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Abstract 

We describe a new dataset of cropland area circa the year 2020, with global coverage, with data for 221 

countries and territories and 34 regional aggregates. Data are generated from geospatial information on the 

agreement-disagreement characteristics of six open access high-resolution cropland maps derived from 

remote sensing. The cropland area mapping (CAM) aggregation dataset (CAM) provides information on: 15 

i) mean cropland area and its uncertainty; ii) cropland area by six distinct cropland agreement classes; and 

iii) cropland area by specific combinations of underlying land cover product. The dataresults indicated that 

world cropland area is 1500 ± 400 million hectares (Mha) (mean and 95% confidence interval), with a 

relative uncertainty of 25% that increased across regions. It was 50% in Central Asia (40 ± 20 Mha), South 

America (180 ± 80 Mha), and Southern Europe (40 ± 20 Mha); up to 40% in Australia and New Zealand 20 

(50 ± 20 Mha), South-eastern Asia (80 ± 30 Mha) and Southern Africa (16 ± 6 Mha). Conversely, cropland 

area was estimated with better precision, i.e. smaller uncertainties in the range 10%-25% in Southern Asia 

(230 ± 30 Mha), Northern America (200 ± 40 Mha), Northern Africa (40 ± 10 Mha), and Eastern and 

Western Europe (40 ± 10 Mha). The new data can be used to investigate coherence of information across 

the six underlying products, as well as to explore important disagreement features. Overall, 70% or more 25 

of the estimated mean cropland area globally and by region corresponded to good agreement of underlying 

land cover maps– — four or more. Conversely, in Africa cropland area estimates found significant 

disagreement, highlighting mapping difficulties in complex landscapes. Finally, the new cropland area data 

were consistent with FAOSTAT in 15 out of 18 world regions, and for 114 out of 182 countries with a 

cropland area above 10 kha. By helping to highlight features of cropland characteristics and underlying 30 

causes for agreement/disagreement across land cover products, the CAM aggregation dataset canmay be 

used as a tool to assessreference for the quality of country statistics and may help guideguiding future 

mapping efforts towards improved agricultural monitoring. Data are publicly available at: 

https://doi.org/10.5281/zenodo.7987515 (Tubiello et al., 2023a).  
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1 Introduction 

Information on cropland area is needed to assess and monitor the sustainability of agriculture at local, 

regional and planetary scales. Information on world cropland area with national or sub-national detail is 

currently available as: i) Statistics of agricultural land use, collected from countries by the Food and 40 

Agriculture Organizations of the United Nations (FAO) and disseminated in FAOSTAT (FAO, 2023a); and 

ii) land cover maps produced from remote sensing (Potapov et al., 2022a). These historically rather distinct 

sources are becoming interconnected, with remote sensed data increasingly complementing more traditional 

data sources such as agricultural censuses and surveys (Miller et al., 2009; Bailey and Boryan, 2010; FAO, 

2018; Karthikeyan et al., 2020; Weiss et al., 2020; Bey et al., 2016). Comparison analyses at multiple scales 45 

of these different sources have been published to facilitate in-depth understanding of cropland 

characteristics and to derive methods for data selection and applications (Bratic et al, 2019; Liu et al., 2021; 

Venter et al., 2022; Chaaban et al., 2022; Ding et al., 2022). We recently conducted a meta-analysis of the 

currently available six independent high resolution (10–30 m) land cover maps circa 2020 and derived a 

map on cropland agreement/disagreement at pixel level, — the CAM map — showing that by combining 50 

such information world cropland area can be estimated to within 25% of the mean cropland area (Tubiello 

et al., 2023b). That study identified ‘definitional bias,’ i.e., systematic errors due to imperfectly aligned 

land cover/land use definitions, as an important source of uncertainty in addition to well-described factors 

such as differences in data sources, pre-processing methods and validation approaches (Fritz et al., 2013; 

Gao et al., 2020, Wang et al., 2019). The cropland agreement maps aremap is already being used in support 55 

of relevant geospatial work (e.g., Tang et al., 2023). 

This study presents a new database of cropland area at country level, based on the geospatial work of 

Tubiello et al. (2023b). We aggregateaggregated pixel level information and quantifyquantified means and 

uncertainties of cropland area at country and regional level. The new database, referred to hereafter as 

Cropland Agreement Mapping (CAM) aggregation dataset, provides information on cropland area by 60 

country, with informationdata on: i) mean estimate and uncertainty; ii) contributioncontributions to total 

area by agreement class; iii) contributioncontributions to total area by specific combinations of the 

underlying land cover products.  

TheThis novel information provided by CAM, presented for the first time in this paper, helps to better 

understand better the linkage between agricultural land cover and land use information and related 65 
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uncertainty, offering useful insights with regards to future mapping efforts and their evaluation. The CAM 

dataset is available as open access data at: https://doi.org/10.5281/zenodo.7987515 (Tubiello et al., 2023a). 

2 Materials and Methods 

2.1 Cropland agreement map 

 70 

We used the cropland agreementCAM map by Tubiello et al. (2023b) as input to generate country statistics. 

The CAM map consolidates information from six high-resolution land cover maps based on a meta-analysis 

done within the code editor of the Google Earth Engine (GEE) (Gorelick et al., 2017). These six maps are: 

ESRI (Karra et al. 2021); FROM_GLC Plus (Yu et al., 2022); GLAD (Potapov et al, 2022a); GLC-FCS30-

2020 (Zhang et al., 2021); Globeland30 (Chen et al., 2015); and WorldCover (Zanaga et al., 2021). 75 

Appendix A further provides details on the characteristics of the six land cover maps, along with their 

spatial consistency and similarity analysis.  

The cropland agreement mapCAM actually consists of two geospatial layers prepared at 30 m resolution as 

8-bit unsigned integers using WGS84 (EPSG:4326) coordinate system: i) a simple cropland agreement 

map; and ii) a detailed cropland agreement map. 80 

The simple cropland agreement map layer combines six cropland binary masks (with values of 1 for 

cropland, 0 for no cropland) from the six input land cover products (Appendix A), into a map with pixel 

values ranging 1--–6, representing, when normalised by the number of layers, the probability of cropland 

area in each pixel.  

