Response to comments

Paper #: essd-2023-220
Title: A coarse pixel scale ground “truth” dataset based on the global in situ site measurements to support validation and bias correction of satellite surface albedo products

Journal: Earth System Science Data

Thank you for providing us with so many valuable suggestions and they do help improve the paper. According to the reviewers’ comments and suggestions, we revised the paper carefully and tried to give satisfactory answers to the reviewers’ questions. The corresponding modifications are highlighted in red font in the revised paper.

The summaries of the revision for this paper are as follows:

First, we have reorganized the data and added all available sites. Moreover, parts of results and discussion, main findings and conclusion, as well as the abstract were rewritten based on the complete dataset.

Second, the necessity for upscaling models was further elucidated by integrating the work of other researchers in Introduction and Conclusion. Furthermore, we discussed the applicability of upscaling models at various sites and provided an objective statement about the role and significance of the pixel scale ground “truth” dataset. Its relationship with existing satellite albedo products and ground measurements was also explained.

Third, we have added the quantification of uncertainty of upscaling models for each site in Section 4.1. Moreover, we have described how we addressed the issue of varying footprint sizes at distinct sites, as well as the rationale for implementing ETM+ imagery.

Fourth, we have explained the spatial and temporal resolution of the different data used in the methodology and conclusions, and added a detailed description of the illumination geometry, including black-sky albedo, and white-sky albedo, for the albedo products used. Additionally, we have clarified the sample size for the boxplots and re-examined the implications regarding sample size in the Results and Discussion section.

Fifth, we have explained the reason for the methodology Section being similar to those of Wu et al.(2020), and emphasized the importance of the content of our work.

Sixth, we have corrected typing errors; complemented supporting evidence and literature; improved charts and figures; and corrected spelling and grammatical errors in this paper.

For the specific comments for each reviewer, we have made a detailed reply as follows.

Reviewer #1

The dataset based on upscaling could be very useful for the community, as it is a huge compilation of data from 368 sites mainly distributed in North hemisphere (mainly North of America and Europe). However, I miss a representativeness over Australia, where there are already available a large quantity of networks
providing *in situ* albedo measurements.

Re: Great thanks for the positive comments. We have added the *in situ* albedo measurements over Australia in the revised manuscript. Moreover, the *in situ* measurements over Siberia and other regions with effective measurements were also included in the dataset. The number of *in situ* sites increased to 416 for the dataset. The distribution of these *in situ* sites is shown as follows:

![Network](image)

Figure 1: The distribution of the 416 *in situ* sites over different land cover types.

Optimism about the fact of the need for upscaling techniques should be toned down, as it is not a need as community-agreed validation protocols recommend the use of *in situ* tower measurements, as they are the real ‘truth’. The upscaling approach could be useful for heterogeneous areas, allowing increasing the representativeness of the sampling for direct validation at global scale.

Re: We are sorry for not making it clear to readers. As pointed out by the reviewer, the upscaling approach is useful for heterogeneous areas as it increases the representativeness of the sampling for direct validation. But it is not necessary over homogeneous land surfaces because *in situ* measurements are spatially representative in this case, and the utilization of upscaling model does not bring benefits as the upscaling model itself has uncertainty.

In order to clarify this point, we have added a paragraph as “It is important to note that the absolute truth on the coarse pixel scale is unattainable due to the limitations in instruments and measurement methods as well as the uncertainty of the upscaling model (Wu et al., 2019; Wen et al., 2022). Instead, the relative truth can be used to approximate the absolute truth. What can be done is to improve the accuracy of pixel scale relative truth (also denoted as “truth”) as much as possible. For instance, the *in situ* measurements can be directly used as the pixel scale reference over homogeneous surfaces or in the case
that the satellite acquisition and in situ measurement footprints are similar, and the upscaling model is not necessary as it has its own source of uncertainty. But the upscaling model is useful for heterogeneous areas when in situ measurement footprints are less than satellite pixel size, because it increases the representativeness of the sampling for direct validation. The accuracy assessment results of pixel scale ground “truth” dataset demonstrate that the accuracy of reference data can be enhanced by 17.09 % over the regions with strong spatial heterogeneity. However, the degree of improvement with this dataset displays a decreasing trend as the reduction of spatial heterogeneity. At a global scale, the pixel scale ground “truth” dataset enhances the accuracy of pixel scale reference data in general, with the overall RRMSE decreased by 6.04 % compared to in situ single site measurements.” in **Conclusion**.

