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Short summary. Using machine learning and linear unmixing, this paper produced rangeland 25 

health indicators: Landsat time series of land cover classes and vegetation fractional cover 

of photosynthetic vegetation, non-photosynthetic vegetation, and bare ground in arid and 

semi-arid Kenya, Ethiopia, and Somalia. This represents the first multi-decadal high-

resolution dataset specifically designed for mapping and monitoring rangeland health in 

the arid and semi-arid rangelands of this portion of Eastern Africa.  30 
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Abstract. Tracking environmental change is important to ensure efficient and sustainable natural 

resources management. Eastern Africa is dominated by arid and semi-arid rangeland 

systems, where extensive grazing of livestock represents the primary livelihood for most 

people. Despite several mapping efforts, Eastern Africa lacks accurate and reliable high-

resolution maps of rangeland health necessary for many management, policy, and research 35 

purposes. Earth Observation data offer the opportunity to assess spatiotemporal dynamics 

in rangeland health conditions at much higher spatial and temporal coverage than 

conventional approaches that rely on in-situ methods, while complementing their accuracy. 

Using machine learning classification and linear unmixing, we produced rangeland health 

indicators: Landsat-based time series from 2000 to 2022 at 30 m spatial resolution for 40 

mapping land cover classes (LCC) and vegetation fractional cover (VFC, including 

photosynthetic vegetation PV, non-photosynthetic vegetation NPV, and bare ground BG), 

two important data assets for deriving metrics of rangeland health in Eastern Africa. Due 

to scarcity of in-situ measurements in the large, remote, and highly heterogeneous 

landscape, an algorithm was developed to combine very high-resolution WorldView-2 and 45 

3 satellite imagery at < 2 m resolutions with a limited set of ground observations to generate 

reference labels across the study region using visual photo-interpretation. The LCC 

algorithm yielded an overall accuracy of 0.856 when comparing predictions to our 

validation dataset comprised of a mixture of in-situ observations and visual photo-

interpretation from very high-resolution imagery, with Kappa of 0.832; the VFC returned 50 

a R2 = 0.795, p < 2.2e-16, and normalized root mean squared error (nRMSE) = 0.123 when 

comparing predicted bare-ground fractions to visual photo-interpreted very high-resolution 

imagery. Our products represent the first multi-decadal high-resolution dataset specifically 
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designed for mapping and monitoring rangelands health in Eastern Africa including Kenya, 

Ethiopia and Somalia, covering a total area of 745,840 km2. These data can be valuable to 55 

a wide range of development, humanitarian, and ecological conservation efforts and are 

available at https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023) and Google Earth 

Engine (GEE; details in data availability section).  

 

1. Introduction 60 

Rangelands cover nearly half of the African continent land mass and support the livelihoods of 

tens of millions of households (Reid et al., 2008, Sayre et al., 2013). The productivity of these 

rangelands along with the human and livestock populations they sustain is significantly affected 

by land degradation due to soil erosion, cropland expansion, shrub encroachment resulting from 

heavy grazing and suppression of fires, as well as climate change (Barbier and Hochard 2018, 65 

Roques et al., 2001, Angassa and Oba, 2008, Wynants et al., 2019, Vetter 2005, Hoffman and 

Vogel 2008). Episodes of extreme climate events, in particular, drought, have led to emergency 

population migrations and humanitarian crises of historic proportions (Blackwell 2010). Improved 

understanding of the variation in rangeland health across space and over time is crucial for 

community development, ecological conservation, and humanitarian programming in the region.  70 

The extensive development of Earth Observation (EO) platforms has largely improved our 

understanding of ecosystems (Giuliani et al., 2020, Sudmanns et al., 2020). Long-term EO 

systems, such as the Landsat constellation, have provided valuable data to assess and accurately 

detect multiple ecosystem functions and patterns (Wulder et al., 2012, Loveland and Dwyer 2012, 

Williams et al., 2006). Further development of EO and analytics has allowed the integration of 75 
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multiple platforms into complex algorithms and workflows, benefiting from the ability of image 

data to scale at different spatial and temporal levels (e.g., AghaKouchak et al., 2015) and leading 

to paradigm shift from change detection to continuous monitoring at high resolution (Woodcock 

et al., 2020). These recent developments have led to much interest in applying EO and related 

analytics to rangeland ecology and management (e.g., Allred et al., 2021, Hill et al., 2020, Rigge 80 

et al., 2020, Fava and Vrieling 2021).  

Rangeland health has been conceptualized as framework of three fundamental attributes 

reflecting soil/site stability, and hydrologic function (Pellant et al. 2020). Historically, associated 

assessments have largely relied on in-situ methods for assessment. Recent scientific advances 

create an opportunity to map rangelands health using satellite imagery to monitor changes in 85 

rangeland health at ecologically meaningful scales for landscape planning and management 

(Allred et al., 2022). EO in these often-remote, arid and semi-arid regions becomes extremely 

valuable for its capacity to enable measurements in areas where data have never or rarely been 

collected on the ground. In addition, high-resolution (HR) remote sensing datasets can capture the 

fine spatial heterogeneity and the temporal dynamics that are key to informing management 90 

decisions but are also exceedingly difficult to discern at scale using conventional, ground-based 

monitoring systems (Zhou et al., 2020).  

EO-based data have been used to inform on rangeland health since the early days of EO 

programs (e.g., Landsat 1 program: Haas et al., 1975, Gaetz et al., 1976). Understanding of 

rangeland ecosystems relies on information about the specific composition of the various 95 

vegetation communities within these ecosystems, oftentimes over large spatial extents, such as the 

Great Plains in North America (Reeves and Baggett 2014). Composition changes over time are 

important to track trajectories such as bush encroachment and soil degradation, impacts on grazers, 
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etc. (Ghafari et al., 2018, Liao et al., 2018). HR thematic mapping of rangeland ecosystem can 

help explain key interannual variability in ecological processes such as water changes (Cooley et 100 

al., 2017), terrestrial and aquatic vegetation phenology (Cheng et al., 2020, Coffer et al., 2020), 

and crop dynamics (Lin et al., 2021), as well as long-term effects, such as land use change, 

aboveground carbon, and sedimentation (Sankey et al., 2019, 2021).  

The lower computational barriers from the continuous advancement of technology are 

promoting the shift from plot-based assessments to the integration of satellite-based maps into 105 

landscape management, improving broad-scale mapping of rangelands at higher spatial and 

temporal resolutions than ever before (Jones et al., 2020, Allred et al., 2022). Many recent 

contributions to this field have shown that even though moderate resolution datasets (from MODIS 

sensors at 250 m resolution) are able to detect short-term vegetation phenology and long-term 

demographic dynamics of herbaceous and woody species, they cannot detect changes at local 110 

scales, because the spatial patterns of herbaceous and woody species typically occur at such fine 

scales (Angassa, 2014, Browning et al., 2017, 2019, Matongera et al., 2021, Oba et al., 2003). 

Despite collecting data at lower temporal resolutions, the Landsat collection at 30 m spatial 

resolution has consistently played an important role in science for over fifty years due to 

continuous efforts in calibration and corrections (Wulder et al., 2012, 2022, Franks et al., 2016). 115 

The recent collection-based reprocessing that resulted in the Landsat collection 2 (Wulder et al., 

2022) represents an important opportunity to build consistent time series for HR rangeland 

mapping. In addition, field studies have demonstrated that Landsat-scale sub-pixel estimation of 

fractional cover of rangeland functional types, such as herbaceous and shrub components, and 

especially bare ground, is crucial to overcome the difficulties of parsing out the underlying 120 

heterogeneity within thematic land cover classifications and in understanding ecological dynamics 
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(Jones et al., 2018, Rigge et al., 2019). As a result, land cover classification (LCC) and vegetation 

fractional cover (VFC, including photosynthetic vegetation PV, non-photosynthetic vegetation 

NPV, and bare ground BG) estimations have become the two building blocks of rangeland health 

assessment of today’s EO-based rangeland management (Jones et al., 2020). However, HR land 125 

and fractional cover mapping (i.e., using Landsat) over large and remote regions is hampered by 

the difficulty of collecting ground truth data at fine resolution. This is especially true in East Africa, 

where limited infrastructure and physical insecurity make it very difficult to collect field data at 

scale. 

In this study, we produced a unique and new dataset composed of high resolution (HR) 130 

LCC and VFC annual estimates of rangeland components for Eastern Africa based on the Landsat 

collection from 2000 to 2022. We used a LCC scheme to help identify rangeland vegetation 

transition pathways, and VFC to describe rangeland health condition trajectories within each class. 

To overcome the challenge of scarce ground data for training and validating our models over this 

vast and remote region, we used a large collection of very high-resolution satellite imagery (VHR), 135 

visual photo-interpretation and ad-hoc algorithms to generate a large sample of reference data to 

generate and validate our two products.  

2. Data and Methods 

The overall strategy of our methodological framework to generate the long-term time series of 

LCC and VFC for rangelands in Eastern Africa consists of three major steps: first, the development 140 

of a training/testing dataset from VHR imagery (section 2.3); second, the LCC classification 

(section 2.4); and third, the VFC classification (section 2.5). The detailed workflow is provided in 

Figure 1. 
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To integrate in-situ and VHR data to create reference data, specifically, we used ground 

reference data to inform a Visual Photo-Interpretation (VPI) protocol to create reference labels to 145 

train supervised classifications of VHR imagery. These VHR classifications were used to create a 

large amount of machine-generated reference data to train HR classifiers and to identify areas with 

large proportions of the focal rangeland components for VFC estimation. To generate the LCC 

reference data, we generated an algorithm that created reference points using a set of conditions 

with the proportions of reference compositional component (RCC). The RCCs within each of our 150 

LC class definitions includes vegetation functional groups and other important classes such as bare 

ground. The RCCs are then compared to the calculated proportion of pixels from the VHR 

classification within a moving window matching the 30 m spatial resolution of the HR data. We 

also generated VFC reference data by using image segmentation on the RCC classifications with 

the assistance of an application on GEE to identify homogeneous areas of rangeland components 155 

that could spatially allocate HR pixels to use them to calculate spectral endmembers and generate 

VFC estimations. Figure 1 shows our general workflow, including reference data partitions, remote 

sensing data and results, processing algorithms, and accuracy assessments.  
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 160 

Figure 1: Schematic workflow of the process used in this work to generate Land Cover 

Classifications and Fractional Cover estimations based on Landsat imagery. The dashed line 

denotes the role of georeferenced pictures on informing the visual photo-interpretation (VPI) 

process. Short names correspond to: points generated with reference compositional component 

(RCC) work to train the RCC classification (RCC Points); collection of points with pure pixels 165 

(i.e., points with 100% of a single VFC type, Pure points); Library of spectral signatures of pure 

points (Spectral Library); Spectral endmembers for PV, NPV and BG (Endmembers); random 

sample of points with overlapping Landsat imagery to perform accuracy assessment on VFG 

estimations (Sampled pixels). See text for further details on the uses of data and processing.  
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Prior to the detailed technical description of this entire workflow (sections 2.4-2.6), we 170 

first described our study domain (section 2.1) and satellite datasets utilized in this study (section 

2.2). 

 

2.1 Study area 

The study area is located in the semi-arid and arid regions centered on east and northern Kenya, 175 

western Somalia and southern Ethiopia (Figure 2). We chose this study region because it has been 

a geographic area with numerous development interventions on the ground in the past decades 

(Liao and Fei, 2017), but limited land cover datasets exist to evaluate the concurrent changes on 

the landscapes. In addition, this region suffers strongly from climate change extremes (e.g. 

droughts, floods, etc. IPCC, 2022) and their consequences on rangeland health, resilience, and 180 

well-being of pastoralists (Pricope et al., 2013, Beal et al., 2023). Covering a total of 745,840 km2, 

it includes diverse types of rangelands, which represent hyper complex and rapid physiological 

and phenological dynamics in other regions of the world (ILRI, IUCN, FAO, UNEP and ILC, 

2021, Adams et al., 2021, Nandintsetseg et al., 2024). Therefore, the study area demonstrates 

potential for broad generalization and sheds light for development efforts for stakeholders. 185 

We used two main features to bound our study area. To the east and north, we used Landsat 

tiles, using PATH 164 and ROW 56 as limits, dropping tiles PATH 164, ROW 59 and 60 due to 

heavy cloud cover. To the west and south, we used a threshold value of mean annual precipitation 

of 700 mm using TerraClimate data (smoothed with a kernel convolution with Standard Deviation 

= 5 km; Abatzoglou et al., 2018), thus keeping the focus on the rangeland-dominated arid and 190 

semi-arid areas.  
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 The study covers the epoch 2000 to 2022 to help capture decadal variation in ecosystem 

conditions and maximize Landsat data availability. Landsat imagery is limited in this area due high 

cloud cover often occurring during the two wet seasons observed in the region including the long 

rains (March to June) and short rains (October to December). In most cases, cloud free data was 195 

available during December through early March, which corresponds to the short dry (SD) season. 

