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Abstract 

We describe a new dataset of cropland area circa the year 2020, with global coverage, with data for 221 

countries and territories and 34 regional aggregates. Data are generated from geospatial information on the 

agreement-disagreement characteristics of six open access high-resolution cropland maps derived from 

remote sensing. The cropland area mapping dataset (CAM) provides information on: i) mean cropland area 15 

and its uncertainty; ii) cropland area by six distinct cropland agreement classes; and iii) cropland area by 

specific combinations of underlying land cover product. The data indicated that world cropland area is 1500 

± 400 million hectares (Mha) (mean and 95% confidence interval), with a relative uncertainty of 25% that 

increased across regions. It was 50% in Central Asia (40 ± 20 Mha), South America (180 ± 80 Mha), and 

Southern Europe (40 ± 20 Mha); up to 40% in Australia and New Zealand (50 ± 20 Mha), South-eastern 20 

Asia (80 ± 30 Mha) and Southern Africa (16 ± 6 Mha). Conversely, cropland area was estimated with better 

precision, i.e. smaller uncertainties in the range 10%-25% in Southern Asia (230 ± 30 Mha), Northern 

America (200 ± 40 Mha), Northern Africa (40 ± 10 Mha), Eastern and Western Europe (40 ± 10 Mha). The 

new data can be used to investigate coherence of information across the six underlying products, as well as 

to explore important disagreement features. Overall, 70% or more of the estimated mean cropland area 25 

globally and by region corresponded to good agreement of underlying land cover maps–four or more. 

Conversely, in Africa cropland area estimates found significant disagreement, highlighting mapping 

difficulties in complex landscapes. Finally, the new cropland area data were consistent with FAOSTAT in 

15 out of 18 world regions, and for 114 out of 182 countries with a cropland area above 10 kha. By helping 

to highlight features of cropland characteristics and underlying causes for agreement/disagreement across 30 

land cover products, the CAM dataset can be used as a tool to assess quality of country statistics and help 

guide future mapping efforts towards improved agricultural monitoring. Data are publicly available at: 

https://doi.org/10.5281/zenodo.7987515 (Tubiello et al., 2023a).  
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1 Introduction 

Information on cropland area is needed to assess and monitor the sustainability of agriculture at local, 

regional and planetary scales. Information on world cropland area with national or sub-national detail is 

currently available as: i) Statistics of agricultural land use, collected from countries by the Food and 

Agriculture Organizations of the United Nations (FAO) and disseminated in FAOSTAT (FAO, 2023a); and 40 

ii) land cover maps produced from remote sensing (Potapov et al., 2022a). These historically rather distinct 

sources are becoming interconnected, with remote sensed data increasingly complementing more traditional 

data sources such as agricultural censuses and surveys (Miller et al., 2009; Bailey and Boryan, 2010; FAO, 

2018; Karthikeyan et al., 2020; Weiss et al., 2020; Bey et al., 2016). Comparison analyses at multiple scales 

of these different sources have been published to facilitate in-depth understanding of cropland 45 

characteristics and to derive methods for data selection and applications (Bratic et al, 2019; Liu et al., 2021; 

Venter et al., 2022; Chaaban et al., 2022; Ding et al., 2022). We recently conducted a meta-analysis of the 

currently available six independent high resolution (10–30 m) land cover maps circa 2020 and derived a 

map on cropland agreement/disagreement at pixel level, showing that by combining such information world 

cropland area can be estimated to within 25% (Tubiello et al., 2023b). That study identified ‘definitional 50 

bias,’ i.e., systematic errors due to imperfectly aligned land cover/land use definitions, as an important 

source of uncertainty in addition to well-described factors such as differences in data sources, pre-

processing methods and validation approaches (Fritz et al., 2013; Gao et al., 2020, Wang et al., 2019). The 

cropland agreement maps are already being used in support of relevant geospatial work (e.g., Tang et al., 

2023). 55 

This study presents a new database of cropland area at country level, based on the geospatial work of 

Tubiello et al. (2023b). We aggregate pixel level information and quantify means and uncertainties of 

cropland area at country and regional level. The new database, referred to hereafter as Cropland Agreement 

Mapping (CAM) dataset, provides information on cropland area by country, with information on: i) mean 

estimate and uncertainty; ii) contribution to total area by agreement class; iii) contribution by specific 60 

combinations of the underlying land cover products.  

The information provided by CAM, presented for the first time in this paper, helps to better understand the 

linkage between agricultural land cover and land use information and related uncertainty, offering useful 

insights with regards to future mapping efforts and their evaluation. The CAM dataset is available as open 

access data at: https://doi.org/10.5281/zenodo.7987515 (Tubiello et al., 2023a). 65 
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2 Materials and Methods 

2.1 Cropland agreement map 

 

We used the cropland agreement map by Tubiello et al. (2023b) as input to generate country statistics. CAM 

consolidates information from six high-resolution land cover maps based on a meta-analysis done within 70 

the code editor of the Google Earth Engine (GEE) (Gorelick et al., 2017). These six maps are: ESRI (Karra 

et al. 2021); FROM_GLC Plus (Yu et al., 2022); GLAD (Potapov et al, 2022a); GLC-FCS30-2020 (Zhang 

et al., 2021); Globeland30 (Chen et al., 2015); and WorldCover (Zanaga et al., 2021). Appendix A further 

provides details on the characteristics of the six land cover maps, along with their spatial consistency and 

similarity analysis.  75 

The cropland agreement map consists of two geospatial layers prepared at 30 m resolution as 8-bit unsigned 

integers: i) a simple cropland agreement map; and ii) a detailed cropland agreement map. 

The simple cropland agreement map layer combines six cropland binary masks (with values of 1 for 

cropland, 0 for no cropland) from the six input land cover products (Appendix A), into a map with pixel 

values ranging 1-6, representing, when normalised by the number of layers, the probability of cropland area 80 

in each pixel.  

