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Abstract- In situ measurements from sparsely distributed networks worldwide are 12 

a valuable source of the reference data for validating or correcting the bias of satellite 13 

products. However, the significant differences in spatial scale between in situ and 14 

satellite measurements make them incomparable except for that the underlying surface 15 

of in situ sites is absolutely homogeneous. Instead, in site measurements need to be 16 

upscaled to be matched with satellite pixel. Based on the upscaling model we proposed 17 

as well as the consideration that in-situ observation generally lacks spatial 18 

representativeness due to the widely distributed spatial heterogeneity, we have 19 

developed a coarse pixel-scale ground "truth" dataset based on ground measurements 20 

of 368 in situ sites from the sparsely distributed observation networks. Furthermore, the 21 

effectiveness of the dataset was carefully evaluated over the sites with different degrees 22 

of spatial representativeness. The results demonstrate that using this dataset in 23 

validation outperforms the direct comparison between satellite and in situ site 24 

measurements. The accuracy of the reference data employed for validation or bias 25 

correction can be enhanced by 3.5% overall with this dataset. But the performance of 26 

the dataset show dependence on the degree of spatial heterogeneity. Specifically, the 27 

improvement of accuracy was the most significant over the regions with strong spatial 28 

heterogeneity, with the accuracy of reference data enhanced by 7.3%. To the best of our 29 

knowledge, this dataset is unique in providing coarse pixel scale ground truth with the 30 
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widest spatial distribution and longest time series. Its ability to capture both spatial and 31 

temporal variations of surface albedo at coarse spatial scales makes it an invaluable 32 

resource for validating and correcting global surface albedo products. 33 

1. Introduction 34 

Surface albedo is an important variable in climate and biogeochemical models 35 

because it determines the amount of energy absorbed by the earth surface. Coarse-pixel 36 

(i.e., with a km pixel scale) satellite albedo products such as MODIS and NPP VIIRS 37 

have been widely used to tackle with global challenges and support a range of initiatives 38 

(e.g., The Paris Agreement and Sustainable Development Goals). However, satellite 39 

albedo products generally suffer from different degrees of errors due to the error of 40 

satellite observation data and the limitation of inversion algorithm, and the error of 41 

remote sensing product brings great uncertainty to the next application of the product. 42 

Taking albedo as an example, the change of albedo of 11% will cause a fluctuation of 43 

surface net radiation of 3.5 Wm-2 on global and annual averages (GCOS, 2011), which 44 

in turn will cause the change in global temperature of 0.1K. An increase of 0.00106±45 

0.00008 (mean ±standard deviation) of albedo will cause the radiation at the top of 46 

the atmosphere to cool by -0.15±0.1 Wm-2 (Ghimire et al., 2014). Therefore, it is very 47 

important to evaluate the uncertainty of remote sensing albedo products. In particular, 48 

when the error is relatively large, it is urgent to correct the error of remote sensing 49 

albedo products to improve the application accuracy of remote sensing products. 50 

Both the validation and correction of remote sensing products depend on the 51 

reference data which can represent the ground truth on the coarse pixel scale. Ground 52 

measurement is usually regarded as the truth of the target variable on the observation 53 

scale. However, due to the scale mismatch between ground measurement and satellite 54 

pixel as well as the widely distributed spatial heterogeneity, ground measurement can 55 

not be directly used as the absolute truth on the pixel scale (Wu et al., 2019). Limited 56 

by the means and methods of ground measurement, the absolute truth on the coarse 57 

pixel scale can not be obtained. Instead, its best approximation value can be obtained. 58 

What we can do is to get the pixel scale relative truth close to the absolute truth as 59 

accurately as possible (Wu et al., 2019). For conciseness, the pixel scale relative truth 60 

is described as pixel scale truth in this paper. 61 

The sparsely distributed in situ sites (i.e., at most one site within a specific product 62 

grid cell) from the networks such as FLUXNET, BSRN, and SURFRAD provide an 63 

important data source for the validation of remote sensing albedo products.(Chu et al., 64 
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2021; Augustine et al., 2000; Driemel et al., 2018). However, in situ measurements 65 

cannot be directly used as the coarse pixel scale truth given that the footprint of in situ 66 

sites is far less than the scale of a coarse pixel. A practical method of using in situ site 67 

measurements as the coarse pixel scale truth is to conduct the spatial representativeness 68 

assessment of in situ sites (Román et al., 2009; Wang et al., 2014; Moustafa et al., 2017). 69 

However, since these in situ sites were not originally established for the validation or 70 

bias correction of satellite products, only a small part of them was proved to be spatially 71 

representative, and most of them were rejected. Even for the representative site, the 72 

representativeness errors of in situ measurements are still inevitable, because land 73 

surface are not absolutely homogeneous throughout the year (Colliander et al., 2017; 74 