Thus, we generated our datasets using imagery from a portion of the SD, from 15 December over 

2000-2022 to 1 March over 2001-2023, which maximized the annual available data count per pixel 

and ensured even distribution of data over our period of study.  

 200 

 

Figure 2: Map showing our study area in East Africa. Basemap: ©MapTiler, 

https://www.maptiler.com/copyright/. 
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2.2 Remote sensing data 205 

2.2.1 VHR - Very high-resolution satellite imagery 

To train our models and validate the results, we used VHR satellite imagery as little ground 

reference information exists in this vast and remote region. We obtained a large collection of 

imagery from Maxar Technologies via the United States National Geospatial-intelligence Agency 

(NGA): ordered with the following filtering parameters: sun elevation > 45°, off-nadir angle < 40°, 210 

and cloud cover < 50 %. The VHR collection was composed of 2,500 mosaicked strips of imagery 

scenes from Worldview-2 and -3 sensors (Figure 3). These mosaicked strips, typically 16.4 km in 

width, were delivered as orthorectified- and radiometrically-corrected bundles of eight bands 

including Coastal (400-450 nm), Blue (450-510 nm), Green (510-580 nm), Yellow (585-625 nm), 

Red (630-690 nm), Red Edge (705-745 nm), Near-InfraRed 1 (NIR1, 770-895 nm), and NIR2 215 

(860-1040 nm) at a spatial resolution of 184 cm for WorldView-2 and 124 cm for WorldView-3, 

and a panchromatic band at a spatial resolution of 46 cm for WorldView-2 and 31 cm for 

WorldView-3. Shortwave Infrared (SWIR) imagery (1195 to 2365 nm) collected by Worldview-3 

with a spatial resolution of ~3.7 m was also used in this study. 

 After subsetting to the short dry season, we manually selected 321 strips maximizing the 220 

spatial coverage and minimizing cloud cover, as most images with scattered clouds projected 

oblique shadows often resulting in < 10 % of pixels being usable for further analysis. These data 

corresponded to imagery acquired from 2016 to 2020. We considered using Quick Bird imagery 

from previous years, but data availability for our area of interest was minimal. 

 225 
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Figure 3: Spatial coverage of high-resolution imagery (polygons), and the spatial distribution of 

point grid (dots) used for generating reference data. 

2.2.2 HR - High resolution Landsat collections 

To capture historical changes in vegetation health in our area of study, we utilized Landsat dataset, 230 

which has been available for over four decades (1982-present; Wulder et al., 2012) and thus 

enables the development of long-term time series of land cover classes and vegetation fractional 

cover. While other studies have shown the value of higher resolution sensors such as Sentinel-2 to 

show the potential higher gain in accuracy compared to Landsat collection for the detection of 

invasive species in Eastern Africa (Duve et al., 2020), ESA’s Sentinel mission only features a short 235 
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history of imagery acquisition from 2015 (Drusch et al., 2013), which could bias our assessment 

towards the last decade, thus confusing the interpretation of our results.  

Landsat data is readily and freely accessible for scientific purposes. It available at different 

processing levels, from raw images, to radiometrically-, geometrically-, and atmospherically-

corrected scenes (Wulder, 2019). We used Google Earth Engine (GEE; Gorelick et al., 2017) to 240 

access and analyze atmospherically-corrected surface reflectance images for Landsat 5, 7 and 8 

satellites from collection 2 (USGS, 2021), processed at the L1TP level 

(https://www.usgs.gov/core-science-systems/nli/landsat/landsat-levels-processing). Landsat data 

are packaged into overlapping “tiles”, covering approximately 170 x 183 km each, using a 

standardized reference grid (USGS, 2019). In this study we used 42 of these tiles, totaling 245 

1,192,654 km2 (Figure 4). Differences in Landsat satellite sensors require different processing and 

correction techniques. We describe each sensor first and then outline our harmonization efforts.  

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-levels-processing
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Figure 4: Spatial coverage of Landsat tiles used in this study spanning from 2000-2022. Numbers 

within each tile correspond to the PATH and ROW used in the Landsat data storage protocol. 250 

 

Landsat 8 Operational Land Imager (OLI) uses data comprise of five visible and near-

infrared bands: Coastal aerosol, Blue, Green, Red and Infrared (NIR), and two short-wave infrared 

(SWIR1 and 2). All bands were atmospherically corrected using the LaSRC (Land Surface 

Reflectance Code; USGS 2020). Other auxiliary data includes cloud, shadow, water, and snow 255 

mask layers generated with the C Function of Mask (CFMask) algorithm version 3.3.1 and stored 

in the Pixel Quality Assessment Band (QA_PIXEL; Foga et al., 2017, USGS 2022), as well as a 

saturation mask band in the Radiometric Saturation Quality Assessment Band (QA_RADSAT). 
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Landsat 5 (TM) and 7 Enhanced Thematic Mapper Plus (ETM+) data also contains 

different types of observation bands according to their position in the electromagnetic spectrum. 260 

Visible, near-infrared and SWIR bands: Blue, Green, Red, Infrared (NIR), and SWIR1 and SWIR2 

bands processed to convert raw values to orthorectified surface reflectance values. All bands have 

a resolution of 30 m / pixel. All bands were atmospherically corrected using LEDAPS (Schmidt et 

al., 2013). Other auxiliary data includes cloud, shadow, water, and snow mask layers generated 

with the CFMask algorithm and stored in the QA_PIXEL band, as well as a saturation mask band 265 

in the QA_RADSAT band.  

Landsat 7 has the potential to help fill the gaps between Landsat 5 and 8, being available 

from the year 1999 to date. However, the failure of the Scan Line Corrector (SLC) of Landsat 7 in 

2003 somewhat limits its utility (Markham et al., 2004). This failure resulted in areas that are not 

imaged (~22 % of each tile), otherwise, data are valid for work and analysis. These data show 270 

similar distribution of cloud cover and revisiting times as Landsat 8 collection. Hereafter, we refer 

to data pixels as any pixel where no masking occurred, and valid and usable data was available. 

2.2.3 Landsat collection harmonization 

We used reduced major axis regression to harmonize the surface reflectance values from Landsat 

5 and 7 to match the spectral information of Landsat 8 following Roy et al., (2016) on each Landsat 275 

data tile. These transformations are performed to improve temporal continuity between Landsat 

sensors (TM, ETM+ and OLI). After harmonization, the collections were merged and annual 

composites from December 15th to March 1st were generated using the median value of available 

data pixels. We used the median value, as the mean often gets biased with cloud contaminated 

pixels that were not included in the Level-1 QA_PIXEL Band used for cloud masking. In this 280 

study, the year of the annual composites correspond to the calendar year where the composite starts 
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(i.e., December 15th). We selected this time interval as it was when imagery was mostly available, 

thus minimizing temporal imbalances among annual estimations. However, a large proportion of 

pixels were masked as a result of heavy cloud cover, with more than 5 % of masked pixels in 4 out 

of 21 different years. 2006 was a particularly problematic year, where the cloud component 285 

resulted in 10 % of pixels being masked (Figure 5). The launch of Landsat 8 in 2013 not only 

implied an improvement in the sensor characteristics, but also increased data collection capacity, 

thus reducing the likelihood of acquiring cloud-covered imagery as is evident in our study area 

(Figure 5). 

 290 

 

Figure 5: Cloud covered pixels present on the short dry (SD) season composites of Landsat 

imagery used in this study. 

 

 295 

2.3 Development of training/testing datasets by integration of in-situ and VHR data 

2.3.1 VPI - Reference dataset by visual photo-interpretation of VHR imagery 

We applied this classification scheme using VPI methods to develop training data for the 

classification algorithms for both LCC and VFC. We started first at the Borana Zone in southern 
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Ethiopia, in the northern portion of our AOI where a rich source of georeferenced, ground-based 300 

photography (N = 1419 photos) was available for both a dry season 28 June – 26 August 2013 and 

wet season 6-31 May 2014 (Liao et al., 2018). In this VPI work, we leveraged this photography 

with VHR satellite imagery of the same locations and approximate time frames to capitalize on 

the differing contextual strengths of each data source. The photography provided a low-angle 

oblique view of vegetation functional groups and canopy layers for better class identification. The 305 

VHR imagery, viewed via Google Earth (GE) or via United States National Geospatial-intelligence 

Agency’s (NGA) Global Enhanced GEOINT Delivery (G-EGD), provided a broader, nadir-

oriented view of differing vegetation stands in context with one another, allowing more confident 

class separation.  

Specifically, a team of four VPI analysts was trained to identify eight land cover classes 310 

following those employed by Liao and Clark (2018). We made additional refinements to these 

classes as detailed in Table 1. A detailed protocol was developed to ensure effective quality 

control. Training materials included reference flash card sets (see Appendix B) created for each of 

our land cover classes depicting a ground-based oblique view of a stand of representative 

vegetation in addition to a nadir VHR satellite view of that same stand in context with other 315 

surrounding vegetation in the locale. Canopy cover flash card sets were also created for 2-m, 4-m, 

and 8-m shrub and tree crown diameters to aid in visually estimating cover percentages relative to 

the thresholds separating each land cover class. The VPI classification was calibrated using the 

reference card sets and a standardized set of VPI points and associated photographs and imagery. 

Upon implementation, periodic spot checks of each analyst’s VPI classifications were conducted 320 

to affirm consistency and accuracy. 
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Table 1: Land cover classes used for the Landsat land cover mapping (modified from Liao and 

Clark, 2018). 

Land Cover Class Code Description 

Closed Canopy 

Woodland 

CCW Areas vegetated by a stand of trees with an interlaced canopy. Shrubs 

are usually present and interspersed within the woodland. Tree canopy 

cover is > 50 %. The CCW class represents a state that is usually 

distributed in relatively humid areas at upland elevations, on ridge 

crowns, or within riparian corridors where favorable edaphic and/or 

climatic conditions facilitate relatively dense tree growth. 

Dense Scrubland DS Areas vegetated by an abundance of shrubs with a low to moderately 

productive herbaceous component. Shrub canopy cover is > 50 %. 

Herbaceous cover generally decreases with increasing shrub cover 

due to competitive relationships. Trees, if present are sparsely to 

moderately conspicuous with canopy cover typically < 10 %. The DS 

class represents a state to which the Sparse Scrubland (SS) state can 

transition to via shrub recruitment. The DS state can itself, transition 

to the Closed Canopy Woodland (CCW) state via tree recruitment 

under favorable edaphic and/or climatic conditions. 

Bushland BU Areas sparsely to abundantly vegetated almost exclusively by shrubs. 

This class is largely limited to arid lowland areas where climatic and 

edaphic conditions severely limit herbaceous presence. Woody plant 

cover ranges 10-100 %. Although bushland thickets can and do form, 

this class represents a state that is separated from the Sparse Scrubland 

(SS) and Dense Scrubland (DS) states by its severe, site-based 

limitation on herbaceous presence. 

Open Canopy 

Woodland 

OCW Areas vegetated by an open stand of trees with a sparse to abundant 

herbaceous or herbaceous/shrub component. Trees are always 

conspicuous occurring as scattered individuals or clumps of a few 

individuals with a canopy cover of 10-50 %. A woodland aspect is 

always retained. If shrubs are present, their occurrence ranges from 

sparse to common but shrub canopy cover is < 50 %. The OCW class 

represents a state which can transition to Sparse Scrubland (SS) by 

tree loss and shrub encroachment or, under favorable climatic and/or 

edaphic conditions, to Closed Canopy Woodland (CCW) by tree 

recruitment. 
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Sparse Scrubland SS Areas vegetated by scattered shrubs with a sparse to very abundant, 

productive herbaceous component. Shrubs are always conspicuous. 