The detailed cropland agreement map layer contains information on the individual land cover products and 

their combinations, with values ranging between 0 (bit 00000000, corresponding to no cropland), and 63 

(bit 00111111, representing complete agreement) (Appendix B, Tab. B1).  Each input dataset contains 

omission and commission errors, which affect their accuracy (Tab. 1). While the uncertainty information 85 

in CAM and in our dataset is computed net of these accuracies, it should be noted that by combining 

multiple land cover products, overall omission and commission errors may be reduced.  

As discussed elsewhere (Tubiello et al., 2023b), the definitions of ‘cropland’ as a land cover class varied 

across the six products (Tab. 1), although they largely corresponded to FAO land use class cropland or 

arable land (Tab. 2). Specifically, of the six products used as input, GLAD, WorldCover and ESRI 90 

‘cropland’ classes could conceptually be mapped to FAO land use class arable land or temporary crops, 

while the other three maps, including information on shrubs and woody components, could be better aligned 

with the FAO parent class cropland (Tubiello et al., 2023b). Within the latter, Globeland30 included within 

‘cropland’ tree and shrub crops directly under a single class (cultivated land); FROM-GLC included 

permanent shrubs crops while excluding tree crops; and FCS30 provided data on cropland globally, with 95 

some partial regional distinctions between herbaceous and woody crops within irrigated/rainfed sub-classes 

(Tab. 1). The latter category was excluded to reduce definitional bias in the consolidated product. 
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Table 1. Cropland definitions and accuracy of the six input layers used for the cropland agreement map. 

Dataset Label Definition Cropland 

class # 

Accuracya 

ESRI 

(ESR) 

Crops Human planted/plotted cereals, grasses, and crops not 

at tree height; examples: corn, wheat, soy, fallow 

plots of structured land. 

5 PA 89.9%; UA 91% 

 

FROM-

GLC Plusb 

(FRG) 

Croplands Land that has clear traits of intensive human activity. 

It varies a lot from bare field, seeding, crop growing 

to harvesting. It includes arable and tillage land with 

herbaceous/shrub crops and land with plastic foam or 

grass roof protection with distinguishing spectral 

properties. Fruit trees are classified into forests. 

10 – Level 1 OA 71.9% 

GLAD 

(GLD) 

Cropland Land used for annual and perennial herbaceous crops 

for human consumption, forage (including hay) and 

biofuel. Perennial woody crops, permanent pastures 

and shifting cultivation are excluded from the 

definition. The fallow length is limited to 4 years for 

the cropland class. 

1 PA 86.4%; UA: 88.5% 

 

GLC-

FCS30-

2020c 

(FCS30)  

Cropland Rainfed cropland,  

Irrigated cropland 

 

Herbaceous cover 

Tree or shrub cover (Orchard) 

 

10 – Level 1 

20 – Level 1 

 

11 – Level 2  

12 – Level 2d 

PA 88.0%; UA 83.9% 

 

Globeland30 

(GL30) 

Cultivated 

land 

Category includes paddy fields, irrigated dry land, 

rain-fed dry land, vegetable land, pasture planting 

land, greenhouse land, land mainly for planting crops 

with fruit trees and other economic trees, as well as 

tea gardens, coffee gardens and other shrubs. 

10 OA 85.7% 

WorldCover 

(WCO) 

Cropland Land covered with annual cropland that is 

sowed/planted and harvestable at least once within 

the 12 months after the sowing/planting date. The 

annual cropland produces an herbaceous cover and is 

sometimes combined with some tree or woody 

vegetation. Note that perennial woody crops will be 

classified as the appropriate tree cover or shrub land 

cover type. Greenhouses are considered as built-up.  

 

40 PA 76.7%; UA 81.1% 

 

 

a When available, user and producer accuracy (UA and PA) of the cropland class, overall map accuracy (OA) is otherwise reported. b Accuracy 
results reported for the 2020 map from the data producers (personal communication). c Accuracy results based on the 2015 version of the map. d 100 
Excluded from the cropland agreement map.  
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2.2 Preparation of the CAM dataset 110 

 

The country statistics populating the CAM dataset (Tubiello et al., 2023a) were extracted from the simple 

and detailed agreement maps discussed above (Tubiello et al., 2023b), using the FAO Global 

Administrative Unit layer (GAUL) for country boundaries (FAO 2015)—also accessible from the GEE 

Code editor.  115 

Generally, for n land cover maps, pixel values in the simple agreement map  belong to a set of n+1 elements, 

{0, 1/n, 2/n …, (n-1)/n, 1}, representing the level of agreement among input maps, which was interpreted 

as the probability of finding cropland in each pixel by Tubiello et al. (2023b). By aggregating the pixel-

level information at national scale it was therefore possible to generate country estimates of: i) mean 

cropland area A and associated uncertainty: ii) cropland area by agreement class, SA1 to SA6, with SAk 120 

representing the area where k maps agreed, and A = Σk SAk (Fig. 1); and iii) cropland area by specific map 

combinations.  

Following the steps above, we generated values for over 221 countries and 34 territories, with country codes 

aligned to standard M49 area codes classification.  

In terms of simple agreement classes, SA1 represents the contribution to cropland area by single land cover 125 

products, while SA6 provides information on the contribution to cropland area when all six products agree. 

Conversely, Similarly, for agreement class SAk, data represent contributions to total cropland area by all 

relevant combinations of k products. With respect to the two extreme cases, definitional bias would be small 

for SA6, with CAM likely estimating subcomponents temporary crops rather than cropland, since the 

former category would be the only one that could be detected by all land cover products. By the same token, 130 

definitional bias would be higher for SAk classes and highest for SA1, with CAM including in such cases 

more of those components of cropland that would not be equally detected by the underlying land cover 

products, for instance temporary meadows and pastures or permanent crops. To this end, CAM data on 

detailed cropland agreement provide the additional information on which specific combinations of k land 

cover products contributed to class SAk in a given country. For example, the area of SA3 in country i could 135 

be the sum of agreement areas identified respectively by GLAD-WorldCover-ESRI and GLAD-

WorldCover-FROM_GLC.  

