, so the 
CS2 data set is now fully consistent.  

P2l74, in contrast to IS2, CS2 exhibits a relatively limited dataset with irregular coverage, further reduced 
through quality control measures. It is imperative to elucidate the specific spatial distribution of CS2 data 
after quality control. Any potential uneven distribution in the data may raise concerns about its impact 
on subsequent analyses and differences. Addressing these considerations would provide a clearer 
understanding of the reliability and potential biases associated with the quality-controlled CS2 dataset. 

The CS2 datasets constitute ~25% of the full dataset applied to construct the PRODEMs (L93).  

For best performance of the kriging interpolation, the observations should be distributed in an adequately 
balanced way with respect to the properties of the field to be interpolated. In this respect, the CS2 data 
is actually much better distributed than the IS2 data, which are acquired with a far from random 
distribution. Indeed, straight-line arrangements may give rise to biases and inaccuracies in the kriging 
predictions, as it may lead to overfitting in densely sampled regions. The only way to deal with this, 
however, would be to entirely remove parts of the IS2 data, which is not a desired solution.  

P2l75, Significant disparities exist between LRM data and SARln data. The authors should expound on their 
considerations regarding the consistency between these two datasets. Providing insights into the 
strategies employed to address or account for these differences would contribute to a more thorough 
understanding of the data integration process and potential impacts on the study's outcomes. 

We only include LRM data for a very tiny region. The number of datapoints included consists of 0.1% of 
the total data set, and does not have any major impact on the study. We decided to include it in order to 
provide CS2 data for the entire 50km of the margin.  

P3l83, A higher sampling density often correlates with improved elevation simulation results. In the 
context mentioned, it would be beneficial to clarify the purpose of avoiding oversampling and elaborate 
on the potential consequences associated with it. Understanding the reasoning behind this choice and its 
potential impacts would enhance transparency regarding the sampling strategy employed in the study. 

Ideally, data points should exhibit spatial variability representative of the underlying field, capturing both 
local fluctuations and broader trends. Straight-line arrangements can introduce biases or inaccuracies into 



the kriging estimates, as it may lead to overfitting in densely sampled regions, where local variations are 
excessively emphasized, while neglecting broader trends. A balanced distribution of data, capturing both 
local and global variability is therefore essential for robust kriging interpolation.  

The straight-line arrangement of the IS2 data cannot be changed. However, to obtain a more balanced 
distribution we remove data from the weak IS2 beams, which are located right next to the strong beams. 
Retaining these data would provide no new information, but lead to excessive oversampling.   

P3l88, However, such downscaling might diminish the inherent advantages of IS2. Additionally, in the case 
of CS2 data, it is essential to elucidate how the authors addressed the potential impact of observation 
resolution. Clarifying the strategies employed to mitigate the effects of observation resolution on CS2 
data would contribute to a more comprehensive understanding of the data processing methodology. 

Agreed, to some extent the downscaling diminishes the inherent advantages of IS2. It was, however, 
necessary to do this downscaling in order to assimilate the data set with the CS2 data, see also our answer 
to one of the previous comments. We do not see any need to mitigate the lower resolution of the CS2 
data, as we do not attempt to create the elevation anomaly field in higher resolution that the approximate 
resolution of the input data.  

P3l93, it is evident that IS2 data plays a more central role in DEM generation. Consequently, it raises the 
question: What specific role does CS2 serve in this context? Considering the non-uniform distribution of 
CS2, there arises a concern about the potential introduction of uncertainty into elevation estimations. 
Addressing the distinct contributions and potential uncertainties associated with CS2 data would enhance 
clarity regarding its significance in the overall DEM generation process. 

The CS2 data provides 25% of the total elevation data set, which in our opinion is not a negligible portion.  

We have in the new version of the manuscript improved the uncertainty estimation of both data sets.  

P4l118, the impact of CS2 signal penetration depth in snow is not explicitly addressed in this section. 
Providing insights into how the authors considered and accounted for this factor would enhance the 
completeness of the discussion. 

This is not relevant since the PRODEMs are based on data from the ice sheet margin during summer, and 
therefore largely covers only the snow-free zone. 

P4l124, the reason for choosing a 500m resolution is not explicitly stated. Including the rationale behind 
this resolution choice would provide clarity and context for readers seeking to understand the decision-
making process. 

This is now more clearly stated:  

The PRODEMs are constructed using Point Kriging, in which approach the interpolated elevation anomaly 
field is evaluated at the grid cell centres. For this approach to accurately represent the mean field value 
within a grid cell, the grid resolution must align with the scale of variability of the observation data. After 
downsampling of the IS2 data, both CS2 and IS2 data sets are representative for an area of a few hundred 
meters, and an appropriate resolution for the anomaly field of the interpolated PRODEMs is therefore on 
the order of 500 m.   

P5l146, the uncertainty associated with Kriging interpolation is not specified. Offering details on the 
uncertainties inherent in the Kriging interpolation method would contribute to a more thorough 
understanding of the potential limitations in the DEM generation process. 



The uncertainty associated with Kriging interpolation is calculated based on the equation provided in 
L436.  

P7l236, the stated measurement precision applies specifically to the interior areas of Antarctica. It's 
crucial to note that for steep terrains, the accuracy is expected to be lower. Emphasizing this distinction 
would provide a more nuanced understanding of the precision associated with different topographical 
features. 

As correctly pointed out, the stated measurement precision specifically applies to the flat interior areas 
of Antarctica, and we have added this to the sentence (the addition in red):   

The measurement precision of the IS2 ATL06 product has been documented to be as small as 9cm over the 
flat interior part of Antarctica. 