Shrub canopy cover ranges from 10-50 %. Herbaceous cover 

generally decreases with increasing shrub cover due to competitive 

relationships. Trees, if present, are sparsely to moderately 

conspicuous with canopy cover of < 10 %. This vegetation class 

represents a state that lies between the Grassland (GR) and Dense 

Scrubland (DS) states. 

Cultivated Land CL Areas currently being used for crop cultivation or, in cases of field 

abandonment, cropping disturbance is still visually evident (bare soil, 

tillage boundaries, etc.). Seasonally fallow fields (bare) are included 

in this class as well as those with growing crops. Common crops 

include Zea sp., Sorghum sp. and Erogrostis tef. CL areas usually 

fenced and located in places of relatively deep and moist soils (e.g., 

near seasonal river or stream courses). 

Grassland GR Areas where the vegetation cover is dominated by grasses and 

occasionally other herbs. Herbaceous canopy cover ranges from 10 to 

100 %. Widely scattered trees and shrubs may be present but woody 

canopy cover is < 10 %. The vegetation state represented by this class 

can transition to the Open Canopy Wood (OCW) state by tree 

recruitment or to the Sparse Scrubland (SS) state by shrub 

recruitment. 

Sparsely 

Vegetated Land 

SV Areas poorly covered by vascular herbaceous or woody plants. Plant 

cover is < 10 %. SV typically represents areas where vegetation 

presence is severely limited by soil chemical (e.g., hypersalinity) or 

physical conditions (very shallow depth). Rock outcrops are included 

in this class. SV can also occur in areas which have suffered topsoil 

loss due to heavy disturbance (e.g., recursive, heavy grazing and/or 

trampling) and subsequent wind and/or water erosion. 

 325 

VPI classification took place as follows. The VPI point set from the georeferenced 

photograph locations were randomly subset into equal partitions, and each partition was assigned 

to a VPI analyst. The software package, Nikon View NXi ™ was used to view the photographs 

and mapped camera location and oblique view direction on a satellite imagery background 

provided by the software. The camera location coordinates were then plotted in GE and vegetation 330 

at the location was evaluated using VHR imagery that was concurrent or nearly concurrent with 
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that of the photograph. Where concurrent imagery was missing from GE, imagery from the NGA 

archive was ordered and viewed via G-EGD and a VPI-based classification was made for the 

camera location. Where the camera location occurred in a mixed or ecotonal area, a new point in 

a nearby, more representative location (i.e., more homogenous vegetation structure, cover, and 335 

composition) was selected by the analyst and classified to a land cover class. Upon completion of 

the VPI classification, a random sample of 10 % of the 1,419 VPI points was spot checked to 

confirm overall consistency and accuracy across analysts. Where consistent bias or 

misclassification was found, additional training was provided, and the analyst(s) re-visited all 

assigned points for the troublesome class or classes and re-classified these points as necessary. 340 

As the extent of this dataset was limited to the north area of our AOI, we extended the use 

of this dataset as reference to inform recognition of the vegetation functional group components 

of each land cover class used here. Vegetation functional groups generally refer to different types 

of vegetation that are functionally and structurally different. In our setting, the primary groups are 

trees, shrubs, and grasses. Using pan-sharpened VHR imagery, we then performed independent 345 

VPI classifications of VFGs within classes to develop and refine a supervised machine classifier 

and to support fractional cover analyses which are described in the next sections. This additional 

VPI work followed a procedure to spatially label the key components within each of the land cover 

classes and was focused on a grid of 8 x 8 km squares centered in a regular point pattern where 

VHR imagery was available (see Figure 3). These reference compositional components (RCC) 350 

included the vegetation functional groups (trees, shrubs, grass) as well as bare ground, water, 

cultivated land and impervious surfaces. We leveraged the combination of nadir views from VHR 

satellite imagery and the large set of available landscape photographs from the northern portions 



 

 
22 

 

of our AOI to recognize visible characteristics of each sub-class component and apply these 

characteristics in VPI classification of the entire study area. 355 

2.3.2 RCC - Reference compositional component classification of VHR imagery 

To create the reference dataset for calibration and validation of LCC and VFC estimations for our 

entire study area, we relied on RCC data generated from the classification of VHR imagery. RCC 

represents the basis of LCC as our land cover scheme (see below) follows a compositional 

combination of them. In addition, RCCs are an important input for VFC estimation, which needs 360 

to be complemented with non-photosynthetic vegetation reference points, created with a different 

approach (see below).  

We calculated the normalized difference vegetation index (NDVI) from the red and NIR-

1 bands of the VHR imagery and then added the NDVI as a new band to the VHR dataset. Spectral 

signals were then extracted and assigned to the points generated in the VHR VPI work with each 365 

assigned RCC class and a random forest classification was performed to predict RCCs using the 

spectral information as covariates. The number of trees was set to 1000, with two variables tried 

at each split. After model fitting, we used a graph showing the out of bag error of each class versus 

the number of trees in the classification to explore the effects of sample sizes on the accuracy of 

the method and increase it when needed. Classification of VHR imagery focused on classifying 370 

RCCs; trees, shrubs, grasses, bare ground, water, cultivated land and impervious surfaces (e.g., 

Figure 6). After training our classification algorithms on 90 % of the generated labels, we then 

used the remaining 10 % to compare the (out of sample, OOS) prediction of the classifier against 

the actual reference labels using confusion matrices. We set a threshold minimum value of 85 % 

overall accuracy for using the resulting classifications in the following analysis steps. A random 375 

sample of VHR classified imagery with accuracies above the threshold was selected and visually 
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inspected to understand misclassifications and their potential drivers. We increased our RCC-

oriented VPI effort if threshold levels were not met until accuracy met our threshold value. Despite 

our efforts and due to cloud cover and other factors such as cropland misclassifications in humid 

areas, only 44.5 % (n = 143) of the total RCC classifications were retained using the 85 % accuracy 380 

threshold. Lower accuracy classifications occurred in areas of highlands on the west and southeast 

portions of our study area, characterized by higher precipitation. After contrasting classification 

predictions against pan-sharpened images, we recognized that most of the misclassifications 

corresponded to classes including green vegetation such as grass, crops and trees. Other sources 

of error included areas with cloud shadows and impervious surfaces.  385 

 

 

Figure 6: Example of a RCC classification result using a Worldview-3 image.  
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2.3.3 Composition-based algorithm for HR reference data creation 

After classifying VHR strips and selecting those with higher accuracy, we applied a custom-made 390 

algorithm that uses a squared moving window of the size of a Landsat pixel (30 x 30 m) and 

calculates the proportion of VHR pixels, representing the area in the window covered by each of 

the RCC classes from the predicted VHR classification. Using the proportion of VHR pixels for 

each RCC class allowed us to use both Worldview datasets, as they have different spatial 

resolution. Then, using the list of defined threshold compositional percentages of RCC classes per 395 

land cover class in Table 1, we built code to meet the criteria for each land cover class. We then 

selected a stratified random sample of 80,000 points to be used as training points for the Landsat 

classification, described next. Points retained the date of the VHR strip used to generate them. Due 

to misclassifications associated with scattered cloud cover in some imagery, we further applied a 

buffer of 500 m around areas where more than 100 pixels of cloud or shadows were detected inside 400 

the moving window described above and excluded these from the RCC proportion calculation and 

class assignment.  

 

2.4 Land cover classification 

2.4.1 Land cover classification model 405 

Our LCC scheme is based on the State Transition Model (STM; Bestelmeyer et al., 2017, Steele 

et al., 2012, Blanco et al., 2014) developed for this region by Liao and Clark (2018), with 

adjustments based on contributions from Pratt et al., (1966) and Liao et al., (2018) (Figure 7). 

Specific changes included the addition of classes not included in Liao and Clark (2018) and more 

precise definitions of the characteristics of each class and the trajectories between them, given the 410 

extension of our study area. The scheme includes eight land cover classes, each representing a 
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vegetation state defined by structure, cover, and functional group composition. The potential 

transitions among these states or classes are described in the mapping legend provided in Table 1, 

which adapts Table 1 from Liao and Clark (2018). However, tree, shrub, and herbaceous cover 

thresholds have been further refined to better define class separations. The bushland class was also 415 

more clearly defined as a state where herbaceous presence was severely limited by climatic and/or 

edaphic factors rather than interspecific competition with shrubs and/or trees for resources. 

Transitional pathways associated with wild or prescribed fires have been excluded from Figure 7 

and the legend (Table 1) to simplify description and presentation given the complexities associated 

with fire-tolerant versus fire-intolerant woody species, wildfire control, and past prohibitions on 420 

prescribed fire.  

 

 

Figure 7: States and transition pathways among eight land cover classes. 
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2.4.2 Land cover classification algorithm 425 

The land cover classification consists of two general steps. First, the VHR imagery was classified 

using the combination of RCC labels generated from VPI work (described in section 2.3.2) and 

random forest classifiers (Belgiu and Dragut 2016), producing RCC classifications. Second, an 

automatic algorithm, based on conditionals and the percentage thresholds of RCC defining each 

LC class (described in Table 1) was run over the RCC classifications to generate new training 430 

labels for the classification of the Landsat collections with a second random forest classifier. Here, 

we describe the HR Landsat classifications. 

Landsat collections were classified using the random points generated from the RCC 

classifications (see section 2.3.3). We reserved 1,419 in-situ points from Liao and Clark (2018), 

so we could later use this dataset with VHR ground reference data to independently assess the 435 

accuracy of our results. We first masked all Landsat images using the SR_CLOUD_QA band 

generated from the CFMASK algorithm of Surface Reflectance Landsat data. To eliminate water 

bodies and rivers in our AOI, we applied a normalized difference water index (NDWI) mask, 

whereby pixels with values > 0.2 were removed (Gao 1996). We also calculated and added 

enhanced vegetation index (EVI), modified soil adjusted vegetation index 2 (MSAVI2), and 440 

Normalized Difference Water Index (NDWI) bands to the collections (Qi et al., 1994, Liu and 

Huete et al., 1995, McFeeters 1996). We also used CGIAR SRTM 90m Digital Elevation Database 

version 4 to include elevation and derived slope and horizontal curvature (Jarvis et al., 2008, 

Safanelli et al, 2020). Last, we included the bare ground and photosynthetic vegetation fractions 

from our fractional cover results (see Figure 1) as covariates, which were found to increase 445 

accuracy during our testing/tuning stage. We used the 80,000 algorithm-generated training points 

through the RCC classification protocol explained in section 2.3, and randomly partitioned them 
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into 90 % training and 10 % for accuracy assessment. We then extracted the spectral information 

from the Landsat composite corresponding to the year of the date of each VHR image used to 

generate the training points through VPI work (see section 2.3.1). With these points, we trained a 450 

random forest algorithm to predict the vegetation classes of the entire collection. Thus, a single 

multi-year random forest classifier was used for prediction on the harmonized Landsat collection. 

After initial tuning of the classifier, we used 20 trees and a maximum number of 50 nodes. The 

resulting classified collection includes images with pixel values associated with our main land 

cover classes and masked pixels of cloud cover, shadows, and water. 455 

2.4.3 Accuracy assessment of land cover classification  

We used multiple reference year calibration to generate a classification model dependent on the 

surface reflectance data (Gomez et al., 2016). Based on the standard assumption that surface 

reflectance data represent the true ground response of features to sunlight, the classification model 

is then used to predict past and future time steps in the RS time series. Often, these data are referred 460 

to as absolute-normalized data (radiometrically and atmospherically corrected and orthorectified, 

Thenkabail et al., 2015). After generating reference labels through the combination of VHR 

imagery classification and an area-proportional classifier to upscale VFGs to land cover classes, 

we randomly partitioned this reference data set into training (90 %) and validation (10 %). We 

used the validation partition with the addition of the 1,419 points from Liao and Clark (2018) to 465 

create confusion matrices to assess the accuracy of the predictions. The percentage of classes in 

the random validation sample relative to the total amount of reference data was 9.3% for CCW, 

14.5% for DS, 13.6% for BU, 7.7% for OCW, 9.6% for SS, 1.7% for CL, 8.8% for GR, and 16.7% 

for SV (see Table 1 for class names). 