However, this approach introduces other sources of uncertainties, as the uncertainty of satellite high-resolution input is propagated and higher than in situ measurements. I miss this aspect in the dataset (the uncertainty should be provided).

Re: It is true that the upscaling model has its own source of uncertainty. As recommended by the reviewer, we have added the information on the uncertainty of the upscaling approach for each site in **Section 4.1** as follows. The specific values of the uncertainty of the upscaling model have been shown in the file at the link to the dataset, where each site is quantified separately.
To be compliant with the concept of ‘fiducial reference data’, the uncertainties should be quantified and provided along with the reference dataset for conformity testing of satellite products.

Re: Thanks very much for this good suggestion. The uncertainty of the dataset has been quantified and provided along with the reference dataset as we explained above.

It is well-known that upscaling introduces additional sources of uncertainties. The next generation of satellites will reduce the spatial resolution of global coarse resolution products, allowing the use of point \textit{in situ} data. Then, it should be discussed the originality of this datasets for future applications.

Re: It is true that the next generation of satellites will allow the generation of high-resolution products which are comparable to \textit{in situ} data. But the current coarse resolution products record the information in the past and will serve as an important component to form the long time series of satellite data, which is quite important to study global change from a long-term perspective. Hence, this dataset is still useful to
validate or correct the errors of these coarse resolution satellite albedo products.

Based on the validation results of the method, the upscaling maps show similar uncertainty (RMSE) than existing albedo satellite products when they are compared with direct in situ measurements. Then, the upscaling method provides a useful approach to increase the number of sample for direct validation purpose but it cannot be considered as real ‘truth’. This should be clearly demonstrated.

Re: Yes, our dataset is relative truth, not absolute truth. In fact, the absolute truth on the coarse pixel scale is unattainable due to the limitations in instruments and measurement methods as well as the uncertainty of the upscaling model (Wu et al., 2019; Wen et al., 2022). Instead, the relative truth can be used to approximate the absolute truth. This point has been clearly demonstrated in the revised manuscript as “It is important to note that the absolute truth on the coarse pixel scale is unattainable due to the limitations in instruments and measurement methods as well as the uncertainty of the upscaling model (Wu et al., 2019; Wen et al., 2022). Instead, the relative truth can be used to approximate the absolute truth. What can be done is to improve the accuracy of pixel scale relative truth (also denoted as ‘truth’) as much as possible. For instance, the in situ measurements can be directly used as the pixel scale reference over homogeneous surfaces or in the case that the satellite acquisition and in situ measurement footprints are similar, and the upscaling model is not necessary as it has its own source of uncertainty. But the upscaling model is useful for heterogeneous areas when in situ measurement footprints are less than satellite pixel size, because it increases the representativeness of the sampling for direct validation.” in Conclusion.

Additionally, I recommend reviewing the use of the English language along the manuscript. The presentation of the methods and results should be presented more clearly. It would be necessary to specify which datasets, quantities and resolutions (spatial and temporal) used in each step.

Re: Thanks for your nice suggestion. The language of the paper has been polished by a native speaker. Regarding the specific information about the dataset used in each step, we have summarized this information as tables.