The detailed cropland agreement map layer contains information on the individual land cover products and 85 

their combinations, with values ranging between 0 (bit 00000000, corresponding to no cropland), and 63 

(bit 00111111, representing complete agreement) (Appendix B, Tab. B1).  Each input dataset contains 

omission and commission errors, which affect their accuracy (Tab. 1). While the uncertainty information 

in CAM and in our dataset is computed net of these accuracies, it should be noted that by combiningsynergic 

combinations of multiple land cover products, typically yield improved accuracies (Lu et al., 2020) as 90 

overall omissionomissions and commissioncommissions errors may be reduced.  

As discussed elsewhere (Tubiello et al., 2023b), the definitions of ‘cropland’ as a land cover class varied 

across the six products (Tab. 1), although they largely corresponded to FAO land use class cropland or 

arable land (Tab. 2). Specifically, of the six products used as input, GLAD, WorldCover and ESRI 

‘cropland’ classes could conceptually be mapped to FAO land use class arable land or temporary crops, 95 

while the other three maps, including information on shrubs and woody components, could be better aligned 

with the FAO parent class cropland (Tubiello et al., 2023b). Within the latter, Globeland30 included within 
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‘cropland’ tree and shrub crops directly under a single class (cultivated land); FROM-GLC included 

permanent shrubs crops while excluding tree crops; and FCS30 provided data on cropland globally, with 

some partial regional distinctions between herbaceous and woody crops within irrigated/rainfed sub-classes 100 

(Tab. 1). The latter category was excluded to reduce definitional bias in the consolidated product. 

Table 1. Cropland definitions and accuracy of the six input layers used for the cropland agreement map. 

Dataset Label Definition Cropland class # Accuracya 

ESRI 

(ESR) 

Crops Human planted/plotted 

cereals, grasses, and 

crops not at tree height; 

examples: corn, wheat, 

soy, fallow plots of 

structured land. 

5 PA 89.9%; UA 91% 

 

FROM-GLC Plusb 

(FRG) 

Croplands Land that has clear 

traits of intensive 

human activity. It 

varies a lot from bare 

field, seeding, crop 

growing to harvesting. 

It includes arable and 

tillage land with 

herbaceous/shrub crops 

and land with plastic 

foam or grass roof 

protection with 

distinguishing spectral 

properties. Fruit trees 

are classified into 

forests. 

10 – Level 1 OA 71.9% 

GLAD 

(GLD) 

Cropland Land used for annual 

and perennial 

herbaceous crops for 

human consumption, 

forage (including hay) 

and biofuel. Perennial 

woody crops, 

permanent pastures and 

shifting cultivation are 

excluded from the 

definition. The fallow 

length is limited to 4 

years for the cropland 

class. 

1 PA 86.4%; UA: 88.5% 

 

GLC-FCS30-2020c 

(FCS30)  

Cropland Rainfed cropland,  

Irrigated cropland 

 

Herbaceous cover 

Tree or shrub cover 

(Orchard) 

 

10 – Level 1 

20 – Level 1 

 

11 – Level 2  

12 – Level 2d 

PA 88.0%; UA 83.9% 

 

Globeland30 

(GL30) 

Cultivated land Category includes 

paddy fields, irrigated 

dry land, rain-fed dry 

land, vegetable land, 

pasture planting land, 

greenhouse land, land 

mainly for planting 

10 OA 85.7% 
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crops with fruit trees 

and other economic 

trees, as well as tea 

gardens, coffee gardens 

and other shrubs. 

WorldCover 

(WCO) 

Cropland Land covered with 

annual cropland that is 

sowed/planted and 

harvestable at least 

once within the 12 

months after the 

sowing/planting date. 

The annual cropland 

produces an herbaceous 

cover and is sometimes 

combined with some 

tree or woody 

vegetation. Note that 

perennial woody crops 

will be classified as the 

appropriate tree cover 

or shrub land cover 

type. Greenhouses are 

considered as built-up.  

 

40 PA 76.7%; UA 81.1% 

 

 

a When available, user and producer accuracy (UA and PA) of the cropland class, overall map accuracy (OA) is otherwise reported. b Accuracy 

results reported for the 2020 map from the data producers (personal communication). c Accuracy results based on the 2015 version of the map. d 

Excluded from the cropland agreement map.  105 

 

 

 

 

 110 

 

 

 

2.2 Preparation of the CAM aggregation dataset 

 115 

The country statistics populating the CAM aggregation dataset (Tubiello et al., 2023a) were extracted from 

the simple and detailed agreement maps discussed above (Tubiello et al., 2023b), using the FAO Global 

Administrative Unit layer (GAUL) for country boundaries (FAO 2015)—also accessible from the GEE 

Code editor. ) — also accessible from the GEE Code editor. The cloud processing method in GEE generates 

country area statistics inherently taking into account the different pixel areas by latitude. The aggregation 120 

to country level was done by summing these pixels (i.e. pixel counting) for the simple or detailed classes 

of agreement as well as for the 6 cropland layers in the CAM aggregation dataset. 
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Generally, for n land cover maps, pixel values in the simple agreement map  belong to a set of n+1 elements, 

{0, 1/n, 2/n …,, (n-1)/n, 1}, representing the level of agreement among input maps, which was interpreted 

as the probability of finding cropland in each pixel by Tubiello et al. (2023b). By aggregating the pixel-125 

level information at national scale it was therefore possible to generate country estimates of: i) mean 

cropland area A and associated uncertainty: ii) cropland area by agreement class, SA1 to SA6, with SAk 

representing the area where k maps agreed, and A = Σk SAk (Fig. 1); and iii) cropland area by specific map 

combinations.  

Following the steps above, we generated values for over 221 countries and 34 territories, with country codes 130 

aligned to standard M49 area codes classification.  

In terms of simple agreement classes, SA1 represents the contribution to cropland area by single land cover 

products, while SA6 provides information on the contribution to cropland area when all six products agree. 

Conversely, Similarly, for each agreement class SAk, data represent the contributions to total cropland area 

by all relevant combinations of k products. With respect to the two extreme cases, definitional bias would 135 

be small for SA6, with the CAM map likely estimating subcomponentsthe subcomponent temporary crops 

rather than cropland, since the former category would be the only one that could be detected by all land 

cover products. By the same token, definitional bias would be higher for SAk classes with lower k values 

and highest for SA1, with CAM including in such cases more of those componentssubcomponents of 

cropland that would not be equally detected by the underlying land cover products, for instance temporary 140 

meadows and pastures or permanent crops. To this end, the CAM data on detailed cropland agreement 

provide the additional information on which specific combinations of k land cover products contributed to 

class SAk in a given country. For example, the area of SA3 in country i could be the sum of agreement areas 

identified respectively by GLAD-WorldCover-ESRI and GLAD-WorldCover-FROM_GLC.  