 470 
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2.5 Fractional cover classification 

We used bilinear unmixing to estimate fractional cover (Quintano et al., 2012) of three components 

of rangeland: bare ground (BG), photosynthetic vegetation (PV), and non-photosynthetic 

vegetation (NPV). We combined VHR and Landsat imagery to identify homogeneous areas where 

the spatial footprint of Landsat pixels could capture pure spectral signals for the three components 475 

of fractional cover. In this context, pure refers to pixels with 100 % cover of one of our three main 

components (Boardman et al. 1995). Given the heterogeneity of soil types in our study area, we 

allocated special effort on finding as many BG pixels as possible. To find these, we used the 

resulting RCC classification of VHR imagery (see 2.2.2) and performed image segmentation to 

identify homogeneous areas covered by bare ground. Because Landsat pixels are 30 by 30 m and 480 

their footprints could change with each revisit, we built an algorithm to scan the classifications to 

find homogeneous areas larger than 50 by 50 m, in order to allocate Landsat pixels with a margin 

of 10 m in both spatial axes.  

We used GEE to manually create a sample of pure pixels, by mapping different Landsat 

color composites and creating graphs of 10-year-long NDVI and MSAVI2 time series and spectral 485 

profiles (i.e., spectral signatures) including all bands from the Landsat imagery for visually 

selected locations in the map. Using these visualizations, we checked that Landsat pixels 

corresponding to BG always covered the extent of the focal area and were not contaminated by 

vegetation or other features such as litter or impervious surfaces. To identify PV, we checked 

NDVI and MSAVI2 time series and natural color composites and selected a given acquisition time 490 

for a Landsat image containing green vegetation. Finally, to identify NPV, we used the reflectance 

profiles, NDVI and MSAVI2 time series and natural color composites to identify senescent 

vegetation and pixels where and when crops were harvested and dead vegetation was left behind. 
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After a sample of 108 locations for bare ground, 900 locations for NPV, and 900 locations 

for PV were established, the spectral information of the temporally closest Landsat image was 495 

extracted for its use in the endmember estimation. We estimated the endmembers from the spectral 

signatures of the sampled pure points using an R-based function for modeling of endmember 

compositions based on bilinear unmixing (Seidel and Hlawitschka 2015, Weltje 1997). We used 

"Blue", "Green", "Red", "NIR", "SWIR1", "SWIR2" bands as input spectral data for each point 

and established a convexity threshold of -6 and 10000 iterations with a standard weighting 500 

exponent of 1, as suggested by Weltje (1997).  

We used a pseudo-inverse unmixing algorithm on GEE with two constraints to calculate 

fractional covers. The first constraint forces the fractions to sum to one, so that each fraction 

represents an actual percentage of each class. The second constraint forces all fractional values to 

be non-negative. The resulting maps include three bands corresponding to each of the three 505 

calculated fractions. 

2.5.1 Accuracy assessment of fractional cover 

We used RCC classifications to assess the performance of our fractional cover estimations, as the 

RCC classifications provide very accurate measures of class fractions at the Landsat pixel scale. 

Using the results from the classifications performed over VHR imagery, we aggregated the 510 

classified classes into vegetation, BG, and other (including impervious surfaces, water, and cloud 

classes). Since NPV is difficult to detect with available VHR datasets, this aggregation permits a 

separation between vegetation classes (which logically include PV and NPV) and BG, since BG 

is the complementary proportion of vegetation when just the two classes occur (i.e., where there 

is no cloud obstruction, water or impervious surfaces, or: 1 - BG = PV + NPV). Second, we selected 515 

the temporally closest Landsat-based fractional cover layer to a subset of 10 RCC classifications. 
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Third, we generated a layer of the centroids of pixels for these fractional cover estimates and 

randomly selected 5000 centroids. Fourth, we generated circles of 15m radius (approximate size 

of Landsat pixels) at the locations of the sampled centroids and clipped the aggregated 

classification. From this sample, we only selected the circles fully overlapping vegetation and BG 520 

pixels. Fifth, we calculated the proportion of pixels of vegetation and BG within each circle. 

Finally, after completion of this process, we compared the values of these proportions to the 

Landsat-derived fractional cover by using regression statistics: R2, normalized root-mean-squared 

error (nRMSE) in units of percent cover, and p-values.  

3. Analysis  525 

3.1 Land cover classification  

Overall, the LCC procedure resulted in an overall accuracy of 85.57 %, with Kappa of 0.832, 

which is above the recommended threshold of 85 % for LCC predictions and remarkable for such 

a large area as our study area (Foody 2002, see Figure 8). The resulting confusion matrix from the 

accuracy testing partition of the 8,191 randomly selected points is presented in Table 2. The 530 

random forest model using all bands was more accurate than those using subsets of input bands. 

In decreasing order, variable importance derived from the random forest classifier for every band 

was elevation, Green, EVI, Red, SWIR2, Blue, Slope, Photosynthetic vegetation, SWIR1, 

MSAVI2, horizontal curvature, NIR, and bare ground (Figure 9). The proportion of importance on 

the elevation covariate is almost double the next most important variable, the green band. Figure 535 

10 shows the proportion of reference data, including training and validation sets, showing the 

apparent elevation segregation of the samples.  

 



 

 
31 

 

Table 2: Confusion matrix of the random forest classifier using multi-year validation samples. 

Class codes are presented in Table 1. 540 

Class 

 Reference Data 
Sum 

User's 

Accuracy 

(%) CCW DS BU OCW SS CL GR SV 

P
re

d
ic

te
d
 L

C
C

 

CCW 918 6 0 13 4 3 1 0 945 97.1 

DS 13 969 15 109 29 6 2 0 1143 84.8 

BU 0 26 1064 138 7 5 3 0 1243 85.6 

OCW 81 18 138 1080 7 8 4 0 1336 80.8 

SS 0 9 110 98 914 14 82 5 1232 74.2 

CL 2 3 4 0 4 23 31 0 67 34.3 

GR 4 3 1 2 109 26 823 9 977 84.2 

SV 0 0 9 7 3 8 3 1218 1248 97.6 

Sum 1018 1034 1341 1447 1077 93 949 1232 8191  

Producer’s 

Accuracy (%) 
90.2 93.7 79.3 74.6 84.9 24.7 86.7 98.9   

CCW: Closed canopy woodland, DS: Dense scrubland, BU: Bushland, OCW: Open canopy 

woodland, SS: Sparse scrubland, CL: Cultivated land, GR: Grassland, SV: Sparsely vegetated 

land.  
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Figure 8: 30 m resolution predicted land cover classification for 2015. Class codes and 

descriptions are presented in Table 1. Basemap: ©MapTiler, 545 

https://www.maptiler.com/copyright/. Class codes correspond to: CCW: Closed canopy woodland, 

DS: Dense scrubland, BU: Bushland, OCW: Open canopy woodland, SS: Sparse scrubland, CL: 

Cultivated land, GR: Grassland, SV: Sparsely vegetated land. 

 

https://www.maptiler.com/copyright/
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 550 

Figure 9: Variable importance derived from the best random forest classifier (see description of 

variables in section 2.4.2). 

 

 

Figure 10: Proportion of reference data (81,419 total pixels) for each land cover class and 400 m 555 

elevation interval in our study area. Class codes correspond to: CCW: Closed canopy woodland, 

DS: Dense scrubland, BU: Bushland, OCW: Open canopy woodland, SS: Sparse scrubland, CL: 

Cultivated land, GR: Grassland, SV: Sparsely vegetated land. 
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The annual time-series of the total proportion of each land cover class in our study area, shows 560 

variations in the proportion of SV, SS, and OCW classes around the same years within the studied 

time frame (Figure 11). To understand the source of such variation, Figure 12 presents the 

proportion of inter-annual transitions of each pixel from class to class for the study period. 

Potentially valid transitions are defined in our state transition model, presented in Figure 7. Using 

this model, we can use the potentially valid inter-annual transitions and compare them with all 565 

inter-annual transitions in each pair of subsequent years (only using unmasked pixels with class 

values in both years). Our expected, potentially valid, inter-annual state transitions between land 

cover classes (Figure 7) were above 62.30 % in all yearly transitions (Figure 12) with a mean of 

75.20 % and a maximum of 83.20 %. The number of unmasked paired pixels as a proportion of 

the total Landsat-based pixels used for the calculation of land cover had a minimum of 86.60 %, 570 

with a mean of 95.30 %. Three drops in the number of valid transitions are visible in Figure 12, 

which correspond to three drought events followed by rains and a greening effect on the landscape 

(Okal et al., 2020). This effect becomes evident while looking at the changing proportions of 

Closed Canopy Woodland (CCW) and Sparse Vegetation (SV) for 2005-2006, 2010-2011 and 

2017-2019 in Figure 11. 575 

 



 

 
35 

 

 

Figure 11: Annual time series of proportion of pixels of land cover classes for the entire study 

area (total 30 m pixel count = 858,780,117). Colored lines correspond to linear trends for each 

class over the study period. 580 

 

 

Figure 12: Proportion of pixels with potentially valid yearly transitions. Dashed and dotted lines 

show the total amount of paired unmasked land cover classes, and the total amount of potentially 

valid transitions as per our state transition model presented in Figure 7. 585 
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Filtering out pixels with unlikely transitions as defined in our state transition model, allows to 

reconstruct the history of individual pixels and help understand their change through time. The 

alluvial chart is a useful visualization to track such transitions through time by presenting the 

frequency distributions of classes in different time periods, aggregating the change of pixels with 590 

the same transitions between classes into individual ribbons. Figure 13 shows the decadal change 

of 48,280 randomly selected pixels with potential valid transitions and no missing data in our study 

area from 2000-2020. By assigning colors to the last year in the sequence, it is possible to visually 

track changes, evidenced by the width of the lines moving from one class to another between 

periods. The largest change of classes in this sample corresponds to 1.75 % of pixels (n = 845) 595 

staying as OCW in 2000 and 2010 but changing to CCW by the year 2020 (see dark ribbon going 

from OCW to CCW between 2010 to 2020). This is followed by 1.37 % of BU pixels (n = 661) 

turning into SV by the year 2010 and staying in that class until 2020 (see dark ribbon going from 

BU to SV between 2000 and 2010). Other classes present changes less than 1 %.  

 600 
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Figure 13: Decadal vegetation transition between 2000-2020 of 48,280 random pixels with 

potentially valid land cover transitions as defined in our state transition model for the three selected 

years. Land cover classes are presented in Table 1. Color codes were assigned to land cover classes 

present in the locations in year 2020 in order to track changes between decades.  605 

  

3.2 Vegetation fractional cover estimation 

Endmember estimation reached the threshold convexity error of -6 after 3,265 iterations, with total 

negative values representing just 0.026 % of the sample, reflecting excellent model fit and a very 

small proportion of sample points falling off the multidimensional space between endmembers 610 

(Weltje 1997). Figure 14 shows the estimated spectral signatures of endmembers, where a large 

spike in NIR is visible for PV and high values of reflectance at the SWIR bands are also discernible 

for BG. Regression results from the comparison between bare ground estimations from HR 

imagery and Landsat-based predictions yielded R2 = 0.795, p < 2.2e-16, normalized root mean 

squared error nRMSE = 0.123, with equation y = 0.959 (SE = 0.010) x + 5.768 (SE = 0.843), F = 615 

9201.1 on 1 and 2152 DF with p-value: < 2.2e-16 (Figure 15).  

 

 

Figure 14: Estimated spectral endmembers for fractional cover estimation. 
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 620 

 

Figure 15: Spatial-temporal correlation between HR imagery and Landsat-based predictions of 

bare ground fractional cover (n = 2,190) at Landsat scale of 30 m from 2016 to 2020. F = 9,201.1 

on 1 and 2152 DF with p-value: < 2.2e-16. 

 625 

Final products consisted of yearly short dry season estimations of fractional cover for our 

entire AOI with a total of 858,780,117 pixels (Figure 16). Further qualitative assessment of 

fractional cover predictions against natural color Landsat images and compositions, confirmed 

accurate representations of the ground conditions. The most readily identifiable components BG 

and PV, show regional accordance with very dry and forested areas, respectively, within our AOI 630 
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(Figure 16). Similar to the LCC time series, fractional cover showed distinct variations in three 

different periods (Figure 17).  

 

 

Figure 16: Landsat derived 30 m resolution fractional cover estimations for the short dry season 635 

of 2020, with mixtures of PV: Photosynthetic vegetation, NPV: non-photosynthetic vegetation, 

and BG: bare ground for our entire AOI (see legend on figure). Basemap: ©MapTiler, 

https://www.maptiler.com/copyright/. 