Xu et al., 2018; Lei et al., 2018; Williamson et al., 2018). Consequently, the 75 

representative in situ measurements are only limited to a few locations on the globe and 76 

cover discrete time periods, which cannot support a comprehensive validation and bias 77 

correction over a wide range of conditions (Loew et al., 2016).  78 

To overcome the representative errors of in situ measurements and promote 79 

utilization ratio of in situ sites from these sparse networks in validation, Wu et al. (2020) 80 

have proposed an upscaling method specified for the single site in situ measurements. 81 

However, the effectiveness of this method has not been comprehensively assessed and 82 

its transferability to in situ sites all over the world is still unknown. In this study, we 83 

first evaluated the performance of the upscaling model over the 368 in situ sites 84 

throughout the world. Then the pixel scale ground truth data with a spatial resolution 85 

of 0.5 km were produced based on these in situ measurements. Finally, the potential 86 

usage of this dataset was discussed. As far as we know, this dataset is unique in 87 

providing coarse pixel scale ground truth with the widest spatial distribution and longest 88 

time series. 89 

2. The experimental data 90 

2.1 In situ site observation 91 

In this study, in situ sites from Surface Radiation (SURFRAD), Baseline Surface 92 

Radiation Network (BSRN), AmeriFlux, EuropFlux, HiwaterWSN (Che et al., 2019), 93 

and Huailai station (Li et al., 2016; Ma et al., 2013), were utilized to generate the coarse 94 

pixel scale "truth" dataset. The spatial distribution of these in situ sites is displayed in 95 

Fig. 1. It can be seen that these sites are unevenly distributed, with most of them 96 

concentrated in the Northern Hemisphere. With consideration of the completeness and 97 
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the quality of in situ observations, a total of 368 sites were selected in this study, which 98 

covers the main vegetation functional types and climatic regions (Fig. 2). The wide 99 

spread of in situ sites enables a good representation of Earth's surface. 100 

 101 

Figure 1. Global distribution of the 368 sites over different land cover types. 102 

 103 

Figure 2. The distribution of stations across fifteen Land cover types indicated by International 104 

Geosphere-Biosphere Programme (IGBP). WAT, BSV, SNO, CVM, URB, CRO, WET, GRA, SAV, WSA, 105 

OSH, CSH, MF, DBF, EBF, and ENF are the abbreviation of water bodies, Barren, snow and ice,  106 

cropland/natural vegetation mosaics, urban and built-up lands, cropland permanent wetlands, grassland, 107 

savanna, woody savanna, open shrubland, closed shrublands, mixed forest, deciduous broadleaf forest, 108 

evergreen broadleaf forest, and evergreen needleleaf forests. The numeric value displayed above each 109 

bar in the chart indicates the total number of stations associated with the corresponding land cover type. 110 
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    These in situ sites were equipped with two pyranometers mounted back-to-back, 111 

one pointed downward and the other upward, measuring the downward radiation and 112 

upward radiation (Song et al., 2019). It is important to note that the footprint of in situ 113 

sites is not fixed, given that the measurement height of the albedometers from the 114 

underlying surface varies from site to site (Marion, 2021; Song et al., 2019). These 115 

radiometers have been rigorously calibrated and continuously supervised to reduce 116 

systematic measurement errors(Jia et al., 2013; Wang et al., 2009; Zhou et al., 2016). 117 

In situ site measured albedo of the local solar noon was calculated using the ratio of the 118 

mean upward radiation to the mean downward radiation between 11:00 a.m. and 1:00 119 

p.m. local time as suggested by Lin et al. (2022).   120 

2.2 The high-resolution albedo 121 

The high-resolution albedo data were used in this study for two purposes. One is 122 

to calculate the upscaling coefficients for in situ measurements since they can capture 123 

the spatial variation characteristics of surface albedo within the coarse pixel extent. The 124 

other is to serve as the reference data because they can represent the coarse pixel albedo 125 

after aggregation. Landsat7 ETM+ images were used to generate high-resolution albedo 126 

due to their high spatial resolution of 30 m. This satellite has a revisit period of 16 days 127 

and an inclination of 98.2˚, making it possible to acquire data up to a latitude of 82˚ N 128 