 145 

 

 

 

Figure 1. Simple cropland agreement map. Adapted from Tubiello et al. (2023b).  

 150 
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2.3 Comparison with FAO land use statistics 

 155 

FAO land use statistics of cropland and arable land are routinely used as benchmark to assess the robustness 

of land cover information at various scales (Vancutsem et al., 2013; Yu et al., 2014; Pérez-Hoyos et al., 

2017; Xu et al., 2019; Li and Xu., 2020; Potapov et al., 2022a). We compared CAMthe cropland area 

estimates of the CAM aggregation dataset against FAOSTAT (FAO, 2023a) area statistics of cropland 

(Tab. 2), quantifying goodness of fit in terms of the Pearson correlation coefficient of determination (R2) 160 

and a normalized root-mean square error (NRMSE, expressed in % and computed by dividing RMSE by 

the range of values). Possibly due to variations in land and water masks, many small island states were 

absent in one or more of the six land cover inputs used in CAM. To ensure consistency, a minimum cut-off 

value of 10 thousand hectares (kha) of cropland was applied, resulting in 182 complete country records in 

CAM, out of the total 221 countries covered.  165 

 

 

 

Table 2. FAO land use categories for cropland as defined in the FAO Land Use, Irrigation and Agricultural 

Practices questionnaire (FAO, 2023a). 170 

Land use category  Definition Formatted Table
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Cropland Land used for cultivation of crops. The total of areas 

under Arable land and Permanent crops. 

   Arable land Land used for cultivation of crops in rotation with fallow, 

meadows and pastures within cycles of up to five years. The 

total of areas under Temporary crops; Temporary meadows and 

pastures; and Temporary fallow. Arable land does not include 

land that is potentially cultivable but is not cultivated. 

      Temporary crops Land used for crops with a less-than-one-year growing cycle, 

which must be newly sown or planted for further production 

after the harvest. Some crops that remain in the field for more 

than one year may also be considered as temporary crops e.g., 

asparagus, strawberries, pineapples, bananas and sugar cane. 

Multiple-cropped areas are counted only once.  

      Temporary fallow Land that is not seeded for one or more growing seasons. The 

maximum idle period is usually less than five years. This land 

may be in the form sown for the exclusive production of green 

manure. Land remaining fallow for too long may acquire 

characteristics requiring it to be reclassified, as for instance 

Permanent meadows and pastures, if used for grazing or 

haying. 

      Temporary     meadows and pastures Land temporarily cultivated with herbaceous forage crops for 

mowing or pasture, as part of crop rotation periods of less than 

five years. 

   Permanent crops Land cultivated with long-term crops which do not have to be 

replanted for several years (such as cocoa and coffee), land 

under trees and shrubs producing flowers (such as roses and 

jasmine), and nurseries (except those for forest trees, which 

should be classified under "Forestry"). Permanent meadows and 

pastures are excluded from permanent crops. 

 

 

2.4 Communication of uncertaintyUncertainty and use of significant figures 

The data made available through the CAM aggregation dataset are area estimates based on measurement 

samples of dimensionsize n=6 (one value per land cover map), repeated over hundreds of pixels within a 

country. The true population mean cropland).  Cropland area A was thus estimated viaas: A = x ± u, with x 175 

being the sample mean area x and u its uncertainty u, defined herein as:  

A = x ± u       (1) 

Where u = k*S/√n represented the a 95% confidence interval, and computed fromas the estimated standard 

error, S/√n, S being the sample standard deviation,  of the mean multiplied by the factor k=2.57—the 

corresponding tovalue of the two-tailed t-Student distribution cut-off value tν,0.025 for n-1 = 5 degrees of 180 

freedom. We note that standard errors estimated from a sample of dimension n carry a relative uncertainty 

of 1/√(2n-1), hence about 30% for n=6. This implies that u should be communicated with reported results 

using only one significant figure only for the uncertainty, following recommendations of the International 

Bureau of Weights and Measures (BIPM) for small sample sizes (JCGM, 2009), affecting the 

communication of the estimated cropland area A beyond the mere algebraic outcome of (1). To give an 185 
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example, estimates of world cropland area were expressed as 1500 ± 400 million hectares (Mha), even 

though the algebra in (1) yielded an apparently more precise result of 1540 ± 370 Mha. All results below 

were communicated accordingly.).  

 

 190 

3 Results and discussion 

3.1 Cropland area 

3.1.1 Global and regional results 

CAM aggregated data indicated a total world cropland area in year 2020 of 1500 ± 400 million hectares 

(Mha), with a relative uncertainty of 27%. Uncertainty was higher across regions—up to 50% for Africa, 195 

Americas, Asia, Europe and 40% for Oceania (Tab. 3). The world’s cropland area was very close to, and 

statistically consistent with the corresponding FAOSTAT value (1560 Mha). Comparisons of regional 

cropland area were also largely consistent with FAOSTAT, with R2 = 0.92 and NRMSE of 8% (Fig. 2). 

With reference to Tab. 3, of the 18 world sub-regions considered, only three cropland area estimates were 

statistically inconsistent with FAOSTAT, namely Middle Africa, where we computed 16 ± 7 Mha vs. 37 200 

Mha in FAOSTAT; Western Africa, 60 ± 20 Mha vs. 102 Mha in FAOSTAT; and South-eastern Asia, 80 

± 30 M ha vs. 123 M ha in FAOSTAT. All other fifteen sub-regional estimates had uncertainty bounds that 

contained the corresponding FAOSTAT values.  

The uncertainty of CAM values was higher at regional compared to world level, i.e., up to 50% in Central 

Asia, South America and Southern Europe; up to 40% in Australia and New Zealand, South-eastern Asia 205 

and Southern Africa (Tab. 3). In absolute terms, South America had in addition the largest absolute 

uncertainty (80 Mha). Conversely, cropland area estimates with the smallest uncertainties (hence larger 

precision) were those for Southern Asia (13%), Northern America (20%), Northern Africa (24%), Eastern 

and Western Europe (25%).  
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Table 3. Regional cropland area estimates in CAM (means and uncertainties) and FAOSTAT. Melanesia, 220 

Micronesia, and Polynesia were excluded due to the the cut-off country size used in this study. 
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Figure 2. Regional comparisons between CAM and FAOSTAT data (R2=0.92; NRME= 8%).NRMSE= 

8%, p-value < 0.001). The dotted red line shows the perfect 1:1 relationship, while the black line shows the 225 

linear regression line of the points. 