 

 

 140 
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Figure 1. Simple cropland agreement map. Adapted from Tubiello et al. (2023b).  

 

 

 145 

 

2.3 Comparison with FAO land use statistics 

 

FAO land use statistics of cropland and arable land are routinely used as benchmark to assess the robustness 

of land cover information at various scales (Vancutsem et al., 2013; Yu et al., 2014; Pérez-Hoyos et al., 150 

2017; Xu et al., 2019; Li and Xu., 2020; Potapov et al., 2022a). We compared CAM cropland area estimates 

against FAOSTAT (FAO, 2023a) area statistics of cropland (Tab. 2), quantifying goodness of fit in terms 

of the Pearson correlation coefficient R2 and a normalized root-mean square error (NRMSE, expressed in 

% and computed by dividing RMSE by the range of values). Possibly due to variations in land and water 

masks, many small island states were absent in one or more of the six land cover inputs used in CAM. To 155 

ensure consistency, a minimum cut-off value of 10 thousand hectares (kha) of cropland was applied, 

resulting in 182 complete country records in CAM, out of the total 221 countries covered.  

 

 

 160 
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Table 2. FAO land use categories for cropland as defined in the FAO Land Use, Irrigation and Agricultural 

Practices questionnaire (FAO, 2023a). 

Land use category  Definition 

Cropland Land used for cultivation of crops. The total of areas under Arable land and 

Permanent crops. 

   Arable land Land used for cultivation of crops in rotation with fallow, meadows and pastures within 

cycles of up to five years. The total of areas under Temporary crops; Temporary meadows 

and pastures; and Temporary fallow. Arable land does not include land that is potentially 

cultivable but is not cultivated. 

      Temporary 

crops 

Land used for crops with a less-than-one-year growing cycle, which must be newly sown 

or planted for further production after the harvest. Some crops that remain in the field for 

more than one year may also be considered as temporary crops e.g., asparagus, 

strawberries, pineapples, bananas and sugar cane. Multiple-cropped areas are counted only 

once.  

      Temporary 

fallow 

Land that is not seeded for one or more growing seasons. The maximum idle period is 

usually less than five years. This land may be in the form sown for the exclusive production 

of green manure. Land remaining fallow for too long may acquire characteristics requiring 

it to be reclassified, as for instance Permanent meadows and pastures, if used for grazing 

or haying. 

      Temporary     

meadows and 

pastures 

Land temporarily cultivated with herbaceous forage crops for mowing or pasture, as part 

of crop rotation periods of less than five years. 

   Permanent crops Land cultivated with long-term crops which do not have to be replanted for several years 

(such as cocoa and coffee), land under trees and shrubs producing flowers (such as roses 

and jasmine), and nurseries (except those for forest trees, which should be classified under 

"Forestry"). Permanent meadows and pastures are excluded from permanent crops. 

 

 

2.4 Communication of uncertainty and use of significant figures 

The data made available through CAM are area estimates based on measurement samples of dimension n=6 165 

(one value per land cover map), repeated over hundreds of pixels within a country. The true population 

mean cropland area A was thus estimated via the sample mean area x and its uncertainty u as:  

A = x ± u       (1) 

Where u = k*S/√n represented the 95% confidence interval, computed from the estimated standard error, 

S/√n, S being the sample standard deviation, multiplied by the factor k=2.57—corresponding to the two-170 

tailed t-Student distribution cut-off value tν,0.025 for n-1 = 5 degrees of freedom. We note that standard errors 

estimated from a sample of dimension n carry a relative uncertainty of 1/√(2n-1), hence about 30% for n=6. 

This implies that u should be communicated with one significant figure only (JCGM, 2009), affecting the 

communication of the estimated cropland area A beyond the mere algebraic outcome of (1). To give an 

example, estimates of world cropland area were expressed as 1500 ± 400 million hectares (Mha), even 175 

though the algebra in (1) yielded an apparently more precise result of 1540 ± 370 Mha. All results below 

were communicated accordingly.  
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3 Results and discussion 

3.1 Cropland area 

3.1.1 Global and regional results 180 

CAM data indicated a total world cropland area in year 2020 of 1500 ± 400 million hectares (Mha), with a 

relative uncertainty of 27%. Uncertainty was higher across regions—up to 50% for Africa, Americas, Asia, 

Europe and 40% for Oceania (Tab. 3). The world’s cropland area was very close to, and statistically 

consistent with the corresponding FAOSTAT value (1560 Mha). Comparisons of regional cropland area 

were also largely consistent with FAOSTAT, with R2 = 0.92 and NRMSE of 8% (Fig. 2). With reference to 185 

Tab. 3, of the 18 world sub-regions considered, only three cropland area estimates were statistically 

inconsistent with FAOSTAT, namely Middle Africa, where we computed 16 ± 7 Mha vs. 37 Mha in 

FAOSTAT; Western Africa, 60 ± 20 Mha vs. 102 Mha in FAOSTAT; and South-eastern Asia, 80 ± 30 M 

ha vs. 123 M ha in FAOSTAT. All other fifteen sub-regional estimates had uncertainty bounds that 

contained the corresponding FAOSTAT values.  190 

The uncertainty of CAM values was higher at regional compared to world level, i.e., up to 50% in Central 

Asia, South America and Southern Europe; up to 40% in Australia and New Zealand, South-eastern Asia 

and Southern Africa (Tab. 3). In absolute terms, South America had in addition the largest absolute 

uncertainty (80 Mha). Conversely, cropland area estimates with the smallest uncertainties (hence larger 

precision) were those for Southern Asia (13%), Northern America (20%), Northern Africa (24%), Eastern 195 

and Western Europe (25%).  

 

 

 

 200 

 

 

 

 

 205 
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Table 3. Regional cropland area estimates in CAM (means and uncertainties) and FAOSTAT. Melanesia, 

Micronesia, and Polynesia were excluded due to the the cut-off country size used in this study. 