(Rösel et al., 2011).  129 

The Landsat Level-2 reflectance data, which have been atmospherically and 130 

geometrically corrected (Teixeira et al., 2020), were used in this study. Furthermore, 131 

additional processing such as cloud screening (with Fmask algorithm) and cloud 132 

removal (with Cloud-removal-by-Synthesis (CRS) algorithm) was also carried out to 133 

further enhance the quality of the surface reflectance data. The retrieval of high-134 

resolution surface albedo was based on the algorithm proposed by Liang et al. (2001), 135 

which provided narrowband-to-broadband conversion coefficients (Eq. (1)) for albedo 136 

retrieval from Landsat7 ETM+ using spectral reflectance library and simulations under 137 

different atmospheric and surface conditions under the Lambertian assumption. The 138 

anticipated accuracy of this algorithm approximates 0.02 (Liang, 2001). This equation 139 

provides a valuable tool for the accurate estimation of surface albedo from satellite data 140 

and has been widely used in numerous studies on land surface processes and global 141 

climate change. 142 

������ = 0.356�� + 0.130�� + 0.373�� + 0.085�� + 0.072�� − 0.0018    (1) 143 

where ������  denotes the shortwave surface albedo, and α�  denotes the spectral 144 
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albedo at the wavelength of ��ℎ satellite spectral band. 145 

2.3 Coarse pixel-scale satellite albedo product 146 

The MCD43A3 V061 product was used in this paper to serve as an example of 147 

coarse pixel satellite albedo products due to its wide acceptance. The shortwave (3000-148 

5000 nm) albedo was extracted to match the spectral range of in situ-measured albedo. 149 

It provides black sky albedo (BSA) and white sky albedo (WSA) with a spatial 150 

resolution of 500 m and a temporal resolution of daily (Schaaf et al., 2002). The BSA 151 

and WSA can be linearly combined with the sky diffuse light ratio to derive the blue-152 

sky albedo in the actual environment (Pinty et al., 2005).  153 

   α = α��� × r + α��� × (1 − r)                    (2) 154 

where α , α��� , and α���  represent the blue-sky albedo, WSA, and BSA of 155 

MCD43A3, respectively. The actual sky diffuse light ratio r can be calculated using 156 

equation (3) as suggested by Stokes and Schwartz (1994). 157 

r = 0.122 + 0.85 × exp(−4.8 × cos �)               (3) 158 

where � denotes the solar zenith angle at local solar noon. 159 

2.4 The ancillary dataset 160 

The auxiliary data were used in this paper to explore the potential influence factors 161 

on the accuracy of the pixel scale ground truth data. Several common surface 162 

parameters, including elevation, land cover types, and spatial heterogeneity, were 163 

considered. DEM data were obtained from the Multi-Error-Removed Improved-Terrain 164 

(MERIT) Digital Elevation Model (DEM) (Mcclean et al., 2020; Yamazaki et al., 2017), 165 

with a high horizontal resolution of three arc-seconds (approximately 90 meters). The 166 

MERIT DEM was produced using the advanced algorithms of HydroSHEDS 167 

(Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales) 168 

to remove various types of errors in existing DEMs, such as voids, noise, and artifacts 169 

(Uuemaa et al., 2020). The MCD12Q1 product provides global land cover type 170 

information with a spatial resolution of 500 m at an annual time step from 2012 to 2018. 171 

It provides information on 17 different land cover types, making it a valuable data 172 

source for many applications. It is important to point out that there is a slight difference 173 

regarding the land cover information between the data of different years. Here, we have 174 

used the land cover type with the highest degree of agreement between the data in 175 

different years.  176 
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Spatial heterogeneity is a critical factor influencing the spatial scale match 177 

between in situ and satellite measurements because it reduces the spatial 178 

representativeness of in situ measurements (Wu et al., 2022). It refers to the uneven 179 

distribution of surface albedo within the coarse pixel. A pixel that exhibits spatial 180 

heterogeneity denotes that the value of surface albedo at one location is different from 181 

that of other locations. To quantify the spatial heterogeneity of surface albedo within a 182 

coarse pixel, the spatial variability (standard deviation, Std ) of all subpixel albedos 183 

within a coarse pixel was calculated (Colliander et al., 2017; Jin et al., 2003). Here, the 184 

subpixel albedos denote the high-resolution pixel albedo within the coarse pixel. 185 

2

1

1
( )

1

L

i
i

Std Z Z
L 

 

                            (4)     186 

where 
iZ   denotes the high-resolution albedo and Z   is the averaged albedo of all 187 

high-resolution albedos within the extent of the coarse pixel. L refers to the number of 188 

high-resolution albedo pixels with a coarse pixel. 189 

3. Methodology 190 

3.1 The upscaling model specified for single in situ site measurements 191 

In situ measurements taken at a single in situ site can provide accurate 192 

measurements on the point scale and offer continuous temporal variation information 193 

for long time series. But they are insufficient to represent albedo at the coarse-pixel 194 

scale due to the spatial heterogeneity within the coarse pixel. High-resolution albedo 195 

maps can capture the spatial variation information within the coarse pixel. The basic 196 

idea of the upscaling model is to derive the upscaling coefficients based on high-197 

resolution albedo maps and then applied these upscaling coefficients to long-term in 198 

situ measurements (Wu et al., 2020). In this way, both the spatial variation information 199 

and the temporal variation information of surface albedo can be captured through the 200 

combination of high-resolution albedo maps and long time series in situ measurements, 201 

deriving the long time series pixel scale ground truth data. 202 

Since the high-resolution albedo maps serve as an important linkage between in 203 

situ measurement scale and satellite coarse pixel scale, they should meet several 204 

acquirements. First, its spatial resolution should be equal or close to the footprint of in 205 

situ measurements, because the upscaling coefficients were determined by long time 206 

series high-resolution albedo maps and then were applied to in situ measurements. 207 