 

 

3.1.2 Country results 

 CAM estimates compared well with FAOSTAT statistics also at country level. Overall, considering the 230 

182 countries and territories with estimated cropland area greater than 10 kha, CAM values were in good 

agreement with FAOSTAT data (R2 = 0.95; NRMSE of 3%, or less than 5 Mha on average). In addition, 

CAM estimates were statistically consistent with FAOSTAT values for 114 of the 182 countries considered 
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(Fig. 3). Conversely, among CAM estimates that were inconsistent with FAOSTAT data, relevant cases 

(cropland area > 1 Mha) were Colombia (4 ± 3 vs. 9 Mha); Côte d’Ivoire (3 ± 2 vs. 8 Mha); the Democratic 235 

Republic of Congo (DRC) (5 ± 5 vs. 15 Mha); Indonesia (20 ± 10 vs. 59 Mha); Malaysia (3 ± 3 vs. 8 M 

ha); Niger (5 ± 4 vs. 18 Mha); Pakistan (21 ± 3 vs. 32 Mha); and the Philippines (6 ± 3 vs. 11 Mha). These 

highlight the need for further investigation of land cover maps and FAO statistics to better identify possible 

data quality issues.  

Figure 3. Country comparisons between CAM and FAOSTAT (R2=0.95; NRME= 3%).NRMSE= 3%, p-240 

value < 0.001). The dotted red line shows the perfect 1:1 relationship, while the black line shows the linear 

regression line of the points. 
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Overall, the large range of uncertainties found in the CAM aggregate country data, 20%-%-–100%, 245 

underscored a large variability across geographies, in relation to: i) complexity of cropland landscapes; 

and/or ii) the ability of single land cover products to capture them consistently across regions. We note 

nonetheless that among the top five countries in terms of cropland area extent (i.e., Brazil, USA, China, 

India, Russian Federation), only Brazil showed high uncertainty (50%) (Fig. 3). Countries with estimated 

cropland area greater than 1 Mha and relative uncertainties of 100% included Malaysia (3 Mha in absolute 250 

value), Nicaragua (2 Mha); Ireland (2 Mha); New Zealand (3 Mha); and DRC (5 Mha) (see also Appendix 

C). 

3.2 Simple cropland agreement 

3.2.1 Regional results 

CAM dataThe CAM map and aggregation dataset complement the information on cropland area with 255 

knowledge of the contribution by agreement class. This information added useful insights into some of the 

findings highlighted above. First, the data show that the top agreement class, SA6 was in general the larger 

contributor to the estimated cropland area at regional level, with the exception of Africa (Fig. 4). This 

indicated that the underlying land cover maps were capable to map cropland rather consistently in most 

regions. More specifically, the sub-regions with the highest contribution of agreement class SA6 (>50%) 260 

were: Northern America (SA6 > 62%), Eastern Europe (SA6 > 58%) Western Europe (SA6 > 56%) and 

Southern Asia (SA6 > 56%) (Appendix C, Tab. C1).  

The large contribution of SA6 was consistent with prevalence of simpler cropland landscapes in those 

regions  —for instance, landscapes characterised by large fields with high-input and often irrigated annual 

crops. Conversely, the lowest contributions of SA6 to cropland area were estimated in Middle Africa (2%), 265 

Western Africa (5%) and Eastern Africa (10%), followed by regions with shares of a quarter to a third, that 

is Central America (25%), Southern Africa (28%), Northern Africa (29%), Central Asia (32%), Australia 

and New Zealand (33%). By the same reasoning as above, low shares of SA6 were indicative of regions 

with prevalence of more complex agricultural mosaics—including in particular more traditional low-input 

systems. The latter characterize agriculture in Eastern, Middle and Western Africa regions. CAM 270 

aggregated data show that, unlike all other regions, in allthese three regions the SA6 contribution to cropland 

area was not only in the single digits, but and far smaller than contributions from other agreement classes 

(Appendix C, Tab. C1).     
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Figure 4. Percentage contribution to cropland area by simple cropland agreement, by subregion. 
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In terms of high SA6 contributions to the regions identified above, it is likely that the underlying land cover 

products were mapping temporary crops or arable land at country level rather than cropland area, as also 
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suggested by Tubiello et al. (2023b). These are in fact the specific sub-components of cropland included in 280 

all their definitions. Conversely, low SA6 shares point to complex and fragmented agricultural landscapes 

in specific regions, where land cover products are likely to disagree. Indeed, we tested a possible relation 

between relative uncertainty in regional cropland area estimates and the level of contribution of top 

agreement classes (combined area of SA4, SA5 and SA6) and found good correlation between the area 

uncertainty and the percent contribution to cropland area of the top three agreement classes (Fig. 5). 285 

Figure 5.  Linear regression of relative uncertainty in regional cropland area estimates against percent 

contribution to same cropland area by top-three agreement classes (R2=0.46, NRMSE=53%).64%,  

p-value<0.005).  
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3.2.2 Country results 
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We extended the above analysis based on simple agreement classes to countries. The CAM country data 

confirmed the regional analysis of a strong link between simple cropland landscapes and prevalence of the 

SA6 contribution to total cropland area. Only five countries globally had SA6  > 65%, of which four in 295 

Eastern Europe: Ukraine (75%), Bulgaria (70%), Hungary (70%), the Republic of Moldova (67%) and 

Canada (67 %). Cropland in these countries is indeed dominated by large, easy-to-recognize-from-space 

agricultural fields of annual crops (FAO, 2023a). In Ukraine, the top three agreement classes contributed 

90% of the cropland area. Virtually the same features applied to other countries in Eastern and Central 

Europe, specifically Czechia (64%), Slovakia (64%), Romania (63%), Serbia (62%), Germany (62%) and 300 

Poland (61%); as well as in France and Austria, where it exceeded 50%.  

Outside of Europe, Canada and the USA also had substantial proportions of SA6 in their cropland areas, 

accounting for 67% and 61% respectively. In Central Asia, Turkmenistan and Uzbekistan show values 

comparable to Western European countries, with 52% and 57% respectively. In South -eastern Asia, large 

agreement in cropland classification is found in India (58%), Pakistan (63%), Bangladesh (56%), and 305 

Thailand (57%). Among African countries, Egypt stood out as the only one with a significant share from 

SA6 (62%), likely due to the presence of the irrigated fields along the Nile and of pivot irrigation schemes 

against an otherwise arid landscape, which were well captured by the six classification algorithms. 