Region CAM u %u FAO 

 Mha Mha % Mha 

Eastern Africa 70 20 29% 78 

Northern Africa 40 10 25% 50 

Southern Africa 16 6 38% 14 

Western Africa 60 20 33% 102 

Middle Africa 16 7 44% 37 

     

Northern America 200 40 20% 199 

Central America and Caribbean 30 15 50% 37 

South America 180 80 44% 131 

     

Central Asia 40 20 50% 39 

Eastern Asia 170 40 24% 145 

Southern Asia 230 30 13% 240 

South-eastern Asia 80 30 38% 123 

Western Asia 50 10 20% 44 

     

Eastern Europe 200 50 25% 197 

Northern Europe 30 10 33% 19 

Southern Europe 40 20 50% 37 

Western Europe 40 10 25% 35 

     

Australia and New Zealand 50 20 40% 32 

     

World 1500 400 27% 1560 

 

 210 
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Figure 2. Regional comparisons between CAM and FAOSTAT data (R2=0.92; NRME= 8%). 

 

 

3.1.2 Country results 

 CAM estimates compared well with FAOSTAT statistics also at country level. Overall, considering the 215 

182 countries and territories with estimated cropland area greater than 10 kha, CAM values were in good 

agreement with FAOSTAT data (R2 = 0.95; NRMSE of 3%, or less than 5 Mha on average). In addition, 

CAM estimates were statistically consistent with FAOSTAT values for 114 of the 182 countries considered 

(Fig. 3). Conversely, among CAM estimates that were inconsistent with FAOSTAT data, relevant cases 
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(cropland area > 1 Mha) were Colombia (4 ± 3 vs. 9 Mha); Côte d’Ivoire (3 ± 2 vs. 8 Mha); the Democratic 220 

Republic of Congo (DRC) (5 ± 5 vs. 15 Mha); Indonesia (20 ± 10 vs. 59 Mha); Malaysia (3 ± 3 vs. 8 M 

ha); Niger (5 ± 4 vs. 18 Mha); Pakistan (21 ± 3 vs. 32 Mha); and the Philippines (6 ± 3 vs. 11 Mha). These 

highlight the need for further investigation of land cover maps and FAO statistics to better identify possible 

data quality issues.  

Figure 3. Country comparisons between CAM and FAOSTAT (R2=0.95; NRME= 3%). 225 
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Overall, the large range of uncertainties found in CAM country data, 20%-100%, underscored a large 

variability across geographies, in relation to: i) complexity of cropland landscapes; and/or ii) the ability of 

single land cover products to capture them consistently across regions. We note nonetheless that among the 230 

top five countries in terms of cropland area extent (i.e., Brazil, USA, China, India, Russian Federation), 

only Brazil showed high uncertainty (50%) (Fig. 3). Countries with estimated cropland area greater than 1 

Mha and relative uncertainties of 100% included Malaysia (3 Mha in absolute value), Nicaragua (2 Mha); 

Ireland (2 Mha); New Zealand (3 Mha); and DRC (5 Mha) (see also Appendix C). 

3.2 Simple cropland agreement 235 

3.2.1 Regional results 

CAM data complement the information on cropland area with knowledge of the contribution by agreement 

class. This information added useful insights into some of the findings highlighted above. First, the data 

show that the top agreement class, SA6 was in general the larger contributor to the estimated cropland area 

at regional level, with the exception of Africa (Fig. 4). This indicated that the underlying land cover maps 240 

were capable to map cropland rather consistently in most regions. More specifically, the sub-regions with 

the highest contribution of agreement class SA6 (>50%) were: Northern America (SA6 > 62%), Eastern 

Europe (SA6 > 58%) Western Europe (SA6 > 56%) and Southern Asia (SA6 > 56%) (Appendix C, Tab. C1).  

The large contribution of SA6 was consistent with prevalence of simpler cropland landscapes in those 

regions—for instance, landscapes characterised by large fields with high-input annual crops. Conversely, 245 

the lowest contributions of SA6 to cropland area were estimated in Middle Africa (2%), Western Africa 

(5%) and Eastern Africa (10%), followed by regions with shares of a quarter to a third, that is Central 

America (25%), Southern Africa (28%), Northern Africa (29%), Central Asia (32%), Australia and New 

Zealand (33%). By the same reasoning as above, low shares of SA6 were indicative of regions with 

prevalence of more complex agricultural mosaics—including in particular more traditional low-input 250 

systems. The latter characterize agriculture in Eastern, Middle and Western Africa regions. CAM data show 

that, unlike all other regions, in all three the SA6 contribution to cropland area was not only in the single 

digits, but far smaller than contributions from other agreement classes (Appendix C, Tab. C1).     
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Figure 4. Percentage contribution to cropland area by simple cropland agreement, by subregion. 

 255 
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In terms of high SA6 contributions to the regions identified above, it is likely that the underlying land cover 

products were mapping temporary crops or arable land at country level rather than cropland area, as also 

suggested by Tubiello et al. (2023b). These are in fact the specific sub-components of cropland included in 

all their definitions. Conversely, low SA6 shares point to complex and fragmented agricultural landscapes 260 

in specific regions, where land cover products are likely to disagree. Indeed, we tested a possible relation 

between relative uncertainty in regional cropland area estimates and the level of contribution of top 

agreement classes (combined area of SA4, SA5 and SA6) and found good correlation between the area 

uncertainty and the percent contribution to cropland area of the top three agreement classes (Fig. 5). 

Figure 5.  Linear regression of relative uncertainty in regional cropland area estimates against percent 265 

contribution to same cropland area by top-three agreement classes (R2=0.46, NRMSE=53%).  
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3.2.2 Country results 270 

We extended the above analysis based on simple agreement classes to countries. The CAM country data 

confirmed the regional analysis of a strong link between simple cropland landscapes and prevalence of 

the SA6 contribution to total cropland area. Only five countries globally had SA6  > 65%, of which four in 

Eastern Europe: Ukraine (75%), Bulgaria (70%), Hungary (70%), the Republic of Moldova (67%) and 

Canada (67 %). Cropland in these countries is indeed dominated by large, easy-to-recognize-from-space 275 

agricultural fields of annual crops (FAO, 2023a). In Ukraine, the top three agreement classes contributed 

90% of the cropland area. Virtually the same features applied to other countries in Eastern and Central 

Europe, specifically Czechia (64%), Slovakia (64%), Romania (63%), Serbia (62%), Germany (62%) and 

Poland (61%); as well as in France and Austria, where it exceeded 50%.  