Table 1. The information on the data used in the upscaling process

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Meaning</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_{ETM+, in situ}$</td>
<td>ETM+ pixel albedo time series corresponding to in situ site</td>
<td>30 m</td>
<td>Daily data throughout the whole time series (i.e., 2012-2018).</td>
</tr>
<tr>
<td>θ_{ETM+}</td>
<td>ETM+ pixel albedo at other areas within a coarse pixel</td>
<td>30 m</td>
<td>Daily data throughout the whole time series (i.e., 2012-2018).</td>
</tr>
<tr>
<td>$\theta_{in situ, ETM+}$</td>
<td>In situ reporting of surface albedo for each ETM+ pixel within a coarse pixel</td>
<td>30 m</td>
<td>Daily data throughout the whole time series (i.e., 2000-2021).</td>
</tr>
</tbody>
</table>
In situ albedo measurement with varying spatial resolution but near the ETM+ pixel scale. Daily data throughout the whole time series (i.e., 2000-2021).

Table 2. The information on the data used in the evaluation of the upscaling model

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Meaning</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{ETM+}</td>
<td>ETM+ simulated pixel albedo based on upscaling coefficients and θ_{ETM+}</td>
<td>30 m</td>
<td>Daily data throughout the whole time series (i.e., 2000-2021).</td>
</tr>
<tr>
<td>θ_{ETM+}</td>
<td>the ETM+ pixel albedo containing in situ site</td>
<td>30 m</td>
<td>Daily data throughout the whole time series (i.e., 2019-2021).</td>
</tr>
<tr>
<td>θ_{upscaling}</td>
<td>upscaling results based on the θ_{ETM+} and upscaling coefficients</td>
<td>500 m</td>
<td>Daily data throughout the whole time series (i.e., 2019-2021).</td>
</tr>
<tr>
<td>θ_{reference}</td>
<td>reference coarse pixel scale albedo</td>
<td>500 m</td>
<td>Daily data throughout the whole time series (i.e., 2019-2021).</td>
</tr>
</tbody>
</table>

Table 3. The information of the data used in the assessment of coarse pixel scale ground “truth”

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Meaning</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{in situ, ref}</td>
<td>coarse pixel scale ground “truth” dataset</td>
<td>500 m</td>
<td>Daily data throughout the whole time series (i.e., 2000-2021).</td>
</tr>
<tr>
<td>θ_{reference}</td>
<td>reference coarse pixel scale albedo</td>
<td>500 m</td>
<td>Daily data throughout the whole time series (i.e., 2000-2021).</td>
</tr>
</tbody>
</table>

Specific comments

What do you mean by ‘bias correction’? In situ measurements support validation of satellite products, providing useful data for bias quantification of satellite products. I am not sure how in situ measurement could be used to correct the bias of a satellite product.

Re: “Bias correction” is a statistical technique used in data analysis. It is employed to rectify systematic errors, commonly known as biases, in a dataset. These errors can stem from several sources, such as sensor inaccuracies, measurement methods, or modeling assumptions. The objective of bias correction is to enhance data precision and reliability by eliminating or minimizing these systematic errors.
Since the pixel scale ground “truth” dataset has been established, on one hand, it can be used to assess the errors of satellite products; on the other hand, it can correct these errors through the models such as random forests, cumulative distribution function, and Kalman filter. For further reading on bias correction, the related articles can be seen below:

References:

Line 13: Same comment as before in regard to ‘bias correction’. Justify the use of the ‘correction term’ or modify by bias quantification.

Re: Explained in the previous question.

Line 14: What satellite measurements are you referring? Low, medium or high (decametric) instruments.

Re: It refers to satellite data with low spatial resolution.

Line 16: Justify the need for upscaling. If satellite acquisition and in situ measurement footprints are similar the upscaling introduces additional sources of uncertainties.

Re: It is true that the upscaling introduces additional sources of uncertainties if satellite acquisition and in situ measurement footprints are similar. In the revised manuscript, this sentence has been revised as “The results demonstrate that using this dataset in validation outperforms the direct comparison between satellite and in situ site measurements over heterogeneous surfaces when in situ measurement footprints are less than satellite pixel size.”.