Similarly and consistently with the regional findings, the CAM country data likewise suggested a relation 

between complexity of cropland landscapes and low SA6 contribution. Indeed, of the 17 countries with SA6 310 

contribution below 10% and cropland size above 5 Mha (threshold chosen arbitrarily), 14 were located in 

Eastern, Middle or Western Africa, including Burkina Faso, Niger and DRC (0% SA6 contribution, 

implying no agreement across the six maps in any pixel), Mozambique, Mali and Uganda (1%).  

Finally, the highest uncertainties in estimated cropland area corresponded to high disagreement of the 

underlying land cover maps, expressed herein as the fraction covered by SA1 > 80%. These country cases 315 

included Papua New Guinea and Sierra Leone (SA1=90%)(Appendix C, Tab. C2). The difficulties to map 

the fragmented and heterogeneous agricultural landscapes that prevail in these countries likely contributed 

to this feature (Potapov et al., 2022). In addition, in Papua New Guinea, cropland is dominated by permanent 

crops (FAO, 2023a), which most CAM input layers do not include in their definitions. This means that in 

such countries, CAM is mapping arable land rather than cropland per se, i.e., there is bias in the presence 320 

of permanent crops. . 

Similar yet more complex dynamics were associated to country cases with 100% uncertainty in the CAM 

cropland estimates (Fig. 6). Two typologies could be identified among countries with cropland area > 1 

Mha (Appendix C, Tab. C2). The first country case was characterized by high SA1 percent contribution to 
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total cropland area, and included Nicaragua (50%), DRC (49%) and Malaysia (36%). As in the previous 325 

cases, dominance of the SA1 class was linked to complex landscapes within cropland, which could not be 

mapped precisely, leading to high uncertainty. In particular, Malaysia was characterized by a large presence 

of permanent crops, which couldwas not be mapped by all products. The second typology was characterized 

by high SA3 percent contributions to total cropland area and included Ireland (54%) and New Zealand 

(36%). In both cases, despite little presence of permanent crops, disagreement across land cover products 330 

persisted, but within arable land.. We speculated that SA3 prevalence was linked to the presence of 

crop/pasture mixtures within cropland, in fact large shares of temporary meadows and pastures within 

arable land— — a well-known landscape in both countries— — which are mapped only by a subset of the 

underlying land cover products, generating high uncertainty as in the previous case, but for different 

reasons. 335 

Figure 6. Contribution to cropland area by cropland agreement class in 5 countries with 100% 

uncertainty and cropland area > 1Mha. 
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3.3 Detailed cropland agreement 340 

3.3.1 Regional results 

To gain further insight into the relationship between mapping uncertainty and landscape complexity, we 

looked at the detailed contribution of single CAM land cover maps to SA1 contributions, by region, where 

SA1 represents the areas with minimum agreement across land cover products. TheAll detailed 

combinations at the level of the regions discussed above isboth regional and country levels are available in 345 

the CAM aggregation dataset (Tubiello et al., 2023a) but too large to be discussed herein in its entirety. We 

limited the analysisdiscussion herein to the larger FAO regional groups and included a discussion ofto 

notable country examples among those discussedpresented earlier.  

At global level, consistently with their cropland definitions (Tab. 1),Regionally and with reference to Fig. 

7, GLAD contributed to SA1 less than 1% in Europe to about 5% in Africa; WorldCover 1% in the 350 

Americas, Europe and Oceania to 9% in Africa; ESRI 4% in Europe to 11% in Oceania. In fact,Most 

contributions to SA1 were largelyinstead from FCS30 (23% in Africa to 60% in Oceania); Globeland30 

(23% in Oceania to 53% in Europe); and FROM_GLC (30% in Africa to 8% in Oceania).  

Figure 7. Percent contribution to minimum cropland agreement area (SA1), by input land cover product 

used in CAMand region (ESR=ESRI; FCS30=GLC_FCS30-2020; FRG=FROM_GLC Plus; GLD=GLAD; 355 

GL30=Globeland30; WCO=WorldCover).  
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The regional analysis of the detailed agreement singles out FCS30 and Globeland30 as the land cover 

products in CAM map and dataset with the largest contribution to disagreement across regions, consistently 360 

with the fact that these are the only maps that includedinclude permanent crops, hence larger portions of 

cropland, in their definitions. Conversely ESRI, GLAD and WorldCover were the least contributors to 

disagreement, in line with their definitions, which focus on herbaceous crops within cropland landscapes. 

The FROM_GLC was an intermediate case, consistently with its inclusion of shrub crops within its 

definitions. 365 

3.3.2 Country results 

In our earlier observations, we highlighted that Ireland and New Zealand had the largest contribution of 

SA3, accounting for 54% and 36% respectively. This indicated that, on average, half of the land cover 

products in CAM agreed on mapping cropland. The detailed cropland agreement data in CAM showed that 

in both countries, this outcome was due to a fixed combination of just three products: ESRI-FCS30-370 

Globeland30 (Fig. 8). These were in fact the only land cover products in CAM that include pastures or 

generic herbaceous cover within their cropland definition, confirmingsupporting our hypothesis that 

prevalence of SA3 was linked to extensive areas of pastures within cropland, indeed typical of both 

countries’ agricultural landscapes. Additionally, for New Zealand, the detailed agreement data indicated 

that FSC30 and FSC30-GL30 were behind the SA1 and SA2 contributions to cropland area in the country. 375 



 

26 

 

This was consistent with a significant presence of permanent crops in the national agricultural landscape, 

as both products were the only ones in CAM that could capture permanent crops within cropland area.  

Figure 8. Percent contribution of products combinations to the detailed agreement, in Ireland and New 

Zealand. (Detailed agreement limited to land cover combinations with at least 3% contribution. ESR=ESRI; 

FCS30=GLC_FCS30-2020; FRG=FROM_GLC Plus; GLD=GLAD; GL30=Globeland30; 380 

WCO=WorldCover). 