 

https://www.maptiler.com/copyright/
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 640 

Figure 17: Annual time series of average fractional cover values for BG, NPV and PV for the 

entire study area (pixel count = 858,780,117). Straight lines correspond to linear trends for each 

component over the study period. 

4. Discussion  

The dataset generated in this study represents a substantial improvement over previously 645 

available data to assess rangeland health in the region, such as plain NDVI from Landsat and 

MODIS products. These improvements are the result of a high spatial resolution, a long temporal 

extent, and use of land and fractional cover metrics expressly designed to inform monitoring and 

assessment of East African rangeland systems (e.g. Hill and Guerschman 2022, Sexton et al., 2013, 

Buchhorn et al., 2021).  650 

Our land cover classification scheme allowed us to reach acceptable per-class accuracy 

levels, using 85 % as a reference value for most of our land cover classes (Mundia and Aniya 2005, 

Rogan et al., 2003, Treitz and Rogan 2004, Weng 2002, Yang and Lo 2002), considering the 

limitations of both the availability of ground reference data and Landsat imagery. Our proposed 

method that used VHR imagery to generate training and validation data for the Landsat-based 655 
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classification has proven to be key to reaching these accuracy levels, enabling us to increase the 

amplitude of spectral information of the different features found across such a large and 

heterogeneous area. VHR imagery also allowed us to have homogeneous spatial representation in 

ground-reference data as shown in Figure 2, thus reducing biases from imbalanced sampling 

(Carlotto 2009, Elmes et al., 2020). We also included a minimum threshold value for VHR 660 

classifications and applied a ruled-based algorithm to generate training data, therefore helping to 

reduce and control our training data error (Elmes et al., 2020, Padial-Iglesias et al., 2021). 

Homogenization of the VPI process also helped standardize training data generation, accounting 

for the arising inconsistencies that might impact the Landsat LCC estimations (Elmes et al., 2020, 

Foody 2009).  665 

One limitation of our product is its comparatively lower classification accuracy for 

cultivated land areas. The close spectral correspondence between the dominant cultivated grain 

crops in the region (e.g., teff, maize and sorghum in Ethiopia) and wild grasses makes separation 

of the two challenging. In addition, other land classes such as sparse shrub could also be difficult 

to separate from cultivated land (Hansen et al 2005, Sexton et al 2013), because they are dominated 670 

by either PV or NPV during the short dry season where our Landsat compositions were compiled. 

These two factors limit the applicability of the proposed approach to extensive rangeland areas. 

We encourage users of this dataset to explore the behavior of the CL class within their study areas 

before carrying out further analyses. In addition, cloud cover in this region implies that other tools 

such as dynamic time warping (Muller 2007) might not improve land cover estimations, as this 675 

technique requires the extraction of temporal features from time series that are not possible to 

generate using Landsat imagery in our defined temporal extent. As with virtually all visible-light 

satellite-based remote sensing, cloud cover limits our analysis, both reducing the amount of per-
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pixel available imagery, and also the proportion of pixels with available data over our study area. 

Other factors such as precipitation resulted in a > 30 % drop in accuracy due to increases in annual 680 

accumulated precipitation, as found in our preliminary classifications.  

 In addition to class-specific issues, the multi-year classification scheme used here, has 

limitations and possible effects on the classification results on years without reference data, which 

can include misrepresentation of the real patterns. This study does not explore this effect due to 

the lack of in-situ reference data for the total length of the studied period. However, other studies 685 

in similar ecosystems where reference data is available, can help improve the products presented 

here or to find the possible biases they might have. Current research on the use of transfer learning, 

with the use of pre-trained models and fine-tuning with limited data provides very good 

opportunities for further improvement of remote sensing products and possible bias exploration 

(e.g. Li et al. 2023, Račič et al. 2024, Weikmann et al. 2021).  690 

As shown in Figure 13, this dataset can not only provide descriptions of all the LC pixel 

transitions of a given study area but has the potential value of providing a foundation for 

assessments of long-term change trajectories that likely will extend beyond the time scope of the 

current study. Ecological studies on ecosystem and community dynamics require long-term 

ecological datasets (Ellis et al., 2006, Magurran et al., 2010, Ott et al., 2019). Further use of these 695 

products should demonstrate its usefulness as a monitoring, prioritization and inventory tool for 

planning and decision-making (Allred et al., 2022). Land cover mapping will enable isolating 

signals from rangelands and incorporate heterogeneity into management frameworks, providing 

foundations for assessments of long-term change trajectories that likely will extend beyond the 

time scope of the current study in this specific geographical region (Fuhlendorf et al., 2012). 700 
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 Vegetation fractional cover estimates showed high accuracy. This accuracy is likely aided 

by the availability of VHR imagery (Brandt et al., 2020) used for generation of ground reference 

data for training and validation. Even under our limitations on ground reference data, bare ground, 

a key indicator of rangeland health conditions for monitoring and management (Pellant et al., 2020, 

Rigge et al., 2019, 2020), was accurately identified over a relatively large area of more than 4.6 705 

million hectares. Figure 17 shows the potential value of this dataset by presenting a summarization 

of the annual trend of all three fractional components, which can be reconstructed from different 

spatiotemporal aggregations, down to the pixel level. Such trajectories will likely help understand 

the contributing factors for observed and unobserved patterns in the past two decades (Rigge et 

al., 2021). While further exploration of the spatial and temporal distribution of these trends is 710 

needed, this overall assessment might reflect a slow degradation of rangeland condition as bare 

ground fraction gradually increases (Figure 17).  

Here, we used intensive algorithms on VHR satellite imagery to allow training and 

assessment of the performance of our proposed methods, as little ground reference information 

exists in this vast and remote region. This approach helps to maintain enough detail on the land 715 

cover classes and allowed the creation of a relevant VFC estimation. Our maps could help generate 

new threads of rangeland maps for East Africa, especially to improve community development, 

ecological conservation, and humanitarian programming. As the lack of ground reference data has 

been a bottleneck to empirical rangelands research in this part of the world, our VHR-based 

estimations can help develop and improve assessments of rangeland health trajectories. The 720 

increasing availability of remote sensing imagery and the application and development of new 

machine learning algorithms will certainly help develop better management tools. Relatively 

recent collections such as Sentinel-2 and its harmonization with Landsat imagery (Claverie et al., 
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2018) will need to be tested for its advantages and disadvantages for its use in long-term time 

series in this geographic area.  725 

The framework proposed here of harnessing VHR images to generate training labels in a 

semi-automatic procedure, including manual VPI and RCC to automatically create reference data 

based on class proportions will become highly relevant considering recent technological 

advancements. Modern tools such as large language models (LLMs) and foundation models carry 

a huge promise to improve generalizability of this approach and classification accuracies in 730 

complex landscapes. With the future use of these new tools and fine-tuning, we expect our models 

specifically trained in our study domain to be generalizable to other dryland/rangeland regions in 

the whole of Sub-Saharan Africa or other continents (e.g., Australia, parts of Central Asia), where 

ecosystems, land cover compositions, herding intensities, and other similar features exist.  

Overall, this dataset will be useful to monitor the impacts of different rangeland 735 

management practices or test the impact of development programs. The open access to 

sophisticated cloud computing platforms, such as GEE (Gorelick et al., 2017), will contribute to 

practical use and further assessment of this dataset. To accomplish this, have made these two 

products available in GEE (see Data availability). 

5. Data availability 740 

Our 30 m resolution annual land cover classification and fractional cover data are publicly 

available at https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023) and Google Earth Engine 

(see Appendix A). 

6. Competing interests 

The contact author has declared that none of the authors has any competing interests. 745 

https://doi.org/10.5281/zenodo.7106166


 

 
45 

 

7. Acknowledgements 

This project is supported by Biodiversity International and the CGIAR Standing Panel on Impact 

Assessment (SPIA) for financial support under LoA L20HQ130. YS also acknowledges support 

from NASA-CMS award (80NSSC21K1058). 

8. Author contributions 750 

CB, PC, FF, NK, SW, NJ, CL, BP, and YS conceived the study. PC and CL conducted fieldwork. 

SW, PC, CL, BP, and GES conducted visual photo-interpretation work. GES performed the remote 

sensing analyses and wrote the first draft of the manuscript. All authors contributed to discussions 

and writing of the manuscript. 

9. References  755 

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-

resolution global dataset of monthly climate and climatic water balance from 1958–2015, 

Sci. data, 5(1), 1-12, https://doi.org/10.1038/sdata.2017.191, 2018. 

Adams, E. C., Parache, H. B., Cherrington, E., Ellenburg, W. L., Mishra, V., Lucey, R., & 

Nakalembe, C.: Limitations of remote sensing in assessing vegetation damage due to the 760 

2019–2021 desert locust upsurge. Frontiers in Climate, 3, 714273, 

https://doi.org/10.3389/fclim.2021.714273, 2021. 

AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., 

and Hain, C. R.: Remote sensing of drought: Progress, challenges and opportunities, Rev. 

Geophys., 53(2), 452-480, https://doi.org/10.1002/2014RG000456, 2015. 765 

Allred, B. W., Bestelmeyer, B. T., Boyd, C. S., Brown, C., Davies, K. W., Duniway, M. C., 

Ellsworth, L. M., Erickson, T. A., Fuhlendorf, S. D., Griffiths, T. V., Jansen, V., Jones, M. 

O., Karl, J., Knight, A., Maestas, J. D., Maynard, J. J., McCord, S. E., Naugle, D. E., Starns, 

https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.3389/fclim.2021.714273
https://doi.org/10.1002/2014RG000456


 

 
46 

 

H. D., Twidwell, D., and Uden, D. R.: Improving Landsat predictions of rangeland fractional 

cover with multitask learning and uncertainty, Methods Ecol. Evol., 12(5), 841-849, 770 

https://doi.org/10.1111/2041-210X.13564, 2021. 

Allred, B. W., Creutzburg, M. K., Carlson, J. C., Cole, C. J., Dovichin, C. M., Duniway, M. C., 

Jones, M. O., Maestas, J. D., Naugle, D. E., Nauman, T. W., Okin, G. S., Reeves, M. C., 

Rigge, M., Savage, S. L., Twidwell, D., Uden, D. R., and Zhou, B.: Guiding principles for 

using satellite-derived maps in rangeland management, Rangelands, 44(1), 78-86, 775 

https://doi.org/10.1016/j.rala.2021.09.004, 2022. 

Angassa, A.: Effects of grazing intensity and bush encroachment on herbaceous species and 

rangeland condition in southern Ethiopia, Land. Degrad. Dev., 25(5), 438-451, 

https://doi.org/10.1002/ldr.2160, 2014. 

Angassa, A., and Oba, G.: Herder perceptions on impacts of range enclosures, crop farming, fire 780 

ban and bush encroachment on the rangelands of Borana, Southern Ethiopia, Hum. Ecol., 

36(2), 201-215, https://doi.org/10.1007/s10745-007-9156-z, 2008. 

Barbier, E. B., and Hochard, J. P.: Land degradation and poverty, Nat. Sustain., 1(11), 623-631, 

https://doi.org/10.1038/s41893-018-0155-4, 2018. 

Beal, T., Gardner, C. D., Herrero, M., Iannotti, L. L., Merbold, L., Nordhagen, S., & Mottet, A.: 785 

Friend or foe? The role of animal-source foods in healthy and environmentally sustainable 

diets. The Journal of nutrition, 153(2), 409-425, https://doi.org/10.1016/j.tjnut.2022.10.016, 

2023. 

Belgiu, M., and Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-

weighted dynamic time warping analysis, Remote Sens. Env., 204, 509-523, 790 

https://doi.org/10.1016/j.rse.2017.10.005, 2018. 

https://doi.org/10.1111/2041-210X.13564
https://doi.org/10.1016/j.rala.2021.09.004
https://doi.org/10.1002/ldr.2160
https://doi.org/10.1007/s10745-007-9156-z
https://doi.org/10.1038/s41893-018-0155-4
https://doi.org/10.1016/j.tjnut.2022.10.016
https://doi.org/10.1016/j.rse.2017.10.005


 

 
47 

 

Bestelmeyer, B. T., Ash, A., Brown, J. R., Densambuu, B., Fernández-Giménez, M., Johanson, J., 

Levi, M., Lopez, D., Peinetti, R., Rumpff, L., and Shaver, P.: State and transition models: 

theory, applications, and challenges. Rangeland systems: Processes, management and 

challenges. In: Rangeland Systems. Springer Series on Environmental Management, edited 795 

by: Briske, D., Springer, Cham, 303-345, https://doi.org/10.1007/978-3-319-46709-2_9, 

2017. 