Furthermore, we have made it clear that the upscaling model is not necessary over homogeneous surfaces or in the case that the satellite acquisition and in situ measurement footprints are similar in Conclusion as “…… the in situ measurements can be directly used as the pixel scale reference over
homogeneous surfaces or in the case that the satellite acquisition and in situ measurement footprints are similar, and the upscaling model is not necessary as it has its own source of uncertainty. But the upscaling model is useful for heterogeneous areas when in situ measurement footprints are less than satellite pixel size.

Lines 55-56: The community-agreed surface albedo validation protocol (CEOS Working Group on Calibration and Validation – Land Product Validation subgroup) disagreed with this affirmation. Ground measurement can be directly used to validate satellite pixels. The current community-agreed approach is based on the evaluation of the spatial representativeness of ground measurement (Román et al., 2010, 2009).

Re: It is true that the ground measurement can be directly used to validate satellite pixels after proving that in situ measurements are spatially representative. However, the representative site are only limited to a few locations on the globe and cover discrete time periods, which cannot support a comprehensive validation and bias correction over a wide range of conditions (Loew et al., 2016). Upscaling procedure is necessary for heterogeneous areas when in situ measurement footprints are less than satellite pixel size. Hence, our dataset can be considered as an important addition to the reference data on the coarse pixel scale. In order to clarify this point, we have added the sentence as “Currently, a community-based validation tool, such as SALVAL (Sánchez-Zapero et al., 2023), could provide a framework for undertaking performance assessments through well-defined and uniform procedures, metrics and reference observations for all involved datasets, resulting in increased comparability, in addition to the ability to import new product datasets. Our dataset, obtained through standardized operational procedures, permits expanding established datasets to spatially underrepresented sites.” in Conclusion.

Lines 56-57: ‘Limited by the means and methods of ground measurement, the absolute truth on the coarse pixel scale cannot be obtained.’ Justify this sentence.

Re: This sentence has been removed from the paper. Instead, this point has been clarified in Conclusion as “It is important to note that the absolute truth on the coarse pixel scale is unattainable due to the limitations in instruments and measurement methods as well as the uncertainty of the upscaling model (Wu et al., 2019; Wen et al., 2022). Instead, the relative truth can be used to approximate the absolute truth.”.

The reason that the absolute truth on the coarse pixel scale being unattainable can be explained from the following aspects. First, in situ measurements inevitably suffer from errors (random errors and systematic errors). The systematic errors can be corrected through calibration. While the random error can be reduced with repeated measurements, the repeatability in the exactly same conditions is hard to implement in the natural environment. Second, the scale of in situ measurements is generally less than
Satellite pixel size and lacks representativeness due to spatial heterogeneity. Third, the upscaling procedure suffers from its own source of uncertainty.

Lines 65-67: ‘However, in situ measurements cannot be directly used as the coarse pixel scale truth given that the footprint of in situ sites is far less than the scale of a coarse pixel.’ Please justify this or rephrase this sentence. In situ measurement footprint depends on the tower height. Depending of tower height and satellite spatial resolution they can be compared.

Re: This sentence has been rephrased as “However, in situ measurements cannot be directly used as the coarse pixel scale truth if the footprint of in situ sites (depending on tower height) is far less than the scale of a coarse pixel.”

Lines 115-118: ‘These radiometers have been rigorously calibrated and continuously supervised to reduce systematic measurement errors (Jia et al., 2013; Wang et al., 2009; Zhou et al., 2016).’ Are you confident that all radiometers from 368 sites have been rigorously calibrated and continuously supervised? This is not the case based on the references you are providing.

Re: In fact, most of these radiometers have been rigorously calibrated and continuously supervised. To remove the effect of in situ measurement uncertainty caused by the lack of strict calibration or supervision, we have made a quality control of in situ measurements. The outliers have been removed. Furthermore, the possible effects of unstable lighting on flux measurements were also minimized by using the ratio of the mean upward radiation to the mean downward radiation around local solar noon (11:00–13:00) as suggested by Lin et al. (2022). In order to clarify this, we have added the sentence as “To reduce the possible effects of unstable lighting on flux measurements and align with satellite albedo products that generally report local solar noon albedo, in situ site measured albedo was calculated using the ratio of the mean upward radiation to the mean downward radiation around local solar noon (11:00–13:00) as suggested by Lin et al. (2022).” in Section 2.1.