Second, the high-resolution albedo maps should cover at least one full cycle period, 208 
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which is typically one year, to account for the seasonal variations of surface 209 

heterogeneity caused by phenology, because the upscaling coefficients will be applied 210 

to long time series in situ measurements. In this study, the Landsat7 ETM+ albedo maps 211 

from 2012 to 2018 were processed to capture the spatiotemporal variation of surface 212 

albedo and used as prior knowledge for deriving the upscaling coefficients. 213 

The upscaling coeffcients were calculated for each subpixel within the coarse pixel 214 

extent by establishing a regression relationship between one subpixel albedo time series 215 

and the subpixel albedo time series corresponding to the in situ site (Eq. (4)). To avoid 216 

the uncertainty caused by different data sources, both of them were simulated by 217 

Landsat7 albedo. Using the same data source can reduce the influence of errors of 218 

Landsat7 ETM+ albedo to a certain extent. 219 

�����(x, y, d) = W(x, y)������_�� ����(d)                     (4) 220 

and 221 

�����_�� �����(�) = [1, �����_�� ����(�)]�                      (5) 222 

where x and y correspond to the location of a single Landsat7 ETM+ pixel within a 223 

coarse pixel, while d denotes the date of the Landsat7 ETM+ albedo map. ����� 224 

denotes the individual Landsat7 ETM+ pixel within a coarse pixel. �����_�� ���� 225 

indicates the Landsat7 ETM+ pixel albedo time series corresponding to the in situ site. 226 

The vector W represents the upscaling coefficients to be derived.  227 

To ensure a robust estimation, a cost function J is established by combining all the 228 

Landsat7 ETM+ albedo data throughout the whole time series (i.e., 2012-2018).  229 

J = min{∑ [�����(x, y, d) − W(x, y)������_�� �����(d)]��
��� }     (6) 230 

Using the ordinary least-squares (OLS) algorithm, the vector of coefficients W can 231 

be obtained by minimizing the cost function.  232 

W(x, y) = [�����_�� �����
� �����_�� �����]

�������_�� �����
� �����(x, y)    (7) 233 

After the upscaling coefficients were acquired, they were applied to in situ site 234 

measurements to simulate the in situ reporting of surface albedo over each Landsat7 235 

ETM+ pixel (��� ���� ���� ) within the coarse pixel: 236 

 ��� ���� ���� (�, �, �) = �(�, �)���� ����(�)               (8) 237 

Then the coarse pixel ground truth (  _in situ ref ) can be derived by aggregating all 238 

the ��� ���� ���� within the coarse pixel using the point spread function (PSF) of the 239 

MODIS albedo characterized by Peng et al. (2015). 240 
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        (9) 241 

where � denotes the spatial extent of the coarse pixel, and ����  represents the PSF.   242 

As shown in Eq. (8-9), it can be seen that the upscaling coefficients are time-243 

independent and can be applied to in situ measurements throughout the entire time 244 

series under the condition that there are no sudden changes such as wildfires and 245 

deforestation on the land surfaces. It is noteworthy that a high-resolution albedo map is 246 

no longer a prerequisite for the practical upscaling process once the upscaling 247 

coefficients have been obtained. 248 

 249 

3.2 The evaluation of upscaling models and pixel scale ground truth 250 

3.2.1 The evaluation of the upscaling model 251 

As explained above, the key to the upscaling method is to obtain upscaling 252 

coefficients based on 30-meter Landsat7 ETM+ albedo data from 2012 to 2018. Hence, 253 

the accuracy of the upscaling model is highly dependent on the performance of the 254 

upscaling coefficients. Inspired by the evaluation method proposed by Wu et al. (2016), 255 

the accuracy of upscaling coefficients were assessed using the Landsat7 ETM+ albedo 256 

data from 2019 to 2021. The upscaling results with the upscaling coefficients can be 257 

determined with the Eqs. (10-11). The reference value on the coarse pixel scale is the 258 

aggregated Landsat7 ETM+ albedo at the 500 m resolution as recommended by Wu et 259 

al. (2016) (Eq. (12)). 260 

������ (�, �, �) = �(�, �)������(�)               (10) 261 

 262 

( , )