Blackwell, P. J.: East Africa's Pastoralist Emergency: is climate change the straw that breaks the 

camel's back?, Third World Q., 31(8), 1321-1338, 

https://doi.org/10.1080/01436597.2010.541085, 2010. 800 

Boardman, J. W., Kruse, F.A., and Green, R.O. Mapping target signatures via partial unmixing of 

AVIRIS data. In Proceedings of the Summaries 5th JPL Airborne Earth Science Workshop, 

Pasadena, CA, USA, Volume 1, pp. 23-26, January 1995. 

Brandt, M., Tucker, C. J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., Rasmussen, 

L. V., Hiernaux, P., Diouf, A. A., Kergoat, L., Mertz, O., Igel, C., Gieseke, F., Schöning, J., 805 

Li, S., Melocik, K., Meyer, J., Sinno, S., Romero, E., Glennie, E., Montagu, A., Dendoncker, 

M, and Fensholt, R.: An unexpectedly large count of trees in the West African Sahara and 

Sahel, Nature, 587(7832), 78-82, https://doi.org/10.1038/s41586-020-2824-5, 2020. 

Browning, D. M., Maynard, J. J., Karl, J. W., and Peters, D. C.: Breaks in MODIS time series 

portend vegetation change: verification using long‐term data in an arid grassland ecosystem, 810 

Ecol. Appl., 27(5), 1677-1693, https://doi.org/10.1002/eap.1561, 2017. 

Browning, D. M., Snyder, K. A., and Herrick, J. E.: Plant phenology: Taking the pulse of 

rangelands, Rangelands, 41(3), 129-134, https://doi.org/10.1016/j.rala.2019.02.001, 2019. 

https://doi.org/10.1007/978-3-319-46709-2_9
https://doi.org/10.1080/01436597.2010.541085
https://doi.org/10.1038/s41586-020-2824-5
https://doi.org/10.1002/eap.1561
https://doi.org/10.1016/j.rala.2019.02.001


 

 
48 

 

Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Linlin, L., Tarko, 

A.: Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015-2019: 815 

Product User Manual, Zenodo, Geneve, Switzerland, 22 pp., 

https://doi.org/10.5281/zenodo.3938963, 2020. 

Carlotto, M. J.: Effect of errors in ground truth on classification accuracy, Int. J. Remote Sens., 

30(18), 4831-4849, https://doi.org/10.1080/01431160802672864, 2009. 

Chantarat, S., Mude, A. G., Barrett, C. B., and Carter, M. R.: Designing index‐based livestock 820 

insurance for managing asset risk in northern Kenya, J. Risk Insur., 80(1), 205-237, 

https://doi.org/10.1111/j.1539-6975.2012.01463.x, 2013. 

Cheng, Y., Vrieling, A., Fava, F., Meroni, M., Marshall, M., and Gachoki, S.: Phenology of short 

vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2, Remote Sens. 

Environ., 248, 112004, https://doi.org/10.1016/j.rse.2020.112004, 2020. 825 

Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun, S. V., and 

Justice, C.: The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote 

Sens. Environ., 219, 145-161, https://doi.org/10.1016/j.rse.2018.09.002, 2018. 

Cooley, S. W., Smith, L. C., Stepan, L., and Mascaro, J.: Tracking dynamic northern surface water 

changes with high-frequency planet CubeSat imagery, Remote Sens., 9(12), 1306, 830 

https://doi.org/10.3390/rs9121306, 2017. 

Dube, T., Shoko, C., Sibanda, M., Madileng, P., Maluleke, X. G., Mokwatedi, V. R., Tibane, L., 

and Tshebesebe, T.: Remote sensing of invasive Lantana camara (verbenaceae) in semiarid 

savanna rangeland ecosystems of south africa, Rangeland Ecol. Manag., 73(3), 411-419, 

https://doi.org/10.1016/j.rama.2020.01.003, 2020. 835 

https://doi.org/10.5281/zenodo.3938963
https://doi.org/10.1080/01431160802672864
https://doi.org/10.1111/j.1539-6975.2012.01463.x
https://doi.org/10.1016/j.rse.2020.112004
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.3390/rs9121306
https://doi.org/10.1016/j.rama.2020.01.003


 

 
49 

 

Ellis, E. C., Wang, H., Xiao, H. S., Peng, K., Liu, X. P., Li, S. C., Ouyang, H., Cheng, X., and 

Yang, L. Z.: Measuring long-term ecological changes in densely populated landscapes using 

current and historical high resolution imagery, Remote Sens. Environ., 100(4), 457-473, 

https://doi.org/10.1016/j.rse.2005.11.002, 2006. 

Elmes, A., Alemohammad, H., Avery, R., Caylor, K., Eastman, J. R., Fishgold, L., Friedl, M. A., 840 

Jain, M., Kohli, D., Laso Bayas, J. C., Lunga, D., McCarty, J. L., Pontius, R. G., Reinmann, 

A. B., Rogan, J., Song, L., Stoynova, H., Ye, S., Yi, Z. F., and Estes, L.: Accounting for 

training data error in machine learning applied to Earth observations, Remote Sens., 12(6), 

1034, https://doi.org/10.3390/rs12061034, 2020. 

Fava, F. P., Jensen, N. D., Sina, J., Mude, A. G., and Maher, B.: Building financial resilience in 845 

pastoral communities in Africa: Lessons learned from implementing the Kenya Livestock 

Insurance Program (KLIP), World Bank, Washington DC, 32 pp., 

https://hdl.handle.net/10568/111681, 2021. 

Fava, F., and Vrieling, A.: Earth observation for drought risk financing in pastoral systems of sub-

Saharan Africa, Curr. Opin. Env. Sust., 48, 44-52, 850 

https://doi.org/10.1016/j.cosust.2020.09.006, 2021. 

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley Jr, R. D., Beckmann, T., Schmidt, G. L., 

Dwyer, J. L., Hughes, M. J., and Laue, B.: Cloud detection algorithm comparison and 

validation for operational Landsat data products, Remote Sens. Environ., 194, 379-390, 

https://doi.org/10.1016/j.rse.2017.03.026, 2017. 855 

Foody, G. M.: Status of land cover classification accuracy assessment, Remote Sens. Environ., 

80(1), 185-201, https://doi.org/10.1016/S0034-4257(01)00295-4, 2002. 

https://doi.org/10.1016/j.rse.2005.11.002
https://doi.org/10.3390/rs12061034
https://hdl.handle.net/10568/111681
https://doi.org/10.1016/j.cosust.2020.09.006
https://doi.org/10.1016/j.rse.2017.03.026
https://doi.org/10.1016/S0034-4257(01)00295-4


 

 
50 

 

Foody, G. M.: The impact of imperfect ground reference data on the accuracy of land cover change 

estimation, Int. J. Remote Sens., 30(12), 3275-3281, 

https://doi.org/10.1080/01431160902755346, 2009. 860 

Franks, S., Storey, J., and Rengarajan, R.: The new Landsat collection-2 digital elevation model, 

Remote Sens., 12(23), 3909, https://doi.org/10.3390/rs12233909, 2020. 

Fuhlendorf, S. D., Engle, D. M., Elmore, R. D., Limb, R. F., and Bidwell, T. G.: Conservation of 

pattern and process: developing an alternative paradigm of rangeland management, 

Rangeland Ecol. Manag., 65(6), 579-589, https://doi.org/10.2111/REM-D-11-00109.1, 865 

2012. 

Gao, B. C.: NDWI—A normalized difference water index for remote sensing of vegetation liquid 

water from space, Remote Sens. Environ., 58(3), 257-266, https://doi.org/10.1016/S0034-

4257(96)00067-3, 1996. 

Ghafari, S., Ghorbani, A., Moameri, M., Mostafazadeh, R., and Bidarlord, M.: Composition and 870 

structure of species along altitude gradient in Moghan-Sabalan rangelands, Iran, J. Mt. Sci., 

15(6), 1209-1228, https://doi.org/10.1007/s11629-017-4820-2, 2018. 

Giuliani, G., Mazzetti, P., Santoro, M., Nativi, S., Van Bemmelen, J., Colangeli, G., and Lehmann, 

A.: Knowledge generation using satellite earth observations to support sustainable 

development goals (SDG): A use case on Land degradation, Int. J. Appl. Earth Obs., 88, 875 

102068, https://doi.org/10.1016/j.jag.2020.102068, 2020. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth 

Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18-

27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. 

https://doi.org/10.1080/01431160902755346
https://doi.org/10.3390/rs12233909
https://doi.org/10.2111/REM-D-11-00109.1
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1007/s11629-017-4820-2
https://doi.org/10.1016/j.jag.2020.102068
https://doi.org/10.1016/j.rse.2017.06.031


 

 
51 

 

Graetz, R. D., Carneggie, D. M., Hacker, R., Lendon, C., and Wilcox, D. G.: A quantitative 880 

evaluation of Landsat imagery of Australian rangelands, Rangel. J., 1(1), 53-59, 

https://doi.org/10.1071/RJ9760053, 1976. 

Haas, R. H., Deering, D. W., Rouse Jr, J. W., and Schell, J. A.: Monitoring vegetation conditions 

from Landsat for use in range management. In NASA Earth Resources Survey Symposium 

Proc., Houston, Texas, Vol. 1, pp. 43-52, 1975. 885 

Hill, M. J., and Guerschman, J. P.: Global trends in vegetation fractional cover: Hotspots for 

change in bare soil and non-photosynthetic vegetation. Agric. Ecosyst. Environ., 324, 

107719, https://doi.org/10.1016/j.agee.2021.107719, 2022. 

Hill, M. J., and Guerschman, J. P.: The MODIS Global Vegetation Fractional Cover Product 2001–

2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands, 890 

Remote Sens., 12, 406, https://doi.org/10.3390/rs12030406, 2020. 

Hoffman, T., and Vogel, C.: Climate change impacts on African rangelands, Rangel., 30(3), 12-

17, https://doi.org/10.2111/1551-501X(2008)30[12:CCIOAR]2.0.CO;2, 2008. 

ILRI, IUCN, FAO, WWF, UNEP and ILC.: Rangelands Atlas. Nairobi Kenya: ILRI, 2021. 

IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working 895 

Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 

[H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. 

Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge 

University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 

3056 pp., https://doi.org/10.1017/9781009325844, 2022. 900 

https://doi.org/10.1071/RJ9760053
https://doi.org/10.1016/j.agee.2021.107719
https://doi.org/10.3390/rs12030406
https://doi.org/10.2111/1551-501X(2008)30%5b12:CCIOAR%5d2.0.CO;2
https://doi.org/10.1017/9781009325844


 

 
52 

 

Jarvis, A., Reuter, H. I., Nelson, A., Guevara, E.: Hole-filled seamless SRTM data Version 4, 

available from the CGIAR-CSI SRTM 90m, International Centre for Tropical Agriculture 

CIAT, Available from: https://srtm.csi.cgiar.org, 2008. 

Jensen, N. D., Barrett, C. B., and Mude, A. G. (2017). Cash transfers and index insurance: A 

comparative impact analysis from northern Kenya, JJ. Dev. Econ., 129, 14-28, 905 

https://doi.org/10.1016/j.jdeveco.2017.08.002, 2017. 

Jensen, N., Sheahan, M., Barrett, C. B., and Mude, A.: Hunger Safety Net Program (HSNP) and 

Index Based Livestock Insurance (IBLI) baseline comparison, Available from: 

http://dyson.cornell.edu/faculty_sites/cbb2/research/datasets/HSNP_IBLI_Comparison.pdf, 

2014. 910 

Johnson, L., Wandera, B., Jensen, N., and Banerjee, R.: Competing expectations in an index-based 

livestock insurance project, J. Dev. Stud., 55(6), 1221-1239, 

https://doi.org/10.1080/00220388.2018.1453603, 2019. 