Lines 118-120: Justify the use of measurement at the local solar noon.

Re: The reasons for using measurement at the local solar noon are as follows:

First, satellite albedo products such as MCD43A3 V061 typically provide local noon solar albedo;

Second, surface albedo (especially black-sky albedo) is sensitive to the sun zenith angle, and the temporal variation of surface albedo around local solar noon is minimal, which is helpful for the temporal match between in situ and satellite measurements.

To clarify this point, the corresponding part has been revised as “To reduce the possible effects of unstable lighting on flux measurements and align with satellite albedo products that generally report local solar noon albedo, in situ site measured albedo was calculated using the ratio of the mean upward radiation to the mean downward radiation around local solar noon (11:00–13:00) as suggested by Lin et al. (2022).” in Section 2.1.
The formula proposed to combine WSA and BSA used the diffuse light ratio, which is an approximation. The actual diffuse solar radiation should be used, as is the real model considering the actual environment (as you said), as considers the real atmospheric state.

Justify the use of this approximation, including the uncertainties introduced in this step. The limitations over snow targets should be also discussed.

I cannot find the formula used to calculate sky diffuse light ratio in the provided reference (Stokes and Schwartz (1994)). Please, use the right reference.

Re: The use of this approximation can be explained from the following aspects:

First, the in situ sites used in this paper cover a wide range of environmental conditions (geographic locations, atmospheric model, aerosol model, spatial homogeneity and heterogeneity, temporal variation characteristics). Hence, the input parameters for the physical models such as 6S and MODTRAN are difficult to be precisely set.

Second, the formula we employed is simple, in which the sky diffuse light ratio is merely a function of the solar zenith angle at local solar noon. Hence, it can be applied to all of these in situ sites.

Third, although the formula is an empirical function, it has been widely accepted and used in previous studies (An et al., 2022; Mao et al., 2022; Wang et al., 2014; Lewis and Barnsley, 1994). These right references have been used in the revised manuscript.

Regarding the limitations over snow targets, it is true that the underlying assumption of an isotropic distribution of the diffuse skylight cannot be fully satisfied, but it avoids the expense of an exact calculation while capturing the major part of the phenomenon (Pinker and Laszlo, 1992). Moreover, Lucht et al. (2000) also pointed out that the fraction of diffuse to total irradiation can be parameterized in a relatively simple way at least for moderate solar zenith angles. In order to clarify this point, we have added the sentence as “In this study, we approximated the proportion of diffuse irradiation as a function of the cosine of the solar zenith angle at noon using an empirical statistical equation (i.e., Eq. (3)). Although this equation is approximate, it avoids the excessive amount of calculation while capturing the major phenomenon (Pinker and Laszlo, 1992). In fact, this empirical function has been widely used by previous studies (An et al., 2022; Mao et al., 2022; Wang et al., 2014b; Lewis and Barnsley, 1994).” in Section 2.3.

References:

Not clear what definition of satellite product is used according to illumination geometry (black-sky, white-sky)? Please provide more details about that.

Re: The blue-sky albedo which encompasses both direct and diffuse components and denotes the land surface albedo under actual atmospheric conditions, was used in this study.

The MCD43A3 V061 product was used as an example of coarse-resolution satellite albedo products. This product provides local solar noon black sky albedo (BSA) and white sky albedo (WSA). The blue-sky albedo under the actual environment can be calculated as a linear combination of BSA and WSA through the proportion of diffuse irradiation. To clarify this point, we have revised the sentence as “The blue-sky albedo encompasses both direct and diffuse components, characterizing the albedo of the surface under actual atmospheric conditions. It can be expressed as a linear combination of BSA and WSA with an assumption of isotropic distribution of diffuse radiation. In this study, the following equation is used to calculate the MODIS blue-sky albedo.....” in Section 2.3.