 

For DRC, Malaysia, and Nicaragua (Fig. 9), countries characterized by cropland area estimates with very 

high uncertainty and a dominance of the SA1 class, the information provided by the detailed agreement data 

in CAM indicated that FCS30, GL30 and FRG were the land cover products mainly contributing to SA1. 385 

As discussed above, FCS30 and GL30 were the only two products in CAM that included permanent crops 

in their definitions. They compared in 8 out of nine9 SA1 combinations in DRC, 7 out of 8 in Malaysia, and 

in 5 out of 6 combinations in Nicaragua shown in Fig. 9, consistently with the large presence of permanent 

crops in these countries.  

 390 

 

 

 

 

Figure 9. Percent contribution of products combinations to the detailed agreement, in the Democratic 395 

Republic of the Congo, Malaysia and Nicaragua. (Detailed agreement limited to land cover combinations 
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with at least 3% contribution. ESR=ESRI; FCS30=GLC_FCS30-2020; FRG=FROM_GLC Plus; 

GLD=GLAD; GL30=Globeland30; WCO=WorldCover). 

 

 400 

4. Data availability 

The CAM aggregation dataset is publicly available in Zenodo at: https://doi.org/10.5281/zenodo.7987515 

(Tubiello et al., 2023a). 

5. Potential uses and limitationsConclusions 

The CAM aggregation dataset represents a novel global reference and knowledge product of the cropland 405 

area as well as a useful complement and guide for spatial applications of the CAM map (Tubiello et al., 

2023b). For instance and unlike the underlying land cover maps applied in its synthesis the CAM dataset 

includes the uncertainty of cropland area estimates by country worldwide. By highlighting areas with lower 

consensus among the 6 cropland maps, it can thus guide and support the targeting of areas in need of more 

in-depth spatial analysis. By the same token, thanks to the high spatial resolution and global coverage, 410 

pixels with higher agreement may support the development of global training datasets in machine learning 

approaches for future efforts of cropland mapping. 

In constructing the CAM map and the CAM aggregate dataset we assumed that pixels and areas with higher 

agreement — corresponding in our approach to simple agreement classes SA4 to SA6 — have higher 

likelihood to represent indeed cropland. The 6 cropland maps used in the construction of the CAM map 415 

differed by their operational definitions. Hence, we also assume that areas with larger consensus represent 

cropland types and agricultural landscape that are common to the six cropland maps. The temporary crops 

(annual herbaceous crops) coincide with this core, common definitional component. Our tests (Appendix 

D, Fig. D1), provided statistical confirmation of this hypothesis although actual ground verification would 

be required for a conclusive assessment.  The interpretation of pixels and areas with agreement classes SA3 420 

and below is instead less straightforward. A lower consensus may result from the errors of omissions and 

commissions that characterize each layer, their uneven accuracy across regions and in large countries but 
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also to the differences in definitions or often a combination of all these elements. We acknowledge the fact 

that the 6 land cover layers suffer from inaccuracies across regions but maintain that our synthetic approach 

may help reducing the errors of input datasets. For instance, when comparing country statistics from each 425 

input layer and from CAM with FAOSTAT cropland areas, we observed the lowest NRMSE for the CAM 

aggregated dataset (Appendix D, Table D1). The detailed agreement data whereby we provided granular 

information on the agreement between each land cover product and their specific combinations can help to 

disentangle these more complex situations at multiple scales. 

The CAM map and dataset currently provide information circa 2020. However, some of the maps used in 430 

our synthetic product (e.g. ESRI, GLAD and WorldCover, Globeland30) already include multi-year 

information and are expected to provide yearly land cover data on a regular basis. These future 

developments together with the addition of new cropland layers such as the WorldCereal of the European 

Space Agency (Van Tricht et al., 2023) when made operational on an annual basis may also provide 

opportunities for the analysis and understanding of cropland trends. 435 

 

6. ConclusionsThe CAM 

The CAM aggregation dataset presented herein consolidates information from six high-resolution global 

cropland maps circa 2020 currently available in the literature, using a meta-analysis approach to estimate 

cropland area and its uncertainty at country level, with data for 221 countries and territories and 34 regional 440 

aggregates. The CAM data are complemented by ancillary data on simple and detailed agreements of the 

underlying land cover products, with the same country and regional coverage. To our knowledge, this is 

the first time that such country information is presented in the literature.  

The global regional and country examples provided in this work demonstrate the usefulness of the CAM 

aggregation dataset to assess current knowledge on cropland area in countries as available from land cover 445 

maps, highlighting how they agree or disagree on specific agricultural landscapes, depending on individual 

accuracy but also and importantly on definitional differences. In particular, the data highlighted critical 

connections between the level of complexity in the observed agricultural landscape and the preponderance 

of specific cropland agreement classes. We showed that high agreement among land cover products 

corresponded to large scale fields with high input annual crops, hence cropland areas dominated by 450 

temporary crops; while minimum agreement tended to correspond to presence of more complex cropland 

landscapes, be it tree plantations in Africa, South-eastern Asia and South America, or mixed crop-pasture 

systems, such as in Ireland and New Zealand.  
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The CAM aggregation dataset represents a new global knowledge product and can serve as useful guide to 

support future land cover and land use product development and data evaluation.   455 
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8. Appendices  

 

Appendix A. The six land cover products of the CAM maps and measures of spatial 

consistency and similarity 630 

 

The six cropland layers that contribute to CAM include one thematic cropland product and five global land 

cover products, all containing one or multiple cropland classes (Tab. A1). GLAD, the thematic cropland 

map, uses images of multiple years (2016–2019) to create a single cropland map; a similar approach is used 

by FROM_GLC, Globeland30 (4 years) and the FCS30 (3 years) while ESRI and WorldCover use 2020 635 

images. ESRI and Globeland30 make use of a combination of pixel- and object-based classification 

methods whereas the other products use pixel-based supervised classification approaches. Of the CAM 

components, WorldCover was openly available from the Earth Engine Data Catalog, while the other 

datasets were available through assets created by individual users in the GEE environment. 

 640 

Table A1. Technical specifications of six land cover maps used as input in CAM maps (Tubiello et 

al., 2022; Tubiello et al., 2023b) and underlying information in the CAM aggregation dataset 

(Tubiello et al., 2023a). 