( , )

( , ) ( , , )
( )

( , )
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upscaling

PSFx y D

f x y x y d
d

f x y












               (11) 263 

( , )

( , )

( , ) ( , , )
( )

( , )

PSF ETMx y D

reference

PSFx y D

f x y x y d
d

f x y












               (12) 264 

where ������ is the reporting of surface albedo over each Landsat7 ETM+ pixel based 265 

on the Landsat7 ETM+ pixel albedo corresponding to the in situ sites and the upscaling 266 
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coefficients. upscaling denote the upscaling results and reference represent the reference value. 267 

The similarity and consistency between the upscaling  and reference  were evaluated 268 

by three metrics: bias, coefficient of determination (R2), and root-mean-square error 269 

(RMSE).  270 

RMSE = �∑ (����������(d) − ����������(d))�/L�
���             (10) 271 

Bias = ∑ (����������(d) − ����������(d))/L�
���                 (11) 272 

R =
∑ (����������(�)�����������

���������������)(����������(�)�����������
���������������)�

���

[∑ (����������(�)�����������
���������������)� ∑ (����������(�)�����������

���������������)��
���

�
��� ]�/�    (12) 273 

3.2.2 Assessment of pixel scale ground truth 274 

The way of evaluating the pixel scale ground truth is similar to that of the upscaling 275 

model. Namely, the accuracy of  _in situ ref  was assessed through the comparison with 276 

reference . Furthermore, the performance of the pixel scale ground truth is also compared 277 

to that of single in situ site measurements. To eliminate the influence of the magnitude 278 

of surface albedo on accuracy indicators, the relative root-mean-square error (RRMSE) 279 

was used here, which is defined as the ratio of RMSE to the mean value of surface 280 

albedo on the coarse pixel scale. 281 

RRMSE =
����

��� ����_���
�����������������  × 100%                (13) 282 

where ��� ����_���
�������������� represents the mean value of coarse pixel-scale albedo truth, and L 283 

denotes the length of the temporal sequence of data. 284 

4. Results and Discussion 285 

4.1 The performance of the upscaling model 286 

The performance of the upscaling coeffcieints has been comprehensively 287 

evaluated over the 368 in situ sites. The wide spread of in situ sites across different 288 

elevations, different land cover types, and different degrees of spatial heterogeneity can 289 

ensure the objectivity of the evaluation results. To show the agreement between 290 

upscaling and reference more intuitively, we present the scatterplots between them in Fig. 291 

2. As shown in Fig. 3, the scatterplots between upscaling  and reference  are generally 292 

distributed around the 1:1 line, with R2 close to 0.9. The upscaling coefficients show no 293 
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systematic error, indicated by the biases close to 0. However, the performance of the 294 

upscaling models is site dependent. For instance, the accuracy of the upscaling results 295 

over the US-Ha2 site obviously outperforms that of the IT-Tor site (Fig. 2(c vs. f)). To 296 

fully understand the performance of upscaling coefficients in different conditions, the 297 

accuracy indicators of the upscaling coefficients throughout these 368 in situ sites were 298 

summarized as the histograms (Fig. 3). 299 

 300 

Figure 3. The scatter plots between the upscaling results with the upscaling models and the coarse pixel 301 

scale reference. Only parts of the results are shown for conciseness. Specifically, only one in situ site is 302 

shown for each land cover type. 303 

Based on the results presented in Fig. 4, it can be seen that the overall accuracy of 304 

the upscaling coefficients is satisfactory. The biases are concentrated in 0, and more 305 

than 90% of them are within the range of ±0.02 (Fig. 4(b)). The highest density of R2 306 

is between 0.9 and 1 as shown in Fig. 4(c), and only a small part of the sites show a 307 

relatively small R2 of lower than 0.8 but larger than 0.5. Nevertheless, it should be noted 308 

that those sites exhibit a more scattered distribution of RMSE values, with a maximum 309 

of 0.1 and a minimum of 0.01 (Fig. 4(a)). The highest density is between 0.03 and 0.05 310 

for RMSE.  311 
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 312 

Figure 4. Distribution of RMSE (a), Bias (b), and R² (c) of the upscaling coefficients. The histograms 313 

presented here combine the results of the 368 in situ sites. 314 

Given the fact that the accuracy of the upscaling models shows great variability, it 315 

is necessary to explore the influence factors on the performance of the upscaling models. 316 