Outside of Europe, Canada and the USA also had substantial proportions of SA6 in their cropland areas, 280 

accounting for 67% and 61% respectively. In Central Asia, Turkmenistan and Uzbekistan show values 

comparable to Western European countries, with 52% and 57% respectively. In South eastern Asia, large 

agreement in cropland classification is found in India (58%), Pakistan (63%), Bangladesh (56%), and 

Thailand (57%). Among African countries, Egypt stood out as the only one with a significant share from 

SA6 (62%), likely due to the presence of the irrigated fields along the Nile and of pivot irrigation schemes 285 

against an otherwise arid landscape, which were well captured by the six classification algorithms. 

Similarly and consistently with the regional findings, the CAM country data likewise suggested a relation 

between complexity of cropland landscapes and low SA6 contribution. Indeed, of the 17 countries with 

SA6 contribution below 10% and cropland size above 5 Mha (threshold chosen arbitrarily), 14 were 

located in Eastern, Middle or Western Africa, including Burkina Faso, Niger and DRC (0% SA6 290 

contribution, implying no agreement across the six maps in any pixel), Mozambique, Mali and Uganda 

(1%).  

Finally, the highest uncertainties in estimated cropland area corresponded to high disagreement of the 

underlying land cover maps, expressed herein as the fraction covered by SA1 > 80%. These country cases 

included Papua New Guinea and Sierra Leone (SA1=90%)(Appendix C, Tab. C2). The difficulties to map 295 

the fragmented and heterogeneous agricultural landscapes that prevail in these countries likely contributed 

to this feature (Potapov et al., 2022). In addition, in Papua New Guinea, cropland is dominated by permanent 

crops (FAO, 2023a), which most CAM input layers do not include in their definitions. This means that in 

such countries, CAM is mapping arable land rather than cropland per se, i.e., there is bias in the presence 

of permanent crops.  300 
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Similar yet more complex dynamics were associated to country cases with 100% uncertainty in the CAM 

cropland estimates (Fig. 6). Two typologies could be identified among countries with cropland area > 1 

Mha (Appendix C, Tab. C2). The first country case was characterized by high SA1 percent contribution to 

total cropland area, and included Nicaragua (50%), DRC (49%) and Malaysia (36%). As in the previous 

cases, dominance of the SA1 class was linked to complex landscapes within cropland, which could not be 305 

mapped precisely, leading to high uncertainty. In particular, Malaysia was characterized by a large presence 

of permanent crops, which could not be mapped by all products. The second typology was characterized 

by high SA3 percent contributions to total cropland area and included Ireland (54%) and New Zealand 

(36%). In both cases, despite little presence of permanent crops, disagreement across land cover products 

persisted, but within arable land. We speculated that SA3 prevalence was linked to presence of crop/pasture 310 

mixtures within cropland, in fact large shares of temporary meadows and pastures within arable land—a 

well-known landscape in both countries—which are mapped only by a subset of the underlying land cover 

products, generating high uncertainty as in the previous case, but for different reasons. 
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Figure 6. Contribution to cropland area by cropland agreement class in 5 countries with 100% 

uncertainty and cropland area > 1Mha. 315 

 

 

3.3 Detailed cropland agreement 

3.3.1 Regional results 

To gain further insight into the relationship between mapping uncertainty and landscape complexity, we 320 

looked at the detailed contribution of single CAM land cover maps to SA1 contributions, by region, where 

SA1 represents the areas with minimum agreement across land cover products. The detailed combinations 

at the level of the regions discussed above is available in the CAM dataset (Tubiello et al., 2023a) but too 

large to be discussed herein in its entirety. We limited the analysis herein to the larger FAO regional groups 

and included a discussion of notable country examples among those discussed earlier.  325 

At global level, consistently with their cropland definitions (Tab. 1), and with reference to Fig. 7, GLAD 

contributed less than 1% in Europe to about 5% in Africa; WorldCover 1% in the Americas, Europe and 

Oceania to 9% in Africa; ESRI 4% in Europe to 11% in Oceania. In fact, contributions to SA1 were largely 
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from FCS30 (23% in Africa to 60% in Oceania); Globeland30 (23% in Oceania to 53% in Europe); and 

FROM_GLC (30% in Africa to 8% in Oceania).  330 

Figure 7. Percent contribution to minimum cropland agreement (SA1), by input land cover product used 

in CAM (ESR=ESRI; FCS30=GLC_FCS30-2020; FRG=FROM_GLC Plus; GLD=GLAD; 

GL30=Globeland30; WCO=WorldCover).  

 

The regional analysis of detailed agreement singles out FCS30 and Globeland30 as the land cover products 335 

in CAM with the largest contribution to disagreement across regions, consistently with the fact that these 

are the only maps that included permanent crops in their definitions. Conversely ESRI, GLAD and 

WorldCover were the least contributors to disagreement, in line with their definitions which focus on 

herbaceous crops within cropland landscapes. The FROM_GLC was an intermediate case, consistently with 

its inclusion of shrub crops within its definitions. 340 

3.3.2 Country results 

In our earlier observations, we highlighted that Ireland and New Zealand had the largest contribution of 

SA3, accounting for 54% and 36% respectively. This indicated that, on average, half of the land cover 

products in CAM agreed on mapping cropland. The detailed cropland agreement data in CAM showed that 

in both countries, this outcome was due to a fixed combination of just three products: ESRI-FCS30-345 

Globeland30 (Fig. 8). These were in fact the only land cover products in CAM that include pastures or 
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generic herbaceous cover within their cropland definition, confirming our hypothesis that prevalence of 

SA3 was linked to extensive areas of pastures within cropland, indeed typical of both countries’ agricultural 

landscapes. Additionally, for New Zealand, the detailed agreement data indicated that FSC30 and FSC30-

GL30 were behind the SA1 and SA2 contributions to cropland area in the country. This was consistent with 350 

a significant presence of permanent crops in the national agricultural landscape, as both products were the 

only ones in CAM that could capture permanent crops within cropland area.  