Cropland layer Spatial  

Resolution 

Remote sensing 

data 

Classification 

method 

Algorithm Source 

ESRI  10m Sentinel-2 Pixel & Object Convolutional Neural 

Network 

Karra et 

al., 2021 

FROM_GLC Plus 30m Landsat OLI & 

ETM+ 

MODIS 

Pixel Random Forest Yu et al., 

2022 

GLAD  30m Landsat Analysis 

Ready Data 

(ARD) 

Pixel Bagged Decision 

Tree Ensemble 

Potapov et 

al., 2022a 

GLC-FCS30-2020 

(FCS30) 

30m Landsat,  

Sentinel-1SAR, 

SRTM DEM 

Pixel Local adaptive 

Random Forest 

Zhang et 

al., 2021 

GLOBELAND30 30m Landsat TM5, 

ETM+ & OLI,  

HJ-1,  

GF-1 

Pixel & Object 

(POKa) 

Pixel-Object-

Knowledge Classifier 

Chen et al., 

2015 

WORLDCOVER 10m Sentinel-1 & 2, 

Copernicus 

Global DEM, 

RESOLVE 

Ecoregions 2017 

Pixel & Position Gradient Boosting 

Decision Tree 

Algorithm 

Zanaga et 

al., 2021 

aPixel- and object-based methods with prior knowledge.  

Formatted: Left, Indent: Left:  0.5"

Formatted: Justified
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 645 

 

Spatial consistency and similarity of the six input layers in CAM waswere investigated following methods 

in Liu et al. (2021). A total of 30,000 random points among non-zero cropland values were selected, and 

cropland area fractions for each agreement layer separately, for all pixels within an area of 5 x 5 km around 

each random point. Areas of overlap were excluded from the analysis. This produced approximately 28,000 650 

data points for each layer containing the location and cropland area fraction. Scatter plots were created 

where the cropland area fraction was plotted for each dataset pair. This allowed for a comprehensive 

analysis of the spatial similarity among datasets. The pixel-level comparison yielded the best agreement 

between the GLAD and the WorldCover (R2 = 0.79; RMSE = 0.15), followed by WorldcoverWorldCover 

and ESRI (R2 = 0.61, RMSE = 0.23), and ESRI and GLAD (R2 = 0.58, RMSE = 0.24). On the contrary, 655 

lowest R2 is found between FROM_GLC and the Globeland30 (R2 = 0.26, RMSE = 0.36) and FROM_GLC 

and FCS30 (R2 = 0.33, RMSE = 0.32) even though in absolute terms these products all mapped the largest 

global extents (Tab. A2). Overall, there is a clear separation between the three products that correlate well 

with one another (WorldcoverWorldCover, GLAD and ESRI) and the other high-resolution products. On 

the other hand, both Globeland30 and FCS30 have values that are almost consistently higher than in the 660 

GLAD. This suggests that there are many regions which are classified as cropland for Globeland30 and 

FCS30 where GLAD, but also WorldCover and ESRI, show no presence for cropland (Fig. A1 for pixel-

comparison of the GLAD with the other six land cover maps).  

Table A2. Pixel-level correlation (R2) between the 6 cropland datasets, RMSE in brackets (values 

computed from fraction of the cropland area). 665 

 ESRI FROM_ GLC GLAD FCS30 Globeland30 

FROM_GLC 0.4 (0.29)  

GLAD 0.58 (0.24) 0.5 (0.25)  

FCS30 0.45 (0.3) 0.33 (0.32) 0.48 (0.31)  

Globeland30 0.47 (0.32) 0.26 (0.36) 0.46 (0.33) 0.39 (0.27)  

WorldcoverWorldCover 0.61 (0.23) 0.53 (0.24) 0.79 (0.15) 0.49 (0.3) 0.47 (0.32) 
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Figure A1. Density scatterplot of correlation between GLAD and the other 5 cropland datasets. The 

colour of the points indicates the number of scatter points in that location. The black line depicts the 

regression line, while the red line shows the optimal 1:1 relationship. 670 

 

Binary similarity and distance measures are helpful tools in analysis of patterns and clustering (Choi et al., 

2009). The detailed agreement allows to extract information on the binary instances between two cropland 

layers and to define for each country their intersections and their mismatches. We computed the Baroni 

similarity index (Baroni-Urbani and Buser, 1976) from country statistics of the detailed agreement. The 675 

Baroni similarity index ranges between 0 (no attributes in common between pairs of land cover products) 

and 1 (perfect overlap) and it thus accounts for both ‘positive’ – that is, where two layers agree on the 

presence of cropland—and ‘negative’ matches, corresponding herein to areas where two layers agree on 

the absence of cropland. The normalised index was computed as follows: 

                                                               Similarity index ij  =
√𝐴𝐷+ 𝐴  

√𝐴𝐷+𝐴+𝐵+𝐶

√ 𝐴𝐷+ 𝐴  

√𝐴𝐷+𝐴+𝐵+𝐶
  680 

 (1) 

Where i and j are cropland layers; A is the area that both layers mapped as cropland; B is area of cropland 

mapped by the first layer only; C is the area of cropland mapped by the second layer only; D is the country 

area that both layers agree is not cropland. In the analysis, the total A + B + C + D corresponds to the total 

land area (see Tab. A3 for regional and global results). 685 
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Table A3. Index of similarity, by region and globally. 

 

 

 690 

 

 

 

 

 695 
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 710 

 

 

 Africa Americas Asia Europe Oceania World 

ESRI_FROM_GLC 0.67 0.82 0.80 0.85 0.79 0.80 

ESRI_GLB30 0.70 0.85 0.81 0.86 0.89 0.83 

FCS30_ESRI 0.66 0.83 0.80 0.88 0.85 0.82 

FCS30_FROM_GLC 0.75 0.78 0.82 0.82 0.73 0.80 

FCS30_GLB30 0.75 0.84 0.82 0.87 0.88 0.83 

GLB30_FROM_GLC 0.72 0.76 0.80 0.80 0.77 0.78 

GLD_ESRI 0.72 0.89 0.86 0.89 0.89 0.86 

GLD_FCS30 0.79 0.81 0.80 0.84 0.86 0.82 

GLD_FROM_GLC 0.75 0.88 0.81 0.89 0.85 0.84 

GLD_GLB30 0.81 0.82 0.81 0.81 0.89 0.82 

GLD_WCO 0.83 0.92 0.89 0.93 0.92 0.90 

WCO_ESRI 0.73 0.89 0.86 0.88 0.88 0.86 

WCO_FCS30 0.76 0.82 0.82 0.84 0.81 0.82 

WCO_FROM_GLC 0.75 0.86 0.81 0.87 0.87 0.83 

WCO_GLB30 0.78 0.81 0.82 0.81 0.85 0.81 

Average 0.74 0.84 0.82 0.86 0.85 0.83 
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Appendix B. Binary and decimal code attributes of the CAM detailed map of agreement  

 

Table B1. Lookup table of the binary and decimal values for each detailed class of agreement. For each 715 

datasets a value of 1 means presence of cropland and 0 is absence.  