In this study, the effect of land cover type, elevation, and spatial heterogeneity were 317 

considered. The influence of spatial heterogeneity on the accuracy of the upscaling 318 

model is displayed in Fig. 5. The RMSE exhibits a significant positive correlation with 319 

spatial heterogeneity (Fig. 5(a)), with superior performance often observed in areas with 320 

lower spatial heterogeneity. Similarly, the R2 of different sites typically decreases with 321 

the increase of spatial heterogeneity (Fig. 5(b)). It is worth noting that when the spatial 322 

heterogeneity exceeds 0.1, the model's stability fluctuates considerably, indicated by 323 

the larger height of the boxplots of RMSE and R2. Based on these results, it can be seen 324 

that spatial heterogeneity has enormous implications for the performance of the 325 

upscaling models. One possible reason is that the assumption of a linear relationship 326 

between the subpixel albedo of other locations and the subpixel albedo containing the 327 

in situ site cannot be satisfied over the surface with large spatial heterogeneity. 328 

 329 

Figure 5. Boxplots showing the dependence of RMSE (a) and R² (b) of the upscaled albedo on spatial 330 

heterogeneity. Three different degrees of spatial heterogeneity are marked by different colors. 331 
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The variation of RMSE and R2 of upscaling models with elevation is shown in Fig. 332 

6. It is interesting to see that the upscaling model presents the highest accuracy for 333 

elevations below sea level, with the lowest RMSE around 0.3 and the highest R2 334 

exceeding 0.95. By contrast, the model's performance was the worst for elevations 335 

above 2500 meters, displaying the highest RMSE and the lowest R2. However, for the 336 

areas with elevation between 0 m and 2500 m, the variation trend of RMSE and R2 with 337 

elevation is not obvious. For instance, a slightly decreasing trend can be found as 338 

elevation increase from 0-200 m to 500-1500 m. But a slight increasing trend appears 339 

as elevation increase from 500-1500 m to the area above 2500 m. Except for the areas 340 

below 0 m, both the RMSE and R2 show a wide fluctuation range, indicated by the large 341 

height of their boxplots. These results demonstrate that the accuracy of the upscaling 342 

model is controlled by many other factors. The good performance of the upscaling 343 

model over the area below sea level may be attributed to the small spatial heterogeneity 344 

as shown in Fig. 7. It can be found that the area below sea level is featured by small 345 

spatial heterogeneity less than 0.1. 346 

 347 

Figure 6. The variations of RMSE (a) and R²(b) of with elevation. 348 

As illustrated in Fig. 7, it is evident that the RMSE exhibits a noticeable upward 349 

trend with increasing spatial heterogeneity at each elevation level. This suggests that 350 

spatial heterogeneity plays a dominant role in determining the performance of the 351 

upscaling models.. Nevertheless, the influence of spatial heterogeneity seems to be 352 

related to the elevation. From Fig. 7(a), it can be seen that the difference in RMSE 353 

between different spatial heterogeneity levels tends to be larger with the increase of 354 

elevation. A similar phenomenon can be found in R2. For each specific level of spatial 355 

heterogeneity, the variation trend of RMSE and R2 with elevation is not the same. For 356 

areas with small spatial heterogeneity (<0.1), their variation trend is not significant. By 357 

contrast, For the area with strong spatial heterogeneity (>0.3), the increasing/decreasing 358 

trend of RMSE/R2 with elevation is obvious, especially for the area above 200 m.    359 
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 360 

 361 

Figure 7. The plots show combined results of the RMSE (a) and R²(b) variations based on elevation and 362 

spatial heterogeneity. 363 

 364 

Figure 8. The variations in RMSE (a) and R²(b) are dependent on landcover, different colors refer to the 365 

fifteen different land cover types.  366 

The influence of land cover types on the accuracy of the upscaling model is 367 

displayed in Fig. 8. It shows that the model's accuracy is relatively poor on EBF, with 368 

most of the RMSEs exceeding 0.05 and R2 below 0.90. By contrast, the model performs 369 

best on bare land (BSV), with the lowest RMSE close to 0.02 and a relatively higher 370 
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R2 around 0.97. The accuracy of the model over the remaining surface cover types was 371 

similar, with RMSE and R2 values around 0.05 and 0.90, respectively. The boxplots of 372 

RMSE at URB, CVM, and BSV present a narrow range of values, indicating a relatively 373 

stable model performance. Conversely, the boxplots of the RMSE at ENF and EBF 374 

show a large range of values, indicating significant variability in model performance in 375 

these areas. In fact, the influence of land cover types is also associated with the effect 376 

of spatial heterogeneity. As shown in Fig. 9, the BSV is featured by small spatial 377 

heterogeneity. By contrast, a considerable number of sites over EBF show a strong 378 

spatial heterogeneity.  379 

 380 

Figure 9. The plots show combined results of the RMSE (a) and R²(b) variations based on land cover 381 

and spatial heterogeneity. 382 

As shown in Fig. 9(a), the RMSE of the upscaling model basically presents an 383 

increasing trend with spatial heterogeneity over each land cover type, further indicating 384 

the dominant role of spatial heterogeneity in determining the accuracy of the upscaling 385 

model. The outliers at OSH, URB, CVM, and WAT are attributed to the small number 386 

of sites with relatively larger spatial heterogeneity. Nevertheless, the influence of spatial 387 

heterogeneity show dependence on land cover type, which is most significant on GRA.  388 