Figure 8. Percent contribution of products combinations to the detailed agreement, in Ireland and New 

Zealand. (Detailed agreement limited to land cover combinations with at least 3% contribution. ESR=ESRI; 

FCS30=GLC_FCS30-2020; FRG=FROM_GLC Plus; GLD=GLAD; GL30=Globeland30; 355 

WCO=WorldCover). 

 

For DRC, Malaysia, and Nicaragua (Fig. 9), countries characterized by cropland area estimates with very 

high uncertainty and a dominance of the SA1 class, the information provided by the detailed agreement data 

in CAM indicated that FCS30, GL30 and FRG were the land cover products mainly contributing to SA1. 360 

As discussed above, FCS30 and GL30 were the only two products in CAM that included permanent crops 

in their definitions. They compared in 8 of nine SA1 combinations in DRC, 7 out of 8 in Malaysia, and in 

5 out of 6 combinations shown in Fig. 9, consistently with the large presence of permanent crops in these 

countries.  

 365 
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Figure 9. Percent contribution of products combinations to the detailed agreement, in the Democratic 370 

Republic of the Congo, Malaysia and Nicaragua. (Detailed agreement limited to land cover combinations 

with at least 3% contribution. ESR=ESRI; FCS30=GLC_FCS30-2020; FRG=FROM_GLC Plus; 

GLD=GLAD; GL30=Globeland30; WCO=WorldCover). 

 

 375 

4. Data availability 

The CAM dataset is publicly available in Zenodo at: https://doi.org/10.5281/zenodo.7987515 (Tubiello et 

al., 2023a). 

5. Conclusions 

The CAM dataset presented herein consolidates information from six high-resolution global cropland maps 380 

circa 2020 currently available in the literature, using a meta-analysis approach to estimate cropland area 

and its uncertainty at country level, with data for 221 countries and territories and 34 regional aggregates. 

The CAM data are complemented by ancillary data on simple and detailed agreements of the underlying 

land cover products, with the same country and regional coverage. To our knowledge, this is the first time 

that such country information is presented in the literature.  385 

The global regional and country examples provided in this work demonstrate the usefulness of the CAM 

dataset to assess current knowledge on cropland area in countries as available from land cover maps, 

highlighting how they agree or disagree on specific agricultural landscapes, depending on individual 

accuracy but also and importantly on definitional differences. In particular, the data highlighted critical 

connections between the level of complexity in the observed agricultural landscape and the preponderance 390 

of specific cropland agreement classes. We showed that high agreement among land cover products 

corresponded to large scale fields with high input annual crops, hence cropland areas dominated by 

temporary crops; while minimum agreement tended to correspond to presence of more complex cropland 

landscapes, be it tree plantations in Africa, South-eastern Asia and South America, or mixed crop-pasture 

systems, such as in Ireland and New Zealand.  395 

https://doi.org/10.5194/essd-2023-211
Preprint. Discussion started: 16 June 2023
c© Author(s) 2023. CC BY 4.0 License.



21 

 

The CAM dataset represents a new global knowledge product and can serve as useful guide to support 

future land cover and land use product development and data evaluation.   
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8. Appendices  

 

Appendix A. The six land cover products of CAM maps and measures of spatial 

consistency and similarity 

 570 

The six cropland layers that contribute to CAM include one thematic cropland product and five global land 

cover products, all containing one or multiple cropland classes (Tab. A1). GLAD, the thematic cropland 

map, uses images of multiple years (2016–2019) to create a single cropland map; a similar approach is used 

by FROM_GLC, Globeland30 (4 years) and the FCS30 (3 years) while ESRI and WorldCover use 2020 

images. ESRI and Globeland30 make use of a combination of pixel- and object-based classification 575 

methods whereas the other products use pixel-based supervised classification approaches. Of the CAM 

components, WorldCover was openly available from the Earth Engine Data Catalog, while the other 

datasets were available through assets created by individual users in the GEE environment. 

 

Table A1. Technical specifications of six land cover maps used as input in CAM maps (Tubiello et 580 

al., 2022; Tubiello et al., 2023b) and underlying information in the CAM dataset (Tubiello et al., 

2023a). 

Cropland layer Spatial  

Resolution 

Remote sensing 

data 

Classification 

method 

Algorithm Source 

ESRI  10m Sentinel-2 Pixel & Object Convolutional Neural 

Network 

Karra et 

al., 2021 

FROM_GLC Plus 30m Landsat OLI & 

ETM+ 

MODIS 

Pixel Random Forest Yu et al., 

2022 

GLAD  30m Landsat Analysis 

Ready Data 

(ARD) 

Pixel Bagged Decision 

Tree Ensemble 

Potapov et 

al., 2022a 

GLC-FCS30-2020 

(FCS30) 

30m Landsat,  

Sentinel-1SAR, 

SRTM DEM 

Pixel Local adaptive 

Random Forest 

Zhang et 

al., 2021 

GLOBELAND30 30m Landsat TM5, 

ETM+ & OLI,  

HJ-1,  

GF-1 

Pixel & Object 

(POKa) 

Pixel-Object-

Knowledge Classifier 

Chen et al., 

2015 

WORLDCOVER 10m Sentinel-1 & 2, 

Copernicus 

Global DEM, 

RESOLVE 

Ecoregions 2017 

Pixel & Position Gradient Boosting 

Decision Tree 

Algorithm 

Zanaga et 

al., 2021 

aPixel- and object-based methods with prior knowledge.  
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 585 

Spatial consistency and similarity of the six input layers in CAM was investigated following methods in 