Value Datasets 

Binary Decimal GLAD WorldCover ESRI FROM_GLC Globeland30 FCS30 

000000 0 0 0 0 0 0 0 

000001 1 0 0 0 0 0 1 

000010 2 0 0 0 0 1 0 

000011 3 0 0 0 0 1 1 

000100 4 0 0 0 1 0 0 

000101 5 0 0 0 1 0 1 

000110 6 0 0 0 1 1 0 

000111 7 0 0 0 1 1 1 

001000 8 0 0 1 0 0 0 

001001 9 0 0 1 0 0 1 

001010 10 0 0 1 0 1 0 

001011 11 0 0 1 0 1 1 

001100 12 0 0 1 1 0 0 

001101 13 0 0 1 1 0 1 

001110 14 0 0 1 1 1 0 

001111 15 0 0 1 1 1 1 

010000 16 0 1 0 0 0 0 

010001 17 0 1 0 0 0 1 

010010 18 0 1 0 0 1 0 

010011 19 0 1 0 0 1 1 

010100 20 0 1 0 1 0 0 

010101 21 0 1 0 1 0 1 

010110 22 0 1 0 1 1 0 

010111 23 0 1 0 1 1 1 

011000 24 0 1 1 0 0 0 

011001 25 0 1 1 0 0 1 

011010 26 0 1 1 0 1 0 

011011 27 0 1 1 0 1 1 

011100 28 0 1 1 1 0 0 

011101 29 0 1 1 1 0 1 

011110 30 0 1 1 1 1 0 

011111 31 0 1 1 1 1 1 

100000 32 1 0 0 0 0 0 

100001 33 1 0 0 0 0 1 

100010 34 1 0 0 0 1 0 

Formatted Table
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100011 35 1 0 0 0 1 1 

100100 36 1 0 0 1 0 0 

100101 37 1 0 0 1 0 1 

100110 38 1 0 0 1 1 0 

100111 39 1 0 0 1 1 1 

101000 40 1 0 1 0 0 0 

101001 41 1 0 1 0 0 1 

101010 42 1 0 1 0 1 0 

101011 43 1 0 1 0 1 1 

101100 44 1 0 1 1 0 0 

101101 45 1 0 1 1 0 1 

101110 46 1 0 1 1 1 0 

101111 47 1 0 1 1 1 1 

110000 48 1 1 0 0 0 0 

110001 49 1 1 0 0 0 1 

110010 50 1 1 0 0 1 0 

110011 51 1 1 0 0 1 1 

110100 52 1 1 0 1 0 0 

110101 53 1 1 0 1 0 1 

110110 54 1 1 0 1 1 0 

110111 55 1 1 0 1 1 1 

111000 56 1 1 1 0 0 0 

111001 57 1 1 1 0 0 1 

111010 58 1 1 1 0 1 0 

111011 59 1 1 1 0 1 1 

111100 60 1 1 1 1 0 0 

111101 61 1 1 1 1 0 1 

111110 62 1 1 1 1 1 0 

111111 63 1 1 1 1 1 1 

Note: since we only have six datasets only 6 bits are shown for the binary value as the last 2 are always 0 (8-bit 

integer). An example: pixel value 38 equals bit 100110 meaning the 2nd, 3rd, and 6th bit (or datasets) depicts the 

presence of cropland (i.e. Globeland30, FROM_GLC and GLAD), whereas the other 3 layers show no cropland. 

 720 
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Appendix C. CAM estimates for subregions and countries with largest relative uncertainty 

 

Table C1. Percent area contribution by agreement class to regional cropland area estimates in CAM. 
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Table C2. Countries with 100% relative uncertainty in CAM estimates (mean area; SE; area by simple 

agreement class) and FAO cropland area. 

Country CAM SE SA1 SA2 SA3 SA4 SA5 SA6  FAO 

  1000 ha 

Bahamas 50 50 42 7 1 0 0 0  12 

Bhutan 50 50 25 12 6 3 2 1 100 

Central African Republic 500 500 356 92 37 13 2 0 1880 

Haiti 200 200 89 43 26 20 14 8 1350 

Honduras 700 700 287 156 105 55 43 54 1596 

Ireland 2000 2000 124 420 1071 118 80 187 445 

Malaysia 3000 3000 1080 1113 401 105 88 213 8286 

New Zealand 4000 4000 1057 725 1421 462 244 92 601 

Nicaragua 2000 2000 995 396 172 104 114 220 1790 

Panama 600 600 213 184 81 41 40 40 665 

Papua New Guinea 300 300 253 33 9 4 1 0 1000 

Timor-Leste 200 200 113 47 17 11 8 4 191 

Puerto Rico 70 70 30 17 10 6 4 2 65 

Qatar 20 20 7 3 3 2 2 2 24 

Sierra Leone 200 200 181 16 3 1 0 0 1749 

Western Sahara 10 10 8 2 0 0 0 0 4 

Suriname 60 60 18 9 6 10 13 4 67 

Eswatini 200 200 55 44 26 16 18 41 190 

Trinidad and Tobago 20 20 10 5 3 1 1 0 47 

United Arab Emirates 100 100 43 28 15 6 4 3 90 

Democratic Republic of the Congo 5000 5000 2428 1538 729 255 46 3 15372 

Montenegro 90 90 51 18 9 6 4 2 15 
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Appendix D. Comparison with FAOSTAT land use statistics 

 

Figure D1. Scatterplots of the correlation between FAOSTAT land use statistics of Cropland and 

subcomponents (Arable land and Temporary crops) and the CAM area by aggregated classes of agreement. 735 

The black line depicts the regression line, while the red line shows the optimal 1:1 relationship. All 

correlations were statistically significant (p < 0.001). 

 

 

Table D1. Results of the comparison between country statistics from the 6 cropland input layers and from 740 

CAM with FAOSTAT cropland areas (R2 and NRMSE).  

Dataset R2 NRMSE (%) 

ESRI 0.94 3.5 

FCS30 0.89 6.5 

FROM_GLC 0.94 3.4 

GLAD 0.96 3.5 

Globeland30 0.94 6.1 

WorldCover 0.95 3.3 

CAM 0.95 3.0 

 