4.2  The accuracy of the pixel scale ground truth 389 

Since there are a considerable number of in situ sites, the accuracy of pixel scale 390 
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ground truth was summarized as the boxplots (Fig. 10). For comparison purposes, the 391 

errors of single site measurements when they were directly used as the pixel scale 392 

reference were also calculated and summarized as the boxplots. It can be seen that the 393 

errors of pixel scale ground truth show a slight variation with spatial heterogeneity, with 394 

the median RRMSE ranging from 29.44 % to 31.51% and then to 29.35 %, resulting in 395 

the overall RRMSE of 29.89 %. It is important to note that this variation pattern is not 396 

the same as the accuracy of the upscaling model, which shows a monotonous decrease 397 

trend with the increase of spatial heterogeneity. The wide range of the boxplots shows 398 

that the accuracy of the pixel scale ground truth is also influenced by other factors.    399 

Indeed, the errors of the pixel scale ground truth are not negligibly small. 400 

Nevertheless, its accuracy is consistently better than the single site measurements over 401 

the surfaces with different levels of spatial heterogeneity as shown in Fig. 10. The 402 

smaller RRMSE of pixel scale ground truth (29.89 % vs. 33.34 %) indicates that this 403 

dataset can improve the accuracy of pixel scale reference data a lot compared to the 404 

single site measurements. Nevertheless, the degree of the improvement depends on the 405 

situation, which is the most significant over the sites with the strongest spatial 406 

heterogeneity, with the RRMSE decreasing from 36.62 % to 29.35 %. The in situ sites 407 

with medium spatial heterogeneity follow, with the RRMSE decreasing from 35.12 % 408 

to 31.51 %. The improvements are the smallest over the sites with the smallest spatial 409 

heterogeneity, with the RRMSE decreasing from 32.69 % to 29.44 %. Hence, it can be 410 

concluded that the degree of improvements of this dataset shows an increasing trend 411 

with spatial heterogeneity. Furthermore, the accuracy of the pixel scale ground "truth" 412 

dataset is more stable than that of the single site measurements, indicated by the smaller 413 

height of the boxplots of the former. 414 
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 415 

Figure 10. The boxplots of RRMSE of pixel scale ground truth and single site measurements. The 416 

boxplots are categorized by different degrees of spatial heterogeneity and overall accuracy. The median 417 

of the boxplots is indicated by the numbers around the plots.  418 

The aforementioned results confirm the efficacy of our pixel scale ground "truth" 419 

dataset in different scenarios, which is superior to single site measurements, whether 420 

for the sites with higher or lower spatial heterogeneity. The improvement of this dataset 421 

is more significant over the heterogeneous sites. Hence, it is highly helpful over 422 

heterogeneous surfaces in the validation or bias correction of satellite albedo products. 423 

4.3 The usage of the pixel scale ground "truth" dataset 424 

Validation is important for both the satellite product producers and end users as it 425 

provides a quantitative evaluation of the advantage and disadvantages of satellite 426 

products. However, in situ measurements, locations, coverage, scaling, and 427 

representation, are rather diverse, resulting in a different impression of accuracy. 428 

Consequently, most of the validation results are not directly comparable, which further 429 

limits the potential utility of satellite products. As pointed out by GCOS, one possibility 430 

for addressing this challenge is through a unified and systematic validation based on a 431 

unified, standard, and consistent reference dataset. The pixel scale ground truth was 432 

obtained through a standardized operational procedure based on a large number of in 433 

situ sites’ measurements distributed across the globe. Such standardization enables the 434 

fair comparison between the accuracy of different satellite products of the same ECV,  435 

thus providing a foundation for the coordinated utilization of diverse satellite albedo 436 

products and maximizing their potential capabilities. Fig. 11 presents an example for 437 

https://doi.org/10.5194/essd-2023-220
Preprint. Discussion started: 12 July 2023
c© Author(s) 2023. CC BY 4.0 License.