Liu et al. (2021). A total of 30,000 random points among non-zero cropland values were selected, and 

cropland area fractions for each agreement layer separately, for all pixels within an area of 5 x 5 km around 

each random point. Areas of overlap were excluded from the analysis. This produced approximately 28,000 

data points for each layer containing the location and cropland area fraction. Scatter plots were created 590 

where the cropland area fraction was plotted for each dataset pair. This allowed for a comprehensive 

analysis of the spatial similarity among datasets. The pixel-level comparison yielded the best agreement 

between the GLAD and the WorldCover (R2 = 0.79; RMSE = 0.15), followed by Worldcover and ESRI (R2 

= 0.61, RMSE = 0.23), and ESRI and GLAD (R2 = 0.58, RMSE = 0.24). On the contrary, lowest R2 is found 

between FROM_GLC and the Globeland30 (R2 = 0.26, RMSE = 0.36) and FROM_GLC and FCS30 (R2 = 595 

0.33, RMSE = 0.32) even though in absolute terms these products all mapped the largest global extents 

(Tab. A2). Overall, there is a clear separation between the three products that correlate well with one another 

(Worldcover, GLAD and ESRI) and the other high-resolution products. On the other hand, both 

Globeland30 and FCS30 have values that are almost consistently higher than in the GLAD. This suggests 

that there are many regions which are classified as cropland for Globeland30 and FCS30 where GLAD, but 600 

also WorldCover and ESRI, show no presence for cropland (Fig. A1 for pixel-comparison of the GLAD 

with the other six land cover maps).  

Table A2. Pixel-level correlation (R2) between the 6 cropland datasets, RMSE in brackets (values 

computed from fraction of the cropland area). 

 
ESRI FROM_ GLC GLAD FCS30 Globeland30 

FROM_GLC 0.4 (0.29) 
 

GLAD 0.58 (0.24) 0.5 (0.25) 
 

FCS30 0.45 (0.3) 0.33 (0.32) 0.48 (0.31)  

Globeland30 0.47 (0.32) 0.26 (0.36) 0.46 (0.33) 0.39 (0.27) 
 

Worldcover 0.61 (0.23) 0.53 (0.24) 0.79 (0.15) 0.49 (0.3) 0.47 (0.32) 

 605 
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Figure A1. Density scatterplot of correlation between GLAD and the other 5 cropland datasets. The 

colour of the points indicates the number of scatter points in that location. The black line depicts the 

regression line, while the red line shows the optimal 1:1 relationship. 

 610 

Binary similarity and distance measures are helpful tools in analysis of patterns and clustering (Choi et al., 

2009). The detailed agreement allows to extract information on the binary instances between two cropland 

layers and to define for each country their intersections and their mismatches. We computed the Baroni 

similarity index (Baroni-Urbani and Buser, 1976) from country statistics of the detailed agreement. The 

Baroni similarity index ranges between 0 (no attributes in common between pairs of land cover products) 615 

and 1 (perfect overlap) and it thus accounts for both ‘positive’ – that is, where two layers agree on the 

presence of cropland—and ‘negative’ matches, corresponding herein to areas where two layers agree on 

the absence of cropland. The normalised index was computed as follows: 

                                                               Similarity index ij  =
√𝐴𝐷+ 𝐴  

√𝐴𝐷+𝐴+𝐵+𝐶
   (1) 

Where i and j are cropland layers; A is the area that both layers mapped as cropland; B is area of cropland 620 

mapped by the first layer only; C is the area of cropland mapped by the second layer only; D is the country 

area that both layers agree is not cropland. In the analysis, the total A + B + C + D corresponds to the total 

land area (see Tab. A3 for regional and global results). 
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Table A3. Index of similarity, by region and globally. 625 

 

 

 

 

 630 

 

 

 

 

 635 

 

 

 

 

 640 

 

 

 

 

 645 

 

 

 

 

 650 

 
Africa Americas Asia Europe Oceania World 

ESRI_FROM_GLC 0.67 0.82 0.80 0.85 0.79 0.80 

ESRI_GLB30 0.70 0.85 0.81 0.86 0.89 0.83 

FCS30_ESRI 0.66 0.83 0.80 0.88 0.85 0.82 

FCS30_FROM_GLC 0.75 0.78 0.82 0.82 0.73 0.80 

FCS30_GLB30 0.75 0.84 0.82 0.87 0.88 0.83 

GLB30_FROM_GLC 0.72 0.76 0.80 0.80 0.77 0.78 

GLD_ESRI 0.72 0.89 0.86 0.89 0.89 0.86 

GLD_FCS30 0.79 0.81 0.80 0.84 0.86 0.82 

GLD_FROM_GLC 0.75 0.88 0.81 0.89 0.85 0.84 

GLD_GLB30 0.81 0.82 0.81 0.81 0.89 0.82 

GLD_WCO 0.83 0.92 0.89 0.93 0.92 0.90 

WCO_ESRI 0.73 0.89 0.86 0.88 0.88 0.86 

WCO_FCS30 0.76 0.82 0.82 0.84 0.81 0.82 

WCO_FROM_GLC 0.75 0.86 0.81 0.87 0.87 0.83 

WCO_GLB30 0.78 0.81 0.82 0.81 0.85 0.81 

Average 0.74 0.84 0.82 0.86 0.85 0.83 
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Appendix B. Binary and decimal code attributes of the detailed map of agreement  

 

Table B1. Lookup table of the binary and decimal values for each detailed class of agreement. For each 

datasets a value of 1 means presence of cropland and 0 is absence.  