Jones, M. O., Allred, B. W., Naugle, D. E., Maestas, J. D., Donnelly, P., Metz, L. J., Karl, J., Smith, 

R., Bestelmeyer, B., Boyd, C., Kerby, J. D., and McIver, J. D.: Innovation in rangeland 915 

monitoring: annual, 30 m, plant functional type percent cover maps for US rangelands, 1984–

2017, Ecosphere, 9(9), e02430, https://doi.org/10.1002/ecs2.2430, 2018. 

Jones, M. O., Naugle, D. E., Twidwell, D., Uden, D. R., Maestas, J. D., and Allred, B. W.: Beyond 

inventories: Emergence of a new era in rangeland monitoring, Rangeland Ecol. Manag., 

73(5), 577-583, https://doi.org/10.1016/j.rama.2020.06.009, 2020. 920 

Li, G., Han, W., Dong, Y., Zhai, X., Huang, S., Ma, W., Cui, X. & Wang, Y.: Multi-Year Crop 

Type Mapping Using Sentinel-2 Imagery and Deep Semantic Segmentation Algorithm in the 

https://srtm.csi.cgiar.org/
https://doi.org/10.1016/j.jdeveco.2017.08.002
http://dyson.cornell.edu/faculty_sites/cbb2/research/datasets/HSNP_IBLI_Comparison.pdf
https://doi.org/10.1080/00220388.2018.1453603
https://doi.org/10.1002/ecs2.2430
https://doi.org/10.1016/j.rama.2020.06.009


 

 
53 

 

Hetao Irrigation District in China. Remote Sensing, 15(4), 875, 

https://doi.org/10.3390/rs15040875, 2023. 

Liao, C., & Fei, D.: Pastoralist Adaptation Practices under Non-Governmental Development 925 

Interventions in Southern Ethiopia. The Rangeland Journal, 39 (2): 189-200, 

https://doi.org/10.1071/RJ16015, 2017. 

Liao, C., and Clark, P. E.: Rangeland vegetation diversity and transition pathways under 

indigenous pastoralist management regimes in southern Ethiopia, Agric. Ecosyst. Environ., 

252, 105-113, https://doi.org/10.1016/j.agee.2017.10.009, 2018. 930 

Liao, C., Clark, P. E., and DeGloria, S. D.: Bush encroachment dynamics and rangeland 

management implications in southern Ethiopia, Ecol. Evol., 8(23), 11694-11703, 

https://doi.org/10.1002/ece3.4621, 2018. 

Lin, C., Jin, Z., Mulla, D., Ghosh, R., Guan, K., Kumar, V., and Cai, Y.: Toward Large-Scale 

Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning 935 

Algorithms: A Case Study of Olive Orchards in Morocco, Remote Sens., 13(9), 1740, 

https://doi.org/10.3390/rs13091740, 2021. 

Liu, H. Q., and Huete, A.: A feedback based modification of the NDVI to minimize canopy 

background and atmospheric noise, IEEE T. Geosci. Remote., 33(2), 457-465, 

https://doi.org/10.1109/TGRS.1995.8746027, 1995. 940 

Loveland, T. R., and Dwyer, J. L.: Landsat: Building a strong future, Remote Sens. Environ., 122, 

22-29, https://doi.org/10.1016/j.rse.2011.09.022, 2012. 

Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A., Scott, E. M., Smith, R. 

I., Somerfield, P. J., and Watt, A. D.: Long-term datasets in biodiversity research and 

https://doi.org/10.3390/rs15040875
https://doi.org/10.1071/RJ16015
https://doi.org/10.1016/j.agee.2017.10.009
https://doi.org/10.1002/ece3.4621
https://doi.org/10.3390/rs13091740
https://doi.org/10.1109/TGRS.1995.8746027
https://doi.org/10.1016/j.rse.2011.09.022


 

 
54 

 

monitoring: assessing change in ecological communities through time, Trends Ecol. Evol., 945 

25:574–582, https://doi.org/10.1016/j.tree.2010.06.016, 2010. 

Markham, B. L., Storey, J. C., Williams, D. L., and Irons, J. R. Landsat sensor performance: history 

and current status. IEEE Trans Geosci Remote Sens, 42(12), 2691-2694, 

https://doi.org/10.1109/TGRS.2004.840720, 2004. 

Matongera, T. N., Mutanga, O., Sibanda, M., and Odindi, J.: Estimating and Monitoring Land 950 

Surface Phenology in Rangelands: A Review of Progress and Challenges, Remote Sens., 

13(11), 2060, https://doi.org/10.3390/rs13112060, 2021. 

McFeeters, S. K.: The use of the Normalized Difference Water Index (NDWI) in the delineation 

of open water features, Int. J. Remote Sens., 17(7), 1425-1432, 

https://doi.org/10.1080/01431169608948714, 1996. 955 

Müller, M.: Information retrieval for music and motion, Springer, Berlin, 313 pp., ISBN 978-3-

540-74048-3, https://doi.org/10.1007/978-3-540-74048-3, 2007. 

Mundia, C. N., and Aniya, M.: Analysis of land use/cover changes and urban expansion of Nairobi 

city using remote sensing and GIS, Int. J. Remote Sens., 26(13), 2831-2849, 

https://doi.org/10.1080/01431160500117865, 2005. 960 

Nandintsetseg, B., Chang, J., Sen, O. L., Reyer, C. P., Kong, K., Yetemen, O., Ciais, P. & 

Davaadalai, J.: Future drought risk and adaptation of pastoralism in Eurasian rangelands. npj 

climate and atmospheric science, 7(1), 82, https://doi.org/10.1038/s41612-024-00624-2, 

2024. 

Oba, G., Weladji, R. B., Lusigi, W. J., and Stenseth, N. C.: Scale‐dependent effects of grazing on 965 

rangeland degradation in northern Kenya: a test of equilibrium and non‐equilibrium 

hypotheses, Land Degrad. Dev., 14(1), 83-94, https://doi.org/10.1002/ldr.524, 2003. 

https://doi.org/10.1016/j.tree.2010.06.016
https://doi.org/10.1109/TGRS.2004.840720
https://doi.org/10.3390/rs13112060
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1007/978-3-540-74048-3
https://doi.org/10.1080/01431160500117865
https://doi.org/10.1038/s41612-024-00624-2
https://doi.org/10.1002/ldr.524


 

 
55 

 

Okal, H. A., Ngetich, F. K., & Okeyo, J. M.: Spatio-temporal characterization of droughts using 

selected indices in Upper Tana River watershed, Kenya. Scientific African, 7, e00275, 

https://doi.org/10.1016/j.sciaf.2020.e00275, 2020. 970 

Ott, J. E., Kilkenny, F. F., Summers, D. D., and Thompson, T. W.: Long-term vegetation recovery 

and invasive annual suppression in native and introduced postfire seeding treatments, 

Rangeland Ecol. Manag., 72, 640–653, https://doi.org/10.1016/j.rama.2019.02.001, 2019. 

Padial-Iglesias, M., Serra, P., Ninyerola, M., and Pons, X.: A Framework of Filtering Rules over 

Ground Truth Samples to Achieve Higher Accuracy in Land Cover Maps, Remote Sens., 975 

13(14), 2662, https://doi.org/10.3390/rs13142662, 2021. 

Pellant, M., Shaver, P.L., Pyke, D.A., Herrick, J.E., Lepak, N., Riegel, G., Kachergis, E., 

Newingham, B.A., Toledo, D., and Busby, F.E.: Interpreting Indicators of Rangeland Health, 

Version 5, Tech Ref 1734-6. U.S. Department of the Interior, Bureau of Land Management, 

National Operations Center, Denver, CO, Available from: 980 

https://pubs.er.usgs.gov/publication/70215720, 2020. 

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., and Stenseth, N. C.: Using 

the satellite-derived NDVI to assess ecological responses to environmental change, Trends 

Eco. Evol., 20(9), 503-510, https://doi.org/10.1016/j.tree.2005.05.011, 2005. 

Pratt, D. J., Greenway, P. J., and Gwynne, M. D.: A classification of East African rangeland, with 985 

an appendix on terminology, J. Appl. Ecol., 369-382, https://doi.org/10.2307/2401259, 1966. 

Pricope, N. G., Husak, G., Lopez-Carr, D., Funk, C., & Michaelsen, J.: The climate-population 

nexus in the East African Horn: Emerging degradation trends in rangeland and pastoral 

livelihood zones. Global environmental change, 23(6), 1525-1541, 

https://doi.org/10.1016/j.gloenvcha.2013.10.002, 2013. 990 

https://doi.org/10.1016/j.sciaf.2020.e00275
https://doi.org/10.1016/j.rama.2019.02.001
https://doi.org/10.3390/rs13142662
https://pubs.er.usgs.gov/publication/70215720
https://doi.org/10.1016/j.tree.2005.05.011
https://doi.org/10.2307/2401259
https://doi.org/10.1016/j.gloenvcha.2013.10.002


 

 
56 

 

Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S.: A modified soil adjusted 

vegetation index. Remote sensing of environment, 48(2), 119-126, 

https://doi.org/10.1016/0034-4257(94)90134-1, 1994. 

Quintano, C., Fernández-Manso, A., Shimabukuro, Y. E., and Pereira, G.: Spectral unmixing, Int. 

J. Remote Sens., 33(17), 5307-5340, https://doi.org/10.1080/01431161.2012.661095, 2012. 995 

Račič, M., Oštir, K., Zupanc, A., & Čehovin Zajc, L.: Multi-Year Time Series Transfer Learning: 

Application of Early Crop Classification. Remote Sensing, 16(2), 270, 

https://doi.org/10.3390/rs16020270, 2024. 

Reeves, M. C., and Baggett, L. S.: A remote sensing protocol for identifying rangelands with 

degraded productive capacity, Ecol. Indic., 43, 172-182, 1000 

https://doi.org/10.1016/j.ecolind.2014.02.009, 2014. 

Reid, R. S., Galvin, K. A., and Kruska, R. S.: Global significance of extensive grazing lands and 

pastoral societies: an introduction, in: Fragmentation in semi-arid and arid landscapes, edited 

by: Galvin, K. A., Reid, R. S, Behnke Jr., R. H., and Hobbs, N. T., Springer, Dordrecht, 1-

24, https://doi.org/10.1007/978-1-4020-4906-4, 2008. 1005 

Rigge, M., Homer, C., Cleeves, L., Meyer, D. K., Bunde, B., Shi, H., Xian, G., Schell, S. and 

Bobo, M.: Quantifying western US rangelands as fractional components with multi-

resolution remote sensing and in situ data, Remote Sens., 12(3), 412, 

https://doi.org/10.3390/rs12030412, 2020. 

Rigge, M., Homer, C., Shi, H., Meyer, D., Bunde, B., Granneman, B., Postma, K., Danielson, P., 1010 

Case, A., and Xian, G.: Rangeland fractional components across the Western United States 

from 1985 to 2018, Remote Sens., 13(4), 813, https://doi.org/10.3390/rs13040813, 2021. 

https://doi.org/10.1016/0034-4257(94)90134-1
https://doi.org/10.1080/01431161.2012.661095
https://doi.org/10.3390/rs16020270
https://doi.org/10.1016/j.ecolind.2014.02.009
https://doi.org/10.1007/978-1-4020-4906-4
https://doi.org/10.3390/rs12030412
https://doi.org/10.3390/rs13040813


 

 
57 

 

Rigge, M., Shi, H., Homer, C., Danielson, P., and Granneman, B.: Long‐term trajectories of 

fractional component change in the Northern Great Basin, USA, Ecosphere, 10(6), e02762, 

https://doi.org/10.1002/ecs2.2762, 2019. 1015 

Rogan, J., Miller, J., Stow, D., Franklin, J., Levien, L., and Fischer, C.: Land-cover change 

monitoring with classification trees using Landsat TM and ancillary data, Photogramm. Eng. 

Rem. Sens., 69(7), 793-804, https://doi.org/10.14358/PERS.69.7.793, 2003. 

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W.: Monitoring vegetation systems in the 

Great Plains with ERTS, in: NASA special publication Third Earth Resoources Technology 1020 

Satellite – 1 symposium, edited by: Freden, M. A., Mercanti, E. P., and Becker, M. A., 

NASA, Washington DC., 309-317, 1974. 

Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., and Egorov, A.: 

Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference 

vegetation index continuity, Remote Sens. Environ., 185, 57-70, 1025 

https://doi.org/10.1016/j.rse.2015.12.024, 2016. 