The Landsat ETM+ albedo was used as an example of high-resolution albedo products. The method we employed directly calculates the blue-sky albedo. For clarification, we have revised the sentence as “In this study, we employed the following equation to calculate shortwave blue-sky albedo estimates.” in Section 2.1.

I miss a diagram clearly showing the process of the upscaling model.

Re: The process of the upscaling method is shown as follows.

lines 177-189: This part does not correspond to ancillary data. Here you are describing the spatial heterogeneity metric (std) that should be moved to the ‘methodology’ section.

Re: As suggested by the reviewer, the description of spatial heterogeneity metric (std) has been moved to the methodology section (i.e., Section 3.2.3).
Figure. Framework of the upscaling method.

However, since the paper was focused on the comprehensive evaluation of the upscaling model and the development of the pixel scale ground “truth” dataset, the flowchart of the upscaling method itself was not shown in the revised manuscript.

The performance of the upscaling model shows that the uncertainty (RMSE) of the upscaled maps is typically between 0.03 and 0.05, which is the typical uncertainty of the surface albedo coarse resolution satellite products (e.g., MCD43A3, GLASS, GlobAlbedo, C3S SPOT/VGT, C3S PROBA-V, C3S Sentinel-3). In conclusion, the uncertainty of the upscaled maps is similar to any other product and it is questionable its utility as a reference ‘ground-truth’.

Re: It is true that the upscaling model itself has errors because it suffers from its own source of uncertainty. Therefore, over homogeneous surfaces where in situ site measurements are spatially representative, using this upscaling model will bring no benefits or even counteract due to the errors of the upscaling model. Nevertheless, over the heterogeneous surface where in situ sites are lack of spatial representativeness, the benefits outweigh disadvantages. The accuracy assessment results of the coarse pixel scale ground “truth” dataset demonstrate that the accuracy of reference data can be enhanced by 17.09 % over the regions with strong spatial heterogeneity. However, the degree of improvement with this dataset displays a decreasing trend as the reduction of spatial heterogeneity. In order to clarify this point, we have added the paragraph “……For instance, the in situ measurements can be directly used as the pixel scale reference over homogeneous surfaces or in the case that the satellite acquisition and in situ measurement footprints are similar, and the upscaling model is not necessary as it has its own source of uncertainty. But the upscaling model is useful for heterogeneous areas when in situ measurement footprints are less than
The satellite pixel size, because it increases the representativeness of the sampling for direct validation. The accuracy assessment results of pixel scale ground “truth” dataset demonstrate that the accuracy of reference data can be enhanced by 17.09% over the regions with strong spatial heterogeneity in **Conclusion**.

As regards to the accuracy of the current coarse resolution surface albedo satellite products, their accuracy (between 0.03 and 0.05) is usually assessed over relatively homogeneous land surfaces. And the validation works over heterogeneous are still rare currently. The spatial scale mismatch over heterogeneous surfaces remains to be challenging to fully understand the overall accuracy of satellite products in different areas. Hence, our dataset can be considered as an important addition to the reference data on the coarse pixel scale over heterogeneous land surfaces.

It is not clear which albedo quantities are you comparing: albedo single site, albedo upscaling, reference? You should focus your discussion also based on the different albedo definitions of these quantities (blue-sky, black-sky, etc). It is not clear the spatial coverage of the study. You should clearly indicate the spatial resolution related to all datasets used in this section: albedo single site, albedo upscaling, reference.

Re: We are sorry for not making it clear to readers. In fact, it was blue-sky albedo that was used in this study.