18 
 

the validation of MCD43A3 V0061 based on this pixel scale ground dataset. 438 

 439 

Figure 11. The scatter plots between the MCD43A3 and pixel scale ground truth (green dots) as well as 440 

the scatterplots between CDF-corrected MCD43A3 and pixel scale ground truth (brown dots).  441 

Apart from validation, the pixel scale ground "truth" dataset can also be used as a 442 

reference to correct the bias of satellite albedo products. There have been many kinds 443 

of bias correction models (Wang et al., 2022). In this study, the CDF (cumulative 444 

distribution function) method (Calheiros et al., 1987) was utilized to correct the bias in 445 

MCD43A3 V0061 for example purposes. As shown in Fig. 10, the bias correction 446 

generally improves the accuracy of satellite albedo products, and the improvement is 447 

particularly significant for regions with strong heterogeneity (Fig. 10(d-f)). Hence, it is 448 

reasonable to consider that this dataset has the potential to further improve the quality 449 

of satellite albedo products, particularly in regions with strong surface heterogeneity. 450 

5. Data availability 451 

The processed coarse pixel scale ground "truth" dataset is openly accessible and 452 

can be obtained from Zenodo (https://doi.org/10.5281/zenodo.8008455; Pan et al., 453 

2023). The dataset files are available in the machine-readable data format (.tab) and 454 

have been conveniently organized into separate folders for Ameriflux, Euroflux, BSRN, 455 

SURFRAD, HiwaterWSN, and Huailai station, facilitating easy accessibility and 456 
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utilization. 457 

6. Conclusion 458 

Both validation and correction of remote-sensing albedo products are essential to 459 

promote the rational utilization of satellite albedo products in various scientific 460 

applications. Typically, in situ single site-based albedo measurements with a 461 

widespread are the backbone of validation and correction. However, since satellite-462 

based albedo and tower-based albedo are generated at different spatial scales, direct 463 

comparison is only valid over specific homogeneous land surfaces. Nevertheless, 464 

spatial heterogeneity is a basic feature of most land surfaces, resulting in the limited 465 

spatial representativeness of single site measurements. Thus, the most critical aspect of 466 

validation/ correction is obtaining the pixel scale ground truth albedo based on in situ 467 

site measurements. 468 

However, the ways of obtaining pixel scale ground truth are rather diverse 469 

regarding the in situ measurements, locations, coverage, scaling, and representation, 470 

resulting in different accuracy of pixel scale "truth" dataset. Consequently, most of the 471 

validation/correction results are not directly comparable, which further limits the 472 

further use of satellite products. A suite of continuous, independent, and representative 473 

pixel scale ground "truth" dataset of surface albedo is needed. To the best of our 474 

knowledge, there is still a lack of such a kind of dataset with global coverage. To fill 475 

this gap, we have developed a coarse pixel-scale ground truth albedo dataset based on 476 

ground measurements of 368 in situ sites from the sparsely distributed observation 477 

networks (e.g., SURFRAD, BSRN, and Fluxnet) and an upscaling model specified for 478 

the single site measurements.  479 

The applicability of the upscaling model to the in situ site measurements was first 480 

comprehensively on a global scale. The overall accuracy of the upscaling coefficients 481 

is satisfactory, with the biases concentrated around 0. 90 % of these biases are within 482 

the range of ±0.02. The influence factors on the performance of the upscaling models 483 

were also explored. Spatial heterogeneity plays a dominant role in determining the 484 

performance of the upscaling models. But the influence of spatial heterogeneity is 485 

related to the elevation and land cover type, which tends to be larger with the increase 486 

of elevation and over the land cover type of GRA. 487 

The accuracy of the pixel scale ground "truth" dataset was also comprehensively 488 

evaluated. The errors of pixel scale ground truth show a slight variation with spatial 489 

heterogeneity, with the median RRMSE ranging from 29.44 % to 31.51 % and then to 490 
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29.35 % over the surfaces with small, medium, and large spatial heterogeneity, 491 

respectively, resulting in the overall RRMSE of 29.89 %. Although the errors of the 492 

pixel scale ground truth are not negligibly small, its accuracy is consistently better than 493 

the single site measurements over the surfaces with different levels of spatial 494 

heterogeneity. The smaller RRMSE of pixel scale ground truth compared to the single 495 

site measurements (29.89 % vs. 33.34 %) indicate that this dataset can improve the 496 

accuracy of pixel scale reference data a lot. The degree of improvements of this dataset 497 

shows an increasing trend with the spatial heterogeneity. Furthermore, the accuracy of 498 

the pixel scale ground "truth" dataset is more stable than that of the single site 499 

measurements. 500 

The pixel scale ground truth was obtained through a standardized operational 501 

procedure. Such standardization enables the fair comparison between the accuracy of 502 

different satellite products of the same ECV. This newly introduced dataset serves as a 503 

remedy to the inadequacy and inconsistency of reference data currently employed in 504 

validation/correction efforts, thereby paving the way for the coordinated use of various 505 

satellite albedo products and unlocking the full capacity of different albedo products. 506 
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