Safanelli, J. L., Poppiel, R. R., Ruiz, L. F. C., Bonfatti, B. R., Oliveira Mello, F. A. D., Rizzo, R., 

and Demattê, J. A.: Terrain Analysis in Google Earth Engine: A Method Adapted for High-

Performance Global-Scale Analysis, ISPRS Int. Geo-Inf., 9(6), 400, 

https://doi.org/10.3390/ijgi9060400, 2020. 1030 

Sankey, T. T., Leonard, J. M., and Moore, M. M.: Unmanned aerial vehicle−based rangeland 

monitoring: examining a century of vegetation changes, Rangeland Ecol. Manag., 72(5), 

858-863, https://doi.org/10.1016/j.rama.2019.04.002, 2019. 

Sankey, T. T., Leonard, J., Moore, M. M., Sankey, J. B., and Belmonte, A.: Carbon and 

ecohydrological priorities in managing woody encroachment: UAV perspective 63 years 1035 

https://doi.org/10.1002/ecs2.2762
https://doi.org/10.14358/PERS.69.7.793
https://doi.org/10.1016/j.rse.2015.12.024
https://doi.org/10.3390/ijgi9060400
https://doi.org/10.1016/j.rama.2019.04.002


 

 
58 

 

after a control treatment, Environ. Res. Lett., 16(12), 124053, https://doi.org/10.1088/1748-

9326/ac3796, 2021. 

Sayre, N. F., McAllister, R. R., Bestelmeyer, B. T., Moritz, M., and Turner, M. D.: Earth 

stewardship of rangelands: coping with ecological, economic, and political marginality, 

Front. Ecol. Environ., 11(7), 348-354, https://doi.org/10.1890/120333, 2013. 1040 

Schmidt, G. L., Jenkerson, C., Masek, J. G., Vermote, E., and Gao, F.: Landsat ecosystem 

disturbance adaptive processing system (LEDAPS) algorithm description, 17 pp., Available 

from: https://pubs.usgs.gov/of/2013/1057/, 2013. 

Seidel, M., and Hlawitschka, M.: An R-Based function for modeling of end member compositions, 

Math. Geosci., 47(8), 995-1007, https://doi.org/10.1007/s11004-015-9609-7, 2015. 1045 

Sexton, J. O., Song, X. P., Feng, M., Noojipady, P., Anand, A., Huang, C., Kim, D. H., Collins, 

K. M., Channan, S., DiMiceli, C., and Townshend, J. R.: Global, 30-m resolution continuous 

fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with 

lidar-based estimates of error. International Journal of Digital Earth, 6(5), 427-448, 

https://doi.org/10.1080/17538947.2013.786146, 2013. 1050 

Soto, G. E., Wilcox, S., Clark, P. E., Fava, F. P., Jensen, N. M., Kahiu, N., Liao, C., Porter, B., 

Sun, Y., and Barrett, C. B.: Mapping Rangeland Health Indicators in East Africa from 2000 

to 2022 [data set], https://doi.org/10.5281/zenodo.7106166, 2023. 

Sudmanns, M., Tiede, D., Lang, S., Bergstedt, H., Trost, G., Augustin, H., Baraldi, A., and 

Blaschke, T.: Big Earth data: disruptive changes in Earth observation data management and 1055 

analysis?, Int. J. Digit. Earth, 13(7), 832-850, 

https://doi.org/10.1080/17538947.2019.1585976, 2020. 

https://doi.org/10.1088/1748-9326/ac3796
https://doi.org/10.1088/1748-9326/ac3796
https://doi.org/10.1890/120333
https://pubs.usgs.gov/of/2013/1057/
https://doi.org/10.1007/s11004-015-9609-7
https://doi.org/10.1080/17538947.2013.786146
https://doi.org/10.5281/zenodo.7106166
https://doi.org/10.1080/17538947.2019.1585976


 

 
59 

 

Treitz, P., and Rogan, J.: Remote sensing for mapping and monitoring land-cover and land-use 

change-an introduction, Prog. Plann., 61(4), 269-279, https://doi.org/10.1016/S0305-

9006(03)00066-7, 2004. 1060 

U.S. Geological Survey: Landsat 8 Data Users Handbook, 114 pp., Sioux falls, S.D., Available 

from: https://www.usgs.gov/media/files/landsat-8-data-users-handbook, 2019. 

U.S. Geological Survey.: Landsat Collection 2 (ver. 1.1, January 15, 2021): U.S. Geological 

Survey Fact Sheet 2021–3002, 4 pp., Sioux falls, S.D., https://doi.org/10.3133/fs20213002, 

2021. 1065 

U.S. Geological Survey.: Landsat 8-9 Collection 2 (C2) Level 2 Science Product (L2SP) Guide. 

Version 5.0., 43 pp., Sioux falls, S.D., Available from : 

https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide, 

2022. 

Vetter, S.: Rangelands at equilibrium and non-equilibrium: recent developments in the debate, J. 1070 

Arid Environ., 62(2), 321-341, https://doi.org/10.1016/j.jaridenv.2004.11.015, 2005. 

Weikmann, G., Paris, C., & Bruzzone, L.: Multi-year crop type mapping using pre-trained deep 

long-short term memory and Sentinel 2 image time series. In Image and Signal Processing 

for Remote Sensing XXVII, Vol. 11862, pp. 171-181, SPIE, 2021. 

Weltje, G. J.: End-member modeling of compositional data: Numerical-statistical algorithms for 1075 

solving the explicit mixing problem, Math. Geol., 29(4), 503-549, 

https://doi.org/10.1007/BF02775085, 1997. 

Weng, Q.: Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, 

GIS and stochastic modelling, J. Environ. Manag., 64(3), 273-284, 

https://doi.org/10.1006/jema.2001.0509, 2002. 1080 

https://doi.org/10.1016/S0305-9006(03)00066-7
https://doi.org/10.1016/S0305-9006(03)00066-7
https://www.usgs.gov/media/files/landsat-8-data-users-handbook
https://doi.org/10.3133/fs20213002
https://www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide
https://doi.org/10.1016/j.jaridenv.2004.11.015
https://doi.org/10.1007/BF02775085
https://doi.org/10.1006/jema.2001.0509


 

 
60 

 

Williams, D. L., Goward, S., and Arvidson, T.: Landsat: Yesterday, today and tomorrow, 

Photogramm. Eng. Rem. Sens., 72(10), 1171-1178, 

https://doi.org/10.14358/PERS.72.10.1171, 2006. 

Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Alle, 

R. G., Anderson, M. C., Belward, A. S., Cohen, W. B., Dwyer, J., Erb, A., Gao, F., Griffiths, 1085 

P., Helder, D., Hermosilla, T., Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., 

Johnson, D. M., Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N., 

Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermotev, E., Vogelmann, 

JJ., White, J. C., Wynne, R. H., and Zhu, Z.: Current status of Landsat program, science, and 

applications, Remote Sens. Environ., 225, 127-147, 1090 

https://doi.org/10.1016/j.rse.2019.02.015, 2019. 

Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., and Woodcock, C. E.: Opening the 

archive: How free data has enabled the science and monitoring promise of Landsat, Remote 

Sens. Environ., 122, 2-10, https://doi.org/10.1016/j.rse.2012.01.010, 2012. 

Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., 1095 

Healey, S., Zhu, Z., Scambos, T. A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C. 

J., Masek, J. G., Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C., Woodcock, C. E., 

Huntington, J. L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A., Pekel, J. F., Strobl, P., 

and Cook, B. D.: Fifty years of Landsat science and impacts, Remote Sens. Environ., 280, 

113195, https://doi.org/10.1016/j.rse.2022.113195, 2022. 1100 

Wynants, M., Kelly, C., Mtei, K., Munishi, L., Patrick, A., Rabinovich, A., Nasseri, M., Gilvear, 

D., Roberts, N., Boeckx, P., Wilson, G., Blake, W. H., and Ndakidemi, P.: Drivers of 

increased soil erosion in East Africa’s agro-pastoral systems: changing interactions between 

https://doi.org/10.14358/PERS.72.10.1171
https://doi.org/10.1016/j.rse.2019.02.015
https://doi.org/10.1016/j.rse.2012.01.010
https://doi.org/10.1016/j.rse.2022.113195


 

 
61 

 

the social, economic and natural domains, Reg. Environ. Change, 19(7), 1909-1921, 

https://doi.org/10.1007/s10113-019-01520-9, 2019. 1105 

Yang, X., and Lo, C. P.: Using a time series of satellite imagery to detect land use and land cover 

changes in the Atlanta, Georgia metropolitan area, Int. J. Remote Sens., 23(9), 1775-1798, 

https://doi.org/10.1080/01431160110075802, 2002. 

Zabel, F., Delzeit, R., Schneider, J. M., Seppelt, R., Mauser, W., and Václavík, T.: Global impacts 

of future cropland expansion and intensification on agricultural markets and biodiversity, 1110 

Nat. Comm., 10(1), 1-10, https://doi.org/10.1038/s41467-019-10775-z, 2019. 

Zhou, B., Okin, G. S., and Zhang, J.: Leveraging Google Earth Engine (GEE) and machine learning 

algorithms to incorporate in situ measurement from different times for rangelands 

monitoring, Remote Sens. Environ., 236, 111521, https://doi.org/10.1016/j.rse.2019.111521, 

2020. 1115 

  

https://doi.org/10.1007/s10113-019-01520-9
https://doi.org/10.1080/01431160110075802
https://doi.org/10.1038/s41467-019-10775-z
https://doi.org/10.1016/j.rse.2019.111521


 

 
62 

 

10. Appendices 

Appendix A. Description of access to Google Earth Engine (GEE) data. 

 

Land Cover Classification data can be accessed using GEE’s asset ids with the following 1120 

structure: 

- projects/ee-gerardosoto/assets/lcClass<YEAR> 

- For example, for year 2000, use: “projects/ee-gerardosoto/assets/lcClass2000”  

 

Alternatively, use the GEE’s links as follows: 1125 

https://code.earthengine.google.com/?asset=projects/ee-gerardosoto/assets/lcClass2000 

 

 

Vegetation Fractional Cover data can be accessed using GEE’s asset ids with the following 

structure: 1130 

- projects/ee-gerardosoto/assets/fracCov<YEAR>_int16 

- For example, for year 2000, use: “projects/ee-gerardosoto/assets/fracCov2000_int16” 

 

Alternatively, use the GEE’s links as follows: 

https://code.earthengine.google.com/?asset=projects/ee-gerardosoto/assets/fracCov2000_int16 1135 

 

  

https://code.earthengine.google.com/?asset=projects/ee-gerardosoto/assets/lcClass2000
https://code.earthengine.google.com/?asset=projects/ee-gerardosoto/assets/fracCov2000_int16
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Appendix B. Reference flash card sets.  

 

The following pages include the flash cards used to reference land cover types and canopy cover. 1140 

 

Figure B1. Flashcard for land cover type “Closed Canopy Woodland”. 
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Figure B2. Flashcard for land cover type “Dense Scrubland”. 1145 
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Figure B3. Flashcard for land cover type “Bushland”.
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Figure B4. Flashcard for land cover type “Open Canopy Woodland”. 
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Figure B5. Flashcard for land cover type “Sparse Scrubland”. 
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Figure B6. Flashcard for land cover type “Cultivated Land”, maize crop. 
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Figure B7. Flashcard for land cover type “Cultivated Land”, cropped versus fallow. 1160 
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Figure B8. Flashcard for land cover type “Cultivated Land”, teff crop. 
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Figure B9. Flashcard for land cover type “Grassland”. 
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Figure B10. Flashcard for land cover type “Sparsely Vegetated Land”. 
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Figure B11. Flashcard for canopy cover level “2m diameter in a 30 by 30 m plot”. 
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Figure B12. Flashcard for canopy cover level “4m diameter in a 30 by 30 m plot”. 
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Figure B13. Flashcard for canopy cover level “8m diameter in a 30 by 30 m plot”. 
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Figure B14. Flashcard for canopy cover level “2m diameter in a 10 by 10 m plot”. 1185 
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Figure B15. Flashcard for canopy cover level “4m diameter in a 10 by 10 m plot”. 
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Figure B16. Flashcard for canopy cover level “8m diameter in a 10 by 10 m plot”. 

 