The MCD43A3 V0061 product was used as an example of coarse resolution satellite albedo products. This product provides local solar noon black sky albedo (BSA) and white sky albedo (WSA). The blue-sky albedo under the actual environment can be calculated as a linear combination of BSA and WSA through the proportion of diffuse irradiation. To clarify this point, we have revised the sentence as “The blue-sky albedo encompasses both direct and diffuse components, characterizing the albedo of the surface under actual atmospheric conditions. It can be expressed as a linear combination of BSA and WSA with an assumption of isotropic distribution of diffuse radiation. In this study, the following equation is used to calculate the MODIS blue-sky albedo…” in **Section 2.3**.

The Landsat ETM+ albedo was used as an example of high-resolution albedo products. The method we employed directly calculates the blue-sky albedo. For clarification, we have revised the sentence as “In this study, we employed the following equation to calculate shortwave blue-sky albedo estimates.” in **Section 2.1**.

In situ blue-sky albedo was calculated using the ratio of the mean upward radiation to the mean downward radiation around local solar noon. To make this clear to readers, we have added the “blue-sky” in **Section 2.1**.

Regarding the spatial coverage of the study, the **in situ** sites are globally distributed as shown in Figure 1. The spatial resolution related to all datasets has been summarized as tables in the above.

The validation of MCD43A3 V0061 using pixel scale ground ‘truth’ is only presented for some sites. The
selection of these sites (and not others) should be justified. What is the reason of large differences (outliers) over CA-NS2, CA-LP1, IT-Tor? Additionally, I miss the overall figure using the whole dataset.

Re: In fact, the validation of MCD43A3 V0061 was merely presented as an example for the usage of pixel scale ground “truth”. Only parts of the sites were shown for conciseness. These sites are selected randomly for each land cover type with consideration of different degrees of spatial heterogeneity. The overall figure was not shown since the focus of this paper is not comprehensively assess the accuracy of satellite albedo products.

There already exist other initiatives, like GBOV (https://gbov.acri.fr/), providing similar datasets to that presented in this manuscript, and should be mentioned.

On the other case, during the manuscript there are comments related to lack of standardized methods and operational validation systems for albedo validation. In fact, the CEOS/WGCV LPV subgroup (https://lpvs.gsfc.nasa.gov/) is coordinating these activities. An operational validation system was recently endorsed by CEOS/WGCV LPV, which is called SALVAL (Sánchez-Zapero et al., 2023) and it allows albedo products to reach operational and globally representative validation results (CEOS LPV stage 4).

Access to SALVAL is available on https://calvalportal.ceos.org/salval

Re: Great thanks for the comment. As suggested by the reviewer, we have added a comment about the existing datasets and validation activities in Introduction as “It is important to note that the Copernicus Global Terrestrial Monitoring Service partners have instituted a centralized validation database known as the Copernicus Global Terrestrial Product Validation Ground-based Observation Dataset (GBOV, http://gbov.copernicus.acri.fr), providing direct access to the set of reference measurements. However, the Copernicus GBOV ground-based observation dataset merely comprises 20 stations that provide albedo reference data, and the scope of these reference data is inadequate to systematically evaluate remote sensing products globally. Thus, our collection of ground-based “truth”, which covers the widest spatial range and the longest time series on the coarse pixel scales, is essential to supplement the scientific efforts on existing albedo datasets and deliver a more precise and consistent albedo reference dataset on the coarse pixel scale for heterogeneous regions.” and Conclusion as “Currently, a community-based validation tool, such as SALVAL (Sánchez-Zapero et al., 2023), could provide a framework for undertaking performance assessments through well-defined and uniform procedures, metrics and reference observations for all involved datasets, resulting in increased comparability, in addition to the ability to import new product datasets. Our dataset, obtained through standardized operational procedures, permits expanding established datasets to spatially underrepresented sites.”.

Line 18: ‘in situ’ is not hyphenated. Please review the whole manuscript to homogenize ‘in situ’ term.

Re: This has been corrected in the revised manuscript.

Line 64: Remove ‘.’ before references
Re: I’ve revised the mistake in the article:

Line 145: ‘ith’?

Re: ‘ith’ typically represents a specific index or instance, For example, ‘α_5’ might denote the fifth satellite spectral band.