Value Datasets 

Binary Decimal GLAD WorldCover ESRI FROM_GLC Globeland30 FCS30 

000000 0 0 0 0 0 0 0 

000001 1 0 0 0 0 0 1 

000010 2 0 0 0 0 1 0 

000011 3 0 0 0 0 1 1 

000100 4 0 0 0 1 0 0 

000101 5 0 0 0 1 0 1 

000110 6 0 0 0 1 1 0 

000111 7 0 0 0 1 1 1 

001000 8 0 0 1 0 0 0 

001001 9 0 0 1 0 0 1 

001010 10 0 0 1 0 1 0 

001011 11 0 0 1 0 1 1 

001100 12 0 0 1 1 0 0 

001101 13 0 0 1 1 0 1 

001110 14 0 0 1 1 1 0 

001111 15 0 0 1 1 1 1 

010000 16 0 1 0 0 0 0 

010001 17 0 1 0 0 0 1 

010010 18 0 1 0 0 1 0 

010011 19 0 1 0 0 1 1 

010100 20 0 1 0 1 0 0 

010101 21 0 1 0 1 0 1 

010110 22 0 1 0 1 1 0 

010111 23 0 1 0 1 1 1 

011000 24 0 1 1 0 0 0 

011001 25 0 1 1 0 0 1 

011010 26 0 1 1 0 1 0 

011011 27 0 1 1 0 1 1 

011100 28 0 1 1 1 0 0 

011101 29 0 1 1 1 0 1 

011110 30 0 1 1 1 1 0 

011111 31 0 1 1 1 1 1 

100000 32 1 0 0 0 0 0 

100001 33 1 0 0 0 0 1 

100010 34 1 0 0 0 1 0 
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100011 35 1 0 0 0 1 1 

100100 36 1 0 0 1 0 0 

100101 37 1 0 0 1 0 1 

100110 38 1 0 0 1 1 0 

100111 39 1 0 0 1 1 1 

101000 40 1 0 1 0 0 0 

101001 41 1 0 1 0 0 1 

101010 42 1 0 1 0 1 0 

101011 43 1 0 1 0 1 1 

101100 44 1 0 1 1 0 0 

101101 45 1 0 1 1 0 1 

101110 46 1 0 1 1 1 0 

101111 47 1 0 1 1 1 1 

110000 48 1 1 0 0 0 0 

110001 49 1 1 0 0 0 1 

110010 50 1 1 0 0 1 0 

110011 51 1 1 0 0 1 1 

110100 52 1 1 0 1 0 0 

110101 53 1 1 0 1 0 1 

110110 54 1 1 0 1 1 0 

110111 55 1 1 0 1 1 1 

111000 56 1 1 1 0 0 0 

111001 57 1 1 1 0 0 1 

111010 58 1 1 1 0 1 0 

111011 59 1 1 1 0 1 1 

111100 60 1 1 1 1 0 0 

111101 61 1 1 1 1 0 1 

111110 62 1 1 1 1 1 0 

111111 63 1 1 1 1 1 1 

Note: since we only have six datasets only 6 bits are shown for the binary value as the last 2 are always 0 (8-bit 655 
integer). An example: pixel value 38 equals bit 100110 meaning the 2nd, 3rd, and 6th bit (or datasets) depicts the 
presence of cropland (i.e. Globeland30, FROM_GLC and GLAD), whereas the other 3 layers show no cropland. 
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Appendix C. CAM estimates for subregions and countries with largest relative uncertainty 

 660 

Table C1. Percent area contribution by agreement class to regional cropland area estimates in CAM. 

Region SA6 SA5 SA4 SA3 SA2 SA1 

       

Eastern Africa 10% 19% 19% 18% 17% 17% 

Northern Africa 29% 20% 15% 13% 12% 11% 

Southern Africa 28% 12% 10% 11% 15% 24% 

Western Africa 5% 22% 23% 19% 16% 16% 

Middle Africa 10% 19% 19% 18% 17% 17% 

       

Northern America 62% 13% 6% 5% 6% 8% 

Central America and Caribbean 25% 13% 11% 14% 19% 18% 

South America 38% 13% 10% 12% 15% 13% 

       

Central Asia 32% 18% 15% 9% 11% 14% 

Eastern Asia 47% 16% 11% 9% 8% 8% 

Southern Asia 56% 17% 10% 7% 6% 4% 

South-eastern Asia 38% 14% 10% 11% 14% 12% 

Western Asia 41% 17% 12% 10% 9% 10% 

       

Eastern Europe 58% 13% 8% 7% 7% 7% 

Northern Europe 38% 15% 11% 19% 10% 7% 

Southern Europe 43% 14% 11% 13% 11% 8% 

Western Europe 56% 11% 9% 13% 7% 5% 

       

Australia and New Zealand 33% 24% 13% 12% 9% 9% 
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Table C2. Countries with 100% relative uncertainty in CAM estimates (mean area; SE; area by simple 

agreement class) and FAO cropland area. 665 

Country CAM SE SA1 SA2 SA3 SA4 SA5 SA6  FAO 

  1000 ha 

Bahamas 50 50 42 7 1 0 0 0  12 

Bhutan 50 50 25 12 6 3 2 1 100 

Central African Republic 500 500 356 92 37 13 2 0 1880 

Haiti 200 200 89 43 26 20 14 8 1350 

Honduras 700 700 287 156 105 55 43 54 1596 

Ireland 2000 2000 124 420 1071 118 80 187 445 

Malaysia 3000 3000 1080 1113 401 105 88 213 8286 

New Zealand 4000 4000 1057 725 1421 462 244 92 601 

Nicaragua 2000 2000 995 396 172 104 114 220 1790 

Panama 600 600 213 184 81 41 40 40 665 

Papua New Guinea 300 300 253 33 9 4 1 0 1000 

Timor-Leste 200 200 113 47 17 11 8 4 191 

Puerto Rico 70 70 30 17 10 6 4 2 65 

Qatar 20 20 7 3 3 2 2 2 24 

Sierra Leone 200 200 181 16 3 1 0 0 1749 

Western Sahara 10 10 8 2 0 0 0 0 4 

Suriname 60 60 18 9 6 10 13 4 67 

Eswatini 200 200 55 44 26 16 18 41 190 

Trinidad and Tobago 20 20 10 5 3 1 1 0 47 

United Arab Emirates 100 100 43 28 15 6 4 3 90 

Democratic Republic of the Congo 5000 5000 2428 1538 729 255 46 3 15372 

Montenegro 90 90 51 18 9 6 4 2 15 
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