Note, however, that we do not use this value in the subsequent analysis, but instead use elevation 
differences from crossing satellite tracks to provide an estimated uncertainty for the individual 
observations depending (primarily) on terrain roughness. In areas of low roughness, we estimate an 
instrument measurement uncertainty of 8cm, which is in accordance with the results from the interior of 
Antarctica.  

Section 4.1, The calculation method for DEM uncertainty, particularly how the authors integrated data 
from the two altimeter datasets, is not clearly presented in this section. Including details on the calculation 
method would enhance transparency and facilitate a more comprehensive assessment of the uncertainty 
analysis. 

We have revised the uncertainty model for the individual observations, so that the spatial (including 
geolocation and instrument measurement uncertainty) and temporal components now are separately 
defined. The total uncertainty on an observation is found by adding the two uncertainty components in 
quadrature. The text in this section has been updated accordingly.  

The DEM uncertainty from the kriging interpolation is calculated based on equation 5 (L436), which allows 
to account for the different uncertainty of the surrounding observations. 

P8l279, Notably, there appears to be a relatively large elevation difference between CS2 and IS2. It is 
pertinent to inquire whether the authors have considered any correction methods to address or minimize 
this discrepancy. A discussion on potential strategies or considerations in correcting the observed 
elevation differences would contribute to a more thorough evaluation of the data integration process. 

Indeed, in some places we observe quite some elevation differences between closely-spaced (50m) CS2 
and IS2 observations. It is worth noting that the outliers in this distribution primarily arise from satellite 
track crossings in areas of high roughness, where the terrain may vary significantly within a short distance, 
and a substantial elevation difference therefore is to be expected. Investigating the spread of the 
distribution as function of terrain roughness (in a similar manner to the analysis performed for estimating 
the spatial uncertainty of CS2 and IS2), we find a linear increase in dispersion (MAD) of the elevation 
difference distribution with roughness (see the figure below). At small roughness values (roughness < 2), 
the dispersion of the distribution is described by a MAD value of 0.48m (average value), corresponding to 
a 1𝜎𝜎=0.50m.  This number should be seen in relation to the spatial uncertainty of the CS2 and IS2 
observations at small roughness values, which is 0.39m (CS2) and 0.08 (IS2), respectively. Combining the 
two in quadrature, we therefore expect an uncertainty of their associated elevation differences of 0.40m. 
The spread of the elevation difference distribution can therefore largely be attributed the individual 
uncertainty of the two observations.  



In regard to estimating any bias, we must instead consider the mean or median of the distribution. 
Considering the latter to provide the best estimate for the bias, we notice that its value is lowest in areas 
of low roughness (-5 cm). This is despite these smooth areas often being located at high-elevation central 
areas, which may periodically be covered by snow during the designated summer period, which we expect 
to lead to some, minor, differences in the measured elevation from the two satellites. We therefore 
consider 5cm to be an upper value for the potential bias.  

It is worth noting that this value shows significant spatial variability; magnitude as well as sign differs when 
conducting the analysis on drainage basin scale: The median value ranges from -0.26 to +0.40 depending 
on drainage basin, although it should be noted that the analysis for some basins is hampered by poor 
statistics.  

We therefore limit ourselves to note that the maximum potential bias value of 5cm bias is well within the 
uncertainties of the CS2 datapoints. In accordance with previous literature, we therefore cannot identify 
any significant bias between the two sets of satellite observations, and consequently we cannot justify to 
make any bias correction.  

We have revised Section 4.2 to include more information on the bias estimation procedure, and a new 
figure (replacing Fig. 3a). 

 

Figure 4: a) Distribution of elevation differences, computed as 𝒅𝒅𝒅𝒅 = 𝒅𝒅𝒄𝒄𝒔𝒔𝒄𝒄 − 𝒅𝒅𝒊𝒊𝒔𝒔𝒄𝒄, near intersecting CS2 and IS2 satellite 
tracks, when imposing strict limits in terms of maximum distance and time between acquisitions. b) Evolution of median 
and MAD of the resulting elevation difference distribution as function of terrain roughness. Data from the PRODEM area 
during summers 2019 through 2022.  

P9l292, it would be beneficial to expound on the specific steps involved in DETREND. Additionally, 
clarification on the basis for employing linear interpolation and whether it introduces any uncertainties 
would be useful. 

We decided to do the detrending in the simplest possible way using linear interpolation in the ArcticDEM 
grid. We note that linear interpolation tends to conserve the general trend of data between grid points, 
making it suitable for interpolating values within a regular grid, and we have no reason to believe that a 
more sophisticated method would perform any better. 

P9l298, the term "ELEVATION ANOMALIES" requires clarification, and providing details on the proportion 
of outliers would offer a more precise evaluation of the data characteristics.  

We have added to following (in red) to L293: 



Prior to interpolation, the satellite altimetry data are detrended by subtracting a reference DEM 
(ArcticDEM) from each altimetry point measurement using linear interpolation, and the resulting data set 
is termed elevation anomalies. 

Details on the proportion of outliers are provided in L300-301.  

Section 5.3, Explicitly mentioning the software used for Kriging interpolation and listing relevant 
parameter settings would provide essential information for readers seeking to replicate or understand 
the interpolation methodology. 

We only used the software GSTools to construct the experimental variograms, and all relevant parameter 
settings are provided in the manuscript (L344-347). For the revised version, we have replaced this 
software with Scikit-Stat, which allows us to use the Dowd estimator instead of the Cressie estimator (as 
suggested by reviewer 1).  

Section7.1, I strongly recommend incorporating airborne elevation data into the DEM evaluation process. 
While cross-validation results are valuable, utilizing airborne data for evaluation would provide an 
additional and crucial perspective on accuracy. This approach ensures a more comprehensive assessment 
and strengthens the overall validity of the DEM. 

We will investigate whether this can be done based on the very limited airborne elevation data available. 
See comment above.  
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